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Abstract

An important goal of spatially distributed hydrologic modeling is to provide estimates of streamflow (and river levels) at any

point along the river system. To encourage collaborative research into appropriate levels of model complexity, the value of

spatially distributed data, and methods suitable for model development and calibration, the US National Weather Service

Hydrology Laboratory (NWSHL) is promoting the distributed modeling intercomparison project (DMIP). In particular, the

project is interested in how spatially distributed estimates of precipitation provided by the next generation radar (NEXRAD)

network, high resolution digital elevation models (DEM), soil, land-use and vegetation data can be integrated into an improved

system for distributed hydrologic modeling that provides more accurate and informative flood forecasts.

The goal of this study is to explore four questions: Can a semi-distributed approach improve the streamflow forecasts at the

watershed outlet compared to a lumped approach? What is a suitable calibration strategy for a semi-distributed model structure,

and how much improvement can be obtained? What is the minimum level of spatial complexity required, above which the

improvement in forecast accuracy is marginal? What spatial details must be included to enable flow prediction at any point

along the river network?

The study compares lumped, semi-lumped and semi-distributed versions of the SAC-SMA (Sacramento Soil Moisture

Accounting) model for the Illinois River basin at Watts (OK). A kinematic wave scheme is used to rout the flow along the river

channel to the outlet. A Multi-step Automatic Calibration Scheme (MACS) using the Shuffled Complex Evolution (SCE-UA)

optimization algorithm is applied for model calibration. The calibration results reveal that moving from a lumped model

structure, driven by spatially averaged NEXRAD data over the entire basin, to a semi-distributed model structure, with forcing

data averaged over each sub-basin while having identical parameters for all the sub-basins, improves the simulation results.

However, varying the parameters between sub-basins does not further improve the simulation results, either at the outlet or at an

interior testing point.

q 2004 Elsevier B.V. All rights reserved.

Keywords: NEXRAD; Distributed hydrologic modeling; Calibration; Flow forecasting

1. Introduction

The sensitivity of runoff hydrographs to the spatial

and temporal variability of forcing data has been
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a major concern of researchers over the last two

decades (e.g. Schulz, 1988; Michaud and Sorooshian,

1994; Olivera and Maidment, 1999). Remotely

sensed, high-resolution hydrologic data such as the

Next Generation Radar (NEXRAD) rainfall data,

digital elevation maps (DEM), soil, land-use, and

land-cover data are now becoming readily available to

modelers in the US. The National Weather Service-

Hydrology Laboratory (NWS-HL) is promoting the

distributed modeling intercomparison project (DMIP)

to encourage use of this spatially distributed data to

improve flow modeling and prediction along the

entire river system. The main goal of DMIP is to

promote the development of models and modeling

systems that best utilize NEXRAD and other spatial

data sets to improve river forecast center (RFC)-scale

river simulations.

The first lumped conceptual rainfall-runoff models,

developed in the 1960s, were applied mainly to

forecast runoff in small and midsize watersheds

where discharge measurements were available. Large

basin runoff prediction with these models introduced

many assumptions, such as uniformity of precipitation

and parameters over the basin, that decreased accuracy

(Koren et al., 1999). The main goal of flood prediction

is to study the causes of, and to predict the onset of,

flood events. The ability to predict flood events has

been enhanced by the availability of new sources of

high-resolution data (e.g. Shah et al., 1996a,b;

Winchell et al., 1998; Anderson et al., 2001; Carpenter

et al., 2001). Hydrologic models, which can use these

high-resolution data to predict the spatial distribution

of the hydrologic response, have been under study for

several decades (e.g. Betson, 1964; Dunne and Black,

1970a,b; Schulz, 1988; Michaud and Sorooshian,

1994; Olivera and Maidment, 1999).

This study was conducted to investigate answers to

the following four questions:

† Can a semi-distributed approach improve the

streamflow simulation at the watershed outlet

compared to a lumped approach?

† What is a suitable calibration strategy for a semi-

distributed model structure, and how much

improvement can be obtained?

† What is the minimum level of spatial complexity

required, above which the improvement in simu-

lation accuracy is marginal?

† What spatial details must be included to enable

flow simulation at any point along the river

network?

Several calibration scenarios and model setups are

investigated in an attempt to answer these questions.

This study explores the use of NEXRAD rainfall data

in the context of hydrologic modeling of the Illinois

River basin using distributed versions of the Sacra-

mento Soil Moisture Accounting (SAC-SMA) model.

A Multi-step Automatic Calibration Scheme (MACS;

Hogue et al., 2000), using the Shuffled Complex

Evolution (SCE-UA; Duan et al., 1992) optimization

algorithm, is applied for parameter estimation.

2. Distributed hydrologic modeling

Hydrologic systems often exhibit a large degree of

spatial heterogeneity in their characteristics (Grayson

and Bloeschl, 2000). There has been significant

interest in spatial patterns in hydrology since the

pioneering work on spatial heterogeneity in runoff

production mechanism during the sixties and sev-

enties (e.g. Betson, 1964; Dunne and Black, 1970a,b;

Beven, 1989). The development of spatially distrib-

uted hydrologic models provide a means to interpret

the spatial response to remote sensing data which

provides information on the state variables of

fundamental importance to watershed hydrology

(Grayson and Bloeschl, 2000). The main advantages

of distributed models are the spatially distributed

nature of their inputs and the use of physically based

parameter values (Beven, 1985). Such models can be

used to investigate the sensitivity of watershed

hydrological response to these distributed inputs.

However, the ability of distributed hydrologic models

to apply parameters directly measured in the field,

without the need for calibration, is not well developed

(e.g. Hernandez et al., 2000; Anderson et al., 2001;

Khodatalab, 2002). One obstacle to this is the

difference between model (parameters) scale and

measurement scale. In a recent study, Boyle et al.

(2001) reported improvements in model performance

related to the spatial distribution of the model input

and streamflow routing but, surprisingly, was unable

to find improvement related to the distribution of
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the surface characteristics represented by model

parameters.

The following review sections analyze the litera-

ture with respect to those aspects that are important

for the study at hand, and it is therefore not intended to

be comprehensive. The aspects considered here are

forcing data, routing schemes and parameter esti-

mation approaches for distributed hydrologic models.

2.1. Forcing data for distributed models

It is often assumed that error in the rainfall input is

one of the main sources of error in the model

predictions (e.g. Michaud et al., 1994; Winchell

et al., 1998). Distributed models are by nature capable

of accepting the rainfall in a more realistic manner

than just as a basin wide average. Analyzing the

importance of this fact on runoff prediction has been

the focus of several studies. Beven and Hornberger

(1982) found that a correct assessment of the rainfall

input volume (in a highly spatial variable pattern) is

more important than the rainfall pattern itself for

simulating streamflow hydrographs. Krajewski et al.

(1991) investigated the sensitivity of the response of a

physically based distributed hydrologic model to the

spatial and temporal sampling density of rainfall input

on a small rural watershed. They found that the basin

response is more sensitive to the temporal resolution

than the spatial resolution of the rainfall. Ogden and

Julien (1993) explored two-dimensional watershed

sensitivity to the spatial and temporal variability of

the rainfall using a physically based runoff model.

Defining tr and te as rainfall duration and time to

equilibrium, respectively, they found that spatial

variability dominates when tr , te; while the temporal

variability dominates when tr . te:

Michaud and Sorooshian (1994) studied the effect

of rainfall-sampling errors on distributed hydrologic

simulations for a mid-sized semi-arid watershed with

localized thunderstorms. They found that approxi-

mately half of the difference between observed and

simulated peaks could be explained by rainfall-

sampling errors. Additionally, both spatial averaging

of rainfall over 4 km by 4 km pixels and decreasing

the temporal resolution of rainfall to 1 h led to

reductions in simulated runoff in semi-arid watersheds

having convective storms and large infiltration losses.

Shah et al. (1996a,b)investigated the interaction

between spatial rainfall variability and runoff pro-

duction by linking a stochastic rainfall field model

with a physically based distributed rainfall-runoff

model. They found that under ‘wet’ conditions, good

predictions of runoff could be obtained with a

spatially averaged rainfall input. However, for the

‘dry’ watershed conditions, the runoff prediction

errors were considerably higher if spatially averaged

rainfall is used. Shah et al. (1996a,b) related this to the

interaction between the spatial variability in rainfall

and the spatial distribution of soil moisture. They

recommended the use of distributed forcing data,

especially for ‘dry’ conditions.

