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Pulse front distortions in focused spatially
chirped beams

E. C. NELSON,* K. D. CHESNUT, T. REUTERSHAN, H. H.
EFFARAH, K. J. CHARBONNET, AND C. P. J. BARTY

Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
*ecnelson@uci.edu

Abstract: A numerical analysis of spatially chirped beams produced by single-pass grating
pairs is presented. It is shown that focused pulse structures can deviate significantly relative to
standard linear spatial chirp approximations depending upon the pulse bandwidth, the angle of
incidence, and groove density of the gratings used.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The use and focusing of chirped beams was first proposed in 2004 as a route to produce ultra-high
peak power laser pulses in a technique known as chirped beam amplification [1]. This concept,
which is the spatial analog to chirped pulse amplification [2] (CPA), involves dispersing the
spectral content of a pulse in a transverse spatial dimension to reduce its local intensity and
thus avoid damage in amplifiers and final optics [3,4]. Focusing a chirped beam simultaneously
reduces the spatial and temporal extent of the pulse in a technique that is commonly referred
to as simultaneous spatial and temporal focusing (SSTF) [5,6]. The most frequently employed
approach to SSTF is through the one-dimensional spatial chirp of a Gaussian beam profile
generated with a grating pair. As an ultrashort pulse travels through the grating pair, its spectral
components are spatially separated in one dimension, necessarily reducing the pulse’s local
spectral content and increasing the pulse’s local pulse duration. As the beam focuses, the spectral
components gradually spatially overlap until the pulse reaches both its minimum spatial width
and its transform limited pulse duration at the focus. This leads to a pulse front tilt (PFT) whose
orientation is a function of the magnitude of beam chirp and the f-number of the focusing system.
SSTF has been used in multiphoton microscopy [7–9], micromachining, [10–12] and structured
3D printing [13].

Recently, focal spots with PFT have been studied in high intensity laser plasma experiments
for electron acceleration where tuning the angle of the PFT enables electron steering [14,15] and
target normal sheath acceleration (TNSA) schemes for improved maximum electron energies in
TNSA target interactions [16]. Next-generation high-intensity lasers are potentially reaching
the ultra-broadband spectral regime, with temporal pulse widths near 10 femtoseconds [17–19],
where the study of space-time couplings, such as PFT, are relevant [20]. These lasers could
be used for advanced acceleration schemes based on chirped beams and SSTF interactions
for studying novel laser-matter interactions, including traveling wave excitation for soft x-ray
amplification [21,22]. Additionally, SSTF systems can be used as part of a post-amplification
pulse compression scheme [23].

Generating a high-peak-intensity PFT focal spot with the SSTF technique requires the use
of a grating pair to spatially chirp the beam. Gratings impart a nonlinear spatial chirp across
the bandwidth of the pulse, especially at near-infrared frequencies. In this work, we argue
that for large-bandwidth pulses this grating-induced nonlinearity needs to be considered, as the
linear approximation typically used in studying spatial chirp becomes significantly inaccurate.
Careful choice of the gratings used to generate the spatial chirp is important because groove
density and angle of incidence (AOI) affect the degree of nonlinearity, which in turn changes the
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space-time structure as the pulse propagates through the focus. The nonlinearity also imparts
a pulse front curvature (PFC) and varies the intensity localization, necessarily changing the
fundamental interaction of the focusing laser pulse with matter. This manuscript aims to simulate
and describe the characteristics of a chirped beam from spatial chirp configurations generated
using different grating pairs and provide an open-source Python3 simulation package [24] to aid
in the exploration of arbitrary, short pulse, space-time light fields propagating through a focal
volume. All simulations were done using linear Fourier propagation techniques utilizing scalar
diffraction theory, concentrating on propagation in the linear regime to provide insight into the
space-time structure of these pulses.

2. Methods

2.1. System design

A typical SSTF system consists of a grating pair that spreads the frequency components of a laser
pulse in 1D, shown in Fig. 1. To have a transform limited pulse at the focus, a positive temporal
pre-chirp must be imparted on the pulse to compensate for the temporal group delay dispersion
from the grating pair. This is readily achieved, as the two gratings in Fig. 1 act as half of a Treacy
compressor [25], whose induced temporal chirp on the incident laser pulse can be perfectly
compensated with an upstream Martinez stretcher [26,27]. To have temporal compensation with
only half of a compressor, the separation between the gratings must be doubled from the values
defined for a 4-grating or double-pass 2-grating arrangement. The amount of chirp in this system
can be defined by the beam aspect ratio (BAR) of the chirped beam, where

BAR =
Dchirp

Din
, (1)

The initial beam diameter is Din and the effective beam diameter in the chirped dimension
is Dchirp. This value can be tuned by varying the grating separation and changing the temporal
pre-compensation.

