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Abstract

Single Cell Multi-modal Analysis Using scDMVAE with an Emphasis on SCoPE2

Technology

by

Yi Zheng

Effective multi-modal integration of single cell datasets is critical for uncovering the bi-

ological properties of cells from different molecular perspectives. However, this poses

significant challenges, including how to preserve shared information and account for dif-

ferences between differently distributed datasets, how to integrate datasets linked by

different anchors (cells or features) and how to improve the quality of datasets for inte-

gration. In this dissertation, we introduce two novel models that address these challenges.

First, we present scDMVAE, a neural network model that can capture both shared and

data-specific aspects of datasets in a latent space. scDMVAE can handle both cell-linked

and feature-linked datasets through its embedding learning and attention-based matching

components, respectively. We demonstrate the effectiveness of scDMVAE on a cell-linked

CITE-seq dataset to reveal different cell type relations between mRNA and protein, and

on feature-linked SCoPE2 proteomics and scRNA-Seq mRNA human testis datasets to

transfer labels from mRNA to protein. Additionally, we present PCRID, a principal curve

based model that aligns the retention time of peptides to improve confidence estimates

of peptide-spectrum-matches (PSMs) in SCoPE2 technology. PCRID outperforms exist-

ing models like DART-ID by handling non-linearities in retention time more effectively,

increasing the identification rate of peptides by 154.53 % at a PEP threshold of 0.01

while controlling false discoveries. Together, these models represent significant advances

in single cell data analysis and have broad applications across related fields.
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Chapter 1

Introduction

Since the publication of the first scRNA-seq study in 2009 (Tang et al., 2009), single-cell

technologies have become vital tools for scientists to understand biological mechanism

at cellular level. These high throughput technologies allow researchers to acquire infor-

mation on different molecules within hundreds of thousands individual cells, including

genome, transcriptome, DNA methylation landscape, chromatin accessibility and pro-

teomes. When combined, these different datasets can reveal the nature of cells from dif-

ferent aspects and provide a comprehensive picture of basic biological process. However,

integrating these datasets presents several challenges. One of the challenges is technical

effect, which varies among different single-cell technologies and make it hard to combine

datasets from the same modality but different technologies (e.g. batch effect). It is even

more challenging to integrate datasets from different types of molecules (modalities) due

to differences in their distribution and various biological connections among datasets.

Additionally, a significant challenge is how to handle different linkages between different

datasets (Argelaguet, Cuomo, Stegle, & Marioni, 2021). Some datasets contain informa-

tion from different modalities in the same cell and thus are referred to as “anchored by

cells” (vertical integration). Some datasets are profiled from independent groups of cells
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Introduction Chapter 1

and linked by the same gene set. They are referred to as “anchored by genomic features”

(horizontal integration). Other datasets that have no anchor are referred to as diagonal

integration.

In 2021, a new generation single cell proteomics technology, SCoPE2 (Petelski et

al., 2021), was introduced. This mass-spectrometry based technology uses an isobaric

carrier to enhance peptide sequence identification and can quantify over 1000 proteins per

cell with high efficiency. Compared to the classical approaches that employ antibodies

and can only quantify 50-100 proteins per cell (Levy & Slavov, 2018), SCoPE2 drastically

increases the number of proteins identified per cell and brings more possibilities to exciting

new biological discoveries.

New opportunities in single-cell proteomics, such as SCoPE2, also bring new chal-

lenges. One challenge is integrating SCoPE2 datasets with other modalities for down-

stream analysis. For example, analyzing protein and mRNA datasets to study post tran-

scriptional regulation requires horizontal integration by transforming the protein features

to the corresponding gene features and anchor the datasets by genes. Another challenge

is improving the quality of SCoPE2 datasets. SCoPE2 uses peptides as the medium to

identify proteins but low abundance peptides generate only a few fragment ions, mak-

ing confident identification difficult and reducing the number of identified proteins. To

increase the number of confident peptide identifications, researchers seek to use other

highly informative features such as retention time (RT) to align peptides from different

experiments, boosting the confidence of low abundance peptides that are consistent with

general RT patterns.

In this thesis, we propose two models to address the aforementioned challenges. The

first model is the single cell disentangled multi-modal variational autoencoder (scDM-

VAE), a neural network model that can handle both horizontal and vertical integration

and uncover shared and modality specific information. In scDMVAE, we utilize the struc-
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Introduction Chapter 1

ture of disentangled multi-modal variational autoencoder (DMVAE) (Lee & Pavlovic,

2021) to create a parametric VAE variant that has both shared and modality-specific

latent space. Common information is forced into shared latent space using a technique

called Product of Experts (PoE) (Hinton, 2002). Vertical integration can be dealt with

using scDMVAE directly. For horizontal integration, we learn from Seurat V3 (Stuart

et al., 2019) and LIGER (Welch et al., 2019) and treat the overlapping genes as obser-

vations. The resulting latent space becomes gene embeddings and the decoder weights

mapping gene embeddings to the reconstructed data can be viewed as cell embeddings.

We then use a novel attention-based mechanism together with the Shared Nearest Neigh-

bor (SNN) based cell mapping technique in Seurat V3 to align the cell embeddings from

different modalities. We will show that scDMVAE can be applied not only to SCoPE2

and sc-RNA-seq datasets but also to other situations such as CITE-seq datasets.

The second model we propose is the principal-curve-based retention time alignment

and posterior error probability (PEP) re-estimation model, PCRID. PCRID is a non-

linear improvement over DART-ID (Chen, Franks, & Slavov, 2019) and uses principal

curves (Tibshirani, 1992) to fit peptide retention times and update the PEP based on

the posterior distribution. PCRID increases the identification rate of peptides, reduces

the number of missing values and improve the quality of SCoPE2 datasets.

3



Chapter 2

Multi-Modal integration using

scDMVAE

2.1 Background and Related Work

Data integration is a crucial step in multi-omics analysis and various methods have

been developed to address this challenge. These methods aim to project datasets from dif-

ferent batches or modalities into a shared latent space of cells. The resulting embeddings

can be used in downstream analysis such as cell type clustering, pseudo-time analysis of

cell trajectories and so on. Seurat V3 (Stuart et al., 2019) and LIGER ((Welch et al.,

2019)) are two popular methods that use non-parametric models to integrate datasets

and obviate the distributional differences. Seurat V3 applies Canonical Correlation Anal-

ysis (CCA) (Hardoon, Szedmak, & Shawe-Taylor, 2004) for initial dimension reduction

and then uses mutual nearest neighbor (MNN) (Haghverdi, Lun, Morgan, & Marioni,

2018) and anchor cells to harmonize the embeddings from different datasets. LIGER

resorts to integrative Non-negative Matrix Factorization (iNMF) (Yang & Michailidis,

2016) to take both shared and dataset-specific information into consideration. It then
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uses a novel shared nearest neighbor (SNN) method to align embeddings to the same

space. Models like SCVI (Lopez, Regier, Cole, Jordan, & Yosef, 2018) and scMVAE

(Zuo & Chen, 2021) adopt the deep learning concept Variational Auto Encoder (VAE)

(Kingma & Welling, 2013). A VAE consists of two main components: encoder and de-

coder. An encoder projects dataset to the latent space and decoder reconstructs dataset

from latent space. By utilizing encoders and decoders, those models can incorporate

VAE to integrate multi-modal/multi-batches datasets and easily specify the best para-

metric distribution for each dataset. SCVI focuses on horizontal integration with batch

correction by introducing learnable batch parameters lm’s for each dataset. scMAVE, on

the other hand, emphasizes on vertical integration and adopt the MVAE (Wu & Good-

man, 2018) concept. It comprises one set of encoder and decoder for each modality and

learns a shared latent space. However, neither of these models can solve both horizon-

tal and vertical integration nor do they utilize dataset-specific information. To address

these limitations, We propose scDMVAE, which is a neural network model that can solve

both horizontal and vertical integration as well as uncover shared and modality-specific

information.

2.2 scDMVAE Framework

scDMVAE consists of two main components, the embedding learning component (Fig-

ure 2.1) and the embedding matching component (Figure 2.2). The embedding learning

component is responsible for vertical integration, while horizontal integration is achieved

by combing the two components and treat features as observations. In this section, we

will first define the problem at hand and then then provide a detailed overview of each

component.

