
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998 37

A High Accuracy Volume Renderer
for Unstructured Data

Peter L. Williams, Member, IEEE Computer Society, Nelson L. Max,
and Clifford M. Stein, Member, IEEE

Abstract—This paper describes a volume rendering system for unstructured data, especially finite element data, that creates
images with very high accuracy. The system will currently handle meshes whose cells are either linear or quadratic tetrahedra.
Compromises or approximations are not introduced for the sake of efficiency. Whenever possible, exact mathematical solutions for
the radiance integrals involved and for interpolation are used. The system will also handle meshes with mixed cell types: tetrahedra,
bricks, prisms, wedges, and pyramids, but not with high accuracy. Accurate semitransparent shaded isosurfaces may be embedded
in the volume rendering. For very small cells, subpixel accumulation by splatting is used to avoid sampling error. A revision to an
existing accurate visibility ordering algorithm is described, which includes a correction and a method for dramatically increasing its
efficiency. Finally, hardware assisted projection and compositing are extended from tetrahedra to arbitrary convex polyhedra.

Index Terms—Volume rendering, unstructured meshes, high accuracy, finite element method, isosurfaces, splatting, cell projection,
visibility ordering, depth sorting.

—————————— ✦ ——————————

1 INTRODUCTION

YPICALLY, unstructured meshes have a complex geo-
metric configuration and the mathematics of the ab-

sorption-emission integral are quite complex. Therefore,
most existing volume rendering systems for unstructured
data [5], [6], [7], [8], [10], [12], [13], [15], [16], [23], [29], [30],
[31], [33], [34], [35], [37], [41] introduce various simplifying
assumptions and approximations into the algorithm in or-
der to cope with these complexities in an efficient manner.

Another aspect of unstructured meshes is that, typically,
they are adaptively refined, so that, in areas where the field
is changing rapidly, the cells are smaller than in other areas
of the mesh. It is not uncommon for such cells to be several
orders of magnitude smaller than the largest cells. The be-
havior of the field on these smallest cells is often of great
interest to the simulation scientist. However, all volume
rendering systems that we are aware of are liable to miss
these smaller cells due to sampling error.

This paper describes a high accuracy (HIAC) volume
rendering system for unstructured data, especially finite
element data, that, for a given mathematical optical model
[17], creates images with very high accuracy. Compromises,
or approximations, are not introduced for the sake of effi-
ciency. Whenever possible, exact mathematical solutions for
the differential equations involved and for interpolation are
used. Subpixel accumulation by splatting is used to avoid
sampling error. Accurate semitransparent shaded isosur-
faces may be embedded in the volume rendering. In addi-

tion, a modified version of the accurate visibility ordering
algorithm for unstructured meshes, reported by Stein et al.
[31], is used. Several important revisions to the original
sorting algorithm, including a correction and a method for
dramatically improving its efficiency, are described herein.

Our goal was to design a volume rendering system to
create benchmark images for use as a standard of compari-
son. The benchmarks can be used to compare results from
other volume rendering systems for unstructured data that
use approximations and simplifying assumptions, and can
serve as a validation suite for verifying the correctness of
new algorithms and implementations.

The HIAC volume rendering system is based on the ab-
sorption plus emission optical model [17], [27], [38] and
utilizes the cell projection method to accumulate the image.
A ray integration is performed individually for every pixel
onto which a cell projects. The system will correctly render
images in both parallel and perspective projection, pro-
vided the transfer functions for color and opacity are
piecewise linear. It is intended primarily for data sets from
the finite element method, but will render any unstructured
data set whose cells are tetrahedra, bricks, prisms, or pyra-
mids, or any combination thereof; see Fig. 1. The meshes
may be nonconvex or even disconnected; the faces of adja-
cent cells may meet on only part of their common adjacent
face, i.e., sliding interfaces are permitted. However, the cells
are expected to be convex and nonintersecting, and the
visibility ordering graph should not contain cycles.

The system will accurately render data sets where the
scalar field varies linearly along the edges of the cells,
called linear cells or linear elements. For linear tetrahedra, the
system uses the exact solution to the radiance integral de-
scribed in [38]. This paper shows how the exact solution can
be implemented utilizing the Dawson integral [24], rather
than the table-based method described in [38].

1077-2626/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� P.L. Willaims is with the IBM T.J. Watson Research Center, H0-C10, 30
Saw Mill River Road, Hawthorne, NY 10532.

�E-mail: p.williams@computer.org.
•� N.L. Max and C.M. Stein are with the Lawrence Livermore National Labo-

ratory, Mail Stop L-307, 7000 East Avenue, Livermore, CA 94550.
�E-mail: {max2, stein2}@llnl.gov.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 106328.

T

38 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

In addition, the HIAC system will accurately volume
render quadratic tetrahedra (tetrahedra where the scalar field
varies quadratically along the edges of the cells, and, in
fact, along any ray through the cell). In Appendix C, we
describe how the system could be extended to accurately
render other higher-order elements, such as quadratic
bricks, as well as linear bricks and prisms.

This paper is an amalgamation and extension of the re-
sults in [16], [31], [38]. The main new additions are the use
of the Dawson integral in the computation of the exact so-
lution of the radiance integral for linear tetrahedra, the
methodology for accurate radiance integration and isosur-
face generation for quadratic tetrahedra, the use of splatting
for subpixel accumulation, the revision to Stein’s visibility
ordering algorithm, and the extension of hardware-assisted
projection and compositing to arbitrary convex polyhedra.

The next section discusses related previous work. Section 3
discusses the geometry of the cells used in the finite element
method, the related interpolation equations, and relevant ter-
minology. Section 4 gives a broad overview of the system and,
then, in Sections 5 and 6, we present the details of the render-
ing system and of the visibility ordering algorithm. Section 7
discusses hardware assisted polyhedron projection. Section 8
presents timing results and example images.

2 PREVIOUS WORK

A method for approximating the volume rendering integral
with bounded error is described by Novins and Arvo in
[21]. By bounding the magnitude of the derivatives of the
integrand, they are able to obtain remainder terms that pro-
vide bounds on the approximation error. They apply this to
the trapezoid rule, Simpson’s rule, and a power series
method. The first two methods are more suited to low to me-
dium accuracy approximations. The power series method, on
the other hand, is preferable for very high precision results.

The techniques developed by Novins and Arvo are very
valuable for bounding the error in the evaluation of the
integral. However, there are other sources of error in the
volume rendering process, e.g., sampling error, which may
miss small but highly important cells in the accumulation

process, that may be even more significant than integration
error. The HIAC system addresses some of these other
sources of error. For example, it uses subpixel splatting and
a high accuracy visibility ordering algorithm.

For high accuracy integration, the HIAC system uses a
closed-form solution to the integral when possible; other-
wise, high accuracy Gaussian numerical integration is used.
This approach appears to be more efficient than the power
series method, since the power series error bounds are
loose. (Novins did not provide timing data for comparative
purposes.) The error bounds are not easy to calculate for
Gaussian quadrature, but it is known to be very accurate,
and it is the quadrature method generally used in the finite
element method. When a guaranteed error bound is re-
quired for integration on higher-order elements, the Novins
and Arvo power series approximation may be valuable. It is
an open question whether Gaussian quadrature or the
power series method described by Novins is preferable for
high accuracy integration.

Silva and Mitchell [30] describe a very efficient and in-
teresting sweep plane volume rendering method that accu-
rately traverses all types of tetrahedral meshes with
nonintersecting cells, even those with cyclically overlap-
ping cells. They claim it can be extended in a straightfor-
ward way to more complex convex cells. The real value of
the sweep plane algorithm is that it provides a very efficient
and accurate depth ordering of the cells of an irregular
mesh along any given ray to the eye; it does not try to give
a global visibility ordering of the cells. The mathematics of
the volume rendering integral is not addressed in their pa-
per, nor is sampling error. The integration methods de-
scribed in our paper could be utilized in the sweep plane
algorithm.

Gallagher and Nagtegaal [4] describe methods for ren-
dering 3D contour surfaces of finite element data, as well as
methods for smooth shading these surfaces. They render
the contour surfaces, which may be curved within a cell, as
a polygonal approximation to a parametric bicubic surface
fit to each contour in a cell, whereas we render these same
surfaces on a pixel-by-pixel basis to reproduce the exact
implicit curved surface and use Phong shading calculated
at each pixel. Cline et al. [1] also reproduce this curved sur-
face by recursive subdivision of the volume cells containing
the contour surface.

3 CELL GEOMETRY AND INTERPOLATION FUNCTIONS

The cells used for 3D modeling in the finite element method
(FEM) have many different shapes, but only a few are in
widespread use [14]. We will focus our attention on the
more commonly used 3D cells (also called elements): the
tetrahedron, brick, and prism. See Fig. 1.

In addition to the vertices (also referred to as nodes) used
to define the endpoints of a cell’s edges, which we will call
the conventional vertices or nodes, a cell may have additional
vertices, which we will call interior nodes, see, for example,
the quadratic tetrahedron in Fig. 1. The interior nodes,
along with the conventional nodes, may be used:

1)� to define a nonlinear field inside the cell by the use of
what we will refer to as an interpolation function; and/or

Fig. 1. Examples of different types of cells used in the finite element
method. The HIAC system will render data defined on meshes with any
of these cell types.

WILLIAMS ET AL.: A HIGH ACCURACY VOLUME RENDERER FOR UNSTRUCTURED DATA 39

2)� to define curvilinear facets by the use of a parametric
mapping function.

In this paper, we will not deal with elements whose ge-
ometry is defined by a parametric mapping, since those
elements may have facets that are highly curved, and the
parametric mapping must be inverted before the scalar
function can be evaluated. We will limit our consideration
to the first category of cells. For those cells, the scalar field
value is specified at all vertices, conventional and interior;
but the geometry of the cell is determined from its conven-
tional vertices.

The number of terms in a cell’s interpolation function is
equal to the number of nodes that the cell has. So, a tetra-
hedron with four nodes will have an interpolation function
with four terms. In most applications, the interpolation
function is a polynomial whose terms are elements of the
three-dimensional power series. Those terms through third
degree are:

1
x, y, z

x2, y2, z2, xy, xz, yz

x3, y3, z3, x2y, x2z, xy2, xz2, y2z, yz2, xyz. (1)

The interpolation function for a four-node tetrahedron is:

f(x, y, z) = c1 + c2x +c3y + c4z.

The scalar field varies linearly along any ray through a four-
node tetrahedron, hence, it is called a linear tetrahedron.

A brick with eight nodes has the eight-term interpolation
function:

f(x, y, z) = c1 + c2x + c3y + c4z + c5xy + c6xz + c7yz + c8xyz. (2)

The particular terms of the 3D power series that are cho-
sen for a given interpolation function are dictated by the
need of the FEM for certain desirable properties, such as
symmetry, nonsingularities, etc. Here, the scalar field varies
linearly along the edges of the brick and, so, it is sometimes
called a linear brick. However, the field inside the brick
varies trilinearly, so it is also called a trilinear brick. Others
refer to it as an eight-node brick, or a hexahedron. Often it
is the case, in the FEM, that nontriangular facets are slightly
nonplanar.

