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Sparse Representations for Object- and Ego-Motion
Estimations in Dynamic Scenes

Hirak J. Kashyap , Member, IEEE, Charless C. Fowlkes, Member, IEEE,

and Jeffrey L. Krichmar , Senior Member, IEEE

Abstract— Disentangling the sources of visual motion in a
dynamic scene during self-movement or ego motion is important
for autonomous navigation and tracking. In the dynamic image
segments of a video frame containing independently moving
objects, optic flow relative to the next frame is the sum of
the motion fields generated due to camera and object motion.
The traditional ego-motion estimation methods assume the scene
to be static, and the recent deep learning-based methods do
not separate pixel velocities into object- and ego-motion com-
ponents. We propose a learning-based approach to predict both
ego-motion parameters and object-motion field (OMF) from
image sequences using a convolutional autoencoder while being
robust to variations due to the unconstrained scene depth. This is
achieved by: 1) training with continuous ego-motion constraints
that allow solving for ego-motion parameters independently
of depth and 2) learning a sparsely activated overcomplete
ego-motion field (EMF) basis set, which eliminates the irrelevant
components in both static and dynamic segments for the task
of ego-motion estimation. In order to learn the EMF basis set,
we propose a new differentiable sparsity penalty function that
approximates the number of nonzero activations in the bottleneck
layer of the autoencoder and enforces sparsity more effectively
than L1- and L2-norm-based penalties. Unlike the existing direct
ego-motion estimation methods, the predicted global EMF can be
used to extract OMF directly by comparing it against the optic
flow. Compared with the state-of-the-art baselines, the proposed
model performs favorably on pixelwise object- and ego-motion
estimation tasks when evaluated on real and synthetic data sets
of dynamic scenes.

Index Terms— Convolutional autoencoder, ego motion, object
motion, overcomplete basis, sparse representation.

I. INTRODUCTION

OBJECT-MOTION and ego-motion estimation in videos
of dynamic scenes are fundamental to autonomous nav-

igation and tracking and have found considerable attention in
the recent years due to the surge in technological developments
for self-driving vehicles [1]–[9]. The task of 6DoF ego-motion
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prediction is to estimate the six parameters that describe
the 3-D translation and rotation of the camera between two
successive frames. While object motion can be estimated either
at instance level where each object is assumed rigid [10] or
pixelwise without any rigidity assumption, that is, parts of
objects can move differently [6], [11], pixelwise object-motion
estimation is more useful since many objects in the real world,
such as people, are not rigid [12].

In order to compute object velocity, the camera or observer’s
ego motion needs to be compensated [13]. Likewise, the
presence of large moving objects can affect the perception
of ego motion [14]. Both ego motion and object motion result
in the movement of pixels between two successive frames,
which is known as optic flow and encapsulates multiple
sources of variation. Scene depth, ego motion, and velocity
of independently moving objects determine pixel movements
in videos. These motion sources of optic flow are ambiguous,
particularly in the monocular case, and so the decomposition
is not unique [4].

Several approaches for ego-motion estimation have been
proposed. Feature-based methods compute ego motion based
on motion of rigid background features between succes-
sive frames [15]–[20]. Another well-studied approach is to
jointly estimate structure from motion (SfM) by minimizing
warping error across the entire image [21]–[24]. While the
traditional SfM methods are effective in many cases, they
rely on accurate feature correspondences that are difficult to
find in low texture regions, thin or complex structures, and
occlusion regions. To overcome some of the issues with SfM
approaches, Zhou et al. [2] proposed a deep learning-based
SfM method using inverse warping loss, which was then
further improved in [3], [5], and [25]. These deep learning
methods rely on finding the rigid background segments for
ego-motion estimation [2], [6], [26]. However, these methods
do not separate pixel velocities into ego- and object-motion
components. All these prior methods that solve for both object
and ego motion use depth as additional input [11], [27], [28].
Joint estimation of object and ego motion from monocular
RGB frames can be ambiguous [4]. However, the estimation of
ego- and object-motion components from their composite optic
flow could be improved by using the geometric constraints of
the motion field to regularize a deep neural network-based
predictor [19], [29].

We introduce a novel approach for predicting 6DoF ego
motion and image velocity generated by moving objects in
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Fig. 1. Proposed sparse autoencoder framework for prediction of OMF and ego motion. Optic flow is obtained using PWC-net [30], which is used to
predict unit depth EMF (ξ̃ ) and, subsequently, the 6DoF ego-motion parameters. The output of the encoder forms the basis coefficients, whereas the rotation
and translation basis sets are learned during training. OMF and dynamic region masks are calculated using ξ̃ , optic flow (v̂), and inverse depth (ρ) through
operations O and M, respectively. Red arrows denote loss calculation during training.

videos, considering motion-field decomposition in terms of
ego- and object-motion sources in the dynamic image seg-
ments. Our approach first predicts the EMF covering both rigid
background and dynamic segments, from which object-motion
and 6DoF ego-motion parameters can be derived in closed
form. Compared with the existing approaches, our method
does not assume a static scene [15], [16], [31] and does not
require dynamic segment mask [2], [6], [26] or depth [11],
[27], [28] for ego-motion prediction from monocular RGB
frames. This is achieved by using continuous ego-motion
constraints to train a neural network-based predictor, which
allows the network to remove variations due to depth and
moving objects in the input frames [19], [29].

Fig. 1 shows the workflow of the proposed solution.
To achieve robust EMF prediction in the presence of variations
due to depth and moving objects, an overcomplete sparse basis
set of rotational and translational ego motion is learned using
a convolutional autoencoder with a nonzero basis activation
penalty at the bottleneck layer. The proposed asymmetric
autoencoder has a single-layer linear decoder that learns the
translational and rotational ego-motion basis sets as connection
weights, whereas a fully convolutional encoder provides the
basis coefficients that are sparsely activated. In order to
penalize the number of nonzero neuron activations at the
bottleneck layer during training, we propose a continuous
and differentiable sparsity penalty term that approximates
L0-norm for rectified signals, such as ReLU activation output.
Compared with the L1- and L2-norm penalties, the proposed
sparsity penalty is advantageous since it penalizes similar to
the uniform L0-norm operator and does not result in a large
number of low magnitude activations.

