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Abstract 

Reduced spine densities and an age-dependent accumulation of amyloid  and tau 

pathology are shared features of Down syndrome (DS) and Alzheimer’s disease (AD). Spine 

morphology and the synaptic plasticity that supports learning both depend upon the actin 

cytoskeleton, suggesting that disturbances in actin regulatory signaling might underlie spine 

defects in both disorders. The present study evaluated synaptic levels of two proteins that 

promote filamentous actin stabilization, the Rho GTPase effector p21-activated kinase 3 

(PAK3) and Arp2, in DS versus AD. Fluorescent deconvolution tomography was used to 

determine postsynaptic PAK3 and Arp2 levels for large numbers of excitatory synapses in 

parietal cortex of individuals with DS plus AD pathology or AD alone relative to age-matched 

controls. Although numbers of excitatory synapses were not different between groups, 

synaptic PAK3 levels were greatly reduced in DS+AD and AD individuals versus controls. 

Synaptic Arp2 levels also were reduced in both disorders, but to a greater degree in AD. 

Western blotting detected reduced Arp2 levels in the AD group, but there was no correlation 

with phosphorylated tau levels suggesting that Arp2 loss does not contribute to mechanisms 

that drive tau pathology progression. Overall, the results demonstrate marked synaptic 

disturbances in two actin regulatory proteins in adult DS and AD brains, with greater effects 

in individuals with AD alone. As both PAK and the Arp2/3 complex play roles in the actin 

stabilization that supports synaptic plasticity, reductions in these proteins at synapses may 

be early events in spine dysfunction that contribute to cognitive impairment in these 

disorders. 
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Introduction 

Down Syndrome (DS) is a genetic intellectual disability disorder, with individuals 

generally exhibiting mild to moderate cognitive impairment. There is considerable evidence 

that virtually all adults with DS exhibit neuropathology characteristic of Alzheimer’s disease 

(AD) including ß-amyloid (Aß) plaques and neurofibrillary tangles by 40 years of age, 

although not all go on to develop an AD-like cognitive decline (19). In AD, an early and 

progressive loss of spine synapses is thought to be a major driver of cognitive decline (1). It 

is widely assumed that Aß and tau pathology underlie this synaptic failure in AD and, by 

extension, DS (5) but the degree to which spine dysfunction in the two disorders overlap 

mechanistically is unknown.     

Neuronal features in DS and AD suggest that both disorders involve disturbances in 

the filamentous (F-) actin cytoskeleton. DS brains exhibit reductions in cortical dendritic 

branching, reduced spine density, and abnormal spine structure (24, 31, 33, 34). AD is 

characterized by progressive neurodegeneration including dystrophic dendrites, dendritic 

branch loss, and an early and progressive loss of dendritic spines that correlates with 

cognitive decline (1, 3, 14, 45). Abnormalities in F-actin are seen in AD and DS: cofilin-actin 

rods are present in brains with AD pathology (4) and decreased expression of the actin-

binding protein drebrin, that opposes cofilin-mediated severing of F-actin (15), has been 

reported for both disorders (56). These abnormalities may contribute to spine dysfunction 

and other cytoskeletal disturbances such as neurofibrillary tangles (4).   

Synaptic structure and its reorganization in association with enduring synaptic 

plasticity are regulated by several signaling pathways that control F-actin polymerization, 

branching, and stabilization (9, 48). A key nodal element in these pathways is p21-activated 

kinase (PAK) that simultaneously inhibits severing and promotes branching of F-actin (46). 

PAK inhibits cofilin severing activities via Lim Kinase 1 (13), and engages cortactin which in 

turns recruits the Arp2/3 complex to initiate F-actin branching and stabilization (59). 

Disruption of PAK-Arp2/3 function leads to defective synaptic plasticity and learning deficits 

in association with intellectual disability (8, 18, 29, 36, 53). Other studies show that PAK3 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

gene mutations, that disrupt kinase activation or function, cause X-linked intellectual 

disability (62). Reduced regional PAK levels are described for AD brains (40, 64), and 

decreased PAK expression in a triple transgenic AD mouse model has been associated with 

dendrite and spine defects (2).  

While there is considerable evidence for disturbances in spine actin regulation in both 

AD and DS, the degree to which synaptic PAK-Arp2/3 signaling may be disrupted in these 

disorders is not known. Moreover, there have been no studies directly comparing these 

disorders for differences in underlying mechanisms of spine dysfunction. Therefore, the goal 

of the present work was to evaluate levels of PAK3 and Actin-related protein 2 (Arp2; as a 

marker of the Arp2/3 complex) at excitatory synapses in neocortex of adults with DS+AD 

and those with AD alone, using an analytical approach that allows for analyses of very large 

numbers of individual synapses (8, 48, 53, 54). The studies were also aimed at determining 

if disturbances in these synaptic proteins reflect AD pathology in general or if they differ 

between the two disorders. In light of recent evidence that spine loss and levels of AD-like 

pathology may be dissociable (38), we also tested if changes in the PAK3-Arp2 pathway 

correlate with hyperphosphorylated tau levels.  