Although the four-node tetrahedron and the eight-node
brick are both referred to as linear elements, the higher-
order terms in the interpolation equation for the linear brick
give it extra degrees of freedom that allow it to solve some
problems much more accurately than could be done with
tetrahedra alone. From the perspective of visualization, it
should be noted that a contour surface inside an eight-node
brick is curved and not planar, as it is inside a four-node
tetrahedron.

The tetrahedron, brick, and prism are the basic cells.
They are often referred to as linear cells, since the field var-
ies linearly along the edges of the cells. By adding interior
nodes to the basic cells, we get cells with higher-order in-
terpolation functions. We refer to this class of cells as higher-
order cells. There are three important higher-order cells.

The first is the 10-node tetrahedron, also referred to as a
quadratic tetrahedron, whose interpolation function is:

f(x, y, z) = c1 + c2x + c3y + c4z + c5x
2 + c6y

2 +

c7z
2 + c8xy + c9xz + c10yz. (3)

This function is complete through the quadratic terms of
the 3D power series in (1), therefore, the field varies
quadratically along any ray through the volume. In the
FEM, the six interior nodes may be specified in different
configurations; however, the most common configuration is
for the interior nodes to be located on the edges of the cell,
usually at the midpoints. Elements where all of the nodes
lie on the boundary of the element are called serendipity
elements. Serendipity elements are the most common 3D
elements.

The remaining higher-order cell types, the cubic tetrahe-
dron and the quadratic brick, as well as the prism, are dis-
cussed in Appendix C.

4 OVERVIEW OF THE HIAC SYSTEM

The HIAC volume rendering system for unstructured
meshes uses the cell projection method and is based on the
absorption plus emission volume density optical model
[17]. Either the Williams and Max [38] or the Wilhelms and
Van Gelder [33] treatment of glow energy may be specified
for use.

The system reads in an image specification file [39], gener-
ates the specified volume rendered image, and, then, writes
to disk either an image file in SGI RGBA format or separate
floating point R, G, B, and A files. Transfer functions for color
and opacity are specified in a piecewise linear method, as in
[39]. The radiance integration along a ray may be specified so
as to use exact integration [38], which is appropriate when
the cells are linear tetrahedra, or five-point Gaussian integra-
tion, which is appropriate for quadratic tetrahedra. A faster,
but somewhat less accurate, method, which we call the ap-
proximate method, assumes the opacity varies linearly along
the ray segment and assumes the color is constant, equal to
the average of the color at the front and the back of the ray
segment. This is not exactly correct, since the opacity along
the ray segment hides the far color more than the near one,
but is much quicker to evaluate.

The data ranges on which the transfer functions are actu-
ally linear are separated by data values which we call break-
points. For the exact integration and the approximate method,
a cell is sliced into slabs at each transfer function breakpoint
that occurs within a cell; in addition, cells are sliced at each
user-specified isosurface value. For quadratic tetrahedra, the
cell is sliced conceptually at all breakpoints and contour sur-
faces as a part of the integration procedure. This ensures that
the color and extinction coefficient are smooth polynomials
within a slab. Within a slab from a linear tetrahedron, we can
linearly interpolate either the color and extinction coefficient,
or the scalar field. It would not be correct to interpolate the
color or extinction coefficient if the cell contained a break-
point in a transfer function.

Images may be generated in either perspective or ortho-
graphic projection, with any specified view transform, and
to any resolution. Near and far clipping planes parallel to
the screen may be specified, in what we call z-clipping, in
order to select a volume slab of interest. Any number of

40 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

illuminated Phong-shaded semitransparent colored isosur-
faces may be specified for inclusion in the volume render-
ing. For linear tetrahedra, the contour surfaces are polygo-
nal, and the surface normal for each polygon is used to
shade the surfaces. We do not smooth-shade the contour
surfaces, because this might obscure important information
in the visualization that is useful for determining whether
the mesh has been properly refined. For higher- order cells,
the isosurfaces are created and shaded on a pixel-by-pixel
basis, and not as a set of polygons; therefore, these contours
are smoothly curved surfaces within each cell.

Subpixel splatting may be specified, so that contribu-
tions from small cells that fall between pixel centers are
included in the image. Any background color can be speci-
fied, as well as any one of a selection of background pat-
terns. Fast previewing of images is facilitated by hooks to
Williams’ splatting system [37] based on Shirley and
Tuchman’s rendering algorithm [29] and Williams’ MPVO
visibility ordering algorithm [36], and an extension of the
techniques of [29] to arbitrary convex polyhedra.

The HIAC system will sort and render all the types of
linear cells described in Section 3, as well as quadratic tet-
rahedra and zoo meshes (meshes which include a combi-
nation of the various cell types). Data structures for dealing
with mixed cell types and higher-order elements are de-
scribed in Appendix A.

The HIAC system will also sort and render curvilinear
data, provided the faces of the cells are only slightly non-
planar (distorted), as is usually the case in curvilinear grids.
In the finite element method, cells can be distorted by a
parametric mapping function, in which case the facets of
the cells can be highly curved. How to volume render these
nonconvex cells with curved facets is an important and in-
teresting open question. We discuss it briefly in Section 9.

For linear cells, if the color or density is linear through-
out the cell, i.e., no breakpoints nor isosurfaces occur within
the cell, then the cell is rendered as a whole. For nontetra-
hedral linear cells, including hexahedral cells from a curvi-
linear grid, if a breakpoint or contour value occurs within a
cell, that cell is first tetrahedralized and, then, processed as
described above, slicing the resulting tetrahedra as neces-
sary. The system will also deal with quadratic tetrahedra,
which it slices conceptually during the integration process
whenever a contour lies within the cell.

After the image specification file is parsed, the data set is
read in, the view transform and the perspective transform
(if applicable) are applied, and the data set is clipped to the
view volume. Next, the cells are sorted in visibility order
from back to front, sliced (if necessary) into slabs bounded
by contour levels and transfer function breakpoints, and,
then, the slabs (or cells) are scan converted and the results
of the ray integration through the slab (or cell) for each
pixel are composited into the image buffers. The image
buffers hold the red, green, blue, alpha, and z values in
floating-point format. The z buffer is used as a witness to
verify the correctness of the visibility ordering. The alpha
buffer is used to permit postprocessing accumulation of
more than one semitransparent image. A schematic dia-
gram of the system is shown in Fig. 2. The rendering engine
does the scan conversion, radiance integration, subpixel
splatting, z-clipping, and compositing.

5 THE RENDERING ENGINE

Max [17] describes several theoretical optical models for
light interacting with a volume density, each with differing
degrees of realism. A volume rendering system can be cre-
ated based on any one of these models. If the system is con-
structed faithfully according to its model, without the use
of approximations, then that system will create accurate
images. (If the differential equation for radiance can only be
solved by numerical methods, then the system will create
images to some predetermined degree of precision.)

A volume rendering system can either integrate the radi-
ance over rays cast out from each pixel through the entire
volume density, or project each cell in the volume density
onto the screen in visibility order and integrate the radiance
over each projected cell for each pixel covered by it. When
the cell projection approach is used, a visibility ordering of
the cells is required in order to composite the semitranspar-
ent volume cells into the image in back-to-front order.

The HIAC volume rendering system, which uses the cell
projection approach, is an evolved version of the system
reported by Max et al. in [16]. That system used the iso-
tropic density emitter optical model of Sabella [27] for the
volume effects, and allowed Phong shading of selected
contour surfaces—at most, one contour surface could pass
through a tetrahedron. We have now improved the slicing
algorithm to allow any number of contour surfaces.

Fig. 2. Schematic diagram of the HIAC volume rendering system. If cells have neither transfer function breakpoints nor contour surfaces in their
interior, then the cells go directly from the sorter to the rendering engine. Otherwise, the cells are sliced into slabs, with nontetrahral cells first being
partitioned into tetrahedra. Quadratic tetrahedra go directly from the sorter to the rendering engine. as described in Section 5.2.

WILLIAMS ET AL.: A HIGH ACCURACY VOLUME RENDERER FOR UNSTRUCTURED DATA 41

In the HIAC system, the absorption plus emission optical
model [17], [38] is used. In this model, every point in the
cloud absorbs light and also emits light (glows). The differ-
ential equation for the radiance along a ray towards the eye
through the volume is:

dI t
dt g t t I t
a f a f a f a f= - t , (4)

where t is a length parameter along the ray, and I(t) is the
radiance at t. The optical density or extinction coefficient of
the volume at t, t(t), is considered to be a physical property
of each point in the cloud, and defines the rate that light is
absorbed or occluded at that point.

The remaining term g(t) is the glow energy emitted at
each point of the cloud. There are two ways to treat the
glow energy. Wilhelms and Van Gelder [33] treat the glow
energy as a physical property of the cloud, whereas Wil-
liams and Max [38] consider the glow energy to be defined
as g(t) = k(t)t(t), where the chromaticity k(t) is considered to
be a physical property of each point in the cloud. The HIAC
system will generate images using either treatment of the
glow energy, as chosen by the user.

We assume the use of piecewise linear transfer functions
for specifying the dependence of chromaticity (or glow en-
ergy) and optical density on the scalar field being visualized.

By the use of an integrating factor and by applying
boundary conditions at t1 and t2, we get the following inte-
gral equation for the radiance using the Williams and Max
treatment of glow energy, see [17], [38]:

I t I t e e t t dt
t dt u du

t

t
t

t

t

t

2 1
1

2 2

1

2c h c h a f a fa f a f
= +

- -z zzt t
k t . (5).

This equation is instantiated once for each of the three
component wavelengths of light. The second term repre-
sents the glow energy along the ray segment, attenuated by
the opacity in front of it, and the first term represents the
incoming illumination I(t1) at the far end of the ray, also
attenuated by the intervening opacity.

For Wilhelms and Van Gelder’s [33] neon and smog treat-
ment of glow energy, we get the following integral equa-
tion, whose terms can be understood in the same way:

I t I t e e g t dt
t dt u du

t

t
t

t

t

t

2 1
1

2 2

1

2c h c h a fa f a f
= +

- -z zzt t
. (6)

The integral which is the second term on the right side of
(5) and (6) cannot be solved in closed form for general t(t).
However, if the scalar field and the transfer functions vary
piecewise linearly along a ray segment within a cell, then
the equations can be integrated exactly over each piecewise
linear region. This solution is described by Williams and
Max in [38] and discussed further in the next section, to-
gether with its implementation.

Let the second term of the right-hand side (of either
equation) be described as:

e c t dta t

t

t a f a f
1

2z . (7).

A general closed-form solution for this integral is not
known when a(t) is cubic or higher order, regardless of the
form of c(t). Therefore, even though the c(t) term is lower

order in the neon and smog treatment, the integral still can-
not be solved exactly when the scalar field is quadratic or
higher order (even with linear transfer functions). The neon
and smog treatment does, however, permit the glow energy
to be mapped independently to a different scalar field than
the optical density, which is not possible with the other
treatment. Nevertheless, we have created successful visu-
alizations where k and t each depended on separate scalar
fields using the Williams and Max treatment of glow en-
ergy. The main advantage of the Williams and Max treat-
ment is that it makes the specification of the transfer func-
tions somewhat more intuitive. For example, increasing the
extinction coefficient makes the surface color more domi-
nant, rather than making the image darker and ultimately
black, as is the case with the neon and smog model. More
details on this and on the relative merits of the two different
treatments of glow energy are given in an Appendix to [39].
The HIAC system allows the optical density to be mapped
to a different scalar field than the color, and the contour
surfaces can be keyed to a third scalar field.