5
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Figure 2.1: scDMVAE Embedding Learning Framework. Datasets are fed into
encoders and projects to shared and modality-specific latent spaces. Shared informa-
tion is obtained by using Product-of-Expert (PoE). The Decoders reconstruct datasets
based on the latent space.

Figure 2.2: scDMVAE Embedding Matching Framework. In horizontal integra-
tion, the weights of the first layers of decodersH’s are treated as cell-level embeddings.
They are then fed into the attention network to compute the attention scores. The
model tries to find the best attention scores that maximize the given similarity scores
between the weighted H matrix and the H matrix from the other modality.
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2.2.1 Problem Definition

scDMVAE is designed to perform both the vertical and horizontal integration in

single-cell context. In vertical integration, multiple types of molecules are measured in

the same cell, with cells serving as the anchors. Our aim with scDMVAE is to learn a

cell latent space that contains both shared and modality-specific information separately.

This allows researchers to identify cell types that are common to both modalities using

the shared space, and to identify sub-cell types that belong to the same cell types but

differ slightly in one of the modalities.

In horizontal integration, we have multiple datasets in different modalities but with

the same set of features (such as genes for mRNA and proteomics readings), making

the features the anchors. The goal is to find a latent space for cells in each modality

and match cells in those latent spaces across different modalities. The matched results

can then be used to study reading changes across modalities within the same clusters

or cell types. Assume we have multi-modal datasets X = {x1, . . . ,xM} and the formal

definitions of the two problems are as follows.

In vertical integration xm is the dataset in modality m with n cells and dm features.

The input matrix isXn×D, where xms are concatenated by cells andD = d1+d2+· · ·+dM .

The goal is to find latent space Zm = (Zs,Zpm) in which Zs is the shared latent space

and Zpm is the private latent space of modality m, for m in {1, . . . ,M}. The dimensions

for shared and private spaces are ks and kp respectively. The cells are mapped to the

same space and alignment is not needed.

In horizontal integration xm is a nm by d matrix for m in {1, . . . ,M}. The input

matrix XN×d, where x
′
ms are concatenated by features and N = n1+n2+ · · ·+nM . The

target cell latent spaces are Hm = (Hsm ,Hpm) for m in {1, . . . ,M} with ks and kp as the

corresponding dimensions. Alignment is required for the resulting latent spaces, which
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will be discussed in details in section 2.2.3.

2.2.2 Embedding Learning

The embedding learning component of scDMVAE is built on DMVAE (Lee & Pavlovic,

2021), which is a multimodal variation of variational autoencoder (VAE). In the following

section, we will provide a brief overview of VAE and then proceed to discuss the struc-

ture of the embedding learning component of scDMVAE. Specifically, we will describe

the details of the model inference and reconstruction, as well as the objective function.

Variational AutoEncoder (VAE)

A variational autoencoder is a generative model first introduced by Kingma and

Welling. It aims to learn a probabilistic latent space z that maximizes the probability

distribution of the input data x, p(x), using the encoder and decoder structure (Figure

2.3). The encoder network, p(z|x), projects data onto latent space while the decoder,

p(x̃|z), reconstructs data from latent space z. The objective of VAE is to maximize

log p(x) but this is intractable. However, the likelihood has a lower bound called evi-

dence lower bound (ELBO): log p(x) ≥ ELBO = Eq(z|x) log p(x|z) − KL[q(z|x)||p(z)].

Here, q(z|x) belongs to an approximation to the posterior p(z|x) and p(z) is the prior.

Assuming both q(z|x) and p(z) have Gaussian distributions, the ELBO becomes tractable

and we maximize the ELBO term instead of the intractable likelihood of observed data

x. The first term in ELBO can be viewed as reconstruction p(x|z) based on the en-

coder distribution q(z|x). The second term, KL divergence, forces q(z|x) to resemble the

Gaussian prior p(z) so that the latent space will not be over fitted with variance zero.

Therefore, the KL divergence term can be seen as a regularization term.

8
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Figure 2.3: Structure of Variational AutoEncoder (VAE).

Structure

The embedding learning component of scDMVAE is constructed using the DMVAE

framework, which posits that in a multi-modal scenario, the latent space is comprised of a

shared space that is common to all modalities, as well as a private space that is specific to

each modality. Specifically, the shared latent space should only contain information that

is shared across modalities and is constrained using the Product-of-Expert technique,

which was introduced by MVAE (Wu & Goodman, 2018). In contrast, the private latent

spaces supplement the reconstruction for each modality and contain information that

is unique to that modality. Fig 2.1 is an illustration of scDMVAE when there are two

modalities. The encoders project observations x = (x1, x2) to latent spaces z1 and z2

respectively. We assume z1 ∼ qϕ1(z|x1) and z2 ∼ qϕ2(z|x2) and can be factored into

z1 = (zs1 , zp1), z2 = (zs2 , zp2). zs1 and zs2 are then aligned by PoE into zs. The decoders

takes (zs, zp1) and (zs, zp2) as input and reconstruct each modality to x̃1 and x̃2

Latent Space Inference

The inference of latent space in scDMVAE consists of two parts. The first part involves

using q(zs|x1, . . . , xM) to approximate the true shared latent space p(zs|x1, . . . , xM), while

the second part involves using q(zpm|xm) to approximate the true private latent space

p(zpm|xm) of modality m for m in {1, . . . ,M}. One of the challenges in this process is

9
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to establish connections between the jointed posterior p(zs|x1, . . . , xM) and the shared

single-modality inference networks q(zsm|xm) for for m in {1, . . . ,M}. In order to over-

come this challenge, MVAE uses Product-of-Experts (PoE) with conditionally indepen-

dence assumption p(x1, . . . , xM , zs) = p(zs)p(x1|zs) · · · p(xM |zs):

p(zs|x1, . . . , xM) =
p(x1, . . . , xM |z)p(zs)

p(x1, . . . , xM)
=

p(zs)

p(x1, . . . , xM)

M∏
m=1

p(xm|zs)

=
p(zs)

p(x1, . . . , xM)

M∏
m=1

p(zs|xm)p(xm)

p(zs)
∝

∏M
m=1 p(zs|xm)∏M−1

m=1 p(zs)

(2.1)

If we further assume that p(zs|xm) can be correctly approximated by q(zs|xm) ≡ q̃(zs|xm)p(zs):

p(zs|x1, . . . , xM) ∝
∏M

m=1 p(zs|xm)∏M−1
m=1 p(zs)

≈
∏M

m=1 q̃(zs|xm)p(zs)∏M−1
m=1 p(zs)

= p(zs)
M∏

m=1

q̃(zs|xm) (2.2)

Equation 2.2 suggests that we can use a product of experts, “prior expert” together

with “modality-specific experts”, to approximate the joint posterior. While the PoE is

generally intractable, it has a closed form solution when each term is assumed Gaussian,

which is the distributional assumption of latent space in VAE. In this case, the product

of Gaussian experts is also Gaussian with mean µ = (
∑

i µiTi)(
∑

i Ti)
−1 and covariance

V = (
∑

i Ti)
−1, where µi, Vi are the parameters of the ith Gaussian expert and Ti = V −1

i .

In this context, vertical integration refers to integrating information from different

modalities features at the cell level, while horizontal integration refers to integrating

information of different cells from different modalities at the feature level. In both case,

we aim to construct cell level latent space. However, the treatment of the data will differ

depending on the type of integration being performed. In vertical integration, cells are

treated as observations and zm = (zs, zpm) is the desired latent space for each modality m

10



Multi-Modal integration using scDMVAE Chapter 2

in {1, . . . ,M}. On the other hand, in horizontal integration, data matrices are transposed

and features are treated as observations since they are anchored by features. The resulting

latent space z will be at the feature level and to obtain the corresponding cell-level latent

spaces, the first layer of decoders is shaped to have ks + kp by nm and the transpose of

the corresponding weight matrices of the first layers Hm = W T
m are taken as the nm by

ks + kp cell latent spaces, for m in {1, . . . ,M}. These H matrices are then aligned later

to obtain correspondences among cells.

