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Abstract

This paper describes a number of simulations which
show that SRN representations exhibit interactions
between memory and sentence and clause
boundaries reminiscent of effects described in the
early psycholinguistic literature (Jarvella, 1971,
Caplan, 1972). Moreover, these effects can be
accounted for by the intrinsic properties of SRN
representations without the need to invoke external
memory mechanisms, as has conventionally been
done.

Introduction

Several well attested phenomena in
psycholinguistics relate to the interaction of short-
term memory and sentence and clause boundaries.
These results come from some of the -earliest
research in modem psycholinguistics. For example,
Jarvella (1971) presented listeners with short stories
which were interrupted at various points. The
listener's task was to recall verbatim as much as
possible of the preceding material. The results
showed that recall was best for words in the clause
immediately preceding the interruption, and that it
dropped off markedly for words prior to the clause
boundary. In a related study, Caplan (1972) looked
at the time taken for subjects to judge whether or
not a probe word had been present in a two-clause
sentence which they had just heard. If the probe
word had occurred prior to the clause boundary,
reaction times were slowed significantly.

The conventional explanation for these effects is
that "the completion of a clause is the condition
under which lexical material is transferred from the
most accessible memory system to one that is less
accessible " (Fodor, Bever, & Garrett, 1974, p. 344).
A similar explanation has been articulated more
recently by Garnham (1985), who proposed that
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information is "transferred into a more permanent
memory store at clause boundaries, and detailed
representation of surface form is erased from
immediate memory" (Garnham, 1985, p. 204). The
goal of the study described here is to discover if
these phenomena can be accounted for within a
connectionist framework, and without invoking an
external memory management system.

Simple Recurrent Networks

Language is encountered in speech as a temporal
sequence of phonemes. The consequence of this for
connectionist models is that the input must be
integrated over time. The main technique used until
quite recently was to transform the temporal
dimension into a spatial one. Thus, the input to a
network consisted of a set of units where each of the
units (or group of units) represented the input at a
different point in time. Adopting this approach
forces the modeler to set an arbitrary limit on the
temporal memory of the system. (sec Fanty, 1985
for an example of the application of this approach to

natural language processing).
Output
copy
| Hidden |
I Word i I I Context J

Figure 1: A simple recurrent network

A more appealing solution is to use a recurrent
network. Recurrence in a connectionist network is
implemented by taking the state of some part of the
network at time ¢ and using it as input (in addition to



the external input) at time +1. A recurrent network
variant, the simple recurrent network (SRN), was first
applied to natural language processing by Elman
(1990). The structure of a typical SRN is given in
Figure 1. It is a standard feedforward network, with
an additional set of “"context” units. These units
store a copy of the activations of the hidden units
from the previous time step which are then used as
input at the current time step. The weights from the
context units are modifiable like any other weights
in the network. The context units serve as a form of
memory in which aspects of preceding input item
are represented with decreasing precision.

Elman (1991) explored the ability of simple
recurrent networks to carry information over a long
sequence of inputs. The input to Elman's SRN were
words in sentence-like sequences, and the task of the
network was to output word n+1 given word n as
input. Take the following sentence from Elman's
corpus: Dog who cat chases sees girl. There is a
dependency between the number of the noun Dog
and the number of the verb sees. If a listener were
presented with this sentence and asked, for example,
to judge whether or not it was grammatical, then
s/he would have to carry information about the
number of the noun and use it in assessing whether
the verb number was correct. This would have to be
done irrespective of the number of intervening
words. In reality, the greater the number of
intervening words, the more difficulty people have
in performing this task. What Elman demonstrated
was that given the task of anticipating the next word
in a sentence, a simple recurrent network was able to
utilise information, such as number, encountered
several time-steps previously. However, just as with
people, the network did not demonstrate perfect
performance, rather the performance degraded as the
number of intervening words increased.

Now, the task Elman set his network was by no
means as demanding as having to perform a full
parse, but it did entail operations that are thought to
occur in parsing. The main facet of language
processing captured by his network is the impact of
expectancies at a given point in a sentence. Such
expectancies are known to be an important part of
natural language understanding (Marslen-Wilson &
Tyler, 1980).

Representation in SRNs

The internal representations developed in the hidden
units of the network mediate the sensitivity of SRNs
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to the structural properties of sentence-like
sequences. These representations are quite different
from conventional forms of representation used in
natural language processing. They are vectors of
activation values, typically of high dimension,
which vary as a function of time. Consequently, the
processing of an input sequence can be thought of as
the traversal of a trajectory through a sequence of
states in this representational state space.

Elman (1990, 1991) and others (Servan-
Schreiber, Cleeremans, & McClelland, 1991) have
explored the capacity of these representations
primarily from a linguistic point of view. To a large
extent this work has been in response to the agenda
set by Fodor and Pylyshyn's (1988) critique of
connectionism, in which they claimed, among other
things, that connectionist representations were
inadequate for representing the compositionality of
language.