The HIAC system uses the cell projection approach,
therefore, a visibility ordering of the cells is required. The
sorting algorithm originally used in [16] was restricted to
rectilinear volumes or Delaunay triangulations in 3D. The
HIAC system uses a different sorting algorithm, a modified
version of the one reported by Stein et al. in [31]. The re-
vised algorithm, which works on an arbitrary collection of
acyclic nonintersecting convex polyhedra, is described in
Section 6.

The next section describes how the HIAC rendering en-
gine processes linear cells. Section 5.2 describes the treat-
ment of quadratic tetrahedra. Finally, Section 5.3 describes
the subpixel splatting procedure.

5.1 Linear Cells
Linear cells, as discussed in Section 3, are convex polyhedra
where the scalar field is specified at the conventional verti-
ces and varies linearly along the edges of the cells.

After visibility ordering the cells, each cell is checked to
determine if the range of the scalar field within it includes
any transfer function breakpoint values. If any are found,
and the cell is tetrahedral, the cell is sliced at each break-
point, resulting in slabs in which the color and opacity are
linear. Each slice is defined by a contour surface for the field
value corresponding to a transfer function breakpoint. Since
the scalar field varies linearly within a tetrahedron, the
slices are planar and parallel. An example slab is shown in
Fig. 3. If an isosurface is to be separately rendered, the tet-
rahedron must also be sliced at these contour values so the
slabs and surface polygons can be composited individually
in the correct order. Currently, if the cell is nontetrahedral,
we first subdivide the cell into tetrahedra and then slice the
tetrahedra into slabs.

The visibility ordering of the tetrahedra within a hexa-
hedron, or the slabs within a tetrahedron, is simple, and is
done separately from the global visibility ordering of all the
cells. (Methods like the marching cubes algorithm of Loren-
sen and Cline [11] can slice hexahedral cells directly, but the
slices, which are curved surfaces, must be divided into tri-
angles. If there are multiple contour levels inside a single

42 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

cell, it is not clear that they will be nonintersecting, or that
the volume pieces they slice off will be convex, as required
by our projection algorithm.) We do not subdivide nontet-
rahedral cells into tetrahedra when the range of scalar
function within the cell does not include a slicing value.
Both the sorter and the scan converter will handle the dif-
ferent types of linear cells described in Section 1. The ren-
dering engine will correctly process convex cells or slabs
with any number of faces and vertices.

The slicing algorithm is robust, permitting up to three
vertices of a tetrahedron to take on the same slicing value.
When all four vertices have the same contour value, the set
of points taking on the contour value is no longer a surface,
but contains the whole tetrahedron. In that case, the contri-
bution of such a tetrahedron to the isosurface is neglected,
leaving a hole in the contour surface, but the tetrahedron
will still contribute to the volume rendering. When a con-
tour surface intersects three vertices of a tetrahedron, the
surface corresponds to one of the cell’s faces, which may be
shared with another cell. In that case, it is important to ren-
der the contour polygon only once. The boundary polygons
for the slabs are found from a case-by-case analysis of the
ways a slice plane can intersect a tetrahedron, and the ways
in which the slab between two consecutive slice planes can
intersect the tetrahedron’s face triangles.

For orthogonal projection, the back-to-front sorting order
of the slabs within a cell can be determined from the z-
component of the gradient of the scalar field S on the cell:
S(x, y, z) = c1 + c2x + c3y + c4z. (Since the field is known at
the four vertices of the cell, the four constants can be de-
termined for the cell.) If the z-component of the gradient is
greater than zero, then the back-to-front order starts with
the slab having the largest scalar value.

For perspective projection, consider the slicing planes
defining the slabs to be infinite parallel planes in world co-
ordinates. If the viewpoint lies between two of these infinite
planes which define a slab, we call that slab the eye slab. The
slabs and contour surfaces are then composited in two
groups: from one side up to, but not including, the eye slab
and, then, from the other side, up to and including the eye

slab. If there is no eye slab, only one group is required, as in
the parallel projection case.

Next, the cells or slabs are sent in visibility order to the
rendering engine for projection and accumulation. The first
step in this process is to scan convert the cell or slab. The
front-facing polygons bounding the cell are scan converted
into a front z-buffer, with values zf, and the back-facing
polygons into a back z-buffer, with values zb. The k and t
values are bilinearly interpolated along edges and across
scan lines, as in Gouraud shading, and saved in the front or
back buffers, as kf and tf, or kb and tb, respectively. Then, for
each pixel in the projection of the cell, the length l of the ray
segment is computed as zb - zf, and the values of k and t are
assumed to vary linearly between their values in the front
and back buffers.

In parallel projection, this results in piecewise trilinear
interpolation, where the subdivision into trilinear pieces
depends on the projection of the polyhedron. Thus, as in
piecewise bilinear Gouraud shading, the interpolation
scheme is not rotationally invariant. However, for linear
tetrahedra, or for slabs cut from them on which k and t are
linear, this trilinear interpolation reduces to linear interpo-
lation, which is rotationally invariant.

Next, the ray integration is performed for each pixel
covered by the cell or slab. When the cells are linear tetra-
hedra and the transfer functions are piecewise linear, the
integral in (5) can be integrated exactly as shown in [38] by
completing the square of the exponent and repeated appli-
cation of integration by parts, yielding:

I t
t t

e

e erfi
t

erfi
t

t t t t

t

2
2

2
1

2
2 2

2 5 2 2 1

1 2 1 2

2

2 2

c h c hc h

c h

=
+

-
+

+

+F
HG

I
KJ -

+F
HG

I
KJ

F
HG

I
KJ +

- + +

- - +

a b

d

m n

d

hd
g d

d
g d

d

g d d

g d d.

I t e
t t

t t

1

2
2
2

2 1
1
2

2

c h
- + - -
F
H
GG

I
K
JJg g

d d

, (8)

where, a, b, d, m, n, g, and h are functions of the four con-
stants ci in the tetrahedral interpolation function S(x, y, z) =
c1 + c2x + c3y + c4z, the constants describing the applicable
linear pieces of the transfer functions, for example, t(x, y, z)
= a + bS(x, y, z), and the three ray parameterization func-
tions, x = u1 + u2t, etc., as described in [38]. The erfi() func-
tion will be discussed below. Key terms in (8) are: d, since it
appears in the denominator of several terms, and g + dt, the
numerator in the argument to erfi(). The term d is equal to
the slope of the pertinent piece of the optical density trans-
fer function, i.e., b in the example above, times the slope of
the (linear) scalar field within the cell. The term g + dt is
exactly t(t), as can be seen from the detailed derivation
given in [38].

The complex error function, erf(), is defined as:

erf z e duuz
() = -z2 2

0p
.

The imaginary error function, erfi(), which appears in (8), is
defined as erfi(z) = erf(iz)/i. In (8), erfi’s argument is either
real when d > 0, or pure imaginary when d < 0. When its
argument is real,

Fig. 3. Example of slab of linear tetrahedron. Within the slab, the color
and opacity are linear. The slicing planes defining the slab are contour
surfaces for field values corresponding to transfer function breakpoints
or for user-specified isosurface values.

WILLIAMS ET AL.: A HIGH ACCURACY VOLUME RENDERER FOR UNSTRUCTURED DATA 43

erfi x e duux
() = z2 2

0p
.

When its argument is pure imaginary, of the form z = ib,
with real b,

erfi ib i e duub
() = -z2 2

0p
.

When d < 0, the i in the latter expression cancels the i in the

factor d -2.5 in (8). When d = 0, the solution to the integral
takes a different and relatively simple form, as shown in
[38], involving only the exponential function, and not erfi().
(The formula for this case in [38] can be further simplified
by noting that, when d = q2 = 0, q5 is also zero, eliminating
half the terms.)

Originally, in [38], we implemented the erfi() functions in

terms of the indefinite integrals e dttx -z 2

0
 and e dttx 2

0z . We

precomputed these integrals incrementally at equally
spaced values of x using Simpson’s rule, and stored the
results in two tables. To evaluate (8), we interpolated values
from these precomputed tables.

By introducing Dawson’s integral, which is defined in

[24] as D x e e dtx tx
() = - z2 2

0
, the solution to the integral equa-

tion can be simplified to eliminate the use of tables. Dawson’s
integral is related to the complex error function by:

D x
i

e erf ix e erfi xx xa f a f a f=
-

=- -p p
2 2

2 2
. (9)

An efficient and accurate numerical approximation for
Dawson’s integral, due to Rybicki [26] and described in [24],
enables the calculation of erfi() without the use of tables. The
accuracy of Rybicki’s approximation increases exponentially as
the step size, h, used in the approximation, gets small. We use
h = 0.4, which gives an accuracy of about 2 ¥ 10-7. The function
erfi(x) for imaginary x can be reduced, by a trivial change of
variables, to the Error integral, the integral of a Gaussian nor-
mal distribution, for which subroutines also exist, as described
in [24]. Appendix B discusses details of implementation and
how to avoid overflow in the exponentials.

For linear tetrahedra, the HIAC system uses the exact
solution from [38], utilizing subroutines for Dawson’s inte-
gral and the Error integral as described above.

When Wilhelm and Van Gelder’s neon and smog treat-
ment of the glow energy is used, the techniques given
above still apply, but the term k(t)t(t) in the integrand is
replaced by g(t), which is now linear, rather than quadratic,
for linear scalar data. Unfortunately, this does not permit
any significant further simplification in the calculus.

When a perspective view is specified, a bit of care is re-
quired to do mathematically correct interpolation and inte-
gration, since the distance metric along an edge or ray is
distorted by the perspective transform. After performing
the perspective transform, the scalar field no longer varies
linearly along the edges of a cell nor on a ray through a cell.
(For example, the midpoint of an edge in parallel projection
is no longer the midpoint of that edge after the perspective
transform.) Therefore, integration techniques that are suit-
able for linear functions no longer pertain. Our approach to

this problem is to reverse the perspective transform and do
the interpolation and integration in world coordinates
rather than screen coordinates. When this is done, the
length of the ray segment must be computed as a 3D
(slanted) distance, rather than just a difference in z values.
(For a perspective ray from the origin through a pixel at
(, ,)x y 1 , the difference of the world coordinate z-values of
the endpoints of the ray segment must be multiplied by

x y2 2 1+ + .) The details of this work are tedious and the
interested reader is referred to our code, which is in the
public domain as indicated in Section 9.

Near and far clipping planes parallel to the screen may
be specified to achieve a volume slab of interest. This z-
clipping is accomplished as follows. Cells entirely in front
of the near clipping plane are skipped, as are cells entirely
behind the far clipping plane. Cells intersecting the slab are
processed normally, but, for each pixel, the viewing-
ray/cell intersection segment is restricted to the region in-
side the slab. This could be done efficiently by 3D polyhe-
dron clipping, but the above per-pixel scissoring alternative
was easier to code. z-clipping is also implemented for quad-
ratic cells.

5.2 Quadratic Cells
As discussed in Section 3, quadratic cells are cells where the
scalar field varies quadratically along the edges of the cell.
In this section, we deal with quadratic tetrahedra, which
have six interior nodes, one per edge, as in Fig. 1. Other
higher-order cells, as well as linear bricks and prisms, are
discussed in Appendix C.