Reconstruction

One advantage of scDMVAE is that it specifies a dedicated parametric distribution

for each modality (e.g. Zero-Inflated Negatvie Binomial for mRNA and Log Normal for

proteomics) and seeks to find MLEs for those parameters. In this way, each modality can

be treated with the most suitable distribution instead of using L2 norm as reconstruction

loss. To be more specific, the goal is to learn the best parameter estimations through

decoders that maximize the following equation:

M∏
m=1

p(x̃m|x1, . . . , xM) =
M∏

m=1

∫
p(x̃m, zs, zpm|x1, . . . , xM)dz

=
M∏

m=1

∫
p(x̃m|zs, zpm)p(zs, zpm|x1, . . . , xM)dz

=
M∏

m=1

∫
p(x̃m|zs, zpm)p(zs|x1, . . . , xM)p(zpm|xm)dz

=
M∏

m=1

Ep(zs|x1,...,xM )p(zpm |xm)[p(x̃m|zs, zpm)]

≈
M∏

m=1

Eq(zs|x1,...,xM )q(zpm |xm)[p(x̃m|zs, zpm)]

=
M∏

m=1

Eq(zs|x)q(zpm |xm)[p(x̃m|zs, zpm)]

(2.3)
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Objective Function

Combining all parts of the model, the objective function can be written as:

ELBO(x1, . . . , xM) =
M∑

m=1

λm Eqϕ(zs|x)qϕ(zpm |xm)[log pθ(x̃m|zs, zpm)]

− λpKL(qϕ(zpm |xm)||p(zpm))− λsKL(qϕ(zs|x)||p(zs))

(2.4)

In equation 2.4, the λ’s are hyper-parameters to balance the reconstructions as well as

KL divergences; θ and ϕ are the weight parameters in encoders and decoders respectively;

priors p(z) are chosen to be standard Gaussian distributions and KL divergences can be

viewed as regularization terms.

2.2.3 Embedding Matching

In horizontal integration, the embeddings Hm of different modalities are of different

scales. To establish correspondence across modalities, we build a attention-based match-

ing model to evaluate the similarities among cells of different modalities. This matching

model uses shared part of the embeddings and is designed for two modal situation. In

this section, we will give an overview on the embedding matching component with two

modalities. For more than two modalities, we can select one modality as reference and

match other modalities to it.

Attention-based Matching Structure

In many horizontal integration models, the similarities of cells across different datasets

are typically measured by the L2 norm in the latent space. However, this approach is

not suitable for multi-modal integration, as datasets from different modalities are often

12
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distributed differently, and the connection among datasets anchored by the same gene

sets can be complicated.

To address this issue, we developed a novel attention-based method inspired by

(Vaswani et al., 2017), which uses attention score as a measurement of similarity. As

shown in Figure 2.2, the embedding H matrices are fed into an attention network that

learns two cross-attention score matrices (one n1-by-n2 and one n2-by-n1) where the row

sums equal to one. The attention scores in each row represent how much attention we

should pay to the cells in the other modality when looking at the corresponding cell in

current modality. It can also be viewed as weighted average of cells in the other modality.

We want this weighted average to be as similar to the target cell as possible. The

default similarity metric we use is cosine similarity, which does not depend on the magni-

tudes of embeddings but only on the angles. However, one can use a different similarity

metric based on the nature of target datasets. Based on the attention matrices, we can

identify the correspondence of cells across modalities. If the attention scores are mutually

high for two cells, then they are matched and considered to correspond to each other.

In the case that all the high attention scores of a cell type are not mutual, this cell

type can be identified as belonging to a unique cluster that only exists in its modality.

In the following section, we will discuss in detail how to formally find the corresponding

cells (anchors) and use those anchors to perform integration and label transfer.

2.2.4 Integration Using Anchors

Matching cells across modality using only the attention matrices can be problematic,

as not all correspondences are equally important. Some correspondences are strong,

some are weak, and some may even be incorrect due to random noise. To address this

issue, we adopt the anchor scoring and weighing strategy from Seurat V3 (Stuart et al.,

13
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2019), which uses scores and weights to guide the integration. This approach allows

us to prioritize the most reliable anchors and reduce the influence of noise and weak

correspondences. We will discuss the details of this strategy in the following section.

Identification of Anchor Correspondences

The first step in our integration approach is to identify anchors using the attention

matrices. We treat attention scores as distance measurements and use them to find the

K-nearest neighbors (KNNs) for each cell within the other dataset. If two cells from

different modalities are within the KNNs of each other, they are referred to as anchors.

The parameter kid controls the number of nearest neighbors used in this step.

Anchor Scoring

The second step of our method involves evaluating the quality of anchors using anchor

scores. For each anchor pairs, we calculate the within and across kscore nearest neighbors

for each of the two cells and use the total number of overlap cells as a score for this anchor

pairs. To find across nearest neighbors, we use attention scores as our similarity metric,

while for the within nearest neighbors, we use the L2 norm in latent space. The score

metric is inspired by Shared Nearest Neighbor (SNN) graph clustering algorithm (Jarvis

& Patrick, 1973; Houle, Kriegel, Kröger, Schubert, & Zimek, 2010), which measures the

similarities between nodes based on the number of common neighbors. This approach is

more robust in high dimension than traditional distance-based similarity metrics, making

it well-suited for our multi-modal integration problem where distances within and across

datasets are not comparable. Seurat V3 has shown that in practice the correct anchors

have significantly high scores than incorrect anchors. Therefore, we use those scores to

down-weight the influence of incorrect anchors. To avoid extreme outliers, the scores are

re-scaled to be between 0 and 1 using 0.01 and 0.90 quantiles.
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Anchor Weighting

The third step involves establishing connections between anchor cells and other cells

using the scores obtained in the second step. The strength of a connection is determined

by two factors: the distances from a cell to the anchor cell within its modality and the

corresponding anchor score. To quantify this connection, we use a weight matrix W of

size ncell by npairs. For each cell c, we identify its kweight nearest anchor cells within its

own modality using latent space embeddings. We calculate the weights based on the

scores Sai and the distances between the cell c and its nearest anchor cells as follows:

Dc,i = (1− dist(c, ai)

dist(c, akweight
)
)Sai

D̃c,i = 1− e−Dc,i/2

Wc,i =
D̃c,i∑kweight

j=1 D̃c,j

(2.5)

Label Transferring

To transfer labels from one modality to the other, we first create a binary nlabel by

npairs classification matrix L. Each column of L correspond to an anchor pair, while each

row corresponds to a label. For a given anchor pair, the column of L has a value of one in

the row that corresponds to the label of the reference cell, and zeros for all other entries.

To account for label imbalance, we average each row of L by the total number of cells

that belong to that label. The label transfer is characterized by equation 2.6, where P

contains the predicted label scores for all cells.

P = LW T (2.6)

As a conclusion, the predicted label scores for a given cell are obtained by taking
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a weighted average of the reference cells’ labels, where the weights are determined by

the distances from the cell to the anchor cells in its modality, the corresponding anchor

scores, and the attention scores across modalities.

2.3 Results

2.3.1 Data Distribution

mRNA datasets contains UMI counts of gene expressions with excessive missing val-

ues due to technical reasons. Therefore, the dataset has a huge amount of zeros which

can be due to either technical issues or biological variations. To better distinguish the

biological variations from technical issues, the Zero-Inflated Negative Binomial (ZINB)

distribution is used to model mRNA datasets. For protein datasets, based on different

technologies, the datasets have different distributions. For CITE-seq datasets contain-

ing counts of antibodies, we use Negative Binomial distribution to describe them. For

SCoPE2 datasets, we model them with log-normal distribution.