We propose a new motion-field reconstruction loss com-
prising continuous ego-motion constraints for end-to-end
training of the asymmetric convolutional autoencoder. Com-
pared with the existing baselines methods [2]–[5], [11], [15],
[17], [19], [27], [28], SparseMFE achieves state-of-the-art
ego-motion and object-motion prediction performances on

standard benchmark KITTI and MPI Sintel data sets [1],
[32]. Our proposed method for learning a sparse overcomplete
basis set from the optic flow is effective, as evidenced by
an ablation study of the bottleneck layer neurons, which
shows that SparseMFE achieves state-of-the-art ego-motion
performance on KITTI using only 3% basis coefficients.

In the remainder of this article, we describe the SparseMFE
method in detail, compare our method with existing methods
on benchmark data sets, and then discuss the advantages of
our proposed method.

II. BACKGROUND

A. Related Work

1) Ego-Motion Estimation: Ego-motion algorithms are cat-
egorized as direct methods [21], [22] and feature-based meth-
ods [15], [17]–[20]. Direct methods minimize photometric
image reconstruction error by estimating per pixel depth
and camera motion; however, they are slow and need good
initialization. On the other hand, feature-based methods use
feature correspondences between two images to calculate
camera motion. The feature-based methods can be divided
into two subcategories: the first category of approaches uses
a sparse discrete set of feature points and are called discrete
approaches [15], [17], [20]. These methods are fast but are
sensitive to independently moving objects. The second cat-
egory uses optic flow induced by camera motion between
the two frames to predict camera motion, also known as
continuous approaches [19], [26], [33], [34]. This approach
can take advantage of global flow pattern consistency to
eliminate outliers although it requires correct scene structure
estimate [35].

Deep neural networks have been used to formulate direct
ego-motion estimation as a prediction problem to achieve
state-of-the-art results. Zhou et al. [2] proposed deep neural
networks that learned to predict depth and camera motion by
training with a self-supervised inverse warping loss between
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the source and the target frames. This self-supervised deep
learning approach has since been adopted by other methods
to further improve ego-motion prediction accuracy [3], [5],
[25], [36]. Tung et al. [37] formulated the same problem in an
adversarial framework where the generator synthesizes camera
motion and scene structure that minimize the warping error
to a target frame. These methods do not separate the pixel
velocities in the dynamic segments into ego- and object-motion
components.

2) Object-Motion Estimation: Compared with monocular
ego-motion estimation, fewer methods have been proposed
for object-motion estimation from monocular videos. The 3-D
motion field or scene flow was first defined in [38] to describe
the motion of moving objects in the scene. Many approaches
use depth as additional input. Using RGBD input, scene flow
was modeled as piecewise rigid flow superimposed with non-
rigid residual from camera motion in [27]. In another RGBD
method, dynamic region segmentation was used to solve
static regions as visual odometry and the dynamic regions
as moving rigid patches [28]. All of these methods assume
rigidity prior and fail with increasingly nonrigid dynamic
scenes. To mitigate this, 2-D scene flow or pixelwise object
motion was estimated as nonrigid residual optic flow in the
dynamic segments through supervised training of a deep neural
network [11].

For RGB input, Vijayanarasimhan et al. [6] proposed neural
networks to jointly optimize for depth, ego motion, and a
fixed number of objects using inverse warping loss. Due
to the inherent ambiguity in the mixture of motion sources
in optic flow, an expectation–maximization framework was
proposed to train deep neural networks to jointly optimize for
depth, ego motion, and object motion [4]. These methods were
only evaluated qualitatively on data sets with limited object
movements.

3) Sparse Autoencoder: For high dimensional and noisy
data, such as optic flow, a sparse overcomplete representation
is an effective method for robust representation of underlying
structures [39], [40]. It has been widely used in non-Gaussian
noise removal applications from images [41], [42]. A similar
representation was proposed to be used in the primary visual
cortex in the brain to encode variations in natural scenes [43].

Multiple schemes of learning sparse representations have
been proposed, such as sparse coding [44], sparse autoen-
coder [45], sparse winner-take-all circuits [46], and sparse
RBMs [47]. Of these, autoencoders are of particular interest
since they can be trained comparatively easily via either
end-to-end error backpropagation or layerwise training in the
case of stacked denoising autoencoders [48]. For both types
of training, autoencoders learn separable information of the
input in deep layers that are shown to be highly useful for
downstream tasks, such as image classification [49], [50] and
salient object detection [51].

To learn a representation of underlying motion sources
in optic flow, an autoencoder with sparsity regularization is
well suited due to its scalability to high-dimensional data and
feature learning capabilities in the presence of noise [46], [52],
[53]. In our method, we use a sparse autoencoder to represent

ego motion from noisy optic flow input by removing other
components, such as depth and object motion.

Taken together, the existing monocular ego- and
object-motion methods, except for [11], cannot estimate both
6DoF ego-motion and unconstrained pixelwise object motion
in complex dynamic scenes. The method by Lv et al. [11]
requires RGBD input for ego-motion prediction and dynamic
segment labels for supervision. Therefore, in the following,
we introduce our SparseMFE method that does not require
the supervision of moving objects for training and estimates
ego motion from RGB input in the presence of variations due
to depth and independently moving objects.

B. Motion Field and Flow Parsing

Here, we analyze the geometry of instantaneous static scene
motion under perspective projection. Although these equations
were derived previously for ego motion [19], [26], [29],
we illustrate their use in deriving a simplified expression of
instantaneous velocities of independently moving objects.