In a quadratic tetrahedron, the scalar field varies
quadratically along any ray segment through the cell be-
cause (3) contains only quadratic terms. Inside these cells,
contour surfaces will be curved, therefore, the slabs will be
curved, and a viewing ray may intersect a single slab twice.
Because of this, we do not actually partition the cells into
slabs as we did for linear tetrahedra, but, rather, process
each ray through a cell in segments. In each ray segment,
the color and optical density vary smoothly.

The interpolation function for a quadratic tetrahedron
has the form of (3), which we repeat below:

 f(x, y, z) = c1 + c2x + c3y + c4z + c5x
2 +

c6xy + c7y
2 + c8yz + c9z

2 + c10xz.

Substituting the coordinates of the 10 nodes, along with
their field values, into this equation, we get 10 equations for
the 10 unknown polynomial coefficients ci, which we solve
with the LINPACK linear algebra package.

The segment endpoints are found as follows: The ray
equations parametrized by t, are

x t x t t y t y t t z t z t ta f c h a f c h a f c h= - = - = -0 0 0, , .

(We assume the viewpoint is at the origin, the pixel is lo-
cated at (, ,)x y z , where z is the distance from the view-
point to the screen, and the ray is in the direction of light
flow, with t increasing toward the eye.) Substituting the ray
equations into the quadratic interpolating function shown
in (3), gives a quadratic polynomial in one variable: f(t) = at2

+ bt + c. When a is nonzero, this polynomial will take on a

44 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

maximum or minimum at a single t value tm = -b/(2a). If the

ray segment does not contain tm, the quadratic polynomial
is monotonic in the segment. Otherwise, it contains both
increasing and decreasing regions, as shown in Fig. 4. These
regions, and their monotonic direction, can be determined
from the sign of a, which is the sign of the second derivative

of f, and the location of tm relative to tn and tf, the near and
far endpoints of the ray segment.

For every relevant slicing value, si, the corresponding
breakpoints in t can be found by using the quadratic for-
mula for the roots of f(t) = si. Between every pair of con-
secutive breakpoints si and si+1, the color and optical density
will each be represented by a smoothly varying polynomial
in t. The points in the quadratic tetrahedron, which have
scalar values in the interval [si, si+1], define a curved slab
bounded by the contour surfaces at the breakpoints and
parts of the tetrahedron’s surface facets.

We will refer to this as the slab [si, si+1]. The ray/slab in-
tersection segments and their order along the ray can be
determined by comparing f(tn), f(tf), and f(tm) with the slic-
ing values si. In the case illustrated in Fig. 4, s1 < f(tn) < s2 <
f(tf) < s3 < s4 < s5 < f(tm) < s6. Therefore, the ray enters the
slab [s2, s3] through a tetrahedron face at the left where f is
increasing, passes through the slab [s3, s4], continues
through slab [s4, s5], then enters the slab [s5, s6], continues
through [s5, s4] (with f decreasing), and, then, slabs [s4, s3],
[s3, s2], and [s1, s2], and, finally, exits through a face of the
tetrahedron. Though tm is shown in Fig. 4, it is not one of
the breakpoints; f reaches its maximum on the ray segment
inside the slab [s5, s6], but continues smoothly past its
maximum, as do g(t) or k(t), and t(t), so there is no need to
subdivide the integration there. Other cases can be handled
similarly: The code has two loops over the increasing and
the decreasing ranges of f(t), but one may not be needed.

Assuming the Williams and Max treatment of glow en-
ergy, let k(t) and t(t) be the chromaticity and optical density,
respectively, at position t along the ray. Then, the total
opacity from a ray segment [p, q] is:

e
t ds

p

q
-z t a f

 (10)

and the total radiance or color added by that segment is:

e t t dt
u du

p

q
t

q
-zz t

k t
a f a f a f . (11)

For k(t) and t(t) quadratic in t, (10) can be integrated ex-
actly, but numerical integration is required for (11) because
the a(t) in (7) is a cubic polynomial. We have used five-point
Gaussian integration [24], which gives exact answers for
polynomials of up to degree nine, and very good approxi-
mations for sufficiently smooth functions that are well ap-
proximated by such polynomials, but poor approximations
for functions which are not smooth. This is the reason for
breaking the range of integration up into the subsegments
where k(t) and t(t) are smooth polynomials. The color (11)
and opacity (10) on these subsegments are composited in
the back-to-front order described above.

If a semitransparent contour surface is requested at the
near breakpoint of a subsegment, it is composited after the
subsegment. The surface normal is computed from the par-
tial derivatives of (3), and used for Phong shading, as well
as to make the surface appear more opaque when it is seen
edge-on, as if it were a finite thickness of partially absorb-
ing glass. This makes the contour surfaces appear appro-
priately curved within a cell, even in the absence of re-
flected light. However, finite element simulations rarely
produce results which are C1 across cell boundaries, so the
contour surfaces may not be globally smooth.

5.3 Subpixel Splatting
In curvilinear or irregular meshes designed to concentrate
small cells near shocks, boundaries, or other regions of
rapid change or special interest, projections of tiny but im-
portant cells may fall between the pixel centers. This can
also happen due to perspective foreshortening. Any volume
rendering algorithm which samples the image only at pixel
centers may, therefore, miss significant details entirely, or
include them with an inappropriate weighting. This is the
case in both ray tracing and cell projection methods.

The theoretically correct solution to this problem is to
determine an analytic representation for the image as a
function of the continuous coordinates on the image plane
and, then, convolve it with a presampling filter kernel, be-
fore sampling it at the pixel centers. Because of the geomet-
ric and analytic complexity of a volume rendered image,
this is a formidable task.

We use an approximation to this analytic antialiasing,
suggested by Westover’s splatting technique [32]. If a cell’s
projection overlaps too few pixels (for example, less than
two), we assume that its color and opacity effects on the
image are concentrated at its center of gravity. We, there-
fore, take a delta function at the projection of the cell’s cen-
ter of gravity, and multiply it by the volume of the cell, the
perspective projection area shrinkage factor, and the color
and opacity at the cell’s center of gravity. We then convolve

Fig. 4. The variation of the scalar field f(t) = at2 + bt + c along a ray,
toward the eye, through a quadratic tetrahedron as a function of the ray
parameter t. Example regions defined by contour surfaces corre-
sponding to transfer function breakpoints are also shown. The hori-
zontal regions between si and si+1, for 1 £ i £ 5 correspond to curved
slabs in the tetrahedron. The ray enters the tetrahedron at tf.

WILLIAMS ET AL.: A HIGH ACCURACY VOLUME RENDERER FOR UNSTRUCTURED DATA 45

this weighted delta function with a presampling filter ker-
nel (described below), which is equivalent to taking a
weighted translated copy of the kernel. The result is a splat
to be composited onto the image.

If subpixel splatting is turned on, when the rendering
engine gets a cell, we first do a rudimentary scan conver-
sion to determine the number of pixels covered. If the pixel
count is larger than a threshold, we repeat the scan conver-
sion, doing the analytic integration for color and opacity,
and composite the result into the image. Otherwise, we
composite a weighted translated copy of the filter kernel.

We use a piecewise biquadratic kernel, the product of
two identical 1D piecewise quadratic kernels in x and y, the
B-spline kernel. This kernel is the twice iterated convolution
of a pixel-sized box filter with itself. In spatial frequency,
this filter has the Fourier transform sin3(px)/(px)3, which
greatly attenuates frequencies greater than the Nyquist
limit and, so, gives good antialiasing. However, it does
cause some minor blurring, since frequencies less than the
Nyquist limit are also attenuated, and the footprint of each
cell is a 3 × 3 square of pixels. A wider filter, such as the one
we use, is superior to a pixel-sized box filter kernel when
bright objects much smaller than a pixel move during ani-
mation. With a box filter kernel (area averaging), the bright
object would suddenly jump from one pixel to an adjacent
one when it crossed the edge between them, but, with a
wider kernel, the contributions smoothly fade up and
down.

Rather than precompute and store a high resolution ver-
sion of this splat, as Westover did, we just evaluate the sim-
ple quadratic polynomials each time they are needed. The
polynomial variables are the fractional subpixel coordinates
of the projection of the cell’s center of gravity. The original
algorithm of Westover used splats whose footprint de-
creased as the projected splats got closer together, but this
method could also cause splats to be lost between pixels!
Our solution is to keep the splat size to a three-pixel square,
and decrease the color/opacity amplitude instead, as de-
scribed above. Another approach (for regular grids only) is
given by Mueller and Yagel in [18]. They use summed area
tables to compute the integral of the splat footprint over the
pixel area, so all splats will contribute their effects com-
pletely to the image.

We tested subpixel splatting by dividing a cube into a
large number of tiny tetrahedra, each smaller than a pixel,
and compositing their splats. The result was the same as the
analytic integration over the projection of the five larger
tetrahedra representing the original cube, except for slight
blurring.

This splatting scheme is not a perfect solution to the
antialiasing problem. Suppose a tiny cell is very bright, but
it is totally occluded by another tiny cell directly in front of
it which happens to be dark and very opaque. First, the tiny
bright cell contributes a proportion to a nearby pixel, then
the totally opaque cell contributes a proportion to the opac-
ity, but, overall, the pixel will incorrectly retain some
brightness. Variants of this problem with per-pixel compo-
siting occur with any scheme that does not represent the
complete geometric projection of all cells overlapping the
filter kernel. We are currently working on an analytic

antialiasing scheme which does take into account the com-
plete geometry, but we expect it to be very slow.

6 THE VISIBILITY ORDERING ALGORITHM

The HIAC volume rendering system uses the cell projection
method which requires a visibility ordering of the cells. We
use the accurate sorting algorithm presented by Stein et al.
[31], which is an O(n2) (worst case) method for visibility
ordering n arbitrary shaped, nonintersecting convex poly-
hedra with planar faces, whose visibility ordering does not
contain cycles. The faces of adjacent cells need not be
aligned, and the meshes may have disconnected portions.
The algorithm is effectively a 3D generalization of the New-
ell et al. sort for polygons [3], [19], [20]. A z-buffer is incor-
porated in the rendering engine to serve as a witness to the
correctness of the visibility ordering.

A correction to the original algorithm reported by Stein
et al. is given in Section 6.1; then, in Section 6.2, we describe
a method that, for large data sets, increases the efficiency of
the algorithm by up to two orders of magnitude. The origi-
nal Stein visibility ordering algorithm, which outputs the
cells in back-to-front order, can be quickly described in the
following steps:

First, transform all of the vertices to screen coordinates
with a perspective corrected z. Next, create a roughly sorted
list of the polyhedra by arranging the elements in back-to-
front order based on each polyhedron’s rearmost z coordi-
nate. The algorithm QuickSort works well here. Last, fine-
tune the sort by performing visibility tests for each relevant
pair of polyhedra in the list. This fine tuning is described in
more detail in the following paragraph.

The goal of the fine-tuning stage is to verify that no
polyhedron P obscures any other polyhedron following it in
the list. If P does not obscure any polyhedron following it in
the list, then P can be safely output. However, if P does ob-
scure some element later in the list, then a portion of the list
must be rearranged.