The Negative Binomial Distribution can be characterized with its mean µ ∈ R+ and

dispersion ϕ ∈ R+ as is shown in equation 2.7:

NB(y|µ, ϕ) =
(
y + ϕ− 1

y

)(
µ

µ+ ϕ

)y (
ϕ

µ+ ϕ

)ϕ

E[Y ] = µ,Var[Y ] = µ+
µ2

ϕ

(2.7)

The ZINB is a Negative Binomial distribution with an additional spike at zero. The

probability of being zero due to technical issue is denoted using π. The ZINB can be

viewed as a combination of two steps. The first step is a Bernoulli distribution with

success probability 1 − π and π is the probability of being zero due to technical issue

(missing value). With probability 1 − π, the variable value can be observed and is
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distributed according to a Negative Binomial distribution. The probability mass function

of ZINB is:

P (y = 0|π, µ, ϕ) = π + (1− π)NB(y = 0|µ, ϕ)

P (y = i|π, µ, ϕ) = (1− π)NB(y = i|µ, ϕ), i ∈ Z+

(2.8)

2.3.2 Vertical integration

scDMVAE is a powerful tool for integrating multi-modal datasets from the same cell.

One of the main challenges in this field is how to balance the preservation of hetero-

geneity, such as unique cell types, across modalities while also uncovering homogeneous

information. While vertical integration models often overlook heterogeneous informa-

tion, it is crucial in downstream analysis. To address this issue, scDMVAE introduces

modal-specific latent space in single cell multi-modal analysis, which provides access to

information that is not present in the shared latent space. The embedding generated by

scDMVAE contains a representation that reveals both shared and private information,

resulting in more accurate cell characterization compared to analyzing each modality

separately. In this section, we demonstrate the usefulness of scDMVAE by analyzing

simulation datasets and the cord blood mononuclear cells (CBMC) dataset.

Simulation

In this simulation, we evaluated the ability of scDMVAE to disentangle homoge-

neous and heterogeneous information by utilizing the shared and modality-specific latent

space.The dataset contained both protein and mRNA information for three cell types,

where cell type 2 and 3 were subtypes of a larger cell type, and could only be differenti-

ated by mRNA data. Only two cell types could be distinguished by protein information.

The dataset consisted of 7500 cells with 2500 cells in each cell type and 200 genes. The
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mRNA distribution followed a Zero-Inflated Negative Binomial (ZINB) distribution with

a missing probability of 0.5, while the protein data followed a log-normal distribution.

Figure 2.4 depicts the combined embedding (zs, zp1 , zp2), along with the embeddings

of the shared and modality-specific space (zs, zpi) for each modality. The combined

embedding exhibited the highest resolution and identified three distinct cell types. The

mRNA and protein embeddings also accurately identified their corresponding cell types

as per the simulation ground truth. To further explore what information is contained in

zs, zp1 , zp2 respectively, we show the UMAP of shared and modality specific embeddings

separately in Figure 2.5. the shared space contained only two clusters, one representing

cell type 1, and the other containing both cell type 2 and 3. This was as expected since the

shared space only captured shared information, i.e., two cell types. The modality-specific

space, on the other hand, complemented the shared space and contained information

specific to each modality. In the UMAP of the mRNA modality-specific space, two

clusters were observed: a smaller one containing cell type 2 and a larger one containing

cell type 1 and 3. This complemented the shared space since the combined shared and

mRNA modality-specific space contained enough information to distinguish all three

cell types. The protein modality-specific space yielded similar results since the shared

space contained enough information to differentiate between the two cell types in the

protein data. Hence, the protein modality-specific space appeared to be random in the

UMAP. In conclusion, the simulation results demonstrated that scDMVAE can effectively

disentangle shared and modality-specific information in vertical integration tasks, thanks

to its dedicated modules for each aspect.

Real data: Cord blood mononuclear cells (CBMC) dataset

The CBMC dataset is generated using CITE-seq technology in (Stoeckius et al.,

2017), which allows simultaneous RNA sequencing and surface protein quantification
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(a) Combined Embedding (b) mRNA Embedding (c) Protein Embedding

Figure 2.4: Simulation Results: UMAP of combined embeding, mRNA em-
bedding and protein embedding. (a) shows the combined embedding zs, zp1 , zp2)
and all three cell types are well separated; (b) and (c) shows the mRNA and protein
embedding (zs, zpi) respectively and the clusters are in accordance with the ground
truth.

(a) Shared Embedding (b) mRNA Modality-Specific
Embedding

(c) Protein Modality-Specific
Embedding

Figure 2.5: Simulation Results: UMAP of shared embeding, mRNA and
protein modality-specific embedding. (a) shows the shared embedding zs and it
contains the two main cell types; (b) and (c) shows the mRNA and protein modal-
ity-specific embedding zpi respectively; (b) contains enough information for distin-
guishing cell type 2 and 3 and information in (c) is quite noisy indicating that most
of the information in protein is captured by the shared embedding.
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using available antibodies at the single-cell level. The dataset consists of 20,501 mRNA

genes and 10 protein antibodies from 8,617 cells.To reduce the dimensionality of the

mRNA dataset, we selected the 2,000 most variable genes using Seurat’s tools (Hao

et al., 2021). Due to technical reasons, the mRNA dataset contains a large number

of excessive missing values, resulting in a significant number of zeros. To differentiate

biological variation from technical variation, we modeled the mRNA dataset using a Zero-

Inflated Negative Binomial (ZINB) distribution, while the surface protein data, which

contains antibody counts, was modeled using a Negative Binomial (NB) distribution.

The UMAP anlaysis of raw data (Figure 2.6a and 2.6b) shows that most cell types are

separated consistently between the two modalities. However, some are mixed with other

cell types in either modality. For example, CD8 T and Memory CD4 T cells overlap in

mRNA but can be well-distinguished in protein. Conversely, T/Mono doublet cells are

entirely mixed with CD14+ Mono cells, but can be separated in protein. In the protein

UMAP embedding, Eryth and Mouse cells, as well as Memory and Naive CD4 T cells

are mixed together, but they can be identified in mRNA. It is desirable in multi-modal

analysis to preserve those diversified information in the learned embedding while learning

the common information. Figure 2.6c, 2.6d and 2.6e show the integrated UMAP of scD-

MVAE embedding using 3 different dimension combinations. The previously entangled

cell types in either modality are well-distinguished in the integrated analysis, enabling

clear identification.

Seurat V4 (Hao et al., 2021) are designed for the same purpose using graph-based

method. It builds a weighted nearest neighbor (WNN) graph, where the weights are

calculated using independent KNN graph of each modality. One potential drawback of

Seurat V4 is that the result is sensible to the choice of dimension reduction technique.

This is because the KNN of each modality is built using different dimension reduction

methods. The other potential issue is that the shared and modal-specific information
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are not distinguishable in the WNN graph. Compared to Seurat v4, scDMVAE generate

embeddings using an end-to-end automated approach, without weighting. The embed-

dings are generated using the same model and shared and modal-specific information is

accessible and comparable.

2.3.3 Horizontal integration

Simulation

In this simulation, we assessed the ability of scDMVAE to align mRNA cells and

protein cells. We simulated 7500 mRNA cells and 7500 protein cells with 200 genes in

common. The dataset comprises three cell types that are common to both mRNA cells

and protein cells, with 2500 cells in each cell type and modality combination. We assumed

that the means of cells from the same cell type followed the relation µmRNA/µprotein = 10

for each gene to emulate the central dogma of biology. The means of the three cell types

exhibited distinct patterns among the 200 common genes (Figures 2.7a, 2.7b, and 2.7c).

To increase the difficulty of integration, we set the missing probability of gene 51 to 150

to be 0.9, such that the observed patterns for cell types 1 and 2 would be very similar and

challenging to distinguish without modeling the missing probability (Figures 2.7d, 2.7e,

and 2.7f). In this scenario, we pretended that the labels of protein cells were unknown

and aimed to transfer the labels from mRNA to protein.