 

Materials and Methods 

The study was approved by the Institutional Review Board of the University of California at 

Irvine (UCI) as a non-human subjects study. All samples (de-identified and coded) from 

tissue banks were recoded in-house and processed for all analyses with experimenter blind 

to subject and group. Analyses focused on parietal cortex because this region is preserved, 

compared to other cortical fields, in DS patient samples (44), and AD pathology has been 

described for parietal fields with age  (39). 
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Tissue samples. Postmortem parietal cortex samples were from subjects ranging from 52 to 

64 years old (Table 1) with 10 controls, 6 DS cases, and 5 AD cases. Tissue blocks included 

a well-defined sulcus with portions of gyri present on both sides; superficial cortical layers 

within sulci were well-preserved and devoid of damage incurred during dissection or 

freezing. DS and AD tissue was provided by UCI Institute for Memory Impairments and 

Neurological Disorders through the UCI-Alzheimer’s Disease Research Center (ADRC). 

Control tissue was provided by the NICHD Brain and Tissue Bank for Developmental 

Disorders at the University of Maryland, Baltimore, MD, and by the NINDS/NIMH sponsored 

Human Brain and Spinal Fluid Resource Center at the VA West Los Angeles Healthcare 

Center, Los Angeles, CA; controls in the same age range as the AD and DS cases were not 

available from the UCI ADRC. Effort was made to match age and postmortem interval (PMI) 

as closely as possible, although the control group contained both short and longer PMIs to 

assess whether this variable had effects on our measures. Both sexes were included but 

numbers of female controls available were more limited. All DS and AD cases had 

comparable AD pathology; i.e., stage 6 tangles and stage C plaques, as determined by the 

UCI ADRC. To assess the degree to which the AD and DS subjects were functionally 

comparable, ratings from a modified version of the Bristol Activities of Daily Living Scale 

(mBADLS), collected within the last 1-2 years of life, were calculated. The mBADLS does not 

include items that DS individuals may not have been able to perform early in life (e.g., 

managing finances), and is based on a 0-42 point scoring system with higher scores 

indicating greater functional dependency (12) (Table 1). Higher mBADLS scores have been 

shown to be associated with lower cognitive scores on the Severe Impairment Battery for AD 

and DS individuals (12). Median mBADLS scores for DS and AD groups were 34.5 and 36, 

respectively; two AD individuals had comparatively lower scores than the other AD and DS 

cases. 
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Immunofluorescence. Fresh-frozen tissue was sectioned (20 µm) perpendicular to the 

cortical surface, slide-mounted, and methanol-fixed. The tissue was processed for dual 

immunofluorescence using antisera directed against PSD-95 to label excitatory synapse 

postsynaptic densities (PSDs) (21) in combination with antisera to either PAK3 or Arp2 as 

described (8, 48). Antibodies included the well-characterized mouse anti-PSD-95 (1:1000; 

Thermo Scientific, #MA1-045, clone 6G6-1C9) (8, 9, 48), rabbit anti-PAK3 (1:300; Upstate, 

#06-902) (8, 9, 48, 53); and rabbit anti-Arp2 (1:200; Santa Cruz, #sc-15389) (28); additional 

antibody controls included verification of specificity by immunoblot and elimination of staining 

when primary antibodies were omitted. Species-specific Alexafluor488 and Alexafluor594 

conjugated secondary antibodies (1:1000 each; Thermo Fisher Scientific) were used for 

visualization. 

 

Fluorescence deconvolution tomography. Image z-stacks of layer 1 parietal cortex were 

collected through a depth of 2 um with 0.2 um steps, using 1.4 NA 63X objective and either a 

Leica DM6000 epifluorescence microscope with a Hamamatsu ORCA-ER digital camera 

(PAK3 analyses) or a Leica DM6000 with a sCMOS pco.edge digital camera (Arp2 

analyses). The sample field size was normalized to 42,840 um3 for both sets, and numbers 

of immunolabeled synapses ranged from 25,000-30,000 per stack. Layer 1 was analyzed 

because placement of the sample field, relative to the cortical surface, could be reliably 

replicated and the layer has few perikarya, thus allowing for greater sampling of synapses. 

For each antisera combination, 6-8 image stacks were collected from three sections per 

brain. 

     Image stacks were processed for iterative deconvolution using Volocity 4.1 (Perkin 

Elmer) or AutoQuant X2.1.3 (Media Cybernetics) for PAK3 and Arp2, respectively.  

Deconvolved images were analyzed to quantify both double- and single-labeled puncta 

within the size constraints of synapses as described (8, 9, 48, 53, 54). Background staining 

variations in the deconvolved images were normalized to 30% of maximum background 
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intensity using a Gaussian filter. Object recognition and measurements of immunolabeled 

puncta were automated using software built in-house using Matlab R2007, Perl, and C which 

allows for analysis of objects reconstructed in 3D. Pixel values (8-bit) for each image were 

binarized using a fixed-interval intensity threshold series followed by erosion and dilation 

filtering to reliably detect edges of both faintly and densely labeled structures. Object area 

and eccentricity criteria were applied to eliminate from quantification elements that do not fit 

the size and shape range of synaptic structures. Puncta were considered colocalized if they 

touched or overlapped as assessed in 3D. Since lipofuscin granules are visible in both 

imaging channels, a final method was used to identify such granules that were counted in 

the first analyses. Briefly, a fluorescence intensity range for lipofuscin granules identified in 

the red channel was generated. From this range, the 110 intensity threshold was found to 

maximally identify lipofuscin granules (Fig. 1); notably, there were very few labeled objects 

identified at this threshold outside of densely autofluorescent lipofuscin-rich areas. 

Therefore, a cut-off intensity of ≥ 110 was applied to remove contributions of lipofuscin 

granules to the statistical analyses. This resulted in the removal of 1.0 ± 0.1, 1.8 ± 0.5, and 

1.7 ± 0.3 percent of double-labeled profiles from control, DS, and AD groups, respectively.  