We determine that P does not obscure an element Q by
finding whether P lies behind a plane that separates the two
elements. Because this can be difficult and time-consuming,
the algorithm has a predetermined list of planes which it
tries. This list starts with the planes that are easiest to calcu-
late, such as the planes perpendicular to the X, Y, and Z axes,
and ends with the more computationally difficult possibili-
ties, such as the planes defined by the front- and back-facing
faces of P and Q. If a separating plane cannot be found from
this list, then the explicit screen-projections of the two poly-
hedra are examined by a subroutine ProjectsBehind(P, Q) to
determine whether P obscures any part of Q.

The fine-tuning is described as follows: Given a roughly
sorted list of elements in back-to-front order, P, the element
at the head of the list, can be output (i.e., it obstructs no
remaining cells) if, for all elements Q whose z-extent over-
laps P’s z-extent, the following subroutine Obstructs(P, Q)
returns false:

Obstructs(P, Q)
if (P and Q have no overlapping X extents) return False

else if (P and Q have no overlapping Y extents) return
False

46 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

else if (P is behind a back-face of Q) return False
else if (Q is in front of a front-face of P) return
False

else if ProjectsBehind(P, Q) return False
else return True

If Obstructs(P, Q) is false for all Q, then P can be safely
rendered. In this case, P is output, removed from the list,
and the next element at the start of the list becomes the new
P; the process repeats until the list is empty. If Obstructs(P, Q)
is true for a pair of polyhedra P and Q, then P obstructs at
least a portion of Q. In this case, Q is moved to the head of
the list, thereby becoming the new P, and the process re-
peats for this new P. When a Q is moved to the head of the
list, it is tagged as having been moved. If such a Q requiring
moving has already been tagged, then the visibility order-
ing of the data set contains a cycle, and this is reported. We
have not yet implemented the polyhedron subdivision nec-
essary for breaking cycles.

ProjectsBehind(P, Q) examines the screen projections of
the two polyhedra to determine whether P obscures any
portion of Q. This subroutine searches for edge intersec-
tions between the screen projections of all edges of cells P
and Q. If an edge intersection is found, the z components of
the intersection point on P’s and Q’s actual edges are com-
pared, enabling ProjectsBehind(P, Q) to return the appropri-
ate value. If P’s z component of the intersection point lies
behind Q’s z component of the intersection point, then P
lies behind Q. Otherwise, P obscures at least a portion of Q.
There are two cases, however, when ProjectsBehind(P, Q)
cannot find edge intersections in the screen projection, as
illustrated in Fig. 5. The original algorithm published by
Stein et al. [31] did not deal with this situation correctly.
Both the process of handling these two configurations and a
correction to the original algorithm are given in the next
subsection.

In the event that a facet of a cell is nonplanar, we ap-
proximate a plane equation to the vertices defining the facet,
using Newell’s method [25]. Then, for each vertex (x, y, z) of
the facet, we calculate its deviation, |Ax + By + Cz + D|,
where A, B, C, D are the plane equation coefficients with an
outward-pointing normal, and retain the maximum devia-
tion along with A, B, C, D for each facet. To determine if a
facet of cell P defines a separating plane with regard to cell Q,
we substitute the coordinates of each vertex of cell Q into
the plane equation for the relevant facet of cell P. If the

plane equation evaluates to a positive value for all vertices,
then that facet is a separating plane. To deal with slightly
nonplanar facets when evaluating the plane equation, the
result plus the deviation must be greater than zero.

6.1 Correction to the Sorting Algorithm
In configuration (a) of Fig. 5, because the polyhedra are
entirely disjoint, either one can be output without affecting
the visibility of the other. In configuration (b) of Fig. 5, that
is not true; element Q lies behind element P. The reason
why Q lies behind P is as follows: Since ProjectsBehind(P, Q)
has found no edge intersections in the screen projections of
P and Q, and we are assuming configuration (b) holds, then
either a front face or a back face of P defines a separating
plane between P and Q. But, the fourth test of Obstructs(P, Q)
has ruled out the front face of P as a separating plane; there-
fore, Q must be behind P.

This issue was not addressed by Stein et al. in [31] because
they incorrectly stated that configuration (b) could not occur.
We now describe how such a configuration could occur. Sup-
pose we have two polyhedra at the beginning of our roughly
sorted list (a back-to-front sorting based on the rearmost z
component of each element), as illustrated in Fig. 6. Assuming
that the screen projections of the edges of P and Q do not
intersect and that their x and y extents are not disjoint, then
we have an instance of either configuration (a) or (b) in Fig. 5
where the first four tests of Obstructs(P, Q) fail. The problem,
then, is to distinguish which of the two configurations ex-
ists.

To do this, we test whether P and Q are entirely disjoint
from each other by deciding whether the projection of P is
contained in the convex hull [28] of the projection of Q, or
whether the projection of Q is contained in the convex hull
of the projection of P. If both of those tests fail, indicating
configuration (a), then P and Q are entirely disjoint from
each other and ProjectsBehind(P, Q) returns true indicating
that P can be output. Otherwise, if either of the convex-hull
tests is true, then ProjectsBehind(P, Q) returns false, indicat-
ing we have configuration (b) and that the order must be
changed.

6.2 The Multitiled Sort
The sorting algorithm described above is O(n2) worst case,
for n cells, because the first z-range overlap test may need
to be performed for every pair of cells. Since, in general, a
very large percentage of cells do not overlap each other in x
and y, we reasoned that, by tiling the view-plane window
into a rectilinear grid of p tiles, and, then, for each tile, sorting

Fig. 5. Two cases when ProjectsBehind(P, Q) cannot find intersections
in the screen projection of the edges of cells P and Q.

Fig. 6. Example of configuration (b).

WILLIAMS ET AL.: A HIGH ACCURACY VOLUME RENDERER FOR UNSTRUCTURED DATA 47

only the cells that project onto it, we could gain a speed-up
of up to p times (since each tile would have approximately
n/p cells). Of course, many cells may overlap tile bounda-
ries and, typically, the algorithm does not require worst-
case quadratic time. But, the sort was taking so long for
large data sets that it was worth experimenting to see what
improvement could be achieved. We partitioned the screen
into p roughly load balanced tiles and, then, sorted the cells
in each tile sequentially, using a single CPU. The end result
was p sorted lists of cells, one for each tile, which could
then be rendered on a tile-by-tile basis. The results of this
experiment were very gratifying; the times reported in Ta-
ble 1 are for an SGI Power Onyx system using a single
R10000 processor.

Using the method described above, if a cell projects onto
more than one tile, that cell will appear in more than one
sorted list, thus requiring multiple clipping and/or scan
conversion passes. Therefore, we modified the sorting algo-
rithm to utilize tiling internally. The internal tiling process
we describe next produces a single sorted list of all the cells,
for the entire view plane window.

In the multitiled sort, in order to decide whether poly-
hedron P can be safely output, we have to verify that P lies
behind all polyhedra Q that overlap the same tiles as P. The
multitiled visibility sorting algorithm can be described as
follows:

1)�Sort the elements in back-to-front order as before us-
ing the elements’ rearmost z coordinate as the sorting
criterion. We call this (roughly) sorted list the Global
Sorting List (GSL).

2)�Assign each element a unique identity (an element’s
initial position in the GSL will suffice), and give each
element a last_comparison variable to keep track of the
last polyhedron to which it was tested and found to lie
in front. In other words, if element T’s last_comparison
holds element U’s identity, then T has been deter-
mined to lie in front of element U.

3)�Divide the view-plane window into disjoint rectan-
gular tiles. By default, we assume a uniform distribu-
tion of cells in the volume, and partition the window
into n1/6 by n1/6 equal sized tiles, where n is the total

number of cells. While n1/3 by n1/3 equal sized tiles

would ideally result in the fewest number of cells per
tile, n1/3, large values of n would lead to a large num-
ber of tiles and, in turn, a large amount of storage.
Thus, the somewhat arbitrary 1

6 exponent was chosen

to keep the number of windows down to roughly n1/3.
The sort can optionally be called with an array of al-
ternative tile dimensions to allow the use of load bal-
anced tiles. The HIAC system uses a load-balancing
scheme designed for unstructured meshes which will
be described in a subsequent publication.

4)�For each tile, create a Tile Sorting List (TSL) which is a
linked list of pointers to the polyhedra overlapping
the given tile. In the TSL, the polyhedra are sorted in
back-to-front order based on their rearmost z coordi-
nate. For each polyhedron, create a list of pointers to
tiles that the polyhedron overlaps.

The following steps are essentially a merge of the separate
TSLs.

5)�Begin the merge by selecting the head polyhedron in
the GSL and calling it P. For each tile that P belongs to,
determine whether P lies behind all of the polyhedra
Q that occupy P’s tiles and whose rearmost z coordi-
nate lies behind P’s frontmost z coordinate, by using
the subroutine Obstructs(P, Q). However, before actu-
ally testing each Q, examine Q’s last_comparison vari-
able to see whether Q has already been tested with
element P in a different tile (each element can only oc-
cur once in any TSL). If the variable contains P’s iden-
tity, then P has already been found to lie behind Q
and the tests can be skipped. Proceed to the next ele-
ment following Q in the TSL. Otherwise, determine
whether P lies behind Q by calling Obstructs(P, Q).
Record P’s identity in Q if P can be safely output be-
fore Q and, then, proceed to the next element follow-
ing Q in the TSL.

6)�When an element P fails a test against a particular Q,
tag Q and move it to the head of the GSL (Q does not
move in any of the TSLs and, therefore, does not affect
the early termination condition mentioned in the fol-
lowing step. If Q has already been tagged as moved,
then the data set contains a cycle.) This Q now be-
comes the new P, and the whole process is repeated.

7)�Once we find an element Q whose rearmost z coordi-
nate lies in front of P’s frontmost z coordinate, we
may terminate any further tests in that particular TSL

because the remaining elements in the TSL lie fully in
front of P. Proceed to the next TSL that P occupies and
repeat the tests for all the applicable Q.

8)�When an element P passes the tests for all of the ap-
plicable Q in each of the TSLs it occupies, P is output
and removed from the GSL as well as from all of the
TSLs to which it belongs. The next element at the head
of the GSL becomes the new P and the whole process
repeats.

Comparative timings for the above multitiled sort versus
the original sorting algorithm reported by Stein et al. [31]
(with the corrected algorithm) are given in Table 2. Load
balanced tile dimensions were provided to the sorter for

TABLE 1
RESULTS OF PRELIMINARY EXPERIMENT TO TEST EFFECT OF

TILING ON THE SORTING ALGORITHM

Time in minutes to sort n cells

using tiling and a single CPU

Tiles 13,000 190,000 600,000 1,000,000

1 0.23 48.0 490 909

2 0.17 19.1 245 403

4 0.15 9.2 87 161

8 0.14 6.1 41 62

16 0.14 4.3 19 33

32 0.15 3.4 11 19

Shown are times in minutes to visibility order n cells by calling the original
sorting algorithm t times, each with one of t tiles, using a single R10000 CPU
of an SGI Power Onyx.

48 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

these tests. For 1,000,000 cells, the tiling of the sort resulted
in a 60 fold speed-up in sorting time.