Fig. 1. A two grating compressor oriented to create simultaneous spatial and temporal
focusing of a pulse.
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2.2. Simulation model

We developed an open source linear Fourier optics code in Python3 to simulate a user-defined
electric field propagating through an ideal lens and free space. The electric field can be visualized
at any position throughout the focal volume to observe the effects different system parameters
have on the pulse profile at and near the focus. Any spatial profile and spectrum can be modeled
and propagated. We focus on a Gaussian beam in space and frequency for its simplicity and ease
of interpolating results. An initial electric field that is Gaussian in space and spectrum is defined
before the focusing optic of the form [6]:

E(x1, y1, z = 0,ω) = E0E(ω)E(x1, y1) = E0 exp
[︃
−
(ω − ω0)

2

∆ω2

]︃
exp

(︃
−

x2
1 + y2

1

w2
in

)︃
, (2)

where ∆ω is the 1/e2 half-width bandwidth of the spectrum, ω0 is the center frequency, and
win = Din/2 is the 1/e2 beam radius of the field intensity. The simulations presented here are
based on a typical Ti:Sapphire laser system with a center wavelength of 800 nm, a beam radius of
0.5 mm, a focal spot size radius of 50.5 µm, and a full width at half max bandwidth of 100 nm,
resulting in a transform-limited pulse width of ∼ 9.4 fs. In the simulations, the initial electric
field is defined on a square numeric grid with spatial lengths L1,x × L1,y and spacing ∆x1 and
∆y1, whose values depend on the initial conditions of the model, such as beam diameter, chirped
beam diameter, and focal length.

The initial spatial electric field used to describe a linearly polarized beam with 1D linear
spatial chirp in the x-direction is typically expressed as [6,8,33–35]:

E(x1, y1) = exp

{︄
−
[x1 ± α(ω − ω0)]

2 + y2
1

w2
in

}︄
, (3)

The chirp rate, α, which is the amount that each frequency component is separated from the
previous, is assumed constant, resulting in a linear separation between frequency components.
This approximation is valid only for pulses with small bandwidths based on a Taylor expansion
analysis [34].

In practice, the spatial chirp from a grating pair is nonlinear in frequency and is derived from
the grating equation, where the spatial dependence on frequency is:

xchirp(ω) = L tan
[︃
sin−1

(︃
−2πmcd
ω

− sin θi
)︃]︃

, (4)

and the new chirp rate becomes:

α(ω) =
dxchirp(ω)

dω
, (5)

where L is the separation between the grating pair, d is the groove density, m is the diffraction
order, c is the speed of light, and θi is the angle of incidence on the grating.

Seen in Fig. 2, the spatial chirp generated by a grating pair is increasingly nonlinear for lower
frequencies, so the linear chirp approximation breaks down and the full calculation must be
considered. As smaller angles of incidence are used, the nonlinearity increases. We refer to this
kind of chirp as nonlinear chirp. The definition of the electric field now has the form:

E(x1, y1,ω) = exp

(︄
−

[︁
x1 − xchirp(ω)

]︁2
+ y2

1

w2
in

)︄
. (6)

From here, the pulse can then be propagated through an ideal lens and to the focal plane of the
system using the Fraunhofer propagation operator acting on the field [36,37]:

E(x2, y2, z = f ,ω) =
ω

i2πcf
exp

[︃
iω
2cf

(︂
x2

2 + y2
2

)︂]︃
× FFT[E(x1, y1, z = 0,ω)]∆x1∆y1, (7)
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where f is the focal distance of the lens and x2 and y2 are the x and y coordinates of the focal
plane. The modified focal plane grid dimensions are L2,x = λf /∆x1 and L2,y = λf /∆y1 with
grid spacing ∆x2 = λf /L1,x and ∆y2 = λf /L1,y. Since the electric fields are polychromatic, each
frequency component’s focal plane dimensions are calculated and scaled to the plane of the
center frequency, ω0.
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Fig. 2. Normalized spatial chirp as a function of frequency is shown for three cases of
AOI, θi, for a 1480 lines/mm grating pair used in a Ti:Sapphire CPA system [28–32]. The
spectrum of the 9.4 fs, 800 nm Ti:Sapphire laser used in this paper is shown as a dashed line.

With this result, the field at the focus can be visualized. The field can then be propagated
within the focal region using the Angular Spectrum of Plane Waves (ASPW) operator [37]:

E(x2, y2, z = f + ∆z,ω) = FFT−1[FFT[E(x2, y2, z = f ,ω)] exp(ikz∆z)], (8)

with kz =

√︂
(ω/c)2 − (2πfx)2 −

(︁
2πfy

)︁2, and where fx and fy are the Fourier transform sample
frequencies of x2 and y2.