Object counts were averaged across z-stacks to produce mean values for each 

subject. Statistical comparisons used either a one-way ANOVA followed by Newman-Keuls 

Multiple Comparison test for post-hoc paired comparisons, or the nonparametric Kruskal-

Wallis test followed by Dunn’s Multiple Comparison test (GraphPad Prism, Version 5.0); 

p<0.05 was considered significant. GraphPad Prism (Version 5.0) was used for linear 

regression and intensity frequency curve (kurtosis and skewness) analyses. Because the 

main objective was to assess levels of PAK3 and Arp2 immunoreactivity associated with 

PSD-95, and because experiments were conducted separately, direct comparisons between 

the PAK3 and Arp2 levels were not possible. 
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Western blotting. Sections from each tissue block were processed for blotting using Arp2 

antisera (1:400; #sc-15389), PAK3 antisera (1:300; Abcam, #ab40808), phosphorylated (p) 

PAK Ser144/141/139 antisera (1:5000; Chemicon, #AB3833) that lies in the kinase inhibitory 

domain and plays a direct role in PAK activation (10), or AT8 antisera (1:750; Thermo 

Fisher, #MN1020; recognizes PHF tau epitopes S202 and T205) and ECL Plus 

Chemiluminescence (Amersham) (8).  For PAK immunoblots, the blots were first probed for 

pPAK, then stripped using Restore Western blot stripping buffer (Thermo Fisher #21059) 

and probed for PAK3. For loading controls, blots were probed with mouse anti-actin (Sigma-

Aldrich, #A5441) or anti-vinculin (ProSci, #PM7811). Blot densities were measured using 

ImageJ and normalized to loading controls for each sample. Significance was assessed by 

Student’s t-test (two groups) or either one-way ANOVA followed by Newman-Keuls Multiple 

Comparison test or, for unequal variances, Kruskal-Wallis followed by Dunn’s Multiple 

Comparison Test (three groups), with p < 0.05 considered significant.   

 

Results 

Synaptic PAK3 levels are reduced in DS and AD. 

Quantitative immunofluorescence was used to assess PAK3 levels within the 

postsynaptic compartment of excitatory synapses in layer 1 parietal cortex (Fig. 2A-G) of 

middle-aged control subjects and individuals with DS and confirmed AD pathology or with 

AD alone. In all groups, antisera to the postsynaptic scaffold protein PSD-95 labeled round 

and crescent-shaped, synapse-sized elements that were broadly distributed across the 

neuropil (Fig 2A-D); a minority of these were double-labeled with antisera to PAK3 (Fig. 2B-

G).  In addition, there were larger patches of autofluorescence that were excluded from 

quantification (Fig. 2A; see Methods). Total counts of synapse-sized PAK3 immunopositive 

(+) and PSD-95+ elements (Fig. 1H), and of PAK3+ elements double-labeled for PSD-95 

(Fig. 2I) were relatively unaffected by PMI; all correlational analyses were not significant. 

Moreover, numbers of PAK3+ synapses (double immunolabeled for PSD-95) were 
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significantly correlated with the total numbers of PSD-95+ elements in samples from both 

females (p = 0.0011) and males (p< 0.0001) (Fig. 2J).  Similarly high R2 values were 

obtained when the data were broken out by experimental group (p=0.0016 for controls, 

p=0.0045 for DS, and p=0.0002 for AD) (Fig. 2K). Importantly, total numbers of PSD-95+ 

puncta were comparable across groups indicating no significant differences in excitatory 

synapse densities in this lamina: average counts were 28,948 ± 2,741 (s.d.) for controls, 

27,868 ± 2,905 for DS, and 27,223 ± 1,730 for AD (p = 0.4589, one-way ANOVA) for each 

42,840 um3 sample field. The percentage of PSD-95+ elements colocalized with PAK3 

immunoreactivity (ir) also did not differ among the three groups (p = 0.8564, Kruskal-Wallis).  

To determine if there was an effect of DS or AD on synaptic PAK3 content, the 

immunofluorescence intensity frequency distribution (IFD) for synaptic PAK3-ir was 

evaluated for all cases (Fig. 3A). As compared to controls, the IFD was broader for both DS 

and AD groups indicating a greater spread in the distribution of labeling intensities. The 

mean curves for each group show that the control distribution exhibits less variability and a 

more pronounced peak in the mid intensity range, whereas mean distributions for the DS 

and AD groups are virtually identical with greater spread into lower PAK3-ir intensities (Fig. 

3B). Curve analyses identified significant differences in skewness (p = 0.02, one-way 

ANOVA; p < 0.05 for control vs DS and AD groups), and a trend toward an effect on kurtosis 

for DS and AD groups versus controls (p = 0.0538 and p = 0.0509 for DS and AD groups, 

respectively); the combined kurtosis values for DS and AD groups differed from controls (p = 

0.0498 one-way ANOVA) (Fig. 3C). Overall, these results indicate that at excitatory 

synapses, postsynaptic PAK3 levels are reduced in both DS and AD parietal cortex, as 

compared to control.      

 As a second measure of synaptic PAK3 levels, we evaluated the volume of PAK3-ir 

elements colocalized with PSD-95. The cumulative labeling volume distributions for synaptic 

PAK3-ir were shifted to the left (i.e., toward lower volumes) for DS and AD groups relative to 

controls (Fig 4A). Mean volumes of PAK3-ir associated with PSD-95 were also significantly 
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lower in DS and AD groups (p = 0.0066, one-way ANOVA; p < 0.01 for control vs both DS 

and AD groups), although this measure did not differ between DS and AD (p = 0.3063) (Fig. 