7 HARDWARE BASED POLYHEDRON PROJECTION

The volume rendering system described to this point is not
interactive, because it uses a precisely correct sorting, and a
slow, accurate, analytic, or numerical integration along each
ray segment on which the transfer functions are linear. For
rapid preview, polygon-based rendering hardware can be
used instead. Shirley and Tuchman [29] divided the projec-
tion of a tetrahedron into from one to four triangles, and
used hardware scan conversion, transparency, and back-to-
front compositing to produce an image. Stein et al. [31]
point out that the linear transparency interpolation between
the triangle vertices replaces what should be an exponential
computation per pixel in (5), and can produce Mach bands.
They suggest a more accurate method using hardware tex-
ture mapping, which we have now generalized from tetra-
hedra to arbitrary convex polyhedra.

The bilinear interpolation of z, t, and k across faces, de-
scribed in Section 5.1, could be performed in a standard
rendering pipeline, but standard hardware does not permit
the interpolated values to be stored in separate front and
back buffers and combined later. Therefore, we need
smaller homogeneous regions where a single value for each of
these parameters will suffice and can be interpolated line-
arly or bilinearly.

Consider the set S of polygonal regions into which the
projection of a convex polyhedral cell P is divided by the
projections of all its edges. Since no projected edges of P
cross the interior of any polygonal element R of S, R lies
within the projection of a single front facing facet of P, and
of a single back facing facet of P. Since each facet is planar,
the thickness l = zb - zf of R varies linearly over R, and can
be bilinearly interpolated in hardware from its values at the
vertices of R. Since tf and tb are linear (or bilinear) over R,
their average tavg = (tf + tb)/2 is also, and it too can be inter-
polated in hardware.

Consider a ray segment s of length l = t2 - t1 = zb - zf, on

which t varies linearly between tb at t1 and tf at t2. Then,

the transparency T e
t dt

t

t

=
-z t ()

1

2

 on s reduces to T e
l avg=

- t
.

The standard compositing hardware produces a linear
combination:

Inew = (1 - a)Iold + a Iadd (12)

where Iold is the current color in the frame buffer, Iadd is the
interpolated color for the current polygon, and Inew is the
new color to be placed in the frame buffer. The opacity a =
1 - T can be interpolated from its vertex values, as in [29] or
[33], or taken from a texture map, as in [31]. The 2D texture
map M(u, v) is preloaded with the function 1 - e -uv, and the
texture parameters are set at the vertices of R with u = l = zb
- zf, the length of the ray segment s, and v = tavg. When u
and v are bilinearly interpolated by the hardware, and M(u, v)
is used for a, the hardware finds, per pixel, the exponential
needed for correct transparency. The access to the SGI
graphics hardware pipeline is through OpenGL, so the code
should be fairly portable.

The chromaticity k is bilinearly interpolated by the
shading hardware, and used as Iadd in the compositing
equation (12). We have three methods for calculating k at
the vertices of R. They are, in increasing order of accuracy
and computation time:

•� (M1) the average chromaticity (kf + kb)/2,
•� (M2) the table-based evaluation of (8) described in

[38], and
•� (M3) the subroutine-based evaluation of (8) described

in Section 5.1 and Appendix B.

In methods (M2) and (M3), we divide the radiance from (8) by
the opacity a, to get an effective chromaticity at the vertex.
When this quantity is interpolated, and used as Iadd in the
compositing equation (12), the result gives some of the effects
one would expect, such as a closer color kf partially obscuring
a farther color kb along the same ray, although it is not as accu-
rate as evaluating (8) at each pixel. We also offer a method
(M0) which just uses the hardware bilinear interpolation of a
from its values at the vertices of R, instead of the texture map-
ping. It is even faster and less accurate than method (M1).

Method (M0) is a direct generalization of the method of
[29] and may be used if texture mapping hardware is not
available. If the chromaticity k is constant on a ray segment,
the integral in (7) reduces to (1 - T)k = ak, as explained in
[17], so method (M1) is appropriate for cells of constant
chromaticity. Method (M2) may be sufficiently accurate for
8-bit-per-color images, if the precomputed tables for the

integrals of et2
 and e t- 2

 are large enough in range and
resolution. However, since each integral is looked up indi-

vidually, the separate exponential factor e t()- +g d d2
2 2 may

cause exponent overflow or underflow. If this happens (we
test for overflow in advance) or if the range of the precom-
puted tables is exceeded, we revert to method (M1). As ex-
plained in Appendix B, method (M3) handles all possible
inputs correctly and gracefully.

Now, consider the problem of subdividing the projection
of P into homogeneous regions R. Shirley and Tuchman [29]
used a catalogue of four possible projection topologies for a
tetrahedron, and Wilhelms and Van Gelder [33] used a line
sweep algorithm for the case of a hexahedron. For a general
convex polyhedral cell, we have used an incremental ap-
proach to build up a winged-edge data structure [22] for the
subdivision. We add the projected edges one at a time,
starting with an empty subdivision with a single un-
bounded face. The new projected edge is extended from its

TABLE 2
COMPARATIVE TIMINGS IN MINUTES TO VISIBILITY ORDER

n CELLS USING THE ORIGINAL SORT AS REPORTED
BY STEIN ET AL. IN [31] VERSUS THE REVISED ALGORITHM

USING TILES DESCRIBED HEREIN,
USING A SINGLE R10000 CPU OF AN SGI POWER ONYX

No. Cells Original Sort Multitiled Sort

13,000 0.23 min. 0.12 min.

190,000 48.0 min. 2.7 min.

600,000 489.5 min. 9.5 min.

1,000,000 908.6 min. 15.0 min.

WILLIAMS ET AL.: A HIGH ACCURACY VOLUME RENDERER FOR UNSTRUCTURED DATA 49

starting vertex, slicing one-by-one through the existing po-
lygonal regions, and the winged-edge data structure is ad-
justed accordingly. When all edges have been added, the
bounded polygons in the subdivision are the desired ho-
mogeneous regions.

Our principal current use of this hardware compositing
of general polyhedra is for the slabs of Fig. 3, into which a
linear tetrahedron is divided by breakpoints in the piece-
wise linear transfer functions. In this case, the HIAC system
still uses the slow but precise back-to-front sort of Section 6.
However, it also comes with a version of the much quicker
approximate sort of Williams [36], [37], which is more use-
ful for interactive applications.

8 RESULTS

Timings for the HIAC rendering engine are given in Table 3.
Times are shown for the exact linear integration using the
Dawson and Error integral, and for quadratic integration
using Gaussian quadrature. For comparison, the times for
the approximate method, as described in Section 4, are also
shown. Times are given for images with 100,000 pixels and
with 1,000,000 pixels. There is no significant difference in
rendering time when several semitransparent illuminated
isosurfaces are embedded in the image. Total volume ren-
dering time is the sum of the time shown here plus the ap-
propriate multitiled sorting time shown in Table 2.

Figs. 7, 8, 9, 10, 11, 12, 13, and 14 show volume rendered
images of coolant velocity magnitude from a finite element
simulation of coolant flow inside a component of the French
Super Phoenix nuclear reactor. The data is defined on a mesh
of 13,000 quadratic tetrahedra. Fig. 7 is an image created us-
ing the integration method for quadratic tetrahedra described
in Section 5.2. This image is to be compared with the next
four images, which were created using the same input speci-
fications as used for Fig. 7, but different volume rendering
methods. Fig. 8 was generated using the exact integration
method for linear tetrahedra described in Section 5.1, by ne-
glecting the data at the interior nodes. Fig. 9 was created us-
ing the approximate method described in Section 4, which
assumes k is a constant on each ray segment, with the value
(kf + kb)/2. Fig. 10 was generated using the approximate

method, but without slicing the cells into slabs. Fig. 11 was cre-
ated using the hardware based polyhedron projection method,
(M3), for sliced linear tetrahedra, described in Section 7. Differ-
ences between these images are clearly visible in the original
images which are available for downloading at their full size
and resolution in SGI RGB format at: http://www.llnl.gov/graphics/.

Figs. 12 and 13 show volume rendered images with em-
bedded semitransparent illuminated isosurfaces; both were
generated using the integration method for quadratic tetra-
hedra. Fig. 14 shows the same view as Fig. 12, but was cre-
ated using the integration method for linear tetrahedra. Figs.
15 and 16 show volume rendered images of the density field
from a finite element method simulation of air flow past an
F117a jet aircraft flying at a 20 degree angle of attack. There is
a vortex generated that breaks at the wing trailing edge. This
data set is composed of 250,000 linear tetrahedra in a highly
adaptively refined mesh. Fig. 15 was created using the exact
integration method for linear tetrahedra. Subpixel splatting
was turned on for the generation of this image; there were
9,200 projected cells covering less than two pixels, which
were splatted. Fig. 16 was created using the approximate in-
tegration method, with splatting turned off.

9 FUTURE WORK AND CONCLUSION

The HIAC volume rendering system described in this paper
creates highly accurate images of unstructured data sets
whose cells are either linear or quadratic tetrahedra and
whose facets are planar or nearly planar. The system was
specifically designed to deal with data sets from the finite
element method—but it is not limited to this type of data.
Currently, the HIAC visibility ordering algorithm and the
rendering engine will handle tetrahedra, bricks, prisms,
pyramids, and wedges, or any combination thereof (zoo
meshes); but will only use high accuracy integration for
linear and quadratic tetrahedra. We plan to implement the
procedure to perform accurate integration for linear and
quadratic bricks and prisms, and cubic tetrahedra, which,
along with the linear and quadratic tetrahedron, are the
most widely used finite elements. The accurate integration
procedure for these other elements is very similar to that for
quadratic tetrahedra, and is discussed in Appendix C.

TABLE 3
TYPICAL TIMINGS FOR THE VOLUME RENDERING ENGINE

FOR THE DIFFERENT INTEGRATION METHODS FOR BOTH 100,000 AND FOR 1,000,000 PIXEL IMAGES

TYPE NUMBER RENDERING ENGINE

OF OF TIME

INTEGRATION PIXELS 13,000 cells 600,000 cells

approximate method 100,000 0.17 min. 2.0 min.

1,000,000 0.77 min. 7.6 min.

exact linear 100,000 0.24 min. 2.9 min.

1,000,000 1.7 min. 16.3 min.

quadratic 100,000 0.27 min. 3.5 min.

1,000,000 2.0 min. 22.8 min.

The total time for the HIAC system is the sum of the rendering engine time shown here, plus the
 multitiled sorting time given in Table 2 (0.12 minutes for 13,000 cells, and 9.5 minutes for 600,000 cells).
All times are from an SGI Power Onyx using one R10000 CPU.

50 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

Fig. 7. Image created by integration method for quadratic tetrahedra.

Fig. 8. Image created using exact integration method for linear tetrahedra.

Fig. 9. Image created using the approximate method.

Fig. 10. Image created using the approximate method, without slicing cells.

Fig. 11. Image created using the hardware based projection method
(M3), with cell slicing.

Fig. 12. Image created by integration method for quadratic tetrahedra,
with embedded isosurfaces.

WILLIAMS ET AL.: A HIGH ACCURACY VOLUME RENDERER FOR UNSTRUCTURED DATA 51

Fig. 13. Different view of Fig. 12.

Fig. 14. Same view as Fig. 12, but using exact integration method for
linear tetrahedra.