Winchell et al. (1998) studied the effects of

uncertainty in radar-estimated precipitation input on

simulated runoff generation. They considered two

types of uncertainties in precipitation estimates:

(1) those arising from the transformation of reflectiv-

ity to rainfall rate and (2) those due to the spatial and

temporal representation of the ‘true’ rainfall field.

They found that infiltration-excess runoff generation

is much more sensitive than saturation-excess runoff

generation to both types of precipitation uncertainty.

They also suggested that a decrease of the temporal

and spatial resolution of the precipitation input would

cause significant reductions in infiltration-excess

runoff volume.

Koren et al. (1999) studied the scale dependencies

of hydrologic models to the spatial variability of

precipitation. They found that the scale dependency of

various models is different and dependent on the

rainfall-runoff partitioning mechanism. Their results

indicated that infiltration-excess models were the

most scale-sensitive and that the saturation-excess

models were less scale-dependent. They suggested

that probabilistic averaging of the point processes

reduces scale dependency; however, the effectiveness

of this averaging varies depending on the scale and

spatial structure of precipitation. They found that the

surface runoff and total runoff decreases with

increasing scale.

Carpenter et al. (2001) worked on the parameter

and rainfall-input sensitivities of a distributed hydro-

logic model. They found that the results of the

distributed model, which used NEXRAD data, were

comparable to the results of operational spatially

lumped models using rain-gauge data, and that

N.K. Ajami et al. / Journal of Hydrology 298 (2004) 112–135114



the sensitivity of flow statistics to parameters and

radar-rainfall input was scale-dependent.

The results of the above-mentioned studies provide

two different pictures depending on whether the

watersheds are dry and infiltration excess dominated,

or wet and saturation excess dominated. Spatial

variability of rainfall seems to be of particular

importance for dry watersheds, while the temporal

variability is the significant feature of rainfall in wet

watersheds. The basin under study can be classified as

humid, therefore it is likely that the spatial variability

of the rainfall will not significantly affect the

simulation results, as will be investigated later in

this paper.

2.2. Routing in distributed models

One of the characteristics which distinguishes

distributed from lumped models is the more sophis-

ticated routing scheme of distributed model. Carpen-

ter et al. (1999) used GIS and digital terrain elevation

databases to develop a national system for determin-

ing threshold runoff. They studied the importance of

channel geometry in flash flood applications. Olivera

and Maidment (1999) proposed a method for routing

spatially distributed excess precipitation over a

watershed to produce runoff at its outlet. They defined

a routing function for each DEM cell to move the

water from cell to cell and to produce a response

function along a flow path. The summed responses

from all cells were used to calculate an outlet

hydrograph. Woolhiser (1990) developed the

KINEROS (kinematic runoff and erosion) model,

which estimates Hortonian runoff on an event basis.

The model is structured in a way that can utilize

ground and remotely sensed estimates of soil water

content. The infiltration component of the model is

based on the Smith and Parlange (1978) simplification

of Richard’s equation, which assumes a semi-infinite,

uniform soil for each model element. Runoff gener-

ated by infiltration excess is routed interactively using

a kinematic wave equation on both overland flow and

channel elements via a finite difference solution

scheme (Goodrich et al., 1994). Interactive routing

implies that infiltration and runoff are computed at

each finite difference node considering rainfall,

upstream inflow, and the current degree of soil

saturation (Goodrich et al., 1994).

In most of the simplified routing models such as

kinematic wave, backwater effects, which can be

caused by lateral and tributary inflows, channel

conditions or other aspects, are neglected. Therefore,

there are many studies in which the Muskingum-

Cunge routing scheme was applied because of its

diffusive nature over the kinematic wave routing

scheme (e.g. Orlandini and Rosso, 1998; Orlandini

et al., 1999; Carpenter et al., 2001).

The kinematic wave routing scheme is often

adopted in hydrologic models due to the simplicity

of implementation and its smaller need for geomor-

phologic information compared to some other routing

schemes. Kinematic wave is utilized in this study for

the same reasons. It was assumed that the backwater

effects are not considerable, and reaches were defined

in a way that no branch joins the stream within the

reach (at the defined resolution at which the river

network was delineated). Further, for computational

simplicity, lateral flow was added to the end of each

reach.

2.3. Calibration of distributed models

Moving from a lumped to a distributed model

structure can significantly increase the number of

parameters whose value must be estimated. There is

a small but growing body of literature on parameter

estimation schemes (e.g., Beven and Binley, 1992;

Senarath et al., 2000; Eckhardt et al., 2001; Boyle

et al., 2001; Anderson et al., 2001), specifically

tailored to distributed models. Estimation of these

parameters via calibration methods is time consum-

ing and difficult due to the lack of distributed

observations of runoff. Andersen et al. (2001) found

that calibration against one station and evaluation

against eight additional stations exposed significant

shortcomings for some of the upstream tributaries,

especially in semi-arid zones of the river basin. They

found that further calibration against additional

discharge stations improved the performance levels

for different sub-watersheds.

Boyle et al. (2001) investigated the improvement

of model performance associated with various levels

of spatial representation of model input (precipi-

tation), structural components (soil moisture and

streamflow routing component), and surface charac-

teristics (parameters). They applied a series of

N.K. Ajami et al. / Journal of Hydrology 298 (2004) 112–135 115



lumped and semi-distributed versions of the SAC-

SMA model to the Blue River Basin. Each model

was designed to separate the effects of the different

levels of spatial representation in terms of specific

watershed behaviors. They used a multi-criteria

approach for calibration and validation of their

model and found that the semi-distributed model

provided significant performance improvements over

the lumped model. However, there was a limit to the

performance improvements associated with increas-

ing representation of spatial hydrologic variability in

the model. They showed that the main improvements

were provided by spatial representation of precipi-

tation (inputs) and structural components (soil

moisture and streamflow routing computations).

Their work did not show much improvement related

to spatial representation of soil properties (model

parameters). Boyle et al. (2001) stated that spatial

variability in hydrologic information contributed

mainly to improved simulation of flood peaks and

quick recessions, while this modeling approach

(semi-distributed modeling) did not result in any

improvement in the representation of base-flow.

The limited number of studies reported in the

literature suggests that the use of ‘distributed’

parameters may not necessarily improve the model

performance at the basin outlet, particularly if no

internal runoff data are available for calibration.

Additionally, there is no established calibration

strategy to estimate these distributed parameters.

Development of a suitable strategy for calibration is,

therefore, one of the main objectives of this study.

3. Case study

3.1. Study area and data

This study compares lumped and semi-distributed

versions of the SAC-SMA model for the Illinois River

basin at Watts (OK), 1645 km2 (Fig. 1). The basin

falls under the jurisdiction of the NWS Arkansas-Red

Basin River Forecast Center (ABRFC) in Tulsa (OK).

The terrain of the region is moderately sloping with

soils, which are characterized by their large storage

capacities and relatively deep surface horizons

(National Resources Conservation Services, 1981;

http://essc.psu.edu/soils-info). The vegetative cover is

approximately 70% forested, with the remainder

being mainly pastured and cropland (Carpenter et al.,

1999). The average maximum and minimum surface

air temperature in the region are approximately 22 and

9 8C, respectively. Summer maximum temperatures

can get as high as 38 8C, and freezing temperatures

occur generally in December through February. The

annual average precipitation of the region is

1200 mm/yr, and its annual average potential evap-

oration is 1500 mm/yr. The potential evapotranspira-

tion is relatively high in June, July, and August (4.5–

5 mm/day) and lowest in January (0.81 mm/day).

To define the mean average precipitation over each

sub-basin, a mesh of NEXRAD cells was created

using the Hydrologic Rainfall Analysis Project

(HRAP) grid, (Greene and Hudlow, 1982). The

HRAP precipitation grid was then intersected with

the sub-basin boundaries to compute the mean areal

precipitation (MAP) for each hydrologic unit. Fig. 2

presents schematic of the steps of this procedure. The

MAP is defined as follows,

MAPi ¼

XN
j¼1

ðPj £ AjÞ

At

ð1Þ

Fig. 1. DMIP Test Basins and the Illinois River Basins watersheds.