4B). In contrast, PSD-95+ puncta volumes were comparable across groups (Fig. 4C&D) for 

both single- and double-labeled elements (p = 0.782 for double-labeled, p = 0.781 for single-

labeled, one-way ANOVA), with volumes of double-labeled PSDs being larger than single-

labeled PSDs in all groups. Thus, both intensity and volume measures demonstrate reduced 

PAK3 content in the postsynaptic compartment of excitatory synapses for middle-aged 

individuals with DS and AD relative to control subjects.  

Finally, total levels of PAK3 and phosphorylated (p) PAK content in tissue sections 

from the same blocks used for immunofluorescence were evaluated by Western blotting. 

Because phosphorylation is affected by PMI (41), these analyses utilized the control cases 

with shorter intervals of 2-6h that best matched the AD and DS cases (Table 1).  Total PAK3 

levels were markedly reduced in the AD and DS groups (p < 0.0001 one-way ANOVA; p < 

0.001 for control vs both DS and AD groups) (Figs. 5A,B), whereas pPAK levels were 

unaffected (p = 0.1365, Kruskal-Wallis test) (Fig. 5A,C). However, in comparing the ratio of 

pPAK to PAK3 levels in each sample this measure was significantly higher in the AD group 

relative to controls (p = 0.0245 Kruskal-Wallis; p < 0.05 AD vs control) (Fig. 5D). Although 

the pPAK to PAK3 ratio was high in some DS cases there was no group effect versus the 

controls. These results demonstrate that in conditions where PAK3 content is reduced, 

levels of PAK phosphorylation may also perturbed.   

 

Differential loss in synaptic Arp2 levels between DS and AD. 

 The Arp2/3 complex is a downstream target of PAK. To assess whether there are 

defects at multiple nodes in this signaling stream we analyzed levels of Arp2-ir colocalized 

with PSD-95. Numbers of Arp2+ synapses were unaffected by PMI (p=0.2040 and p=0.3201 

for males and females, respectively) and were similar between the sexes (Fig. 6A). Numbers 

of Arp2+ synapses were positively correlated with total numbers of PSD-95+ elements for 

both sexes, although this only reached significance for males (p < 0.0001) (Fig. 6B); 
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combining both sexes, there was still a highly significant positive correlation (P < 0.0001; R2 

= 0.8090).  For the females, one outlier control case had a marked effect on the group, and 

when removed there was a significant positive correlation (p = 0.002; R2 = 0.9467). When 

these data were considered separately by condition, all three groups had significant positive 

correlations with the highest R2 values observed for DS (p = 0.0003) and AD (p = 0.0126) 

versus controls (p = 0.0074) (Fig. 6C). Normalizing the counts of double-labeled synapses to 

the total number of PSD-95+ elements (per sample) revealed that the proportion of PSDs 

containing Arp2 was 49 ± 1% (SEM) for controls, 45 ± 2% for DS, and 44 ± 1% for AD, with 

the AD group being significantly lower than controls (p = 0.0437 one-way ANOVA; p = 

0.0214 for AD vs Con).  

 In examining the intensity Arp2 immunolabeling colocalized with PSD-95, the IFDs 

for Arp2-ir had lower peaks and were shifted toward lower values in both DS and AD groups 

relative to controls (Fig. 6D). In accord with this, the proportions of synapses with high- and 

mid-intensity Arp2-ir were lower, whereas the proportions in the low-intensity range were 

greater, for both DS and AD groups versus controls. While these results indicate lower than 

control postsynaptic Arp2 levels in both DS and AD, the effect was significantly greater in the 

AD group (p < 0.01 for high intensity, and p < 0.05 for low intensity measures, AD vs DS; 

Fig. 6E). Analyses of synaptic Arp2-ir volume also revealed a greater differential from 

controls for the AD group: although mean Apr2-ir puncta volumes were not different between 

groups, the median volume of synaptic Arp2-ir was significantly smaller in the AD group 

versus controls (p < 0.05, Fig 6F). Median DS and control group values were not different. 

These results indicate that individuals with AD have lower postsynaptic Arp2 levels than do 

persons with DS or controls. 

 As the above finding suggests that there might be an overall reduction in Arp2 

content in AD parietal cortex, total Arp2 levels were assessed using Western blots; tissue 

sections from the same blocks used for immunofluorescence were evaluated. The majority 

of control samples had high levels of Arp2-ir with two cases having ~40% less than the 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

mean group value (p = 0.0079, one-way ANOVA) (Fig. 7A,B). The DS group had similarly 

high levels of Arp2-ir (p = 0.4734 vs controls). In contrast, the AD samples had lower levels 

of Arp2-ir (p < 0.01 and p < 0.05 for AD vs control and DS groups, respectively). To test if 

differences in Arp2-ir between DS and AD cases might reflect differences in AD pathology, 

levels of phosphorylated tau (p-Tau) in the same samples were evaluated using AT8 

antisera (Fig. 7C,D). Levels of p-Tau were highly variable in the DS group with 3 of 6 cases 

having higher levels than any of the AD samples; among AD cases, only one had somewhat 

higher levels than the rest. Correlational analyses for measures of total Arp2 and p-Tau 

levels for all samples did not yield a significant effect (R2 = 4.4E-05; p = 0.9845). Similar 

analyses for DS (R2 = 0.37369; p = 0.1973) and AD (R2 = 0.12163; p = 0.5651) groups also 

did not show any correlation between Tau pathology and Arp2 content. Finally, there was no 

correlation between mBADLS scores and total Arp2 (R2 = 0.1136; p = 0.3108) or p-Tau (R2 = 

0.06633; p = 0.4445) levels for the DS and AD groups combined. 