Let us denote the instantaneous camera translation velocity
as t = (tx , ty, tz)

T ∈ R3 and the instantaneous camera rotation
velocity as ω = (ωx , ωy, ωz)

T ∈ R3. Given scene depth Z(pi)
and its inverse ρ(pi) = (1/(Z(pi))) ∈ R at an image location
pi = (xi , yi )

T ∈ R2 of a calibrated camera image, the image
velocity v(pi ) = (vi , ui)

T ∈ R2 due to camera motion is given
by

v(pi) = ρ(pi)A(pi)t + B(pi)ω (1)

where

A(pi) =
[

f 0 −xi

0 f −yi

]

B(pi) =
[ −xi yi f + x2

i −yi

− f − y2
i xi yi xi

]
.

If pi is normalized by the focal length f , then it is possible
to replace f with 1 in the expressions for A(pi) and B(pi).

If the image size is N pixels, then the full expression of
instantaneous velocity at all the points due to camera motion,
referred to as EMF, can be expressed in a compressed form
as

v = ρ At + Bω (2)

where, A, B , and ρ entails the expressions A(pi), B(pi),
and ρ(pi), respectively, for all the N points in the image as
follows:

v =

⎡
⎢⎢⎢⎣

v(p1)
v(p2)

...
v(pN )

⎤
⎥⎥⎥⎦ ∈ R2N×1, ρ At =

⎡
⎢⎢⎢⎣

ρ1 A(p1)t
ρ2 A(p2)t

...
ρN A(pN)t

⎤
⎥⎥⎥⎦ ∈ R2N×1

Bω =

⎡
⎢⎢⎢⎣

B(p1)ω
B(p2)ω

...
B(pN )ω

⎤
⎥⎥⎥⎦ ∈ R2N×1.

Note that the rotational component of EMF is independent of
depth.
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The monocular continuous ego-motion computation uses
this formulation to estimate the unknown parameters t and ω
given the point velocities v generated by camera motion [19],
[29]. However, instantaneous image velocities obtained from
the standard optic flow methods on real data are usually
different from the EMF [26]. The presence of moving objects
further deviates the optic flow away from the EMF. Let us
call the input optic flow as v̂ , which is different from v.
Therefore, monocular continuous methods on real data solve
the following minimization objective to find t , ω, and ρ

t∗, ω∗, ρ∗ = argmin
t,ω,ρ

||ρ At + Bω − v̂ ||2. (3)

Following [19] and [54], without loss of generality, the
objective function can be first minimized for ρ as

t∗, ω∗, ρ∗ = argmin
t,ω

argmin
ρ

||ρ At + Bω − v̂ ||2. (4)

Therefore, the minimization for t∗ and ω∗ can be performed
as

t∗, ω∗ = argmin
t,ω

||A⊥t
T
(Bω − v̂)||2 (5)

where A⊥t is orthogonal complement of At . This resulting
expression does not depend on ρ and can be optimized directly
to find optimal t∗ and ω∗.

In dynamic scenes, the independently moving objects gen-
erate additional image velocities. Therefore, the resulting optic
flow can be expressed as the sum of the flow components due
to ego motion (v̂e) and object motion (v̂o). Following this, (5)
can be generalized as

t∗, ω∗ = argmin
t,ω

||A⊥t
T
(Bω − v̂e − v̂o)||2. (6)

Since v̂o is independent of t and ω, it can considered as
non-Gaussian additive noise, and (6) provides a robust for-
mulation of (5). After solving for t∗ and ω∗, image velocity
due to object motion across the entire image can be recovered
as

ṽo = v̂ − ρ At∗ + Bω∗. (7)

We will refer to ṽo as the predicted object-motion field
(OMF). Equation (7) is equivalent to flow parsing, which is a
mechanism proposed to be used by the human visual cortex
to extract object velocity during self-movement [55].

Note that the expression is dependent on ρ. Although human
observers are able to extract depth in the dynamic segments
using stereo input and prior information about objects, the
structure-from-motion methods cannot reliably estimate depth
in the dynamic segments without prior information about
objects [3], [5], [25], [36]. Since the separation into EMF and
OMF in the dynamic segments cannot be automated without
prior information about objects, the data sets of generic
real-world scenes do not provide ground-truth OMF [1].

III. REPRESENTATION OF EGO-MOTION USING A

SPARSE BASIS SET

We propose to represent ego motion as depth normalized
translation EMF and rotational EMF, which can be converted

to 6DoF ego-motion parameters in closed form. In this setup,
the minimization in (6) can be converted to an equivalent
regression problem for depth normalized translational EMF
and rotational EMF, denoted as ξt and ξω, respectively.
We hypothesize that regression with the EMF constraints
from (1) will be more robust than direct 6DoF ego-motion
prediction methods in the presence of variations due to depth
and dynamic segments [2], [3], [5].

Regression of high-dimensional output is a difficult prob-
lem. However, significant progress has been made using deep
neural networks and generative models [4], [6], [37], [56]. For
structured data, such as EMF, the complexity of regression
can be greatly reduced by expressing the target as a weighted
linear combination of basis vectors drawn from a precomputed
dictionary. Then, the regression will be a much simpler task
of estimating the basis coefficients, which usually has orders
of magnitude lower dimension than the target.

Suppose that ξ̃t is the prediction for depth normalized
translational EMF obtained as linear combination of basis
vectors from a dictionary T . ξ̃ω is the prediction for rotational
EMF calculated similarly from a dictionary R

ξ̃t =
m∑

j=1

α j Tj (8)

ξ̃ω =
n∑

j=1

β j R j (9)

where α j and β j are the coefficients and m, n � N . Small
values of m and n not only lead to computational efficiency,
but they also allow each basis vector to be meaningful and
generic.

On the other hand, having too few active basis vectors
is counterproductive for predictions on unseen data with the
non-Gaussian variations. For example, PCA finds a small set
of uncorrelated basis vectors; however, it requires that the
important components of the data have the largest variance.
Therefore, in the presence of the non-Gaussian noise with
high variance, the principal components deviate from the
target distribution and generalize poorly to unseen data [57].
Furthermore, a smaller dictionary is more sensitive to the
corruption of the coefficients due to noisy input.