(Source: DMIP website, 2001).
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where:

MAPi : mean areal precipitation for the ith sub-

basin (in the lumped case this just represents the

watershed)

Pj : gridded precipitation value for jth grid cell in

sub-basin i (watershed)

Aj: area of the jth grid cell which is within the sub-

basin i (watershed)

At: total area of the sub-basin (watershed), which is

equal to:

At ¼
XN
j¼1

Aj ð2Þ

N; number of grid cells within sub-basin i

(watershed).

3.2. Model description

The Sacramento soil moisture accounting (SAC-

SMA) model (Burnash et al., 1973; Burnash, 1995) is

used by most of the NWS forecast centers to predict

river stage. The model is deterministic, continuous,

and non-linear, having two soil layers, an upper and a

lower zone. Each layer includes tension and free water

storages, which interact to generate soil moisture

states and five runoff components (Koren et al., 2000).

Rainfall first fills the upper zone tension water

storage. The rainfall volume exceeding the tension

water capacity, UZTWM, generates the excess rain-

fall. This excess rainfall goes into the free water

storage tank from which it can percolate to the lower

zone or flow out as interflow. After satisfying the

percolation demand and interflow withdrawal,

any water in excess of the UZFWM will form

surface runoff. The rate of this generated runoff

depends on the capacity of the lower zone tension

water, LZTWM, and free water, LZFSM and LZFPM

storages. The surface runoff generated from each of

the free water storages depends on the depletion

coefficients in the upper zone, UZK and the lower

zone LZSK and LZPK. The percolation rate to the

lower zone is a nonlinear function of upper zone and

lower zone storages and is controlled by two

parameters, ZPERC, which is the maximum rate of

the percolation and REXP, which is an exponent that

defines the shape of the percolation curve. As

mentioned above, the lower zone water is divided

among three tanks, consisting of free and tension

components. The parameter PFREE is the fraction of

the lower zone water going to the free water storages.

Fig. 3 shows a schematic of the SAC-SMA model

(its parameters are listed in Table 1).

The second main component of the hydrologic

model is the flow-routing part, which routes the

precipitation excess through the river to the outlet.

The original lumped version of the SAC-SMA, which

is used by the NWS, uses a unit hydrograph (UH)

scheme to route the generated runoff to the outlet. In

this method, the UH of the watershed is used to

calculate the flow at the outlet based on the generated

runoff volume. In the semi-distributed version devel-

oped for this study, the precipitation excess com-

ponent of the SAC-SMA model was combined with a

kinematic wave flow routing scheme to enable the

model to simulate the streamflow along the river. The

kinematic wave approach is appropriate when inertial

and pressure forces are not important (Chow et al.,

1988). A wave is a variation in flow, such as a change

in the flow rate or water surface elevation. In the

kinematic wave scheme, the acceleration and pressure

terms in the momentum equation are assumed to be

negligible; therefore, the wave motion is described

principally by the continuity equation (Chow et al.,

1988).

In the kinematic wave routing scheme, the energy

slope is identical with the bed slope, therefore the

momentum equation can be replaced by:

Q ¼ aAb ð3Þ

where the Q represents channel flow, A is a channel

cross section, b is a constant exponent and a is a

parameter which is function of channel roughness

(Mannings roughness coefficient) and bed slope.

Fig. 2. (a) HRAP coverage over the basin (b) Delineated river and

sub-basins (c) Delineated sub-sub-basins. Different gray scales

show the contributing area for each river reach.
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Kinematic wave routing scheme includes solution of

the Eq. (3) with the continuity equation. For more

detail on this routing scheme one can refer to Chow

et al. (1988).

The kinematic wave routing scheme is solved

using the nonlinear finite difference method (Fig. 4)

and included in the rainfall-runoff models as a flow-

routing component. One of the strengths of the

kinematic wave routing scheme is its numerical

stability for large computation steps with negligible

loss of accuracy (Chow et al., 1988).

Here, the kinematic wave method was used to route

the flow through the channel within each sub-basin

and finally to the outlet. The main stream in each sub-

basin was divided into n reaches of length Li

(e.g. i ¼ 1;…; n; where, n depends on the length of

the reach and modeler’s judgment) for the numerical

stability. The lateral flow from the contributing area of

each reach was added to the routed flow at the end of

the reach. The slope for each reach was derived from

USGS 30 m DEM. A wide rectangular channel shape

was used for this study and the width of the river

reaches were defined based on the data extracted

from USGS website (2001). A constant Manning’s

roughness coefficient was used for natural stream

channel, which was estimated based on the charac-

teristic of the streambed using given reference values

of this coefficient for different bed types. Khodatalab

(2002), calibrated the Manning’s roughness coeffi-

cient and channel width for each sub-basin within the

same watershed (Illinois River Basin at Watts).

However the results indicated that calibration of

these parameters did not affect the simulation results

at the outlet and the interior point and the initial

defined values for this parameters are proper estimates

for this watershed. One reason for this result can be

the homogeneous physical characteristics of the basin.

This will be discussed later in more detail. In order to

do a proper river routing for rivers in the humid

regions with perennial streams, we need to have

baseflow estimation especially for the initial segments

of the river system in case of the unavailability of

measurements. One of the most common methods to

estimate base flow is through hydrograph separation.

In this study, we applied the so called straight line

method by Chow et al. (1988) for hydrograph

separation, to find some initial estimates of the base

flow.

Fig. 3. Sacramento Soil Moisture Accounting model.
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3.3. Calibration tools and methods

The current generation of rainfall-runoff models

requires the estimation, i.e. calibration, of some key

parameters to yield reliable predictions (Gupta et al.,

2003). These models can be highly complex in

structure and contain numerous parameters

(Refsgaard, 2000).

The goal of calibration is to adjust the model’s

parameters to decrease the difference between

observed and simulated streamflow values. The

closeness of fit can be checked qualitatively (e.g.

plots of observed and simulated hydrographs) or

quantitatively (residual statistics such as the Root

Mean Square Error, Bias, etc.).

In this study, the Shuffled Complex Evolution-

University of Arizona (SCE-UA, Duan et al., 1992)

global optimization algorithm was used for calibration.

The SCE-UA global search procedure is based on the

downhill simplex method (Nelder and Mead, 1965),

combined with a random search procedure and the idea

of complex shuffling. The algorithm takes the follow-

ing steps (Duan et al., 1992):

1. Sample points randomly from the search space.

2. Partition the population of points into complexes

(groups) of 2n þ 1 points, where n represents the

number of parameters being calibrated (i.e. the

dimension of the problem).

3. The downhill simplex method is applied to each

complex independently to evolve each group

towards the global optimum.

4. At this step, all of the groups are shuffled to

exchange information and assigned again to new

complexes.

5. The above-mentioned four steps are repeated until

the entire population converges to the global or near

global optimum.

The following objective functions were used

during the optimization process for this study:

1. Hourly root mean square error (HRMS), which

emphasizes the fitting of high flows:

HRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

t¼1

ðQsimÞt 2 ðQobsÞt

 !vuut 2

ð4Þ

2. LOG, which emphasizes fitting of low flows:

LOG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

t¼1

LogðQsimÞt 2 LogðQobsÞt

 !vuut 2

ð5Þ

Table 1

Parameters of the SAC-SMA model

Parameters Description

UZTWM Upper zone tension-water capacity (mm)

UZFWM Upper zone free-water capacity (mm)

UZK Upper zone recession coefficient

PCTIM Percent of impervious area

ADIMP Percent additional impervious area

RIVA Percent additional impervious area

ZPERC Minimum percolation rate coefficient

REXP Percolation equation exponent

LZTWM Lower zone tension water capacity (mm)

LZFSM Lower zone supplementary free-water capacity (mm)

LZFPM Lower zone primary free-water capacity (mm)

LZSK Lower zone supplementary recession coefficient (mm)

LZPK Lower zone primary recession coefficient (mm)

PFREE Percentage percolating directly lower zone free water

RSERV Percentage of lower zone free water not transferable

to lower zone tension water

SIDE Ratio of deep recharge water going to channel

baseflow

State variables

UZTWC Upper zone tension-water content (mm)

UZFWC Upper zone free-water content (mm)

LZTWC Lower zone tension-water content (mm)

LZFSC Lower zone supplementary free-water content (mm)

LZFPC Lower zone primary free-water content (mm)

ADIMC Tension-water content of additional impervious

area (mm)

Fig. 4. Finite Difference Box for Solution of the Kinematic Wave

Method (Chow et al., 1988).
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In the context of this study, calibration consists of two

steps:

1. Determining approximate ranges for each

parameter.