We compared scDMVAE with LIGER using the simulation dataset. In scDMVAE,

the cells are aligned using the attention network together with anchor strategy and Labels

are transferred from mRNA cells to protein cells. On the other hand, the LIGER-learned

embeddings of mRNA and protein will be mapped to the same space by choosing one

embedding space as reference and mapping the other to it. The transferred labels in

LIGER are obtained by majority voting of the k-nearest mRNA cells around the target
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(a) Raw mRNA (b) Raw Protein

(c) scDMVAE: UMAP dimension 1 and 2 (d) scDMVAE: UMAP dimension 1 and 3

(e) scDMVAE: UMAP dimension 2 and 3

Figure 2.6: UMAP of Raw CBMC Data. (a) and (b) are the UMAP of mRNA
and Protein raw data respectively and show the heterogeneity between the two modal-
ities. Eryth Cells and Mouse Cells, Naive CD4 T and Memory CD4 T cells can be
distinguished in (a) but not in (b); CD 14+ Mono and T/Mono doublets cells, CD8
T and Memory CD 4 T cells are well-separated in (b) but not in (a); (c)-(e) shows
the UMAP of scDMVAE embedding with UMAP dimension 3. All the cell types
mentioned above are disentangled and clearly separated.
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(a) means of cell type 1 (b) means of cell type 2 (c) means of cell type 3

(d) means of cell type 1 with
missing values

(e) means of cell type 2 with
missing values

(f) means of cell type 3 with
missing values

Figure 2.7: Means of 200 Genes for All Three Cell Types. The cell types
are defined by the patterns of means of the 200 genes and the patterns are shown in
(a) (b) and (c); For the same gene, µmRNA/µprotein = 10; The observed means with
missing values are shown in (d) (e) and (f) with 90% missing rate for gene 51 to 150;
The patterns of cell type 1 and 2 are similar to each other with missing values.
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protein cells. We compared the transferred labels with the ground truth and found that

scDMVAE correctly assigned all transferred labels, while LIGER had a 7.88 % error

rate when using protein as the reference embedding. The alignment process in LIGER

can align a proportion of cells from different cell types, leading to label assignment

errors. The choice of reference embedding also affects the results, with 25 % and 7.88 %

wrongly-assigned labels using mRNA and protein as reference, respectively. Figure 2.8

presents UMAP visualizations of embeddings labeled with true and transferred labels,

and Figure 2.9 shows that wrongly-assigned labels in LIGER are mainly due to the

alignment algorithm.

Real data: SCoPE2 and sc-RNAseq testes datasets

Horizontal integration is a challenging task in multi-modal analysis. Because in multi-

modal single cell analysis, datasets from different modalities are distributed differently.

The connection among datasets anchored by the same gene sets can be complicated. Most

existing models perform pseudo multi-modal analysis which focuses on batch correction of

datasets from the same modality, where the relation among datasets can be modeled with

learnable scalar (Lopez et al., 2018) or linear vector correction (Haghverdi et al., 2018;

Stuart et al., 2019). LIGER (Welch et al., 2019) utilizes iNMF (Yang & Michailidis, 2016)

to integrate different modalities. By the parts-based nature of NMF, cells with the same

factor as their highest factor loadings are clustered together. To increase the stability of

clustering, LIGER introduced shared factor neighborhood (SFN) graph to assign cluster

based on the neighbor averaging information together with the highest loadings. Quantile

normalization is performed to normalize the loadings in joint clusters to integrate cells

to the same latent space. There are three main drawbacks of LIGER. Firstly, it matches

cells using only the information of its the highest loading factor and information of other

dimensions is only used to build SFN graph. Secondly, it lacks of the options to make
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(a) scDMVAE: UMAP of
mRNA Embedding with True
Labels

(b) scDMVAE: UMAP of Pro-
tein Embedding with True La-
bels

(c) scDMVAE: UMAP of Pro-
tein Embedding with Trans-
ferred Labels

(d) LIGER: UMAP of mRNA
Embedding with True Labels

(e) LIGER: UMAP of Protein
Embedding with True Labels

(f) LIGER: UMAP of Pro-
tein Embedding with Trans-
ferred Labels

Figure 2.8: UMAP of Simulation Embeddings with True and Transferred
Labels of scDMVAE and LIGER. scDMVAE results are shown in (a) (b) and
(c): the cell types are well separated and all the transferred labels are correct; LIGER
results are shown in (d) (e) and (f): we use protein as reference because it gives better
results; the mRNA embedding are slightly overlapped between cell type 1 and 2; 7.88
% of the labels are wrongly assigned
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(a) UMAP of Aligned LIGER embedding with
True Labels with mRNA as Reference

(b) UMAP of Aligned LIGER embedding with
True Labels with Protein as Reference

Figure 2.9: UMAP of LIGER Aligned Embeddings with True Labels. The
result is sensitive to the choice of reference: (a) and (b) are using mRNA and protein
as reference with 25 % and 7.88 % wrongly-assigned labels respectively; In both cases
the alignment process of LIGER aligns a proportion of cells from different cell types.

dedicated changes for a specific problem (e.g. distributions and similarity metrics for

matching cells across modalities). Thirdly, it assumes linearity in the decomposition of

modalities. However the relation can be complicated and nonlinear in reality. scDMVAE

is more flexible than LIGER in the sense that it can utilize all dimensions in similarity

metrics and can change distributions and similarity metrics accordingly. In addition,

scDMVAE can incorporate nonlinear transformations in the encoder to learn a non-linear

transformed representation. We will compare scDMVAE and LIGER on their ability to

integrate the testes dataset sequenced by SCoPE2 and an independently generated sc-

RNA dataset.

The testes dataset of SCoPE2 contains 1547 cells with 2428 proteins, while the mRNA

dataset have 4955 cells with 32738 genes.Since the datasets have different dimensions,

we perform diagonal integration by selecting the highly variable proteins, converting

them to their corresponding genes, and finding the intersection of genes sets of both

modalities. The final common gene set contains 174 genes. The mRNA dataset contains
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(a) scDMVAE mRNA (b) scDMVAE Protein

Figure 2.10: UMAP of scDMVAE embeddings with protein labels learned
using scDMVAE. (a) and (b) are the UMAP of scDMVAE mRNA and Protein
embeddings respectively. General cell type relations in mRNA are preserved in trans-
ferred protein labels with some noises in the St and LC cells.

expert annotated labels, whereas protein dataset doesn’t. Therefore, in this task, we

focus on transferring label information of mRNA dataset to SCoPE2 dataset to facilitate

downstream analysis. In scDMVAE, we assume ZINB distribution (equation 2.8) for

mRNA and Lognormal distribution for SCoPE2 dataset. In the matching step, cosine

similarity is used because cells use mRNA to synthesis proteins and we expect the gene

measurements of protein and mRNA cells from the same cell types to be approximately

proportional. By the nature of reconstruction in scDMVAE, the similar property ap-

plies to the shared part H embedding matrices. Therefore we used the shared part of

H matrices for integration, which is intuitive because we can only transfer the shared

information from one modality to the other.

The horizontally integrated scDMVAE representations for mRNA and Protein are

shown in Figure 2.10, which demonstrates that general cell type relations are preserved

with some noises. However, it should be noted that 2D plots may not be sufficient to

reveal some high dimensional biological variations. A comparison of the protein em-

27



Multi-Modal integration using scDMVAE Chapter 2

(a) scDMVAE Protein embedding with scDMVAE
labels

(b) scDMVAE Protein embedding with LIGER la-
bels

(c) LIGER Protein embedding with scDMVAE la-
bels

(d) LIGER Protein embedding with LIGER labels

Figure 2.11: UMAP of scDMVAE and LIGER embeddings labeled using
both strategies. The scDMVAE labels are better separated than LIGER labels and
are more consistent with cell type relations in mRNA. The label SPG takes a big
proportion of LIGER labels and scatters at many places. The SPG labels mingling
with PTM cells should be labeled as PTM or EC; In both scDMVAE and LIGER
labels, LC and St are scattered in the middle part and in the isolated small cluster
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beddings of both scDMVAE and LIGER annotated by labels learned by LIGER and

scDMVAE is presented in Figure 2.11. The scDMVAE labels are better separated than

LIGER labels and are more consistent with cell type relations in mRNA. The SPG labels

takes a significant proportion of LIGER labels and are dispersed across many places.

Some of them mingling with PTM cells should be labeled as PTM or EC cells, which is

evidenced in the heat maps presented in Figure 2.12. It is worth noting that both scDM-

VAE and LIGER labels show that LC and St are scattered in the middle part and in the

isolated small cluster. The reason behind this could either be biological or systematic

noise.