Therefore, for high dimensional and noisy data, a redundant
decomposition of (9) and (9) is preferred. Dictionar-
ies with linearly dependent bases are called overcom-
plete, and they have been used widely for noise removal
applications [39]–[41] and in signal processing [42], [58].
Overcomplete representations are preferred due to flexibility
of representation for high-dimensional input, robustness, and
sparse activation [39].

Despite the flexibility provided by overcompleteness, there
is no guarantee that a large set of manually picked linearly
dependent basis vectors will fit the structure of the underlying
input distribution [39]. Therefore, an overcomplete dictionary
must be learned from the data such that the basis vectors
encode maximum structure in the distribution. However, the
underdetermined problem of finding a large overcomplete
dictionary becomes unstable when the input data are inaccurate
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Fig. 2. L0-, L1-, and L2-norm penalties and the proposed sharp sigmoid penalty for basis coefficient α j . It can be observed that for α j ≥ 0, the sharp
sigmoid penalty approximates the L0 penalty and is continuous and differentiable. The sharp sigmoid function shown above corresponds to Q = 25 and
B = 30. The L1- and L2-norm penalties enforce shrinkage on larger values of α j . Moreover, for a set of coefficients, L1- and L2-norm penalties cannot
indicate the number of α j > 0 due to not having any upper bound.

or noisy [59]. Nevertheless, the ill-posedness can be greatly
diminished using a sparsity prior on the activations of the
basis vectors [41]–[43]. Considering sparse activation prior,
the decomposition in (9) is constrained by

‖α‖0 < k. (10)

‖α‖0 is the L0-(pseudo)norm of α and denotes the number
of nonzero basis coefficients, with an upper bound k. The
decomposition for ξ̃ω in (9) is similarly obtained and will not
be stated for brevity.

Therefore, the objective function to solve for basis T and
coefficients α can be written as

argmin
T,α

∥∥∥∥∥∥ξt −
m∑

j=1

α j Tj

∥∥∥∥∥∥
1

s.t. ‖α‖0 < k. (11)

We use the L1-norm for the reconstruction error term since it
is robust to input noise [60]. In contrast, the more commonly
used L2-norm overfits to noise since it results in large errors
for outliers [61]. As ξt components can be noisy, the L1-norm
of reconstruction error is more suitable in our case.

The regularizer in (11), known as the best variable selec-
tor [62], requires a predetermined upper bound k, which may
not be the optimal for all samples in a data set. Therefore,
a penalized least squares form is preferred for optimization

argmin
T,α

∥∥∥∥∥∥ξt −
m∑

j=1

α j Tj

∥∥∥∥∥∥
1

+ λs‖α‖0. (12)

The penalty term in (12) is computed as ‖α‖0 =∑m
j=1 1(α j �= 0), where 1(.) is the indicator function. How-

ever, the penalty term results in 2m possible states of the
coefficients α, and the exponential complexity is not practical
for large values of m, as in the case of overcomplete basis [63].
Furthermore, the penalty function is not differentiable and
cannot be solved using gradient-based methods.

Although functionally different, the penalty function in (12)
is commonly approximated using an L1-norm penalty, which is
differentiable and results in a computationally tractable convex
optimization problem

argmin
T,α

∥∥∥∥∥∥ξt −
m∑

j=1

α j Tj

∥∥∥∥∥∥
1

+ λs‖α‖1. (13)

Penalized regression of the form in (13) is known as
Lasso [64], where the penalty ‖α‖1 = ∑m

j=1 |α j |1 shrinks
the coefficients toward zero and can ideally produce a sparse
solution. However, Lasso operates as a biased shrinkage oper-
ator as it penalizes larger coefficients more compared with
smaller coefficients [63], [65]. As a result, it prefers solutions
with many small coefficients than solutions with fewer large
coefficients. When input has noise and correlated variables,
Lasso results in a large set of activations, all shrunk toward
zero, to minimize the reconstruction error [63].

To perform the best variable selection through a
gradient-based optimization, we propose to use a penalty
function that approximates L0-norm for rectified input based
on the generalized logistic function with a high growth rate,
which we call as sharp sigmoid penalty and is defined for the
basis coefficient α j as

p(α j ) = 1

1 + Qe−Bα j
(14)

where Q determines the response at α = 0 and B deter-
mines the growth rate. The Q and B hyperparameters are
tuned within a finite range such that: 1) zero activations
are penalized with either zero or a negligible penalty and
2) small magnitude activations are penalized equally as the
large magnitude activations (such as L0). The sharp sigmoid
penalty is continuous and differentiable for all input values,
making it a well-suited sparsity regularizer for gradient-based
optimization methods. Thus, the objective function with sharp
sigmoid sparsity penalty can be written as

argmin
T,α

∥∥∥∥∥∥ξt −
m∑

j=1

α j Tj

∥∥∥∥∥∥
1

+ λs

m∑
j=1

1

1 + Qe−Bα j
. (15)

Fig. 2 shows that the sharp-sigmoid penalty approximates
the number of nonzero coefficients in rectified α. It provides
a sharper transition between 0 and 1 compared with the
sigmoid function and does not require additional shifting and
scaling. To achieve dropout, such as weight regularization [66],
a sigmoid derived hard concrete gate was proposed in [65] to
penalize neural network connection weights. However, it does
not approximate the number of nonzero weights and averages
to the sigmoid function for noisy input.
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Fig. 3. Derivative of the sharp sigmoid penalty function p(α j ) with respect
to coefficient α j .