2. Locating the optimal parameter set in the response

surface using observed data during the actual

optimization process.

The SAC-SMA parameter ranges for this specific

basin were provided by the National Weather Service

Office of Hydrology (NWS-OH) (Table 2). The

optimal parameters were then located within the

given ranges using SCE-UA (Duan et al., 1992)

optimization procedure.

3.3.1. Multi-step automatic calibration scheme,

MACS

It has been shown that the SCE-UA algorithm can

confidently find the global optimum when optimizing

rainfall-runoff model structures of the level of

complexity of the SAC-SMA model (e.g. Duan et al.,

1992). However, there are problems in defining a

calibration goal (objective function) which leads to a

simulated hydrograph that is hydrologically accepta-

ble and not biased towards certain aspects of the

watershed response, e.g. peak flows (Gupta et al.,

1998). The Multi-step Automatic Calibration Scheme

(MACS; Hogue et al., 2000) combats this problem by

emulating the progression of steps followed by

NWS hydrologists during manual calibration of

the SAC-SMA. It consists of three steps where in

each step the SCE-UA optimization procedure, with

two different objective functions (HRMS, LOG, Eqs. 4

and 5), is utilized to refine the parameter estimates.

The three steps of the MACS procedure are as follows

(Table 3):

Step 1. Calibrating all parameters and initial states

using the LOG objective function (Eq. (5)). As

mentioned earlier, the LOG criterion places more

weight on the low flow parts of the hydrograph.

Hogue et al. (2000) suggested that using the LOG

criterion at the first step, besides providing a good

estimate for lower zone parameters, helps to limit

Table 2

SAC-SMA model parameter ranges and optimal values

Parameters NWS parameter range Optimal values A priori parameters

UZTWM 25.2–135.4 61.96 57.869

UZFWM 25.1–53 25.16 35.506

UZK 0.18–0.741 0.336 0.403

ZPERC 40.8–157 160.2 163.257

REXP 1.111–3.11 1.63 2.12

LZTWM 109–339 252.5 236.48

LZFSM 18.6–53.9 23.52 34.25

LZFPM 20–130.3 108.5 61.58

LZSK 0.049–0.218 0.0517 0.152

LZPK 0.0026–0.0107 0.0006 0.0006

PFREE 0.054–0.482 0.257 0.357

PCTIM 0–0.02 0.0199 0.019

ADIMP 0–0.4 0.2037 0.200

Table 3

Parameters optimized during the different steps of the MACS

procedure (Hogue et al., 2000)

Step 1 Step 2 Step 3

Objective function LOG HRMS LOG

SAC-SMA UZTWM UZTWM

UZFWM UZFWM

UZK UZK

ADIMP ADIMP

ZPERC ZPERC

REXP REXP

LZTWM LZTWM

LZFSM LZFSM

LZFPM LZFPM

LZSK LZSK

LZPK LZPK

PFREE PFREE
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the remaining model parameters (upper zone) into the

region that provides coarse fitting of the peaks.

Step 2. Calibrate the upper zone model parameters

(high flows) using HRMS while the lower zone

parameter values, which were calibrated during the

first step, are held constant. The HRMS places a

stronger emphasis on high (peak) flows.

Step 3. Calibrating the lower zone parameters

(low flows) using the LOG objective function in order

to re-adjust them while the upper zone parameter

values that were optimized during step two, are fixed

during this step.

The MACS approach is a time-saving and reliable

approach with no manual manipulation requirement

that can provide calibrations which are of comparable

quality to the NWS manual calibration methods

(Hogue et al., 2000).

3.3.2. A priori parameter estimation

Koren et al. (2000) developed a set of physically

based relationships between soil properties and the

SAC-SMA parameters, assuming that tension water

storages are related to the available soil water and that

the free water storages are related to the gravitational

soil water. They suggest that the soil properties, such

as the saturated moisture content, us; field capacity,

ufld; and wilting point, uwlt; can be used to estimate

available soil water and gravitational soil water.

These soil properties can be derived from STATSGO

soil-texture grids for 11 soil layers (from ground

surface to 2.5 m depth) (Miller and White, 1999). The

soil-profile depth, Zmax; is assumed equal to the

combined depth of the upper and lower layers. An

initial rain abstraction concept is used to split the soil

profile into upper and lower zones (McCuen, 1982).

The depletion coefficient of the lower layer primary

free water storage is estimated using Darcy’s equation

for an unconfined homogeneous aquifer, the hydraulic

conductivity, Ks; and the specific yield of soil, m

(Dingman, 1993).

Koren et al. (2000) developed these relationships

for a priori estimation of parameters to improve

calibration/estimation procedures. They suggest that

the use of soil-derived parameters can improve the

spatial and physical consistency of estimated model

parameters while maintaining hydrological perform-

ance. These relationships were used in this study to

drive a priori estimates of the SAC-SMA parameters

from state soil geographic (STATSGO) and 1 km

gridded soil data. Table 2 shows the aggregated a

priori parameter estimates for the Illinois River Basin

at Watts. As one can see, most of the a priori

parameter estimates are reasonable and compare well

with the optimal parameter set that were estimated

through automatic calibration. Research into tech-

niques for parameter estimation without the use of

observations of the watershed response is a very

active area of current research (Sivapalan, 2003). A

discussion of currently available methods, including

the approach applied here, can be found in Wagener

et al. (2003). In this study these estimates provide us

with initial parameter estimation for each sub-basin

for the semi-distributed calibration strategy, which

will be discussed more in Section 3.4.

3.4. Calibration scenarios

In this study the basin was divided into number of

sub-basins. The delineation of sub-basins was accom-

plished using Arc/Info software, a process that

requires the subjective selection of minimum con-

tributing area (constant threshold area) to the stream

point (Tarboton, 1991; Montgomery and Foufoula-

Georgiou, 1993). Several trials were conducted before

reaching a reasonable number of 130,000, 30 m by

30 m DEM cells (equivalent to 117 km2). Such

selection was influenced by the size of the NEXRAD

grids (e.g.16 km2) as well as by the relatively large

number of tributaries that can result from using

smaller threshold for high resolution DEM. The river

reaches within each sub-basin were divided into

different numbers of segments based on the length of

the river reach. Precipitation was assigned to each

sub-basin as explained in Section 3.1. Next, the sub-

basin MAP was computed as an average of gridded

precipitation values in the sub-basin. After running

the rainfall-runoff (SAC-SMA) model for each sub-

basin, the computed runoff was assigned to each river

reach based on its contributing area. The flow was

routed from reach to reach along the river to the sub-

basin outlet, and finally combined and routed to the

basin main outlet applying kinematic wave routing

scheme.

Three different strategies were considered for

calibration: lumped, semi-lumped and semi-distri-

buted. The SCE-UA algorithm, applied within
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the MACS procedure, was the optimization method

used in all three cases. These strategies can be

described as follows:

1. Lumped (LCal-SD): Spatially distributed forcing

data is aggregated over the entire basin to be used

in the lumped version of the SAC-SMA model.

Then, the optimal parameter set is estimated,

through calibration of the lumped model and

applied identically to all sub-basins in the semi-

distributed structure of the SAC-SMA model to

simulate streamflow (Figs. 5 and 6). Hence, there

is simulated stream flow along the entire river

network as well as at the outlet. Hereafter, the

flow simulation of this kind is called LCal-SD,

where LCal represents the calibration scenario

(Lumped Calibration, where the MACS procedure

is applied over the lumped version of the SAC-

SMA model) and SD stands for Semi-Distributed

model structure that is used for the flow

simulation.

2. Semi-Lumped (SLCal-SD): In this strategy, the

semi-distributed structure of SAC-SMA model is

utilized (Figs. 5 and 6). While a semi-distributed

structure is now used, all parameters are still

constrained to be identical among sub-basins, e.g.

the value of the upper zone tension water capacity

(UZTWM) is considered to be the same for all

sub-basins. Therefore, there is only a single

estimated optimal parameter set at the end of the

calibration procedure. This optimal parameter set

is applied to all the sub-basins in the semi-

distributed structure of the SAC-SMA model (SD)

in order to simulate the streamflow. Hereafter, this

case is called semi-lumped calibration-semi-dis-

tributed model structure (SLCal-SD). During this

calibration process, the spatially distributed for-

cing is aggregated over each sub-basin.