The system is not intended to be highly interactive, but,
rather, to operate in batch mode to create high qual-
ity/accuracy images for publication or in-depth study, or
for animations. (It would be nice if a graphical user inter-
face were developed to facilitate the selection of the input

parameters and the creation of the image specification file.)
To improve the efficiency of the HIAC system, we have
parallelized it for an MPP, the IBM SP-2. This parallel work,
which includes load balancing techniques for unstructured
meshes and methods for dealing with distributed finite
element data sets has been implemented and will be de-
scribed in a subsequent publication.

It may be possible to increase the efficiency of the system
somewhat by the use of front-to-back compositing with
early termination. This can be done on a pixel by pixel basis
within cells, and will save unnecessary calls to the numeri-
cal routines for the complex error function for those pixels.

The exact visibility ordering algorithm described by
Stein et al. [31], and used in the HIAC system, is O(n2)
worst case. Therefore, it is not suitable for interactive use
with the previewer. A faster exact depth ordering algorithm

is described by de Berg et al. [2] which runs in time O(n4/3+e)
for any fixed e > 0. However, this algorithm, which is based
on a general framework for computing and verifying linear
orders extending implicitly defined binary relations, is quite
theoretical and is not readily implemented. At present, Wil-
liams’ [36] MPVO visibility ordering algorithm, which is a
heuristic for nonconvex meshes, is used for the hardware
assisted previewer described herein. However, the MPVO
algorithm has a large storage requirement for its preproc-
essed data structures; therefore, it would be useful to investi-
gate replacing this algorithm with a different sorting heuris-
tic, such as one that sorts the cells by their centers of gravity.
For data defined on 3D Delaunay triangulations, Karasick et
al. [9] describe an efficient exact sorting algorithm based on
sorting the tetrahedral cells by their powers.

An especially interesting and challenging project for the
future is how to accurately volume render finite element
data whose cells have been deformed by a parametric
mapping function resulting in cells with highly curved fac-
ets. In this case, a ray through the volume may enter and
exit the same cell more than once. Thus, a global visibility
ordering may be impossible. In addition, the parametric
mapping must be inverted before the scalar function can be
evaluated.

Fig. 15. Image created using exact integration method for linear tetra-
hedra, with subpixel splatting.

Fig. 16. Image created using approximate method, without subpixel
splatting.

52 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

As mentioned at the end of Section 5.3, our current splat-
ting method is not always correct, and we are also working
on analytic antialiasing using an exact geometric subdivision
of the image plane by the projected edges of all cells.

The source code for the HIAC volume rendering system
including the visibility ordering algorithm by Stein et al.
[31], a previewer using Williams’ interactive splatting sys-
tem [37] (based on the projected tetrahedron algorithm of
Shirley and Tuchman) and his MPVO visibility ordering
algorithms [36], and the hardware-assisted projection and
compositing system utilizing texture mapping hardware
described in [31] and extended to deal with arbitrary con-
vex polyhedra as described herein, is available at:
http://www.llnl.gov/graphics/software.html. This research code is
written in FORTRAN, C, and C++, and utilizes OpenGL for
the hardware rendering.

APPENDIX A
This appendix describes the HIAC data structures for use
with data sets having mixed cell types (zoo meshes). We
allow the use of five different cells types in the input data
set: tetrahedra, pyramids, prisms, wedges (cells with seven
nodes, also called anvils), and bricks, each of which may be
linear, quadratic, or cubic. For the higher order elements,
we assume the extra nodes are located on the edges, with
the exception of the cubic tetrahedron, which also has a
node in the center of each face. (More than five cell types
could be used as long as each cell type has a unique total
number of nodes per cell.)

Each scalar field in the data set is stored in a floating
point array with one element per node, in the same order-
ing as is used for the xyz array, described below. In addition
to the data arrays, three other basic arrays are used: elems,
nodes, and xyz. The elements of the elems and the nodes ar-
rays are integer values and the elements of the xyz array are
three-tuples of floating point values. Each cell has one entry
in the elems array, its total number of nodes nn. However,
rather than encoding nn directly, the elems array stores the
cumulative total of nn. So cell i will have nn = elems[i] -
elems[i - 1] nodes. The nodes for cell i are in the nn entries
in the nodes array, starting with nodes[elems[i]]. The nodes
stored in the nodes array are pointers to the coordinates of
the nodes which are stored in the xyz array. The conven-
tional nodes are specified first in the nodes array in a stan-
dard order, followed by the interior nodes, if any. We also
keep a flag indicating whether the data set is linear, quad-
ratic, or cubic. This flag disambiguates different types of
cells with the same number of nodes, e.g., a quadratic brick
has the same number of nodes as a cubic tetrahedron. We
assume elements of different orders (linear, quadratic, cu-
bic) will not be combined in one mesh.

APPENDIX B
This appendix gives implementation details for the evalua-
tion of (8) of Section 5.1. In the notation of that section, let

f
t

1
1

2
=

+g d

d

and

f
t

2
2

2
=

+g d

d
.

Since the numerators represent the extinction coefficients
t(t1) and t(t2) at the two endpoints of the ray segment, f1
and f2 are nonnegative real numbers. (If numerical inaccu-
racy results in a slightly negative value, it is replaced by
zero.)

Note that the erfi terms in (8) are multiplied by a factor of

e f- 2
2

 if d > 0. When erfi(f2) is replaced by the Dawson integral

from (9), the above factor e f- 2
2

 cancels the factor e f2
2
 in

erfi f e D ff() ()2
2

2
2
2

=
p

. Thus, the product e erfi f erfi ff- -2
2

2 1(() ())

can be evaluated as 2
2 1

1
2

2
2

p
(() ())D f e D ff f- - . If d > 0, f2 > f1,

so f f1
2

2
2- is negative, and if it becomes so negative that it

leaves the valid domain of the exponential (causes under-

flow), then it is safe to replace e f f1
2

2
2- by zero.

If d < 0, then the corresponding product is

1
2
2

2
22 1

1 2i e erfi
f
i erfi

f
i e erf f erf ff fF

HG
I
KJ -

F
HG

I
KJ

F
HG

I
KJ = -c h c hd i.

(The 1
i in front comes from the d -2.5 factor in (8).) We use an

approximation to erf(x) for x > 0, given in [24] under the
guise of the complementary error function 1 - erf(x), of the

form erf x ue x p u() (())@ - - +1
2

, where u x= +
1

1 0 5. , and p(u) is a
ninth degree Chebyshev polynomial selected to give an
accurate fit to the tail of the error function. Thus, we get

e erf f erf f u e u e ef p u f f p u2
2

2 2
2

1
2

1
2 1 2 1(() ()) () ()- @ - - , which avoids

loss of accuracy when f1 and f2 are large, since the 1s cancel.

In this case, f1 > f2, and we can again set e f f2
2

1
2- to zero if

f f2
2

1
2- is too negative.

APPENDIX C
Section 3 discussed interpolation functions for the linear
tetrahedron and the quadratic tetrahedron. This appendix
discusses interpolation functions for the other common
cells used in the finite element method—the prism, the cu-
bic tetrahedron, and the quadratic brick—and outlines how
the volume rendering methods described in this paper may
be extended to include these other cells.

The interpolation function for the six-node pentahedron
or prism is:

f(x, y, z) = c1 + c2x + c3y + c4z + c5xz + c6yz. (13)

The prism is mainly used as a transition element to “glue”
together tetrahedra and bricks in meshes that use a combi-
nation of different element types. FEM simulation code that
uses such a mesh of mixed element types is often called a
zoo code.

The interpolation function for the cubic tetrahedron,
which has 20 nodes, is a cubic polynomial, and is complete
through the cubic terms of the 3D power series. Therefore,

WILLIAMS ET AL.: A HIGH ACCURACY VOLUME RENDERER FOR UNSTRUCTURED DATA 53

its interpolation function has all the terms shown in (1).
This cell has two interior nodes per edge, usually at 1

3 and
2
3 of the edge, as well as a node at the center of gravity of

each facet of the cell. Here, the field varies cubically along
any ray through the cell.

The quadratic brick, with 20 nodes, has the following
interpolation function:

f(x, y, z) = c1 + c2x + c3y + c4z + c5x
2 + c6y

2 + c7z
2 +

 c8xy + c9xz + c10yz + c11x
2y + c12x

2z + c13xy2 + c14xz2 +

c15y
2z + c16yz2 + c17xyz + c18x

2yz + c19xy2z + c20xyz2.(14)

The brick’s interior nodes are located at the centers of its
edges.

At present, the tetrahedron and brick, in their linear and
quadratic forms, dominate practical applications [14].
Therefore, in this paper, we limit our coverage of accurate
volume rendering methods to these cells and the prism.
Similar techniques to those given in this paper can be ap-
plied to other types of cells, provided the interpolation
function is fourth degree or lower. We have implemented
the high accuracy volume rendering methods for the four-
node tetrahedron and 10-node tetrahedron, and we de-
scribe below how one might extend the system to deal with
the linear brick and prism, and the quadratic brick. At pres-
ent, the HIAC system will also handle bricks, prisms, pyra-
mids, and wedges, although not with the highest precision.
When we implement the accurate rendering scheme for lin-
ear bricks and prisms described here, these elements will be
not be subdivided into tetrahedra prior to rendering.

The same basic procedure described in Section 5.2 for
quadratic tetrahedra can be used for high accuracy render-
ing of the quadratic brick as well as the linear brick and
prism. The interpolation equation for the quadratic brick is
given in (14); it is a fourth order polynomial in x, y, and z,
so its evaluation along a linear ray gives a fourth order
polynomial f(t) in the ray parameter t. The points on a ray
where the polynomial takes on a contour value si can be
found analytically by the closed form noniterative solution
of the quartic equation first published by Ferarro, see [40].
Here, a case analysis, similar to, but more complex than, the
one described above for quadratic tetrahedra, is required to
find the regions where the polynomials t(t) and g(t) are
smoothly varying, i.e., include no breakpoints. A diagram
of the case analysis for finding the ray segments is given in
Fig. 17. The points t1, t2, and t3, where f ¢(t) = 0 separate the
monotone ranges of f(t), can be found as roots of the cubic
polynomial f ¢(t). Either Gaussian quadrature or the power
series method of Novins and Arvo [21] can be used to do
the integration.

The interpolation function for the linear brick is given in
(2). It is trilinear, therefore, contours within the cells are
curved and, so, the methods described above pertain. The
function f(t) is cubic because of the xyz term in (2). To find
the roots of the cubic polynomial, f(t) - si = 0, we can use
the closed form solution given in [42].

The linear prism has an interpolation function given by
(13). This has the bilinear terms xz and yz, and, so, contour
surfaces in the interior of the linear prism will be curved.
Substituting the ray parameterization into the interpolation

equation, we get a quadratic polynomial which can be
analyzed on a case by case basis similarly to that used for
the quadratic tetrahedron.

The interpolation equation for the cubic tetrahedron is:

f(x, y, z) = c1 + c2x + c3y + c4z + c5x
2 + c6y

2 + c7z
2 + c8xy + c9xz +

 c10yz + c11x
3 + c12y

3 + c13z
3 + c14x

2y + c15x
2z + c16xy2 +

c17xz2 + c18y
2z + c19yz2 + c20xyz. (15)

Since this equation is of degree three, it can be dealt with in
a similar way to that described above for the other higher
order elements.