 

Discussion  

 Both DS and AD are associated with progressive dendritic spine loss in cortical and 

limbic regions (3, 14, 24, 31, 37). As greater than 90% of cortical excitatory synapses are on 

spines (23), this suggests that in both conditions there is a loss of excitatory synapses (see 

(51)). However, the present findings indicate that numbers of PSD-95+ synapses in parietal 

cortex layer 1 are at control levels in middle-aged individuals with DS plus AD pathology or 

with AD alone. This suggests that this cortical field may be spared from spine loss in the two 

disorders at least into middle age. It is also possible that spines are affected but this is 

compensated for by a shift from axospinous to axodendritic synapses that would not 

influence total PSD numbers. Consistent with this possibility, synapse density in the 

precuneus region of parietal cortex is reportedly unaffected in AD despite robust Aß load 

(52), even though spinophilin-positive spine synapses are reduced in AD in a manner that 

correlates with cognitive decline (37). Nevertheless, despite seemingly normal synapse 

numbers, we observed clear reductions in postsynaptic PAK3 and Arp2 levels in both 
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disorders with decreases in synaptic and total Arp2 levels being greatest in the AD group. 

The basis for the difference in Arp2 levels between disorders was not clear. Arp2 levels did 

not correlate with those for p-Tau, which is elevated with AD pathology and correlates 

positively with dementia (17, 22). Moreover, the majority of DS cases exhibited much greater 

levels of p-Tau than those in the AD group; elevated levels of p-Tau in the DS group likely 

reflect overexpression of other DS related genes such as Dyrk1a which has been shown to 

directly phosphorylate Tau, including at one site that is recognized by the AT8 antibody used 

here (7, 49). It appears then that other factors are at play that differentially affects Arp2 

protein levels between the DS and AD groups. 

 Prior studies had shown that regional PAK content is affected by AD, but levels at 

spine synapses were not known. In particular, cytosol levels of PAK1 and PAK3 isoforms, 

and phosphorylated PAK, are reportedly reduced in hippocampus and temporal cortex with 

moderate AD (64). Others found that in hippocampus reductions in phosphorylated PAK in 

perikarya correlate with the severity of AD pathology, and that total PAK levels are 

decreased in severe AD (40). Our findings of reduced total PAK3 levels in parietal cortex in 

AD, as well as in DS, cases with advanced pathology is consistent with this prior work. 

Notably, though, for the individual AD cases there was a marked elevation in the ratio of 

PAK phosphorylated at serine 144/141/139 within the kinase inhibitory domain relative to 

total PAK3 levels, further indicating that both levels and activation are altered in this disorder 

(32).  Since phosphorylation at the site examined blocks the inhibitory domain resulting in 

catalytic activity of the kinase, the elevated pPAK/PAK ratio in AD suggests that the kinase 

may be constitutively active in this disorder.  An alternative view is that there may be 

homeostatic mechanisms in place (e.g., altered phosphatase activity, different PAK pools) 

that maintain and in a sense protect pPAK levels despite the reduced total protein content. 

Importantly, the present work also goes beyond prior studies to show that within the 

postsynaptic compartment (i) PAK levels are reduced with severe AD, (ii) PAK disturbances 

are similar between DS individuals with AD pathology and those with AD alone, and (iii) 

changes in PAK levels are present outside of hippocampus and temporal cortex. It should 
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also be noted that the loss of synaptic PAK was not all or none: Compared to controls, a 

generalized reduction in levels of synaptic PAK was evident in both immunolabeling intensity 

and volume measures. Whether reductions in synaptic PAK3 content are associated with 

enhanced kinase activation, as suggested by the blot findings, or with an aberrant 

redistribution (32) in spine is not known. However, insofar as PAK has been implicated in 

dendritic spine formation (27, 63) it is plausible that the observed deficits at synapses 

contribute to the apparent shift away from spine synapses in the parietal cortex in AD. 

 For DS, there is a potential link between PAK regulation and the trisomy 21 defect 

that underlies this disorder. The DS cell adhesion molecule (DSCAM) gene is located in the 

DS critical region, and DSCAM protein plays a role in dendritic arborization and spine 

formation (35). DS individuals tend to exhibit elevated DSCAM levels, particularly in cortical 

neurons (50). Interestingly, DSCAM overexpression in an immortalized cell line from a DS 

mouse model resulted in aberrant netrin 1-induced PAK1 phosphorylation but levels of 

PAK1-3 isoforms were unaffected (43). This suggests that elevated DSCAM levels in DS 

could influence PAK activity without an effect on PAK protein content. These observations 

further suggest that the decrease in postsynaptic PAK content in human DS brains observed 

here results from some aspect of AD pathology rather than from trisomy alone. Future 

studies are needed to determine if decreases in synaptic PAK content mirror the progression 

of AD pathology or if the loss only becomes evident in advanced cases, and if there is 

aberrant PAK phosphorylation in DS. 