IV. JOINT OPTIMIZATION FOR BASIS VECTORS AND

COEFFICIENTS

We now describe the proposed optimization method to find
the basis sets T and R and coefficients α for translational
and rotational EMF based on the objective function in (15).
We let the optimization determine the coupling between the
coefficients for rotation and translation; therefore, the coeffi-
cients α are shared between T and R. We write the objective
in a framework of energy function E(ξt , ξω|T, R, α) as

T ∗, R∗, α∗ = argmin
T,R,α

E(ξt , ξω|T, R, α) (16)

where

E(ξt , ξω|T, R, α)=λt

∥∥∥∥∥∥ξt −
m∑

j=1

α j Tj

∥∥∥∥∥∥
1

+λω

∥∥∥∥∥∥ξω−
m∑

j=1

α j R j

∥∥∥∥∥∥
1

+λs

m∑
j=1

1

1 + Qe−Bα j
. (17)

There are three unknown variables T , R, and α to optimize
such that the energy in (17) is minimal. This can be per-
formed by optimizing over each variable one by one [43]. For
example, expectation maximization procedure can be used to
iteratively optimize over each unknown.

For gradient-based minimization over α j , we may iterate
until the derivative of E(ξt , ξω|T, R, α) with respect to each
α j is zero. For each input optic flow, α j ’s are solved by finding
the equilibrium of the differential equation

α̇ j = λt Tj sgn

⎛
⎝ξt −

m∑
j=1

α j Tj

⎞
⎠

+ λω R j sgn

⎛
⎝ξω −

m∑
j=1

α j R j

⎞
⎠ − λs p′(α j ). (18)

However, the third term of this differential that imposes
self-inhibition on α j is problematic. As shown in Fig. 3, the
gradient p′(α j ) of the sharp sigmoid penalty with respect to
the coefficient is mostly zero, except for a small interval of
coefficient values close to zero. As a result, the α j values
outside this interval will have no effect on the minimization
to impose sparsity. The sparsity term also has zero derivatives
with respect to R and T ; therefore, (16) cannot be directly
optimized over T , R, and α for sparsity when sharp sigmoid
penalty is used.

Instead, we can cast it as a parameterized framework where
the optimization is solved over a set of parameters θs that
predicts the sparse coefficients α to minimize the energy form
in (17). This predictive model can be written as α = fθs (v̂).
The unknown variables R and T can be grouped along with θs

as θ = {T, R, θs} and optimized jointly to solve the objective

θ∗ = argmin
θ

E(ξt , ξω, α|θ) (19)

where E(ξt , ξω, α|θ) is equivalent to the energy function in
(17), albeit expressed in terms of variable θ .

The objective in (19) can be optimized efficiently using an
autoencoder neural network with θs as its encoder parameters
and {T, R} as its decoder parameters. The encoder output
or bottleneck layer activations provide the basis coefficients
α. Following this approach, we propose Sparse Motion
Field Encoder (SparseMFE) that learns to predict EMF due
to self-rotation and translation from optic flow input. The
predicted EMF allows direct estimation of 6DoF ego-motion
parameters in the closed form and prediction of projected
object velocities or OMF via flow parsing [55].

Fig. 4 shows the architecture of the proposed SparseMFE
network. The network is an asymmetric autoencoder that has
a multilayer fully convolutional encoder and a single-layer
linear decoder. We will refer to the Conv1X-4 block at the
end of the encoder consisting of m = 1000 neurons as the
bottleneck layer of the SparseMFE network. The bottleneck
layer predicts a latent space embedding of ego motion from
input optic flow. This embedding operates as coefficients α for
the basis vectors of dictionaries T and R learned as the fully
connected decoder weights. The outputs of all Conv block
in the encoder, including the bottleneck layer neurons, are
nonnegative due to ReLU operations.

EMF Reconstruction Losses

The translational and rotational EMF reconstruction losses
by SparseMFE are obtained as

Lt = ‖ξt − ξ̃t‖1 (20)

Lω = ‖ξω − ξ̃ω‖1 (21)

where ξt is true translational EMF with ρ = 1, and ξω is true
rotational MF, obtained using (2).

As most data sets contain disproportionate amount of rota-
tion and translation, we propose to scale Lt and Lω relative to
each other such that the optimization is unbiased. The scaling
coefficients of Lt and Lω for each input batch are calculated
as

λt = max

( ||ξω||2
||ξt ||2 , 1

)
(22)

λω = max

( ||ξt ||2
||ξω||2 , 1

)
. (23)

Sparsity Loss

The SparseMFE network is regularized during training for
the sparsity of activation of the bottleneck layer neurons.
This is implemented by calculating a sparsity loss (Ls) for
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Fig. 4. Architecture of the proposed SparseMFE network. Conv blocks
are fully convolutional layers of 2-D convolution and ReLU operations.
The receptive field size is gradually increased such that each neuron in the
Conv1X-4 layer operates across the entire image. Outputs of all Conv blocks
are nonnegative due to ReLU operations. K, S, and P denote the kernel
sizes, strides, and padding along vertical and horizontal directions of feature
maps. F denotes the number of filters in each layer. The weights of the fully
connected layer form the basis for translational and rotational ego-motion.

each batch of data and backpropagating it along with the
EMF reconstruction loss during training. The value of Ls is
calculated for each batch of data as the number of nonzero
activations of the bottleneck layer neurons, also known as
population sparsity. Although, to make this loss differentiable,
we approximate a number of activations using sharp sigmoid
penalty in (14), the penalty Ls is calculated as

Ls =
m∑

j=1

p(α j). (24)

Combining EMF reconstruction loss and sparsity loss, the
total loss for training is given by

L = λt Lt + λω Lω + λs Ls (25)

where λs is a hyperparameter to scale sparsity loss.

V. EXPERIMENTAL RESULTS

We evaluate the performance of SparseMFE in ego motion
and object velocity prediction tasks comparing with the base-
lines on the real KITTI odometry data set and the syn-
thetic MPI Sintel data set [1], [32]. In addition, we analyze
the EMF basis set learned by SparseMFE for sparsity and
overcompleteness.