3. Semi-Distributed (SDCal-SD): In this strategy, a

priori estimates of the parameters for each sub-

basin were assigned based on their soil character-

istics as described in Section 3.3. The sub-basins

Fig. 5. Schematics of three different calibration strategies, lumped, semi-lumped and semi-distributed.
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were calibrated using flow at the outlet of the

basin (at Watts), one at a time from the upstream

to the downstream sub-basins, applying the semi-

distributed (SD) version of the SAC-SMA model

(using the spatially distributed forcing data over

each sub-basin, Figs. 5 and 6). As can be seen in

Table 2, most of the a priori estimates of the

parameters are within reasonable ranges. There-

fore, to calibrate each sub-basin, the parameters of

all the downstream sub-basins were fixed to their

a priori estimated values, while the optimized

values were used for the sub-basins upstream. At

the end of the calibration procedure, each sub-

basin has separate parameters based on their soil

characteristics and their contribution to the

streamflow at the outlet. Hereafter, this case is

called SDCal-SD.

The three calibration strategies were compared as

described below. Figs. 5 and 6 show the schematic and

the flow chart of the calibration scenarios. As one can

see, the difference between these cases and the NWS

lumped simulation is that after the calibration stage

the NWS applies the optimal parameters within the

lumped version of the SAC-SMA model while the

optimal parameter sets from the other calibration

strategies are applied to the semi-distributed structure

of the SAC-SMA model.

3.5. Results and discussion

A 7-year period of hourly data, 1993–1999, was

designated for calibration in DMIP. Simulations

provided by the NWS (manual calibration), lumped

(LCal), semi-lumped (SLCal), and semi-distributed

(SDCal) calibration strategies, performed at the

University of Arizona (UA), were compared and

evaluated over the entire available historical record

(1993–2000). Performance was evaluated as follows:

1. Qualitatively, using visual inspection of the

observed and simulated hydrographs, observed

versus simulated plots, and flow duration curves.

The following transformation of flows was used

Fig. 6. Flow Chart of Lumped and Semi-Lumped Calibration Scenarios (R-R stands for Rainfall-Runoff).
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when creating plots for visual inspection:

QtransðtÞ ¼ ½ðQðtÞ þ 1Þl 2 1�=l; l ¼ 0:3 ð6Þ

This transformation expands the lower end of the

flow scale and therefore provides a better view of

recessions and low flows while still keeping a

reasonable visual perspective of the high flows.

The value of l ¼ 0:3 was chosen based on

experience gained during a large number of

calibration studies conducted by UA research

group (see e.g. Hogue et al., 2000).

2. Quantitatively, using the error between obser-

vations and simulations aggregated into the

HRMS (Eq. (4)), % Bias, the Nash-Sutcliffe (NS;

Nash and Sutcliffe, 1970), and the Pearson

Correlation Coefficient ðRÞ; which are defined as

follows:

% Bias ¼

Xn

t¼1

ððQsimÞt 2 ðQobsÞtÞ

Xn

t¼1

ðQobsÞt

£ 100 ð7Þ

NS ¼ 1 2

1

n

Xn

t¼1

ððQsimÞt 2 ðQobsÞtÞ
2

1

n

Xn

t¼1

ððQobsÞt 2 ð �QobsÞtÞ
2

ð8Þ

R¼

Xn

t¼1

ððQobsÞtðQsimÞtÞ2 ½n �Qobs
�Qsim�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

t¼1

ðQobsÞ
2
t 2nð �QobsÞ

2

" # Xn

t¼1

ðQsimÞ
2
t 2nð �QsimÞ

2

" #vuut
ð9Þ

For the analysis and discussion of results we return to the

questions, which this analysis set out to answer.

3.5.1. Can a semi-distributed approach improve the

streamflow simulations at the watershed outlet

compared to a lumped approach?

In this section, the main focus is to compare the

effect of applying lumped and semi-distributed (SD)

versions of the SAC-SMA model on the system

response predictions at the watershed outlet. This is

done using visual inspection of the simulated hydro-

graphs (Figs. 7 and 8) and overall statistics that

measure the performance of the different approaches

(Table 4).

Fig. 7 shows one year of transformed simulation

results at the outlet for the Illinois River Basin at

Watts. Fig. 7(b) presents the results of NWS lumped

SAC-SMA model calibrated manually by the NWS

experts and Fig. 7(c), (e) and (g) show the results of

the semi-distributed (SD) version of the SAC-SMA

using the three automatic calibration strategies. These

figures show that all approaches yield hydrologically

acceptable representations of the watershed behavior.

At this scale, all hydrographs appear visually similar.

Only small differences can be seen, e.g. the NWS

lumped structure is slightly closer to the observations

at the beginning of this period (0–1000), while the

semi-distributed structures seem to fit parts of the

drier periods better (2000–4000).

Fig. 8 shows parts of the time series from Fig. 7 in

greater detail. Analyzing these figures more closely

reveals that the UA semi-distributed structure (SD),

regardless of the calibration strategy, seems to match

parts of the recessions more accurately than the NWS

lumped structure. Some of the small peaks during

recessions are missing in the NWS lumped simulation

(at hour 2080 and 2320) while the UA semi-

distributed structure captures them, though the

magnitude is not correct for all of the approaches.

As an additional test, flow duration curves and

observed versus simulated plots were constructed for

the simulation results at the outlet of the Illinois

River Basin for the entire historical record. The

observed flow and simulation results for the NWS

lumped and UA semi-distributed structure (for all the

calibration strategies) are presented in Figs. 9 and 10.

The semi-distributed structure, regardless of the

chosen calibration strategy, tends to match the

observed flow as well or sometimes even better

than the NWS lumped structure (e.g. SLCal-SD in

Fig. 10 fits the mid flows and high flows better).

Examining Fig. 9 closely shows that the NWS

lumped structure overestimates the high flows while

the semi-distributed structure tends to underestimate

them.

However, analysis of the overall performance

measures introduced earlier and listed in Table 4

clearly shows that there is no improvement when

moving from the NWS lumped structure to a semi-

distributed structure with respect to predictions at
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Fig. 7. One year of hourly calibration results at the outlet for the Illinois River Basin at Watts, 1998, (a) Precipitation, (b) NWS manual

calibration, simulation results; (c) NWS manual calibration, residuals, (d) LCal-SD simulations, (e) LCal-SD, residuals, (f) SLCal-SD

simulations, (g) SLCal-SD residuals, (h) SDCal-SD simulations, (i) SDCal-SD residuals.
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the basin outlet. On the contrary, almost all statistics

slightly deteriorate. The subtle improvements noted

during visual inspection are clearly not captured in the

chosen overall measures. Fig. 11 shows the % Bias on

a monthly basis. The figure reveals that the semi-

distributed model structures show a better volumetric

fit during the summer months and early fall, from June

(with exception of SDCal-SD) to September.

Fig. 8. Illinois River Basin at the outlet, NWS manual calibration, UA Lumped (LCal-SD), UA Semi-lumped (SLCal-SD), and UA Semi-

distributed (SDCal-SD) calibrations for (a) hours 1500–2500 (Mar–Apr, 1998), (b) 3000–4000, (Apr–May 1998), (c) 7000–8000 (Oct–Nov,

1998).
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The better performance during long recessions seems

to be captured in this measure.

These results are, however, within the constraints

of the chosen routing scheme, calibration strategies

and performance measures and can therefore only be

taken as indicators. As mentioned before there are two

main differences between the NWS lumped and

University of Arizona semi-distributed simulation

results, which are their routing scheme and applied

calibration strategy. More detailed work is being done

within our ongoing study to detect the uncertainty

caused by our routing model as well as the calibration

strategies. The effects of the calibration strategies are

examined in greater detail in Section 3.5.2. It is worth

mentioning here that it is necessary to move from

lumped to a semi-distributed structure if streamflow

predictions along the entire river network are

required.