The temporal distribution can be calculated at any position by taking a Fourier transform with
respect to time of this field. Two different Fourier propagators are used to relax computational
requirements in different propagation regimes that have different sampling conditions to ensure
accurate results.

3. Results

For all the simulations, ideal optics are assumed so that there is 100% efficiency into the
m = −1 diffraction order of the gratings and the f-number of the system is set so there is paraxial
focusing. Additionally, only the chirped spatial dimension (x) was simulated to allow for increased
resolution and reduce computational cost. Excluding the unchirped spatial dimension (y) from the
simulations is valid when considering large amounts of spatial chirp due to a significantly reduced
contribution to intensity localization at the focus. For each grating arrangement simulated, perfect
temporal chirp compensation is assumed. This allows a clearer interpretation of the influence of
nonlinear spatial chirp.

The initial chirp can be represented in (x,ω) space shown in Fig. 3. Figure 3(a) represents a
linear chirp along the x-dimension, where a linear dependence can be seen in the spatial position
of the frequency content. The higher frequencies are chirped in the positive x-direction and the
lower frequencies in the negative x-direction. The frequencies are chirped symmetrically about
the center frequency, ω0. Figures 3(b)-3(d) show an equivalent chirp modeled with the grating
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equation (Eq. (6)) for a 1480 lines/mm grating pair with varying angles of incidence. The spatial
extent of the nonlinear chirps was chosen so that the angle the PFT makes with respect to the
propagation axis at the focus is same for all cases. This was achieved by varying the grating
separation. Each configuration was set so that the PFT angle (θPFT) was 45°. For the linear chirp,
this corresponds to a BAR ≈ 21, calculated from the relationship [38]:

tan (θPFT) =
winω0

√︁
BAR2 − 1

f∆ω
, (9)

with θPFT set to 45°. Due to the higher diffraction angle of the lower frequencies, there is more
spectral content around the higher frequencies. This results in an asymmetry in the spatial extent
of the beam. Even though the PFT at the focus was kept constant, the spatial and temporal
representations of the field at the input plane of the simulations are different. The grating
pair introduces the same directional dependence of chirp along the x-dimension, but the lower
frequencies experience a large nonlinearity in the chirp rate, shown in Fig. 2. Depending on the
incidence angle used, the nonlinear dependence of the spatial chirp can be minimized. As AOI is
increased, the spatial chirp becomes more linear.

Fig. 3. Comparison of the initial transverse fields for both linear and nonlinear spatial chirps.
The chirp is shown in the space-frequency domain and also as a lineout of the intensity along
the x-dimension. The colored components show the spatial chirp in the space-frequency
domain, where the longer wavelengths have been diffracted more than the shorter. The
solid black line shows the spatial chirp after a Fourier transform into the space-time domain.
Shows a (a) linear chirp and (b)-(d) nonlinear chirp generated with angles of incidence:
52.8°, 36.3°, and 22.8°, respectively.

To highlight the importance of considering the realistic chirp from a grating pair of an ultrashort
pulse, the propagation of a linear chirp and equivalent nonlinear chirps are shown in Figs. 4 and
5. A grating pair with 1480 lines/mm at three typical incidence angles, 22.8°, 36.3°, and 52.8°,
are simulated. These gratings and angles are used as common configurations (high dispersion,
Littrow, and low dispersion, respectively) for Ti:Sapphire compressors with high efficiency
and high damage thresholds [28–31]. Recent work is being conducted for this groove density
on increasing supported bandwidths up to 400 nm [39]. Figure 4 shows four different pulses
propagating in (x, t) space at various z-positions and Fig. 5 shows the same pulses propagating
in (x, z) space at various times, highlighting the PFC differences. Both frames of reference are
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important for visualization. To see how the pulse interacts with a planar surface, in traveling wave
excitation or dielectric laser acceleration for example, the (x, t) space at a z-position provides
this information. The spatial dependence of the (x, z) space is relevant in electron acceleration
where the gradient is proportional to the ponderomotive force. Figures 4(a) and 5(a) illustrate the
space-time and spatial focusing, respectively, of a beam chirped linearly in frequency. The PFT
in this type of pulse has been shown to accelerate electrons normal to the tilted pulse front and
focus an electron bunch due to the concave PFC [14,15,38]. Figures 4(b)–4(d) and 5(b)–5(d)
show the nonlinear spatial chirps.

Fig. 4. Propagation of a focused spatially chirped beam with a PFT of 45◦ for a linear
frequency chirp and nonlinear chirp represented in (x, t) space. The temporal representations
of the propagation of a (a) linear chirp and (b)-(d) nonlinear chirps generated with 1480
lines/mm gratings and incidence angles of 22.8°, 36.3°, and 52.8°, respectively, are shown.