To more rigorously compare the quality of label transformations, we calculated the

mean of each cell type in both mRNA and protein raw datasets and computed the pair-

wise correlation among cell types. Since the datasets have different distributions, we used

Spearman ranked correlation to account for this difference. We expect cells from the same

cell type but different modalities to have high correlations by their biological nature. The

heat maps in Figure 2.12 show that the labels provided by scDMVAE are more consistent

with the raw structure of the datasets, as indicated by the highlighted diagonal. The

M cell type in scDMVAE is more correlated with EC compared to M in mRNA because

M and EC are not distinguishable in scDMVAE mRNA embedding (Figure 2.10a). The

off-diagonal correlations are also consistent with biological cell type clusters, with three

major clusters formed by SPC and SPG, EC and St, M and EC and PTM. These three

main clusters are also shown in Figure 2.10a. However, in LIGER labels, the SPGs are

more similar to PTMs than SPGs, indicating that the widely assigned SPG labels are

inappropriate. EC labels in LIGER are also not consistent with mRNA. Furthermore,

no M label is assigned in LIGER, and the corresponding Spearman correlation values are

marked as zeros. LC and St labels scatter in two parts in Figure 2.10b: one in the isolated

cluster, the other in the middle part. This may be caused by the existence of subtypes
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of cells that were not distinguished by the experts when annotating mRNA cells. Figure

2.10a supports this speculation because there are two clusters of St cells. Figure 2.12a

also supports this because LC and St cells only correlate with each other. We conducted

similar correlation analysis using cosine similarity in latent spaces of scDMVAE and

LIGER. The corresponding heat maps are shown in Figure 2.13. The high diagonal

values in scDMVAE heat map (Figure 2.13a) indicate high correspondences between the

same cell types of different modalities in the shared latent space, which are not presented

in the LIGER embeddings (Figure 2.13b).

We employed two metrics to assess the performance of scDMVAE and LIGER. The

first metric evaluated the quality of label assignment by measuring split correlations of

proteins using peptide information. Peptides are the building blocks of proteins and

provide information that characterizes them. We randomly split each protein’s peptides

into two groups, calculated the means of each group in each cell type, and computed the

correlation between the group means. The median of all protein split correlations served

as the evaluation metric. A high correlation indicates a good label assignment, while a

random label assignment would result in a correlation of approximately 0.

The second metric, called the agreement score, was defined in (Welch et al., 2019)

and evaluated embedding quality. It measures the similarity of cell neighbors before and

after integration. We first reduced the dimension of the raw dataset using appropriate

dimension reduction techniques. KNN graphs were then constructed on both integrated

and independent latent space. The agreement score represents the overlap of cells’ nearest

neighbors in each KNN graph. To ensure a fair comparison, we used NMF for LIGER

and PCA for scDMVAE as dimension reduction tools. A high agreement score indicates

less distortion in the integrated embedding space compared to the independently reduced

space of raw data.

scDMVAE outperforms LIGER in both metrics. Specifically, we computed split cor-
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(a) scDMVAE Protein labels (b) LIGER Protein labels

Figure 2.12: Heat maps of Spearman Correlations of cell types between
Protein and mRNA raw datasets. In scDMVAE, the cell labels are consistent in
raw data with high correlations in the diagonal. Similar clusters are formed compared
to the UMAP. On the other hand, LIGER-transferred protein labels are not consistent
with the mRNA labels.

relation scores for the 174 common proteins and found that scDMVAE achieved a score of

0.801, while LIGER obtained a score of 0.763, indicating that scDMVAE has better label

assignment. Additionally, we evaluated the agreement score of the protein embedding

for both methods and found that scDMVAE had an agreement score of 0.143, compared

to LIGER’s score of 0.110. This indicates that scDMVAE’s embedding better preserves

the structures present in the raw datasets compared to LIGER’s embedding.

2.4 Hyper Parameter Tuning

In scDMVAE, hyperparameters are used to adjust the model performance on different

datasets in all three components. In this section, we will provide a general guide on the

selection of hyperparameter values and how they affect the model’s performance.
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(a) scDMVAE Protein labels (b) LIGER Protein labels

Figure 2.13: Heat maps of cosine similarities of cell types between Protein
and mRNA embeddings. The scDMVAE model yields cell labels that exhibit
high correlation with the learned embeddings, as evidenced by the strong diagonal
pattern. The resulting clusters are similar to those observed in the UMAP. However,
the protein labels transferred using LIGER are not consistent with the mRNA labels
in the latent space.
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In embedding learning and matching components, hyper parameters include the latent

space dimension ks for shared space, kp for modality-specific space, attention hidden

space dimension katt, the penalties λm and λs on the modality-specific and shared parts

of the objective function, respectively. The choice of ks and kp varies depending on the

dataset, but they should be much smaller than the number of input features to serve

the purpose of dimension reduction. According to (Vaswani et al., 2017), katt should be

less than or equal to ks. In vertical integration, the relative values of λ’s control the

flow of information among the shared and modality-specific latent spaces. A larger λs

penalizes more on the shared latent space, resulting in less information flowing through

it. In an extreme case where λs/λm ≈ +∞, the embedding learning model is equivalent

to two independent VAEs, and no shared information will be learned. On the other

hand, if λs is relatively small compared to the λm’s, the shared latent space will contain

more information, including modality-specific information. When λm/λs ≈ +∞, useful

information only flows through the shared latent space, and the modality-specific latent

spaces are deprecated. The embedding learning model is equivalent to an MVAE model.

Therefore, balancing the penalties is crucial in practice for disentangling the information.

In the component using anchors to integrate datasets, the choice of k’s for anchor

identification, anchor scoring and anchor weighting. kid is used for anchor identification

using the mutual nearest neighbors. If kid is small, fewer anchor pairs will be identified,

harming the alignment and finding fewer cell types the target dataset. However, if kid

is large, more noisy anchor pairs will be found, increasing computation time without

additional contribution. Noisy anchor pairs can mislead the label transfer when their

anchor scores are moderate. kscore is used for anchor scoring in shared nearest neighbors.

Small kscore will result in a conservative scoring strategy where only a small proportion

of anchor pairs will have high scores, leading to the domination of several cell types in

transferred labels. If kscore is large, the scoring strategy is too aggressive and many more
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noisy pairs will have high scores, misleading the label transfer. kweight is used for setting

a boundary when weighting anchors for a target cell. When kweight is small, only a few

anchor cells are used and the alignment will be unstable. However, kweight should not be

too large as the weighting process with large kweight values will be vulnerable to outlier

anchors that are far from the target cell. In this case, the distance effects of most anchors

in equation 2.5 will be 1, and all anchors except for the outliers will be weighted on their

score only, leading to extremely noisy transferred labels.
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Chapter 3

Retention Time Alignment Using

PCRID

3.1 Background and Related Work

In SCoPE2 technology, cell analysis is conducted through multiple experiments/runs

using mass spectrum. Each experiment identifies a proportion of all peptides, and the

identified peptides (peptide spectrum matches or PSMs) in each experiment come with

confidence scores called posterior error probability (PEP/Spectrum PEP). This score

represents the probability that the observed ion was assigned to the wrong peptide.

However, lowly abundant peptides tend to have high PEPs due to the small number of

fragment ions they generate, leading to a reduction in the quantity and quality of protein

identifications.

To overcome this limitation, researchers utilize additional information about peptides

to enhance low-confidence identifications. Retention time (RT) is a highly accurate mea-

surement of the time taken for a peptide to pass through a chromatography column. It

characterizes peptides in a way that RT patterns of peptides are similar across different
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experimental conditions. If we plot the RTs of peptides in a high-dimensional space

with experiments as axes, they will form a data cloud that resembles a high-dimensional

curve. We can increase the confidence of peptide identification if the peptide follows

the RT pattern, particularly when the same peptide has high confidence in other experi-

ments. Conversely, the confidence of peptide identification should be decreased if it does

not follow the RT pattern.

In their work, Chen et al. developed a Bayesian framework called DART-ID that uti-

lizes retention time (RT) information to update peptide confidence. Specifically, DART-

ID introduces a latent variable, referred to as the reference retention time µi, for each

peptide i. They assume that the corresponding observed retention time in experiment j

is ρij = gj(µi)+ϵij, where ϵij is an independent mean-zero random error and the function

gj is approximated by a two-segment linear regression model. The Bayesian framework

is then used to update the confidence.