Table 4

Summary of statistics for calibration and evaluation period of manual and automatic calibration strategies, Illinois River Basin at Watts (outlet)

Manual calibration Automatic calibration

Calibration NWS lumped UA LCal-SD UA SLCal-SD UA SDCal-SD

HRMS 16.94 21.64 20.70 21.88

% Bias 23.96 17.03 1.32 6.40

NS 0.77 0.63 0.68 0.62

R 0.89 0.84 0.83 0.81

Evaluation NWS lumped UA LCal-SD UA SLCal-SD UA SDCal-SD

HRMS 17.43 26.79 27.34 27.80

% Bias 1.47 11.20 -2.18 1.42

NS 0.91 0.78 0.78 0.76

R 0.96 0.88 0.88 0.88

Fig. 9. Observed versus Simulated Graph for Illinois River Basin at Watts (at the outlet).
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3.5.2. What is a suitable calibration strategy for

a semi-distributed mode structure, and how

much improvement can be obtained?

In this section we compare the results of the three

different automatic calibration approaches for the

semi-distributed structure chosen in this study

(lumped, LCal-SD; semi-lumped, SLCal-SD; and

semi-distributed, SDCal-SD).

Fig. 7 illustrates 1 year of hourly calibration results

at the outlet of the Illinois river basin at Watts. It can

be perceived from Fig. 7(d), (f) and (h) that all the

calibration strategies for this specific period perform

Fig. 10. Flow Duration Curve for the Illinois River Basin at Watts (at the outlet).

Fig. 11. Monthly % Bias for all strategies (at the outlet).
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similarly and that there are no significant differences

between them. Fig. 8 confirms the observations of Fig.

7, but shows greater detail. Fig. 8 shows that LCal-SD

captures some of the peaks (3500 and 3100) more

closely than the other strategies, while SLCal-SD

tends to fit the recessions and low flows better (i.e. less

bias; 7100–7300 and 7600–7900). The simulated

responses of SDCal-SD and SLCal-SD are very close

during all times, although the computational burden

(during calibration) is considerably higher (Fig. 12).

Figs. 9 and 10 compare these results for the entire

calibration and evaluation periods. It is noticeable from

these figures that all three UA automatic calibration

strategies perform similarly. It can also be observed

from Fig. 9 that the LCal-SD overestimates low and

mid flows, and even parts of the high flows, compared

to SLCal-SD and SDCal-SD. A careful examination of

Fig. 10 reveals that SLCal-SD almost matches the

observed flow duration curve exactly. It can also be

seen that the SDCal-SD approach produces no or only a

marginal improvement with respect to both, flow

duration curve and observed versus simulated graph.

Table 4 illustrates that moving from LCal-SD to

SLCal-SD improved three out of four statistics for the

calibration period. As can be seen, HRMS improved by

about 5%, while % Bias and NS improved by almost 15

and 8%, respectively. However, the difference

between the R values is negligible. These results are

different for the evaluation period. HRMS, NS and R

remain similar for LCal-SD and SLCal-SD, while the

% Bias reduces nine fold. Moving from SLCal-SD to

SDCal-SD, the statistics continue to be close with no

significant improvement while the computational time

increased significantly (Fig. 12 and Table 4).

The monthly %Biases can again be used to

disaggregate the performance over different parts of

the year. The summary of these statistics (Table 4)

shows that the overall %Biases for both lumped and

distributed automatic calibration (Lcal-SD and

SDCal-SD) are higher compared to the semi-lumped

automatic calibration (SLCal-SD). These results are

analyzed in greater detail in the monthly %Bias

graph (Fig. 11). Monthly %Biases for the results of

the semi-lumped calibration strategy (SLCal-SD)

compared to the LCal-SD and SDCal-SD, are close

or even significantly better for most of the months

(e.g. during the summer and fall season) except

during spring.

Fig. 12 compares the effort in the amount of time

that a modeler should spend to perform each specific

calibration strategy and computational time among

the different calibration strategies. These values were

estimated based on the authors’ experience for

automatic calibration with the structure of different

spatial complexity (for manual calibration, the

estimated effort time was obtained through personal

Fig. 12. Effort and computational time for all strategies.
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communication with Terri Hogue, 2002). Fig. 12

depicts that LCal and SLCal have similar effort time

while the computational time does not show a

considerable increase when switching from one to

the other. The graph also shows that moving from a

semi-lumped (SLCal) to a semi-distributed (SDCal)

structure affects the computational time significantly

(depending on the number of sub-basins within the

watershed).

It can be perceived from this analysis that

considering an intermediate complex calibration

strategy (SLCal-SD) improves the results and reduces

the biased compared to the simple calibration strategy

(LCal-SD). Moving from an intermediate calibration

strategy to a complex calibration strategy (SDCal-SD)

does not provide us with much of an improvement.

Even though SLCal-SD performed better than the

other two automatic calibration strategies (LCal-SD

and SDCal-SD) for most of the time, this result is still

limited to this specific basin, and needs to be validated

in other basins as well. In Section 3.5.3, the

relationship between complexity and improvement

of the results will be discussed in greater detail.

3.5.3. What is the minimum level of spatial complexity

required, above which the improvement in simulation

accuracy is marginal?

In this study, different combinations of spatial

complexity of input, model structure and parameters

were explored for calibration and partly for simu-

lation. It was already established, during the discus-

sion of question 1, that the main improvement when

using a semi-distributed structure instead of a lumped

one was found in improved recession behavior

(Fig. 11). What about the differences between the

different semi-distributed model structures applied?

Three different strategies, varying from no spatial

distribution (Lumped input, lumped model structure,

lumped parameters), to medium spatial distribution

(distributed input, distributed model structure, and

lumped parameters) and finally higher spatial distri-

bution (distributed input, distributed model structure

and distributed parameters) combined with one type

of model structure (Semi-Distributed) for simulation,

were tested. Results reveal that going from a lumped

calibration (LCal-SD) strategy to a semi-lumped

calibration strategy (SLCal-SD) while applying

spatially distributed precipitation input instead of

lumping the precipitation during the calibration

process (for the simulation processes the precipitation

is spatially distributed for all cases) improves the

simulations at the outlet with regard to the statistical

summary at Table 4 (HRMS, %Bias and NS improved

almost 5, 15 and 8%, respectively, while R is similar

within the range). Also visual inspection of the results

(Figs. 7 and 8) reveals that distributing the precipi-

tation improves the simulation especially for the peak

flow simulation. However, the increases in effort and

computational time are not significant (Fig. 12). The

third level of complexity is moving from a semi-

lumped calibration strategy (SLCal-SD, medium

spatial distribution) to a semi-distributed calibration

strategy (SDCal-SD higher distributed resolution),

while considering the spatial distribution of soil and

precipitation at the same time (both input and

parameter sets were distributed in sub-basin scale).

As can be concluded from Figs. 7, 9 and 10,

increasing the spatial complexity by distributing the

parameters along with precipitation and going from

the semi-lumped to a semi-distributed calibration

strategy, had marginal effects on the results. It is

important to mention that the Illinois River Basin is a

flat and homogeneous basin with respect to soil,

vegetation and land use, which means that assuming

uniform parameter sets for different sub-basins is not a

bad assumption. Another possible causes of these

results can be the uncertainty exists in the initializa-

tion of each sub-basin using Koren et al.’s (2000)

work.

Applying the semi-distributed SAC-SMA to a

more heterogeneous basin as well as improvement

in the parameter initialization (decreasing the uncer-

tainty involved in the a priori estimation of the

parameters) may generate different results when

parameters are distributed.

3.5.4. What spatial details must be included to enable

flow prediction at any point along the river network?

In this study one of the main challenges was to

simulate the watershed response at an interior point.

The only gauged point with available observed

streamflow data within the Illinois River basin is

Savoy with a drainage area of 433 km2 (Fig. 1).