 Arp2 phosphorylation is necessary for Arp2/3 complex activation (30). Thus, one 

might expect that reductions in Arp2 levels would have profound effects on Arp2/3 activity 

and the dynamic properties of F-actin networks. Little is known regarding the consequences 

of Arp2/3 complex deficits, although loss of the ArpC3 (p21) subunit in excitatory neurons 

during the postnatal period reduces spine F-actin remodeling, decreases spine head size 

and density, and increases axodendritic synapses (25, 26). These effects suggest that 

although spines are lost with an Arp2/3 complex defect, numbers of synapses may be 

preserved. This is consistent with the present results in which numbers of PSD-95+ 
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synapses were unaffected in DS although spine loss is reportedly a general feature of the 

disorder (24, 31). Importantly, ArpC3 knockout mice exhibit working and episodic memory 

deficits (25), suggesting that reductions in Arp2/3 complex proteins have major behavioral 

consequences. We propose that decreases in postsynaptic Arp2 would blunt Arp2/3 

complex activation and thereby contribute to cognitive deficits in both DS and AD; this effect 

is predicted to be greater in AD given the larger Arp2 reductions. It is noteworthy that Arp2/3 

complex levels are reportedly reduced in DS cerebral cortex at mid-gestation (60), well 

before spinogenesis. Whether synaptic Arp2/3 complex levels are also altered in DS 

postnatally when synaptogenesis is high, and if this contributes to early dendritic 

abnormalities (34), remains to be determined. Finally, catalytically active PAK has been 

shown to increase ArpC1 (p41) phosphorylation which, in turn, promotes Arp2/3 complex 

assembly and its subcellular colocalization with actin (58). Although elevated pPAK/Pak 

ratios, as described here for AD, would be expected to enhance ArpC1 activity and complex 

assembly, constitutively active PAK could also interfere with mechanisms that regulate 

Arp2/3 complex disassembly resulting in abnormal complex localization and actin nucleation. 

 PAK and the Arp2/3 complex are important regulators of F-actin in dendritic spines 

(42), and are part of the Rac-Pak-cortactin cascade that promotes stabilization of long term 

potentiation (LTP) (48), and the associated spine head enlargement (9). Failed Rac-PAK 

signaling at excitatory synapses is linked to a higher threshold for inducing LTP (8, 29), and 

a protracted period over which newly induced LTP and activity-induced increases in spine F-

actin are vulnerable to disruption (8). Thus, deficits in this pathway in DS and AD suggest 

that remodeling of the spine actin cytoskeleton, needed to sustain synaptic plasticity, may 

fail to properly stabilize in these disorders. Notably, DS is associated with a high proportion 

of spines that are short with large spine heads, so-called mushroom spines (33, 34). In 

contrast, in AD there are significantly fewer mushroom spines as compared to control brains 

that exhibit AD pathology (i.e. increased amyloid burden and neurofibrillary tangles) without 

cognitive decline (6). Thus, while DS and AD both show abnormally low spine densities, they 

differ in the incidence of mushroom-shaped spines. The relative reductions in synaptic PAK3 
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and Arp2 content in DS and AD could help explain the subtle differences in spine 

morphologies between these conditions. In particular, reduced PAK levels at DS and AD 

excitatory synapses could lead to exaggerated cofilin activity that would be predicted to 

shorten spine profiles, whereas lower Arp2 levels in AD as compared to DS synapses would 

be expected to more severely impair synaptic F-actin branching in AD. F-actin branching has 

been linked to spine head enlargement and, in particular, spine breadth (20). It is possible 

then that AD and DS diverge at this step in synaptic cytoskeletal regulation, with DS 

exhibiting mostly spine shortening, and AD manifesting both spine shortening and thinning of 

the spine head. 

 Our findings from comparisons of DS and AD brain specimens may provide new 

insights into the mechanisms of early synaptic dysfunction in these conditions. While few 

studies have evaluated postsynaptic proteins levels in both DS and AD, synaptic drebrin is 

reportedly reduced in cortex of middle-aged DS cases and in hippocampal and cortical 

regions of persons with AD (11, 16, 56, 64). Drebrin is critical for synapse formation and, like 

PAK and the Arp2/3 complex, regulates the stabilization of spine actin filaments (57). 

Importantly, PAK inhibition reduces neuronal drebrin content (64). These findings suggest 

that PAK is a critical upstream regulator of both the Arp2/3 complex and drebrin at spine 

synapses, and that PAK is essential for maintaining normal actin regulation. Thus, deficits in 

PAK would lead to failure of parallel actin-dependent mechanisms of spinogenesis in AD. 

How PAK regulates drebrin is not known, but evidence suggests it involves a common link 

with Cdk5: Cdk5/p35 modulates Rac activation of PAK (47), and Cdk5 phosphorylates 

drebrin to induce F-actin bundling (61). Both inactivation and hyperactivation of Cdk5 are 

neurotoxic, and heightened Cdk5 activation occurs in AD (55). These findings considered 

with the present results indicate that in adult DS and AD brains there are deficiencies in at 

least three synaptic proteins, PAK3, ARP2, and drebrin, that play major but unique (and 

potentially linked) roles in stabilizing the postsynaptic actin cytoskeleton. Such protein 

deficits, combined with aberrant Cdk5 activity as seen in AD, could represent early 

pathological events at synapses leading to the spine changes and associated cognitive 
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disturbances that characterize these disorders. If PAK deficiency is in fact upstream of 

drebrin loss and decreased spine density in AD and DS, then new insights into the early 

stages of synaptic failure may be gained by determining the cause of synaptic PAK 

reduction. 
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Figure Captions 

 

Figure 1. Identification of lipofuscin-positive granules in human tissue.  Human parietal 

cortex processed for dual immunofluorescence localization of PSD-95 (green channel, A) 

and PAK3 (red channel, B) was examined for lipofuscin granules; example shown is from a 

control case. Outlined area indicates a region of autofluorescence containing dense 

fluorescent aggregates (A,B). Panel C shows elements evident in both channels that had a 

fluorescence intensity of ≥110; the majority of such objects were contained within lipofuscin-

rich areas (outlined) although a few scattered lipofuscin granules (arrows) were distributed 

amongst the more numerous immunolabeled puncta. Bar, 10 um. 