While DART-ID performs relatively well compared to other methods, the two-segment

linear regression approximation can be inaccurate when patterns of RTs become more

non-linear (Figure 3.1). To account for this non-linearity, we propose PCRID, a model

that learns from mixture-model-based principal curves (Tibshirani, 1992). The PCRID

framework works well with RT alignment and is compatible with the nature of peptide

identification, where the underlying truth of the same PSMs across experiments can be

different. PCRID also accounts for the existence of missing values, where peptides are

only observed in a proportion of all experiments and treated as missing values in other

experiments.
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Figure 3.1: DART-ID fitting result for non-linear data. The left panel shows
the two-segment regression line and we can see that the non-linear feature around
reference time 40 is not captured; The right panel shows the residual plots and large
residuals around 40 indicates inaccuracy of the fitting.

3.2 PCRID Framework

3.2.1 One-Dimensional Curves

A one-dimensional curve in p-dimensional space, as defined in (Hastie & Stuetzle,

1989), is a vector f(s) = (f1(s), . . . , fp(s)), where the latent variable s provides an

ordering along the curve. The p functions fj(s), with j = 1, . . . , p, are called coordinate

functions. If the coordinate functions are smooth, then f forms a one-dimensional smooth

curve in high-dimensional space. An important property of one-dimensional curves is that

we can apply any monotone transformation to s and modify the coordinate functions

accordingly, the curve will remain unchanged. Specifically, if s′ = g(s) is the new latent

variable where g is a monotone function, we can modify the coordinate function to f(g−1)

so that the curve remains the same f(g−1(s′)) = f(s). To avoid over-fitting in this case,

we need to control the acceleration. The acceleration of a curve at s is defined as the

vector of its second derivatives, denoted as f ′′(s). The acceleration controls the curvature

of a one-dimensional curve, where a straight line has an acceleration of 0. The higher
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the value of acceleration, the more wiggly the curve is at s.

3.2.2 Definition of Principal Curves

(Tibshirani, 1992) proposes a definition of principal curves based on mixture model.

Let Y = (Y1, Y2, . . . , Yp) be a random vector with density gY (y). We assume that Y was

generated in two stages: 1. A latent variable s was generated according to a continuous

distribution gS(s) and 2. Y = (Y1, Y2, . . . , Yp) was generated from a conditional distribu-

tion gY |S(y|s) with mean f(s), a point on a curve in Rp with Y1, Y2, . . . , Yp conditionally

independent given s.

Definition 3.2.1 (Principal Curves). The principal curves is defined to be a triplet

{gS, gY |S,f} satisfying the following conditions:

1. Y1, Y2, . . . , Yp are conditionally independent given s

2. f(s) is a curve in Rp parameterized over s ∈ Γ, a closed interval in R, satisfying

f(s) = E(Y |S = s).

This definition decomposes the density gY into gS and gY |S, which suits the context

of retention time alignment. We can treat the latent variable s as a representation

of unknown ontology of peptides, called reference retention time. It characterizes the

different types of peptides with different values of s. The observed retention time of

peptide i in experiment j is a random variable Yij, Yij = fj(si) + ϵij. fj represents

the systematic effect on the measurement of retention time in experiment j, which may

include effects such as temperature, humidity and so on. ϵij represents the random effect

on the measurement. A principal curve is fitted using EM algorithm and the resulting

weight matrixW = {wik}, where wik = P (si = ak|y), can be considered as the probability

that the observation assigned to peptide i is generated by peptide k given the additional

information on observed retention time y.
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However, this principal curve definition is not applicable to practical retention time

alignment for the following reasons:

• Incorrect Identifications In practice, there are false identifications for one kind

of peptide across one or more experiments. Therefore the underlying true reference

retention time for si can be different across experiments.

• Missing Values In the above principal curve definition, there is no accommodation

for missing values which are commonly seen in retention time alignment.

• Using PEP as Prior Information The classical principal curve model doesn’t

use external information such as PEP to boost its performance.

3.2.3 PCRID

In PCRID, the data generating process is different from principal curve model in

that it treats different observation separately. For observation i, instead of using only

one latent variable, there will be p latent variables sij, j ∈ {1, . . . , p} for the p experi-

ments. Each sij represents the underlying truth of corresponding experiment. In this

way, peptides with the same index can have different underlying true reference peptides

in different experiments.

Let Yi = (Yi1, . . . , Yip) be a random vector with density gYi
(yi). We assume that each

Yi value was generated in two stages:

1. p latent variables si1, si2, . . . , sip were generated independently according to some

distributions gSij
(s), j ∈ {1, . . . , p}

2. Yi = (Yi1, . . . , Yip) was generated from a conditional distribution gYij |Sij
having

mean fj(sij) with Yi1, . . . , Yip conditionally independent given sij, j ∈ {1, . . . , p}.
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Definition 3.2.2 (PCRID). PCRID is defined to be a triplet {gSij
, gYij |Sij

, fj} satisfying

the following conditions:

1. Yi1, Yi2, . . . , Yip conditionally independent given sij, j ∈ {1, . . . , p}.

2. f(s) is a curve in Rp parametrized over s ∈ Γ, a closed hyper-rectangle in Rp,

satisfying fj(sij) = E(Yij|Sij = sij).

We can incorporate the PEP information in gSij
(s) with P (sij = ai) = 1−PEP and

P (sij = ak) = PEP/(n− 1) for k ̸= i

3.2.4 Algorithm

Assume we have n observations and p experiments Let ak, k ∈ {1, . . . , n} be the

reference retention times of all possible underlying peptides. Denote the parameters

θ = θ(s) = (f(s),Σ(s)). We assume Σ(s) is a diagonal matrix with entries σj(s) =

σj, j = 1, 2, . . . , p. The complete data log-likelihood is

l(θ) =
∑
i

∑
j

log(gyij |Sij
(yij|θ(ak)) +

∑
i

∑
j

log(gsij(sij))

.

To avoid over-fitting, as in the classical principal curves, we add a penalty term

−(c1−c2)
∑

j

∫ c2
c1
[f ′′

j (s)]
2ds to the complete data log-likelihood and the objective function

becomes:

j(θ) = l(θ)− (c1 − c2)
∑
j

∫ c2

c1

[f ′′
j (s)]

2ds (3.1)

We can maximize Equation 3.1 via the EM algorithm. The E step starts with initial
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value f 0
j , j = 1, 2, . . . , p and computes the Q function

Q(θ|θ0) = E{j(θ)|y, θ0}

where y denotes the observation matrix. The M step maximize Q(θ|θ0) over θ.

Let wijk = P (sij = ak|yij), and vijk = P (sij = ak), we may write Q as

Q(θ|θ0) =
∑
i

∑
j

∑
k

wijk log(gyij |Sij
(yij|θ(ak)))+

∑
i

∑
j

∑
k

wijk log vijk − (c1 − c2)
∑
j

∫ c2

c1

[f ′′
j (s)]

2ds

(3.2)

Using Bayes’ Theorem

wijk =
P (yij|sij = ak)P (sij = ak)∑
k P (yij|sij = ak)P (sij = ak)

. In practice we can incorporate PEP information in the distribution of sij, P (sij = ai) =

1− PEPij and P (sij = ak) = PEPij/(n− 1) for k ̸= i

If we assume the conditional distributions are Gaussian, the solution for each iteration

will have closed forms. Let bjk =
∑

i wijk and Dj be a diagonal matrix with entries

bj1, bj2, . . . , bjn and ȳj be an n-vector with kth component
∑

i wijkyij/
∑

i wijk. Then

f̂j = (Dj + (c2 − c1)λjKj)
−1Dj{D−1

j ȳj} (3.3)

σ̂2
j =

∑
i

∑
k

wijkyij/
∑
i

∑
k

wijk (3.4)

The matrix Kj is the quadratic penalty matrix associated with a cubic smoothing

spline. Equation 3.3 means that f̂j is obtained by applying a weighted cubical smoothing
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spline to the quantity D−1
j ȳj with weights bj1, bj2, . . . , bjn. The variances are assumed to

be related only to experiments.