The predictions for 6DoF translation and rotation parame-
ters are computed in closed form from ξ̃t and ξ̃ω, respectively,
following the continuous ego-motion formulation

t̃ = ξ̃t/A | ρ = 1, ω̃ = ξ̃ω/B. (26)

Projected object velocities or OMF are obtained using (7).

A. Data Sets

1) KITTI Visual Odometry Data Set: We use the KITTI
visual odometry data set [1] to evaluate ego-motion prediction
performance by the proposed model. This data set provides
eleven driving sequences (00–10) with RGB frames (we use
only the left camera frames) and the ground-truth pose for each
frame. Of these eleven sequences, we use sequences 00–08
for training our model and sequences 09 and 10 for testing,
similar to [2], [3], [5], and [26]. This amounts to approximately
20.4k frames in the training set and 2792 frames in the test
set. As ground-truth optic flow is not available for this data
set, we use a pretrained PWC-Net [30] model to generate
optic flow from the pairs of consecutive RGB frames for both
training and testing.

2) MPI Sintel Data Set: The MPI Sintel data set contains
scenes with the fast camera and object movement and also
many scenes with large dynamic regions [32]. Therefore, this
is a challenging data set for ego motion and OMF prediction.
Similar to the other pixelwise object-motion estimation meth-
ods [11], we split the data set such that the test set contains
scenes with a different proportion of dynamic regions in order
to study the effect of moving objects on prediction accuracy.
Of the 23 scenes in the data set, we select alley_2(1.8%),
temple_2(5.8%), market_5(27.04%), ambush_6(38.96%),
and cave_4(47.10%) sequences as the test set, where the
number inside the parentheses specifies the percentage of
dynamic regions in each sequence [11]. The rest 18 sequences
are used to train SparseMFE.

B. Training

We use Adam optimizer [56] to train SparseMFE. Learning
rate η is set to 10−4 and is chosen empirically by line search.
The β1 and β2 parameters of Adam are set to 0.99 and
0.999, respectively. The sparsity coefficient λs for training
is set to 102, whose selection criterion is described later in
Section V-E.

C. Ego-Motion Prediction

For the KITTI visual odometry data set [1], following
the existing literature on learning-based ego-motion predic-
tion [2]–[5], [26], absolute trajectory error (ATE) metric is
used for ego-motion evaluation, which measures the distance
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TABLE I

ATE ON THE KITTI VISUAL ODOMETRY TEST SET. THE
LOWEST ATE IS DENOTED IN BOLDFACE

between the corresponding points of the ground truth and the
predicted trajectories. In Table I, we compare the proposed
model against the existing methods on the KITTI odom-
etry data set. Recent deep learning-based SfM models for
direct 6DoF ego-motion prediction are compared as baselines
since their ego-motion prediction method is comparable to
SparseMFE. For reference, we also compare against a state-of-
the-art visual SLAM method, ORB-SLAM [17], and epipolar
geometry-based robust optimization methods [15], [19].

Table I shows that SparseMFE achieves the state-of-the-art
ego-motion prediction accuracy on both test sequences 09 and
10 of the KITTI odometry test split compared with the state-
of-the-art learning-based ego-motion methods [3]–[5] and geo-
metric ego-motion estimation baselines [15], [17], [19].

In order to investigate the effectiveness of the learned
sparse representation of ego motion, we evaluate ATE using
only a few top percentile activations of basis coefficients in
the bottleneck layer of SparseMFE. This metric tells about
dimensionality reduction capabilities of an encoding scheme.
As shown in Table I, SparseMFE achieves state-of-the-art
ego-motion prediction on both sequences 09 and 10 using
only the 3% most active basis coefficients for each input
frame pair. Furthermore, when using this subset of coefficients
only, the achieved ATE is equal to when using all the basis
coefficients. This implies that SparseMFE is able to learn a
sparse representation of ego motion.

On the MPI Sintel data set, we use the relative pose
error (RPE) [67] metric for evaluation of ego-motion pre-
diction, similar to the baseline method rigidity transform
network (RTN) [11]. SparseMFE is comparable to this para-
metric method without any additional iterative refinement of
ego motion. An off-line refinement step can be used with
SparseMFE as well. However, off-line iterative refinement
methods are independent of the pose prediction and, therefore,
cannot be compared directly.

Table II compares ego-motion prediction performance of
SparseMFE against the baseline RTN [11], ORB-SLAM [17],
geometric ego-motion methods [15], [19], and nonparametric
baselines SRSF [27] and VOSF [28] on the Sintel test split.
SparseMSE and the geometric baselines do not use depth input
for ego-motion prediction; however, RTN, SRSF, and VOSF

use RGBD inputs. For a fair comparison with RTN, both
methods obtain optic flow using PWC-net [30]. SparseMFE
achieves the lowest overall rotation prediction error compared
with the existing methods, even when using only RGB frames
as input. Although VOSF [28] achieves the lowest overall
translation prediction error, it uses depth as an additional input
to predict ego motion.

D. Object-Motion Prediction

We quantitatively and qualitatively evaluate SparseMFE on
object-motion prediction using the Sintel test split. We com-
pare it with RTN [11] and Semantic Rigidity [68] as the
state-of-the-art learning-based baselines and SRSF [27] and
VOSF [28] as nonparametric baselines for obejct-motion eval-
uation. RTN [11] trained using the Things3D data set [69]
for generalization is also included. The standard endpoint
error (EPE) metric is used, which measures the Euclidean
distance between the ground truth and the predicted 2-D flow
vectors generated by moving objects. These 2-D object flow
vectors are herein referred to as OMF and with a different
terminology “projected scene flow” in [11]. Table III shows
that SparseMFE achieves the state-of-the-art OMF prediction
accuracy on four out of five test sequences. The other methods
become progressively inaccurate with larger dynamic regions.
On the other hand, SparseMFE maintains OMF prediction
accuracy even when more than 40% of the scene is occupied
by moving objects, as in the case of the cave_4 sequence.