However, while observed flow data were available, no

calibration was done at this point. The goal of this part

of the study was to see how accurately one could

N.K. Ajami et al. / Journal of Hydrology 298 (2004) 112–135130



estimate the flow within the basin when calibrating the

model to the flow at the outlet only. Fig. 13 illustrates

the observed versus simulated results at the interior

point. As can be seen in this figure, the model did not

perform very well at the interior point for lumped

(LCal-SD), semi-lumped (SLCal-SD) and semi-dis-

tributed (SDCal-SD) calibration strategies and over-

estimated the low flows while underestimating the

mid flows and high flows. Table 5 shows the summary

of the statistics for the interior point at Savoy for all

three calibration strategies. The statistics reveal that

among three strategies, LCal-SD performs the best at

the selected interior point. Also moving from semi-

lumped (SLCal-SD) to the semi-distributed (SDCal-

SD) calibration strategy and considering the spatial

distribution of parameters have not improved the

statistics (except for R; while the improvement is not

that significant). It is worth mentioning again that

parameter initialization based on Koren et al.’s (2000)

work contains some uncertainties, which could be one

for the reasons of the obtained results (see Koren et al.,

2003). The statistics are generally poor for all

strategies. Fig. 14 confirms this statement. Simulated

flow duration curves in this figure are fairly close to

each other, but do not follow the observed curve

closely.

One of the conceivable causes of this poor model

performance could be the baseflow initialization of

the routing model. As it was mentioned in Section 3.2

baseflow values were estimated through hydrograph

Table 5

Summary of statistics for the interior point, Illinois river basin

LCal-SD SLCal-SD SDCal-SD

HRMS 14.82 15.74 15.83

NS 0.4 0.32 0.31

R 0.8 0.71 0.73

Fig. 13. Observed versus Simulated Graph for Interior point at Savoy, Illinois River Basin at Watts.
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separation. Another reason for this poor performance

could be that uncertainty exists in estimation of the

routing parameters. These factors still need to be

investigated and are part of the ongoing study.

4. Conclusions

A semi-distributed version of the SAC-SMA was

developed. This structure was calibrated for the outlet

of the Illinois River Basin at Watts using three

different automatic calibration strategies, here

referred to as lumped, semi-lumped and semi

distributed (LCal-SD, SLCal-SD, SDCal-SD). The

results obtained from the semi-distributed structure of

SAC-SMA model using the above mentioned cali-

bration strategies were compared among themselves

and to the DMIP standard of comparison, which is the

simulation results of the lumped version of the SAC-

SMA model manually calibrated by the NWS experts.

The results were evaluated using statistical and

visual inspections for the calibration and validation

periods. These evaluations show that, for relatively

homogeneous basin like the Illinois River Basin at

Watts, overall flow predictions did not improve with

increased spatial complexity. However, closer inspec-

tion showed improvements during specific periods.

Improvements are especially noticeable during the

summer and early fall, when the basin response is

dominated by baseflow. Visual inspection of the

results also shows that semi-distributed model struc-

ture, regardless of the calibration strategy, provides

better simulations for high flows compared to

manually calibrated NWS lumped model simulations.

Examining the statistical summary shows that except

for %Bias, the rest of the statistics slightly deteriorate.

After taking into consideration both visual and

statistical examination, the results indicate that overall

SLCal-SD results are the best among three automated

calibration strategies and it is comparable to the

manual calibration results at the basin outlet.

Additionally, the flow simulation results for the

three calibration strategies at the selected interior

point (not considered during the calibration process)

were evaluated and revealed that the LCal-SD is

providing better results for this point. There exist no

simulation results for the selected interior point by

manually calibrated NWS model results because of

the lumped nature of its structure. This is one of the

primary reasons for moving from the lumped to the

semi or fully distributed model structure, especially

due to the availability of high-resolution forcing data.

Moving from lumped to semi-distributed

model creates more complexity in modeling and

Fig. 14. Flow Duration Curve for interior point at Savoy, Illinois River Basin at Watts.
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the calibration procedure, therefore creating more

uncertainty in the results. There exist several probable

sources of uncertainty, which include:

† NEXRAD rainfall data

† The assumptions behind the selected routing

scheme

† The estimation of routing parameters

† The assumptions behind the calibration strategies

(e.g. initialization of the parameters for the SDCal-

SD which includes the uncertainty in the a priori

estimated parameters using Koren et al.’s (2000)

work)

Analysis of these uncertainties and the signifi-

cance of their influences on the model outputs at the

outlet and the selected interior point is under study.

In addition, we are investigating the application of

the developed semi-distributed version of the SAC-

SMA model along with the same calibration

strategies for a more heterogeneous basin. Addition-

ally, a wider range of calibration strategies for semi-

distributed model structures has to be applied since

none of the ones used in this study is completely

satisfactory.

If there is one message from this investigation that

may contribute to the ongoing debate about lumped

versus semi-distributed models is the following: Use

of semi-distributed models is preferred because it can

provide information about flow condition at interior

points of a basin. However, the resulting improvement

in simulation capability at the outlet, compared to the

lumped model is not yet significant to justify adoption

of semi-distributed model. The uncertainties listed

above must first be addressed in order to see a greater

degree of improvement.

Acknowledgements

This research has been made possible through the

support of the World Laboratory Harshbarger Fellow-

ship and a number of projects, among them the

National Weather Service Cooperative Research

Grants (87WH0582 and NA07WH0144) and the

National Science Foundation Science and Technology

Center on ‘ Sustainability of semi-Arid Hydrology

and Riparian Areas’ (SAHRA) (EAR-9876800). Their

support is greatly appreciated. Thorsten Wagener

acknowledges support from the German Academic

Exchange Service (DAAD) through its post doctorate

fellowship program.

References

Andersen, J., Refsgaard, J.C., Jensen, H.J., 2001. Distributed

hydrological modeling of the Senegal river basin-model

construction and validation. Journal of Hydrology 247,

200–214.

Betson, R.P., 1964. What is watershed runoff? Journal of

Geophysical Research. 69(8), 1541–1552.

Beven, K., 1985. Distributed models. In: Anderson, M.G., Burt, T.P.

(Eds.), Hydrological Forecasting, Wiley, New York, pp.

405–435.

Beven, 1989. Changing ideas in hydrology: the case of physically-

based models. Journal of Hydrology 105, 157–172.

Beven, K., Binley, A., 1992. The future of distributed models:

model calibration and uncertainty prediction. Hydrological

Processes 6, 279–298.

Beven, K.J., Hornberger, G.M., 1982. Assessing the effect of spatial

pattern of precipitation in modeling stream flow hydrographs.

Water Resources Bulletin 18(5), 823–829.

Boyle, D.P., Gupta, H.V., Sorooshian, S., Koren, V., Zhang, Z.,

Smith, M., 2001. Toward improved streamflow forecast: value

of semidistributed modeling. Water Resources Research 37(11),

2749–2759.

Burnash, R.J.C., 1995. The NWS river forecast system-catchment

modeling. In: Singh, V.J., (Ed.), Computer Models of

Watershed Hydrology, Water Resources Publication, Highlands

Ranch, Colorado, pp. 311–366.

Burnash, R.J.C., Ferral, R.L., McGuire, R.A., 1973. A Generalized

Streamflow Simulation System: Conceptual Modeling for

Digital Computers, Joint Federal-State River Forecast Center,

Sacramento, CA.

Carpenter, T.M., Georgakakos, K.P., Sperfslage, J.A., 1999a.

Distributed hydrologic modeling for operational use. Hydro-

logic Research Center Technical Report No. 3.

Carpenter, T.M., Sperfslage, J.A., Georgahahos, K.P., Sweeney, T.,

Fread, D.L., 1999b. National threshold runoff estimation

utilizing gis in support of operational flash flood warning

systems. Journal of Hydrology 224, 21–44.

Carpenter, T.M., Georgakakos, K.P., Sperfslage, J.A., 2001. On the

parametric and nexrad-radar sensitivities of a distributed

hydrologic model suitable for operational use. Journal of

Hydrology 253, 169–193.

Chow, V.T., Maidment, D.R., Mays, L.W., 1988. Applied

Hydrology, McGraw Hill, New York, 572 p.

Dingman, S.L., 1993. Physical Hydrology, Prentice Hall, Engle-

wood Cliffs, NJ, 575 p.

N.K. Ajami et al. / Journal of Hydrology 298 (2004) 112–135 133



DMIP website, 2001. http://www.nws.noaa.gov/oh/hrl/dmip.

Accessed October 2003.

Duan, Q., Sorooshian, S., Gupta, V.K., 1992. Effective and efficient

global optimization for conceptual rainfall-runoff models.

Water Resources Research 28(4), 265–284.

Dunne, T., Black, R.D., 1970. Partial area contributions to storm

runoff in a small New England watershed. Water Resources

Research 6(2), 478–490.

Eckhardt, K., Arnold, J.G., 2001. Automatic calibration of a

distributed catchment model. Journal of Hydrology 251,

103–109.