Comparing the focal position (t = 0 fs and z = 0 µm) of both the linear and nonlinear chirps,
the outside edges of the pulse structures are different, leading to various amounts of concave PFC
across the cases. The chirp generated with the lower AOI has more noticeable curvature, whereas
larger AOI chirps minimized the amount of variation in the pulse front. The chirp generated with
the largest incidence angle had the biggest reduction in PFC at the focus, even less than the linear
frequency approximation. Within the focal volume, as the pulse propagates to the focal plane,
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Fig. 5. Propagation of a focused spatially chirped beam with a PFT of 45◦ for a linear
frequency chirp and nonlinear chirp represented in (x, z) space. The spatial representation
of the propagation of a (a) linear chirp and (b)-(d) nonlinear chirps generated with 1480
lines/mm gratings and incidence angles of 22.8°, 36°, and 52.8°, respectively, are shown.

there are also significant differences in the pulse structure. In the leading frames, the curvature
of the pulse front is flipped between the linear frequency approximation and the nonlinear chirp
cases.

While the orientation of arrival time in the transverse extent of the pulse is the same across all
cases (namely, the part of the beam in the positive x-direction leads in time), the sweeping of
the smallest spatial extent across the transverse chirped dimension varies between the linear and
nonlinear chirped cases. In the linear frequency approximation, the pulse sweeps from positive
to negative x, whereas this direction is inverted in the realistic simulation of the grating pair.
This property results in the peak intensity of the beam deviating from on-axis. Figure 6 shows
the location of the peak transverse intensity along with the peak intensity. The propagation
effects for the linear approximation, 22.8°, 36.3°, and 52.8°cases are shown in Visualization 1,
Visualization 2, Visualization 3, and Visualization 4, respectively. The simulations were limited
to a 1-µm resolution along the transverse dimension to reduce computation time. In all the cases,
the peak intensity as the beam focuses is not on-axis (x = 0, y = 0) but varies with the propagation.

https://doi.org/10.6084/m9.figshare.25595850
https://doi.org/10.6084/m9.figshare.25595841
https://doi.org/10.6084/m9.figshare.25595844
https://doi.org/10.6084/m9.figshare.25595847
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This is contrary to the focusing of an unchirped beam where the peak intensity stays on-axis
while propagating through a focus [40]. The peak intensity is more localized both longitudinally
and transversely in the high AOI grating configuration (Fig. 6(d)), and progressively increases in
transverse deviation for smaller angles of incidence. The linear frequency chirp approximation in
Fig. 6(a), has the largest translation in the transverse dimension, and the lowest incidence angle
of 22.8◦ (Fig. 6(b)) has the largest longitudinal extent.

Fig. 6. Transverse peak intensity position (red) and longitudinal intensity profile (blue) for
the linear and nonlinear chirps. The (a) linear chirp and (b)-(d) nonlinear chirps for AOIs of
22.8°, 36.3°, and 52.8°, respectively, are shown.

Figure 7 compares the dependence of the spatial chirp as a function of frequency and wavelength
for different angles of incidence for a PFT of 45◦. In Fig. 7(a), as the angle increases, the
nonlinearity is reduced but never approaches linear. Converting from frequency to wavelength

Fig. 7. Spatial chirp as defined by Eq. (6) for a PFT of 45◦ with varying angles of incidence.
The dotted line overlays the spectrum for the simulated Gaussian pulse. The spatial chirp as
a function of (a) frequency and as a function of (b) wavelength.
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(Fig. 7(b)) illuminates the difference in pulse front structure of the cases shown in Figs. 4 and 5.
In this representation, as the angle decreases, the spatial chirp approaches a linear trend across
the bandwidth, whereas the linear frequency chirp approximation has a nonlinear trend with the
opposite concavity than that from the grating pair. The grating cases are concave down, and
the linear chirp is concave up. These lead to different pulse front orientations and pulse front
curvatures seen in Figs. 4 and 5.

4. Conclusion

With the increased interest in spatio-temporal control of ultrashort pulses for high intensity
laser applications, such as SSTF, it is important to understand how these pulses evolve as they
propagate through the focus. For large bandwidth pulses, the linear approximation of spatial
chirp from a grating pair breaks down and provides an unrealistic model for focused spatially
chirped beams. The effect of the spatial chirp nonlinearity introduced by the grating pair can
change the orientation and severity of the pulse front curvature within the focal volume and,
therefore, change its interaction with matter. By choosing an appropriate angle of incidence, the
characteristics of the focal volume can be tuned for a given PFT. The code developed allows the
ability to propagate an arbitrarily defined electric field through a focus which enables the study
of higher order chirp or more complex pulse structures.
Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper along with the code used to generate the figures
are available in Ref. [24].
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