ACKNOWLEDGMENTS

We are grateful to Roger Crawfis of Ohio State University
for his contribution to the scanvol code which was modified
for use in the system described herein. We also appreciate
technical assistance from Barry Becker of Silicon Graphics,
Inc., Kwan-Liu Ma at ICASE, and Mark Duchaineau at
LLNL. Peter L. Williams is greatly indebted to Sam Uselton
and Tom Lasinski at NAS, NASA Ames Research Center,
for their generous summer support for three years and for
equipment loans without which this work would not be
possible. He is also grateful for the use of the Large-Scale
Interactive Visualization Environment (LIVE) at NAS,
NASA Ames, which was used to generate the images in this
paper. Peter L. Williams and Nelson L. Max received sum-
mer support for two years, arranged by Becky Springmeyer,
from the Accelerated Strategic Computing Initiative (ASCI).
Robert Haimes of MIT graciously provided the F117a data
set and Bruno Nitrosso at Electricité de France provided the
Super Phoenix data set. This work was partially performed
under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract
number W-7405-ENG-48. Peter L. Williams performed the
majority of his contribution to this research while a summer
visitor at Lawrence Livermore National Laboratory, and at
NAS, NASA Ames Research Center.

Fig. 17. Analysis of ray segment through a quadratic brick element.

54 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998

REFERENCES

[1]� H.E. Cline, W.E. Lorensen, S. Ludke, C.R. Crawford, and B.C. Teeter,
“Two Algorithms for the Three-Dimensional Reconstruction of To-
mograms,” Medical Physics, vol. 15, no. 3, pp. 64-72, May 1988.

[2]� M. de Berg, M. Overmars, and O. Schwarzkopf, “Computing and
Verifying Depth Orders,” SIAM J. Computing, vol. 23, pp. 437-446,
Apr. 1994.

[3]� J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics
Principles and Practice, second ed. Addison-Wesley, 1990.

[4]� R. Gallagher and J. Nagtegaal, “An Efficient 3D Visualization
Technique for Finite Element Models and Other Coarse Volumes,”
Computer Graphics, vol. 23, no. 3, pp. 185-192, July 1989.

[5]� M.P. Garrity, “Raytracing Irregular Volume Data,” Computer Graphics,
vol. 24, no. 5, pp. 35-40, Nov. 1990.

[6]� C. Giertsen, “Volume Visualization of Sparse Irregular Meshes,”
Computer Graphics, vol. 12, no. 2, pp. 40-48, Mar. 1992.

[7]� C. Giertsen and A. Tuchman, “Fast Volume Rendering with Em-
bedded Geometric Primitives,” Visual Computing—Integrating
Computer Graphics with Computer Vision, T.L. Kunii, ed., pp. 253-
271. Springer Verlag, 1992.

[8]� R. Haimes, “Visual3: Interactive Unsteady Unstructured 3D Visu-
alization,” AIAA Paper 91-0794, Reno Nev., Jan. 1991.

[9]� M.S. Karasick, D. Lieber, L.R. Nackman, and V.T. Rajan,
“Visualization of Three-Dimensional Delaunay Meshes,” Algo-
rithmica, vol. 19, pp. 114-128, 1997.

[10]� K. Koyamada, “Volume Visualization for the Unstructured Data,”
SPIE Vol. 1259 Extracting Meaning from Complex Data: Processing,
Display, Interaction, 1990.

[11]� W.E. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution
3-D Surface Construction Algorithm,” Computer Graphics, vol. 21, no.
4, pp. 163-169, July 1987.

[12]� B.A. Lucas, “A Scientific Visualization Renderer,” Proc. Visualiza-
tion ‘92, pp. 227-234, Boston, Oct. 1992.

[13]� K-L. Ma, “Parallel Volume Ray-Casting for Unstructured-Grid
Data on Distributed-Memory Architectures,” Proc. ACM Parallel
Rendering Symp., pp. 23-30, Oct 1995.

[14]� R.H. MacNeal, “Finite Elements: Their Design and Performance,”
New York: Marcel Dekker, 1994.

[15]� X. Mao, “Splatting of Nonrectilinear Volumes Through Stochastic
Resampling,” IEEE Trans. Visualization and Computer Graphics, vol 2,
no. 2, pp. 156-170, June 1996.

[16]� N. Max, P. Hanrahan, and R. Crawfis, “Area and Volume Coher-
ence for Efficient Visualization of 3D Scalar Functions,” Computer
Graphics, vol. 24, no. 5, pp. 27-33, Nov. 1990.

[17]� N. Max, “Optical Models for Direct Volume Rendering,” IEEE Trans.
Visualization and Computer Graphics, vol. 1, no. 2, pp. 99-108, June 1995.

[18]� K. Mueller and R. Yagel, “Fast Perspective Volume Rendering
with Splatting Utilizing a Ray-Driven Approach,” Proc. Visualiza-
tion ‘96, pp. 65-72, Oct 1996.

[19]� M. Newell, R. Newell and T. Sancha, “Solution to the Hidden
Surface Problem,” Proc ACM Nat’l Conf., pp. 443-450, 1972.

[20]� M. Newell, “The Utilization of Procedure Models in Digital Image
Synthesis,” PhD thesis, Univ. of Utah, 1974 (UTEC-CSc-76-218 and
NTIS AD/A 039 008/LL).

[21]� K. Novins and J. Arvo, “Controlled Precision Volume Integration,”
Proc. 1992 Workshop Volume Visualization, pp. 83-89, Boston, Oct. 1992.

[22]� J. O’Rourke, Computational Geometry in C. Cambridge Univ. Press,
1995.

[23]� C.E. Prakash, “Parallel Voxelization Algorithms for Volume Ren-
dering of Unstructured Grids,” PhD Thesis, Supercomputer Cen-
tre, Indian Inst. of Science, 1996.

[24]� W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in Fortran. Cambridge Univ. Press, 1992.

[25]� D.F. Rogers, Procedural Elements for Computer Graphics. New York:
McGraw-Hill, 1985.

[26]� G.B. Rybicki, “Dawson Integral and the Sampling Theorem,”
Computers in Physics, vol. 3, no. 2, pp. 85-87, 1989.

[27]� P. Sabella, “A Rendering Algorithm for Visualizing 3D Scalar Fields,”
Computer Graphics, vol. 22, no. 4, pp. 51-58, Aug. 1988.

[28]� R. Sedgewick, Algorithms in C++, pp. 359–371. Addison-Wesley 1992.
[29]� P. Shirley and A. Tuchman, “A Polygonal Approximation to Direct

Scalar Volume Rendering,” Computer Graphics, vol. 24, no. 5, pp.
63-70, Nov. 1990.

[30]� C. Silva and J.S.B. Mitchell, “The Lazy Sweep Ray Casting Algo-
rithm for Rendering Irregular Grids,” IEEE Trans. Visualization and
Computer Graphics, vol. 3, no. 2, pp. 142-157, Mar.-June 1997.

[31]� C. Stein, B. Becker, and N. Max, “Sorting and Hardware Assisted
Rendering for Volume Visualization,” Proc. 1994 Symp. Volume
Visualization, pp. 83-90, Washington, D.C., Oct. 1994.

[32]� L. Westover, “Interactive Volume Rendering,” Proc. 1989 Workshop
Volume Visualization, pp. 9-16, Chapel Hill, N.C., May 1989.

[33]� J. Wilhelms and A. Van Gelder, “A Coherent Projection Approach
for Direct Volume Rendering,” Computer Graphics, vol. 25, no. 4,
pp. 275-284, July 1991.

[34]� J. Wilhelms, “Pursuing Interactive Visualization of Irregular
Grids,” The Visual Computer, vol. 9, pp. 450-458, 1993.

[35]� J. Wilhelms, A. Van Gelder, P. Tarantino, and J. Gibbs, “Hierarchical
and Parallelizable Direct Volume Rendering for Irregular and
Multiple Grids,” Proc. Visualization ‘96, pp. 57-64, Oct. 1996.

[36]� P.L. Williams, “Visibility Ordering Meshed Polyhedra,” ACM
Trans. Graphics, vol. 11, no. 2, pp. 103-126, Apr. 1992.

[37]� P.L. Williams, “Interactive Splatting of Nonrectilinear Volumes,”
Proc. Visualization ‘92, pp. 37-44, Boston, Oct. 1992.

[38]� P.L. Williams and N.L. Max, “A Volume Density Optical Model,” Proc.
1992 Workshop Volume Visualization, pp. 61-68, Boston, Oct. 1992.

[39]� P.L. Williams and S.A. Uselton, “Metrics and Generation Specifica-
tions for Comparing Volume Rendered Images,” NASA-Ames TR
NAS-96-021, Dec. 1996, http://science.nas.nasa.gov/Pubs/TechReports/
NASreports/NAS-96-021/NAS-96-021.html.

[40]� P.H. Winston and B.K.P. Horn, Lisp, second edition. Reading,
Mass.: Addison Wesley, 1984.

[41]� R. Yagel, D. Reed, A. Law, P-W. Shih, and N. Shareef, “Hardware
Assisted Volume Rendering of Unstructured Grids by Incremental
Slicing,” Proc. 1996 Symp. Volume Visualization, pp. 55-62, Nov. 1996.

[42]� Handbook of Chemistry and Physics. Cleveland, Ohio: Chemical
Rubber Publishing.

Peter L. Williams received the PhD in computer
science from the University of Illinois at Urbana-
Champaign, and the BS in engineering-physics
from the University of California at Berkeley. He
has taught computer science at Vassar College,
the University of Connecticut at Storrs, and Har-
vey Mudd College. He is currently a visiting sci-
entist at the IBM T.J. Watson Research Center,
where he is a member of the IBM Data Explorer
research group. At IBM, Dr. Williams is develop-
ing a distributed visualization system for use on

the IBM SP-2 for the National Laboratories’ terascale computing effort.
His research interests include graphics, scientific visualization, volume
rendering (especially unstructured data), and high performance parallel
and distributed computing.

Nelson L. Max has research interests in the areas
of scientific visualization, volume and flow render-
ing, computer animation, molecular graphics, and
realistic computer rendering, including shadow
and radiosity effects. Since 1977, he has been a
computer scientist at Lawrence Livermore Na-
tional Laboratory, and has been teaching part time
at the University of California, Davis, currently as a
50 percent professor of applied Science. Dr. Max
has taught mathematics and computer science at
the University of California at Berkeley, the Univer-

sity of Georgia, Carnegie Mellon University, and Case Western Reserve
University. He was director of the U.S. National Science Foundation sup-
ported Topology Films Project in the early 1970s, which produced com-
puter animated educational films on mathematics. He has worked in
Japan for three and a half years as codirector of two Omnimax (hemi-
sphere screen) stereo films for international expositions, showing the
molecular basis of life. For the past eight years, he has concentrated on
volume, vector field, and flow visualization for 3D simulations.

Clifford M. Stein graduated from Harvey Mudd
College and received his PhD in computer sci-
ence from the University of California at Davis in
1998. He was employed at Lawrence Livermore
National Laboratory from 1992 to 1997. His cur-
rent research interests include animation, ren-
dering, and physically-based modeling.