 

Figure 2. Synaptic localization of PAK3 immunoreactivity (ir) in human parietal cortex. 

Sections through layer 1 parietal cortex were processed for dual PSD-95 (green) and PAK3 

(red) immunofluorescence.  (A) Image shows typical PSD-95 immunolabeling in a control 

case: There is a relatively even distribution of small PSD-95 immunopositive (+) elements 

and fewer irregularly shaped auto-fluorescent deposits (open arrows). The latter were 

excluded from quantitative analyses based on size and intensity criteria. (B-G) Images show 
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PAK3-ir (red) and PSD-9-ir (green) in control (Con) (B), Down syndrome (DS) (C), and 

Alzheimer’s Disease (AD) (D) cases; arrows indicate double-labeled PSDs (seen as yellow) 

(bar, 5 um for B-D). (E-G) Higher magnification images of PSD-95 and PAK3 immunolabeled 

puncta and their colocalization (yellow) in control (E,F) and DS (G) cases (bar, 10 um for e-

g). (H-K) Graphs show correlational analyses for numbers of PAK3+ synapses relative to 

postmortem interval (PMI) and sex; all cases are presented. (H) Scatter plots show average 

element counts per image field (42,840 um3) for total PAK3+ and total PSD-95+ puncta 

versus postmortem interval. Note the low R2 values; correlations were not significant for 

either protein (p = 0.8543 for PAK3; p = 0.4025 for PSD-95). (I) Plots of PAK3+ synapses by 

sex; the low R2 values were not significant (p = 0.5602 for males; p= 0.5901 for females). (J) 

Plots show similarly significant positive correlations between numbers of PAK3+ and PSD-

95+ synapses for males (p < 0.0001) and females (p = 0.0011). (K) Re-plot of data 

presented in panel J with all cases identified by their disease group (sexes pooled). All three 

groups exhibit similar positive correlations between numbers of PAK3+ and PSD-95+ 

synapses (p = 0.0045 for DS, p = 0.0002 for AD, and p= 0.0016 for Con). 

 

Figure 3. Synaptic PAK3 levels are reduced in DS and AD parietal cortex. (A) Synaptic 

immunolabeling intensity frequency distributions show the proportion of PSDs (Y-axis) that 

were immunolabeled for PAK3 at different intensities (X-axis) for the three groups. All cases 

in control (Con), DS, and AD groups are shown individually. Dashed line in each plot 

indicates the mean percent of that group for which PAK3-ir was at the 82.5 intensity level; 

arrows indicate the intensity threshold (110) that was used for cutoff in statistical analyses in 

panels C and D. (B) Intensity frequency distributions for group mean values (± SEM). For DS 

and AD groups there is a greater leftward skew in the distributions (towards lower intensities) 

and a lower proportion of synapses at the peak value relative to controls. (C) Bar graphs 

show the group mean kurtosis and skewness values (± SEM) for distributions presented in 

“A”. (Left: +p = 0.0538 for con vs DS, +p = 0.0509 for con vs AD, p = 0.0498 one-way 

ANOVA. Right: *p < 0.05 vs Con, p = 0.0202 one-way ANOVA). (D) Bar graph shows that for 
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DS and AD groups there are greater numbers of synapses with low density (<80) PAK3-ir 

relative to the control group (Group means for low, mid, and high PAK3-ir intensity levels 

shown; *p < 0.05, **p < 0.01 vs Con). 

 

Figure 4. Volumes of synaptic PAK3-ir are smaller in DS and AD parietal cortex compared to 

controls. (A,C) Cumulative frequency distributions show volumes of synaptic PAK3 and 

PSD-95 immunoreactivities for all three groups; PSD-95 data is from the double-labeled 

(PAK3+) puncta. Dashed line in each plot indicates the relative size accounted for by 80% of 

the population for each protein. (B) Bar graph shows group mean volumes of synaptic PAK3-

ir: The DS and AD groups exhibited smaller synaptic PAK3-ir puncta, consistent with the 

small shift in the cumulative frequency curves for these two groups shown in ‘A’ (*p < 0.05, 

**p < 0.01 vs Con). (D) Bar graph shows no group differences in the volumes of PSD-95-ir 

puncta that were double- (+PAK3) or single-labeled.  

 

Figure 5. Measures of total PAK3 and phosphorylated (p) PAK content in AD and DS parietal 

cortex. (A) Top row: Western blots showing pPAK levels in control (Con, n = 5), AD (n = 5), 

and DS (n = 6) cases with PMI of 6h or less. Bottom row: same blots that were stripped and 

then re-probed for PAK3 levels. (B, C) Quantification of immunoblots (Y-axis: arbitrary units). 

As shown, total PAK3 levels were markedly reduced in the AD and DS groups (p < 0.0001 

one-way ANOVA; ***p < 0.001 for both DS and AD groups vs controls) (B), whereas pPAK 

levels were not significantly different across the three groups (p = 0.1365, Kruskal-Wallis 

test) (C). (D) Ratios of pPAK to PAK3 levels in each sample. Only the AD group had 

significantly elevated pPAK/PAK3 ratios versus controls (p < 0.05; p = 0.0245 Kruskal-

Wallis).  