Fig. 5 shows the qualitative OMF performance of
SparseMFE on each of the five sequences from the Sintel test
split. Dynamic region mask is obtained by thresholding the
residual optic flow from (7). While SparseMFE successfully
recovers OMF for fast-moving objects, it is possible that
some rigid background pixels with faster flow components
are classified as dynamic regions, as for the examples from
market_5 and cave_4 sequences. This can be avoided by using
more data for training since these background residual flows
are generalization errors stemming from ego-motion prediction
and are absent in training set predictions.

We show the qualitative object-motion prediction results
on real-world KITTI benchmark [70] in Fig. 6, which illus-
trates effective dynamic region prediction compared with
ground-truth dynamic region masks. The benchmark does not
provide ground-truth OMF, which is difficult to obtain for
real-world scenes.

E. Sparsity Analysis

We analyze the effect of using the sparsity regularizer in the
encoding of ego motion. The proposed sharp sigmoid penalty
in (14) is compared against L1- and L2-norm sparsity penalties
commonly used in sparse feature learning methods [71], [72].
ReLU nonlinearity at the bottleneck layer was proposed for
sparse activations [53]. Since the bottleneck layer of Sparse
MFE uses ReLU nonlinearity, we also compare the case where
no sparsity penalty is applied.

Fig. 7 shows the effectiveness of the proposed sharp sig-
moid penalty in learning a sparsely activated basis set for
ego-motion prediction. Fig. 7(a) shows the number of nonzero
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TABLE II

RPE COMPARISON ON THE SINTEL TEST SET. THE LOWEST AND THE SECOND LOWEST RPE ON EACH SEQUENCE ARE DENOTED USING BOLDFACE

AND UNDERLINE, RESPECTIVELY. � DENOTES THAT A METHOD USES RGBD INPUT FOR EGO-MOTION PREDICTION

TABLE III

EPE COMPARISON OF OMF PREDICTION ON THE SINTEL TEST SPLIT. THE LOWEST EPE PER SEQUENCE IS DENOTED IN BOLDFACE

Fig. 5. Qualitative results of SparseMFE on the Sintel test split. The red overlay denotes the dynamic region masks.

activations in the bottleneck layer on the Sintel test split
when the network is trained using different sparsity penalties.
Sharp sigmoid penalty results in sparse and stable activations
of basis coefficients for all Sintel test sequences. On the
contrary, L0- and L1-norm penalties find dense solutions
where large basis subsets are used for all sequences. Fig. 7(b)
shows the activation heatmap of the bottleneck layer for the
market_5 frame in Fig. 5 for the tested sparsity penalties.
L0 and L1 penalties do not translate to the number of nonzero
activations, rather work as a shrinkage operator on activation
magnitude, to result in a large number of small activations
in the bottleneck layer. On the other hand, the proposed
sharp sigmoid penalty activates only a few neurons in that
layer.

We conducted ablation experiments to study the effec-
tiveness of L1, L2, and sharp sigmoid penalties in learning
a sparse representation of ego motion. Fig. 8 shows the
qualitative OMF and dynamic mask prediction performance
on the alley_2 test frame from Fig. 5 by SparseMFE instances
trained using either L1, L2, or sharp sigmoid penalties, with
or without ablation. During ablation, we use only a fraction
of the top bottleneck neuron activations (coefficients) and
set the others to zero. The results show that sharp sigmoid
penalty-based training provides stable OMF and dynamic
mask prediction using only top 1% activations, whereas L2
sparsity penalty-based training results in loss of accuracy as
neurons are removed from bottleneck layer. L1 penalty-based
training results in erroneous OMF and mask predictions for
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Fig. 6. Qualitative results of SparseMFE on KITTI benchmark real-world frames. Ground-truth OMF is not available; however, ground-truth dynamic region
masks are provided in the benchmark. The ground-truth depth map is sparse, and the pixels where depth is not available are in black.

Fig. 7. Neuron activation profile in the bottleneck layer on the Sintel test
split for different types of sparsity regularization. (a) Number of nonzero
activations in the bottleneck layer for frame sequences in the Sintel test split.
Line colors denote the sparsity regularization used. (b) Activation heatmap of
the bottleneck for the market_5 frame shown in Fig. 5. All experiments are
conducted after the network has converged to a stable solution.

this example. Another ablation study depicted in Fig. 9 shows
that SparseMFE trained using sharp sigmoid sparsity penalty is
more robust to random removal of neurons from the bottleneck
layer compared with when trained using L1- and L2-norm
sparsity penalties.

To study the effect of the sparsity loss coefficient λs on
ego-motion prediction, we conducted a study by varying λs

during training and using only a fraction of the most activated
bottleneck layer neurons for ego-motion prediction during the
test and setting the rest to zero. Fig. 10 shows the effect of
ablation on the ego-motion prediction accuracy during test
for λs values in the set {10e|0≤ e < 4, e ∈ Z}. As can
be seen, λs = 102 achieves the smallest and stable ATE
for a different amount of ablation. For smaller λs values,
the prediction becomes inaccurate as more bottleneck layer
neurons are removed. Although λs = 103 provides stable
prediction, it is less accurate than λs = 102. The stability to
ablation of neurons for larger λs values is a further indication
of the effectiveness of the sharp sigmoid sparsity penalty in
learning a sparse basis set of ego motion.

F. Ablation of Other Loss Terms

Similar to the ablation study for sparsity, we ablated
the translational (λt = 0) and rotational (λw = 0) EMF

Fig. 8. Qualitative OMF and dynamic mask prediction results comparing
L1, L2, and sharp sigmoid sparsity penalties, in terms of their robustness to
removal of bottleneck layer neurons during testing.