While the aforementioned model shows promise for retention time alignment, there

are still obstacles to its practical implementation. Dealing with missing values is one

such challenge, which we address by initializing the curve using a variant of PCA that

accommodates missing values (Josse & Husson, 2012). Another challenge is computa-

tional efficiency. The matrix W = {wijk} can get extremely large as number of unique

peptides and experiments increase. To improve its calculation efficiency without losing

much accuracy, we only compute the entries associated with observed peptides in each

experiment, setting other entries to zero. To find the maximizing values â1, â2, . . . , ân, we

need to use optimization method such as the Newton-Raphson procedure. However, due

to the dependence between the ak’s, σ
2
j ’s and fj’s, iterating through Equation 3.3, 3.4

and the Newton-Raphson procedure to fully maximize the Q function is computationally

unattractive. To address this, we refer to (Tibshirani, 1992) and use a generalized EM

algorithm, which seeks to increase Q function at each iteration by applying Equation 3.3

and 3.4 together followed by one Newton-Raphson step for the ak’s.

The algorithm is summarized in Algorithm 1. The outputs of the algorithm are the

weight array W = {wijk} together with fitting information. For a observation assigned to

peptide i in experiment j, the weight matrix gives the probability that the observation is

actually generated from peptide k conditioning on the retention time of the observation.
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Algorithm 1: PCRID algorithm

Input : Data
Result: weight array W = {wijk}
init : Initialize the curve with the first principal component and

â1, â2, . . . , ân are the projected values onto the it
while ∆Q > tol do

(a) Compute ŵijk that associated with observed values

(b) Fix f̂j and σ2
j apply a Newton-Raphson step to obtain a new set

of support points â1, â2, . . . , ân for iterations larger than one.

(c) Compute f̂j and σ2
j according to Equation 3.3 and 3.4

end

3.3 Results

3.3.1 SCoPE2 Data

We run PCRID on a SCoPE2 dataset that contains 301594 peptide observations from

44 experiments. The number of unique peptides is 482855 and missing value proportion

is 85.8%. The dataset contain decoys for calibration of false positive identifications (Elias

& Gygi, 2010). Decoys are manufactured sequences do not exist in nature. They have

noises RTs and thus tend not to be identified as useful proteins after alignment. In

practice, a large number of decoys will be wrongly perceived as useful proteins in both

experiment and alignment. Thus, we only compare the relative change of number of

falsely identified decoys. Higher identification of decoys indicating that the alignment

algorithm is aggressive and tends to generate more false positive identifications. We

filtered the dataset so that the peptides observed in less than 3 experiments are excluded.

These peptides are legal as model input but won’t provide enough additional information

to the alignment. On the contrary, they will slow down computation. There are many

outliers in retention time of peptides. Therefore we applied robust L1 smoothing spline
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Figure 3.2: Percentage Increase of Confident PSMs. Both PCRID and DAR-
TID can significantly increase the number of PSMs. PCRID demonstrates superior
performance compared to DARID when the PEP threshold is set at values greater
than 0.0043. Typically, PEP thresholds in single cell proteomics experiments are set
at values greater than 0.01.

instead of cubic smoothing spline.

Peptide Hits Decoy Hits Percent Change
PCRID 0.926 0.694 154.53%

DART-ID 0.897 0.839 146.85%

Table 3.1: Alignment Summary at PEP threshold 0.01.

PCRID drastically increase the number of identified peptides (PSMs)

In Figure 3.2, we plot the percentage increase of confident PSMs against different PEP

threshold (usually ≥ 0.01). It shows that both PCRID and DART-ID can remarkably

increase the number of PSMs. PCRID performs better than DART-ID for PEP threshold

larger than 0.0043. Table 3.1 shows the percentage increase at PEP threshold 0.01, with

PCRID 154.53% and DART-ID 146.85% respectively.
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(a) Regular Peptides (b) Decoys

Figure 3.3: Fraction of Confident PSMs of Regular Peptides and Decoys.
In regular peptides, PCRID has higher fraction of increased PSMs than DARTID for
PEP greater than 0.01. On the other hand, in faked decoys, the fraction of increased
PSMs in PCRID is consistently much lower than that in DARTID. This indicates that
PCRID can outperform DARID in regular peptides and controls the false positive
identifications at the same time.

PCRID identifies more peptides with lower decoy hits compared to DARTID

We need to further investigate the alignment of regular peptides and decoys respec-

tively to check if the methods overly-upgrade PEPs. We analyzed the fractions of PSMs

for both regular peptides and decoys before and after alignment with different PEP

thresholds. When calculate the DART-ID fractions, we must take cautious and adjust

the denominator of total number of peptides. This is because DAR-ID tends to filter out

the observations that are hard to align using the two-segment straight lines but easy for

PCRID. Figure 3.3 and 3.4 show that PCRID identifies more regular peptides and less

decoys compared to DART-ID in commonly used PEP threshold range. Table 3.1 shows

the scores for PCRID and DART-ID at PEP threshold 0.01. The peptide hits (0.926)

and decoy hits (0.694) of PCRID are significantly different while those of DART-ID are

not. This result supports that PCRID can distinguish true peptides from decoys much

better than DART-ID. The increment of decoy hits is inevitable because there are still

many decoys with small PEPs and consistent retention time across experiments.
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(a) Regular Peptides PCRID (b) Regular Peptides DART-ID

(c) Decoys PCRID

(d) Decoys DART-ID

Figure 3.4: 2D Histogram of updated PEPs Compared to Spectrum PEPs.
The two rectangles at top and right represent downgrade and upgrade respectively;
PCRID has more regular peptides upgraded and fewer decoy upgraded compared to
DARTID.
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Figure 3.5: Residual Plots of PCRID and DART-ID. Top: PCRID results
and the residuals are symmetric with consistent variance and linear pattern; Bottom:
DART-ID results and the residuals are not symmetric with non-linear pattern indi-
cating bad fit of retention time.

PCRID fit nonlinear data better than DART-ID

Figure 3.5 shows the residual plots of PCRID and DART-ID of a typical experiment.

It is clear that nonlinear pattern exists in DART-ID residuals, which will weaken its ability

of alignment. Figure 3.6 plots empirical CDF of residuals from PCRID and DART-ID,

indicating that the residuals of PCRID are much closer to zero than those of DART-ID.

As a conclusion, PCRID have a better goodness of fit than DART-ID especially in the

presence of non-linearity.
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Figure 3.6: Empirical CDF of residuals from PCRID and DART-ID fits. The
empirical CDF of residuals shows that more residuals of PCRID are scattered around
zero compared to that of DARTID, indicating that PCRID fits the data better than
DARTID
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Discussion

In this dissertation, we have developed two models to improve the analysis of single cell

data. PCRID enhances the data quality of SCoPE2 technologies by significant increase

the number of identified peptide using retention time. It remarkably increases the per-

formance of RT alignment in non-linear situations and has the potential to be applied to

other experiments with different characterization information other than retention time.

On the other hand, scDMVAE is designed to integrate single cell dataset from different

modalities. In vertical integration, it can detect heterogeneity among datasets and pre-

serve both shared and modal specific information. In horizontal integration, scDMVAE

provides a end-to-end neural network solution from embedding learning to embedding

matching. It can easily incorporate differently distributed datasets and align them us-

ing similarity scores that fits the biological context. The embeddings learned and labels

transferred are consistent with original structure of the data. scDMVAE can be fur-

ther improved by adding projection module that harmonizes feature-anchored cells to

the same space, expanding the possibilities for downstream analysis. Another potential

improvement is to incorporate dataset specific space of H matrices in horizontal inte-

gration to discover sub cell types. In the current version, the dataset specific spaces in
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H matrices have very high degree of freedom and rotates differently in different modal-

ity; therefore we did not include them in horizontal integration. However, with proper

regularization, they can provide more information for horizontal integration. Combined

together, scDMVAE and PCRID can significantly improve analysis quality of SCoPE2

data as well as data in related fields. We hope these two models can broaden the horizon

in related field and help to solve biological puzzles.
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