 

Figure 6. Abnormalities in synaptic Arp2 levels are greater in AD than DS parietal cortex. (A-

C) Numbers of Arp2+ synapses are unaffected by postmortem interval (PMI) or sex; all 

cases are presented in each panel. (A) Scatter plots show average counts per image field 
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(42,840 um3) of Arp2+ synapses versus PMI for males and females; R2 values are low for 

each (p = 0.204 for males; p = 0.3201 for females). (B) Plots show positive correlations for 

numbers of Arp2+ synapses with total counts of PSD-95+ puncta in both sexes, although the 

correlation was significant for males (p < 0.0001) but not the females (p = 0.1029); notably, 

one female (control case, indicated by an asterisk) was an outlier, and it’s removal resulted 

in a significant correlation for the group (p = 0.002; R2 = 0.9467). (C) Plots show the same 

results presented in panel b but with all cases identified by group. All three groups had 

significant positive correlations between the two measures (p = 0.0003 for DS, p = 0.0126 for 

AD, p = 0.0074 for Con). (D) Plots show synaptic Arp2 immunolabeling intensity frequency 

distributions (expressed as a percent of total Arp2+ synapses) for control (Con), DS, and AD 

groups (group means ± SEM). Arrow indicates the 110 intensity threshold cutoff for statistical 

analyses. (E) Bar graph shows for each group the proportion of double-labeled synapses for 

which levels of Arp2-ir are in the low, middle (mid) and high intensity ranges (*p<0.05, 

**p<0.01, ***p<0.001 vs controls). The AD group exhibited a greater proportion of low vs 

high synaptic Arp2-ir compared to the DS group (*p<0.05, **p<0.01 for AD vs DS). (F) Bar 

graphs showing group mean (left) and median (right) ± SEM volumes for synaptic Arp2-ir; 

the median synaptic volume was significantly lower than Con for the AD group only (*p < 

0.05).  

 

Figure 7. Total levels of Arp2-ir in parietal cortex are lower than normal in AD but not DS. (A) 

Representative Western blot shows bands of Arp2-ir, and actin-ir from same blot, for 6 

control (Con), 3 AD, and 2 DS cases; asterisk indicates one control case that had low Arp2 

levels. (B) Scatter plots show levels of Arp2-ir for all cases in each group (normalized to 

actin for each sample); lines show group mean ± SEM values. The AD group had 

significantly lower total Arp2-ir levels than did Con (**p < 0.01) or DS (*p < 0.05) groups. (C) 

Western blot shows AT8-ir  and vinculin-ir from same blot for DS and AD cases. (D) Left, plot 

shows relationship of Arp2-ir to phosphorylated tau-ir levels (using AT8 anti-sera) in the 
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same sample field of parietal cortex for all DS and AD cases; these measures were not 

significantly correlated (p = 0.9845, Student’s t-test). Right, bar graph shows p-tau measures 

(mean ± SEM values) for DS and AD groups (ns, not significant). 

 

Tables 

Table 1. Age, sex, and postmortem interval (PMI) for all cases in the study. DS and AD 

cases had AD pathology with stage 6 tangles and stage C plaques. Modified Bristol Activities 

of Daily Living Scale (mBADLS) scores are shown (higher scores indicate greater functional 

dependency; 0-42 points scale). See Materials and Methods for details. 
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Table 1. Subject information. 

Condition ID# Bank Age Sex PMI (h) AD pathology 

Tangles; 

Plaques 

mBADLS 

AD 2006-38 UCI 56 F 3.9 Stage 6; Stage C 36 

AD 2009-5 UCI 57 F 3.2 Stage 6; Stage C 39 

AD 2010-25 UCI 57 F 3.2 Stage 6; Stage C 11 

AD 2006-19 UCI 59 M 3.3 Stage 6; Stage C 14 

AD 2006-36 UCI 61 M 5.6 Stage 6; Stage C 37 

DS 2007-31 UCI 52 F 4.4 Stage 6; Stage C 21 

DS 2005-7 UCI 54 M 4.5 Stage 6; Stage C 40 

DS 2008-42 UCI 55 M 4.5 Stage 6; Stage C 42 

DS 2008-8 UCI 57 F 5.3 Stage 6; Stage C 29 

DS 2004-23 UCI 58 M 3.4 Stage 6; Stage C 42 

DS 2010-31 UCI 62 F 2.4 Stage 6; Stage C 25 

Control 1503 U. Maryland 53 F 5   

Control 5117 U. Maryland 56 M 5   

Control 4263 U. Maryland 61 M 6   

Control 5326 U. Maryland 62 M 6   

Control M3983M U. Maryland 52 M 2   

Control Hsb3371 VA WLAHC 52 M 16   

Control Hsb3529 VA WLAHC 58 M 9   

Control Hsb3558 VA WLAHC 59 F 19.5   

Control Hsb3589 VA WLAHC 53 M 15   

Control Hsb3611 VA WLAHC 64 M 17.5   

 

 Age, sex, and postmortem interval (PMI) for all cases in the study. DS and AD cases had 

AD pathology with stage 6 tangles and stage C plaques. Modified Bristol Activities of Daily 

Living Scale (mBADLS) scores are shown (higher scores indicate greater functional 

dependency; 0-42 points scale). See Materials and Methods for details. 
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