Goodrich, D.C., Schmugge, T.J., Jackson, T.J., Unkrich, C.L.,

Keefer, T.O., Parry, R., Bach, L.B., Amer, S.A., 1994. Runoff

simulation sensitivity to remotely sensed initial soil water

content. Water Resources Research 30(5), 1393–1405.

Greene, D.R., Hudlow, M.D., 1982. Hydrometeorologic grid

mapping procedures, AWRA International Symposium on

Hydrometeorology, Denver, Colorado (DRAFT).

Gupta, H.V., Sorooshian, S., Yapo, P.O., 1998. Toward improved

calibration of hydrologic models: multiple and noncommensur-

able measures of information. Water Resources Research 34(4),

751–763.

Gupta, H., Beven, K., Wagener, 2003. Model calibration and

uncertainty estimation. In: Anderson, M.G., (Ed.), Encyclopedia

of Hydrological Sciences, Wiley, Chichester, UK, in press,

expected Spring 2005.

Herenandez, M., Miller, S.N., Goodrich, D., Goff, B.F., Kepner,

W.G., Edmonds, C.M., Jones, K.B., 2000. Modeling runoff

response to land cover and rainfall spatial variability in semi-

arid watershed. Environmental Monitoring and Assessment 64,

285–298.

Hogue, T.S., Sorooshian, S., Gupta, V.K., Holz, A., Braatz, D.,

2000. A multistep automatic calibration scheme for

river forecasting models. Journal of Hydrometeorology 1,

524–542.

Koren, V.I., Finnerty, B.D., Schaake, J.C., Smith, M.B., Seo, D.J.,

Duan, Q.Y., 1999. Scale dependencies of hydrology models to

spatial variability of precipitation. Journal of Hydrology 217,

285–302.

Koren, V.I., Smith, M., Wang, D., Zhang, Z., 2000. Use of soil

property data in the derivation of conceptual rainfall-runoff

model parameters, 15th Conference on Hydrology, Long Beach,

California, pp. 103–106.

Koren, V.I., Smith, M., Duan, Q., 2003. Use of a priori parameter

estimates in the derivation of spatially consistent parameter sets

of rainfall-runoff models. In: Duan, Q., Gupta, H.V., Sor-

ooshian, S., Rousseau, A.N., Turcotte, R. (Eds.), Calibration of

Watershed Models, Water Science and Application, vol. 6.

American Geophysical Union, pp. 239–254.

Krajewski, W.F., Lakshmi, V., Georgakakos, K.P., Jain, S.C., 1991.

A Monte-Carlo study of rainfall sampling effect on a

distributed catchment model. Water Resources Research

27(1), 119–128.

Khodatalab, N, 2002. Distributed hydrologic modeling for flow

forecasting using high-resolution data. MS Thesis. Department

of Hydrology and Water Resources, University of Arizona,

Tucson, Arizona.

McCuen, R.H., 1982. A Guide To Hydrologic Analysis Using SCS

Methods, Prentice Hall, Englewood Cliffs, NJ, 145 p.

Michaud, J., Sorooshian, S., 1994. Comparison of simple

versus complex distributed runoff models on a midsized

semi-arid watershed. Water Resources Research 30(3),

593–605.

Michaud, J., Sorooshian, S., 1994. Effects of rainfall-sampling

errors on simulations of desert flash floods. Water Resources

Research 30(10), 2765–2775.

Miller, D.A., White, R.A., 1999. A conterminous United States

multi-layer soil characteristics data set for regional climate

and hydrology modeling. Earth Interaction 2, http://

EarthInteractions.org. Accessed October 2003.

Montgomery, D.R., Foufoula-Georgiou, E., 1993. Channel network

source representation using digital elevation models. Water

Resources Research 29(12), 3925–3934.

Nash, J.E., Sutcliffe, J.E., 1970. River flow forecasting through

conceptual models—Part I: a discussion of principles. Journal of

Hydrology 10(3), 282–290.

Natural Resources Conservation Service, 1981. Land Resource

Regions and Major Land Resource Areas of the United States,

Agriculture Handbook 296, US Department of Agriculture, Soil

Conservation Service, Washington, DC.

Nelder, J.A., Mead, R., 1965. A simplex method for function

minimization. Computer Journal 7(4), 308–313.

Ogden, F.L., Julien, P.Y., 1993. Runoff sensitivity to temporal and

spatial rainfall variability at runoff plane and small basin scales.

Water Resources Research 29(8), 2589–2597.

Olivera, F., Maidment, D.R., 1999. Geographic information systems

(GIS)-based spatially distributed model for runoff routing.

Water Resources Research 35(4), 1155–1164.

Orlandini, S., Rosso, R., 1998. Parameterization of stream channel

geometry in the distributed modeling of catchment dynamics.

Water Resources research 34(8), 1971–1985.

Orlandini, S., Perroti, A., Sfondrini, G., Bianchi, A., 1999. On the

storm flow response of upland Alpine catchments. Hydrological

Processes 13, 549–562.

Personal Communication, 2002. Terri Hogue, Department of Civil

Engineering, University of California at Los Angeles.

Refsgaard, J.C., 2000. Toward a formal approach to calibration

and validation of models using spatial data. In: Grayson, R.,

Bloschl, G. (Eds.), Spatial Pattern in Catchment Hydrology,

Observed and Modeling, Cambridge University Press, Cam-

bridge, pp. 329–354.

Senarath, S.U.S., Ogden, F.L., Downer, C.W., Sharif, H.O., 2000.

On the calibration and verification of two dimensional,

distributed, hortonian, continuous watershed models. Water

Resources Research 36(6), 1495–1510.

Schultz, G.A., 1988. Remote sensing in hydrology. Journal of

Hydrology 100, 239–265.

Shah, S.M.S., O’Connell, P.E., Hosking, J.R.M., 1996a.

Modeling the effects of spatial variability in rainfall on

catchment response. 1. Formulation and calibration of a

stochastic rainfall field model. Journal Hydrology 175,

66–88.

Shah, S.M.S., O’C’Connell, P.E., Hosking, J.R.M., 1996b. Model-

ing the effects of spatial variability in rainfall on catchment

N.K. Ajami et al. / Journal of Hydrology 298 (2004) 112–135134

http://www.nws.noaa.gov/oh/hrl/dmip
http://EarthInteractions.org
http://EarthInteractions.org


response. 2. Experiments with distributed and lumped models.

Journal of Hydrology 175, 89–111.

Sivapalan,M.,2003.Predictioninungaugedbasins:agrandchallenge

for theoreticalhydrology.HydrologicalProcesses, 17(15),3163–

3170.

Smith, R.E., Parlange, J.Y., 1978. A parameter-efficient hydrologic

infiltration model. Water Resources Research 20(12), 533–538.

Tarboton, D.G., Bras, R.L., Rodriguez-Iturbe, I., 1991. On the

extraction of channel networks from digital elevation data.

Hydrological Processes 5, 81–100.

USGS website, 2001. http://water.usgs.gov/nwis/measurements,

Accessed Jan. 2004.

Wagener, T., Wheater, H.S., Gupta, H.V., 2003. Rainfall-Runoff

Modelling in Gauged and Ungauged Catchments, Imperial

College Press, London, UK, 300p.

Winchell, M., Gupta, H.V., Sorooshian, S., 1998. On the simulation

of infiltration- and saturation-excess runoff using radar-based

rainfall estimates: effects of algorithm uncertainty and pixel

aggregation. Water Resources Research 34(10), 2655–2670.

Woolhiser, D.A., Smith, R.E., Goodrich, D.C., 1990. KIEROS—A

kinematic runoff and erosion model; documentation and user

manual, Publication ARS-77, 130 pp., Agricultural Resource

Survey, US Dept. of Agriculture, (Available as PB90-205-550

from Natl. Tech. Inf. Serv., Springfield, VA).

N.K. Ajami et al. / Journal of Hydrology 298 (2004) 112–135 135

http://water.usgs.gov/nwis/measurements

	Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system
	Introduction
	Distributed hydrologic modeling
	Forcing data for distributed models
	Routing in distributed models
	Calibration of distributed models

	Case study
	Study area and data
	Model description
	Calibration tools and methods
	Calibration scenarios
	Results and discussion

	Conclusions
	Acknowledgements
	References