Fig. 9. Ablation study comparing L1, L2, and sharp sigmoid sparsity penalties
for ego-motion inference on the KITTI test sequence 10.

reconstruction loss terms of the objective function in (25)
to evaluate the contribution of these terms to the overall
performance of the proposed method. As shown in Table IV,
removal of the translational loss term or the rotational loss
term during training reduces the test accuracy of ego-motion
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Fig. 10. Ablation experiment to study the effect of the sparsity loss
coefficient λs on ego-motion prediction. During test, only a fraction of
the bottleneck layer neurons are used for ego-motion prediction based on
activation magnitude, and the rest are set to zero. ATE is averaged over all
frames in KITTI test sequences 09 and 10.

TABLE IV

ATE ON THE KITTI VISUAL ODOMETRY TEST SET

prediction. Moreover, the translational loss term contributes
more than the rotational loss term toward the ego-motion
prediction accuracy on the KITTI data set.

G. Learned Basis Set

We visualize the EMF basis sets R and T learned by
SparseMFE in Fig. 11 by projecting them onto the 3-D
Euclidean space in the camera reference frame using (26).
It can be seen that the learned R and T are overcomplete, i.e.,
redundant and linearly dependent [39], [43]. The redundancy
helps in two ways, first, to use different basis subsets to encode
similar ego motion so that the individual bases are not always
active. Second, if some basis subsets are turned off or get
corrupted by noise, the overall prediction is still robust [39],
[40]. Moreover, a pair of translational and rotational bases
share the same coefficient to encode ego motion. In that
sense, the bottleneck layer neurons are analogous to the
parietal cortex neurons of the primate brain that jointly encode
self-rotation and translation [73].

An observation from Fig. 11 is that the learned basis sets
can be skewed if the training data set does not contain enough
ego-motion variations. In most sequences of the VKITTI data
set, the camera mostly moves with forward translation (posi-
tive Z -axis). The learned translation basis set from the VKITTI
data set in Fig. 11(f) shows that most bases lie in the positive
Z region, denoting forward translation. Although the KITTI
data set has a similar translation bias, we augment the data
set with backward sequences. As a result, the translation basis
set learned from the KITTI data set does not have a skew
toward forward translation, as shown in Fig. 11(b).

H. Running Time

Table V lists the average inference throughput of our
proposed method and the comparison methods for frames of
size 256×832 pixels. All methods were run on a system with

Fig. 11. Projection of the learned EMF basis set for rotational and
translational ego motions to the Euclidean space in the camera reference
frame, for KITTI (a, b), MPI Sintel (c, d), and VKITTI (e, f) datasets. The
dots represent the learned bases, and the solid lines represent the positive X-,
Y -, and Z -axes of the Euclidean space. The red circles indicate a pair of
translation and rotation bases that share the same coefficient.

TABLE V

COMPARISON OF AVERAGE INFERENCE SPEED (FRAMES PER SECOND)

12-core Intel i7 CPU of 3.5-GHz frequency, 32-GB RAM,
and two Nvidia GeForce 1080Ti GPUs. We implemented our
method using PyTorch. For the other methods, we used the
source codes released by the authors. As indicated, SparseMFE
provides moderate frames per second throughput compared
with the baselines, slightly slower than [2]–[4], [28], and faster
than [11], [15], [19]. The proposed method first computes
optic flow using PWCnet [30] to predict ego and object
motion, which limits the throughput. However, improved ego-
and object-motion accuracy and sparse representation make
SparseMFE a favorable solution for practical applications.

VI. CONCLUSION

Estimating camera and object velocity in dynamic scenes
can be ambiguous, particularly when video frames are occu-
pied by independently moving objects [4]. In this article,
we propose a convolutional autoencoder, called SparseMFE,
that predicts translational and rotational EMFs from the optic
flow of successive frames, from which 6DoF ego-motion para-
meters, pixelwise nonrigid object motion, and dynamic region
segmentation can be obtained in closed form. SparseMFE
learns a sparse overcomplete basis set of EMFs in its linear
decoder weights, extracting the latent structures in the noisy
optic flow of training sequences. This is achieved using a
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motion field reconstruction loss and a novel differentiable
sparsity penalty that approximates L0-norm for rectified input.
Experimental results indicate that the learned ego-motion basis
generalizes well to unseen videos in regard to the existing
methods. SparseMFE achieves state-of-the-art ego-motion pre-
diction accuracy on the KITTI data set as well as state-of-
the-art overall rotation prediction accuracy and comparable
translation prediction accuracy on the MPI Sintel data set (see
Tables I and II) [1], [32].

A benefit of our approach, in regard to the comparison
methods, is that pixelwise object motion can be estimated
directly from the predicted EMF using flow parsing [see (7)].
On the realistic MPI Sintel data set with large dynamic
segments, SparseMFE achieves state-of-the-art OMF predic-
tion performance (see Table III). Moreover, compared with
the baseline methods, SparseMFE object-motion prediction
performance is more robust to increase in dynamic segments
in videos.

Apart from achieving state-of-the-art ego- and
object-motion performances, our approach demonstrates
an effective method for learning a sparse overcomplete basis
set. This is evidenced by an ablation experiment of the
basis coefficients, which shows that SparseMFE achieves
state-of-the-art ego-motion prediction accuracy on the KITTI
odometry data set using only the 3% most active basis
coefficients, with all other coefficients set to zero (see Table I
and Fig. 10). Moreover, the sharp sigmoid sparsity penalty
proposed here is more effective in enforcing sparsity on the
basis coefficients compared with L1- and L2-norm-based
sparsity penalties used in common regularization methods,
i.e., Lasso and ridge regression, respectively (see Fig. 7) [64],
[74]. L1- and L2-norm penalties work as shrinkage operators
on the coefficient values (see Fig. 2). On the other hand,
the differentiable sharp sigmoid penalty is uniform for most
positive activations and, therefore, results in fewer nonzero
basis coefficients (see Figs. 7–9). Our approach provides a
complete solution to recovering both ego-motion parameters
and pixelwise object motion from successive image frames.
Nonetheless, the regularization techniques developed in this
article are also applicable to sparse feature learning from
other high-dimensional data.
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