Apart from their representational adequacy, an
equally interesting question is the psychological
adequacy of SRN representations. Do any interesting
psychological consequences arise from viewing
mental representation as fixed-width vectors of
activation values, and from viewing language
processing as the following of a trajectory through a
high-dimensional state-space? As an initial step in
answering this question it is important to show that
SRN language representations demonstrate certain
well-known psychological properties of language
representations, such as the boundary -effects
described above.

Generating SRN Representations

The first stage of this study involved the
development of representations that could be used in
a subsequent study of boundary effects. To this end,
a replication of the learning experiment described in
Elman (1991) was carried out.

The architecture of the network used is shown
in Figure 2. It consists of 24 input units and 24
output units in which words are represented in a
localist manner. The two layers of 10 units are
designed to create a bottleneck at the input and
output to encourage the creation of distributed word
representations and also to help reduce the overall
connectivity of the network. The context units serve
as the temporal memory of the system. The single
lines represent full connectivity, and the double line
represents one-to-one connectivity (the weight in



this case is 1.0). Note, also, that the copy links are
not modifiable.

Word n+1 (24)
Hidden3 (10)
Hidden2 (70)
/ copy
Hidden1 (10)
Word n (24) Context (70)

Figure 2: The SRN used by Elman (1991)

Table 1: Elman's (1991) grammar used for
_ generating the SRN training corpus

S - NpvP""

NP — PROPNININRC

VP —  V(NP)

RC —  who NP VP | who VP (NP)

N — boy | girl | cat | dog | boys | girls |
cats | dogs

PropN —  John | Mary

A — chase | feed | see | hear | walk | live |

chases | feeds | sees | hears | walks |
lives

The network in Figure 2 was trained using a
corpus of sentences of varying complexity generated
from the grammar given in Table 1, identical to that
used by Elman (1991). During generation, number
agreement between nouns and verbs within a clause
was maintained, and between head nouns and verbs
in relative clauses, where relevant. Note that the
localist word representation did not preserve
morphological similarity.

The task of the network was to anticipate the
next word in a sequence given the current word.
Obviously, at any point in a sentence, the next word
is not always completely predictable. Therefore, the
performance of the network was judged on whether
it could anticipate the right class of the next word.
Training took place in four distinct phases using a
slightly modified version of the back-propagation
learning algorithm (Rumelhart, Hinton, & Williams,
1986), in which the cross-entropy rather than the
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standard sum-of-squares error function was used (cf.
Hinton, 1989). During the first phase the network
was trained on five epochs of a corpus of 10,000
simple SVO and SV sentences. In the second phase,
25% of the corpus comprised complex sentences
(i.e., contained onc or more relative clauses).
During the third and fourth phase, the percentages of
complex sentences rose to S50% and 75%,
respectively. A schedule of varying learning rates
was also used: 0.09, 0.08, 0.06, and 0.04 for each
successive phase. As is usual with SRNs, a
momentum term of 0.0 was used.

In Elman's (1991) study, the context units were
reset at the end of each sentence. This resulted in
loss of information across sentence boundaries.
Since, boundaries (both clausal and sentential) are of
interest here, a reset was not used. As a
consequence, the network learned the prediction task
somewhat less well than when a reset was used
(82% accurate prediction! as compared to 76% with
areset).

The Simulation Experiments

The assumption underlying the following series of
simulation experiments is that at any point during
the input of a sentence to the SRN, the pattern of
activation on the hidden units is a representation of
the sentence structure up to that point. It contains
information about the preceding words in the
sentence and their organisation which should, in
principle, be accessible. If the representation has
characteristics that are similar to mental
representations, then the accessibility of lexical
information should be affected by the position of
clause and sentence boundaries.

Experiment 1: Sentence boundary effects

The purpose of Experiment 1 was to verify the
existence of a sentence boundary effect in a
simulated recall experiment. A network was trained
to generate a yes/no response when given a sentence
representation (i.e., a hidden unit vector from the
SRN) and a probe word as input. This type of
network will be referred to as a recall network, to
distinguish it from the SRN (see Figure 3). If the
probe word was present in the sentence up to the

1An output vector was considered accurate if each element was
within 0.1 of its corresponding element in a vector based on
transition probabilities derived from the corpus.



point at which the hidden unit vector was extracted
(the interruption point), the network was trained to
output a "yes" response, otherwise a "no" response.
To represent the probe word, the 10 unit distributed
representation taken from the first hidden layer of
the SRN was used. A learning rate of 0.01 and a
momentum of 0.9 were used in the training of all
recall networks.

yes/no (2)

]

hidden (50)

ZHAN

word (10) sentence (70)

Figure 3: Experiment 1 recall network

The training corpus for Experiment 1 was
selected in the following way: A subset was
selected of the 10,000 sentence SRN training corpus
comprising sentences of length four (including the
full stop). This subset consisted of 1,264 sentences
and they were made into 632 sentence pairs. These
pairs were then used as input to the trained SRN
network. For half of the pairs the hidden unit
activations were saved after the input of the first
word of the second sentence. For the remaining
half, hidden unit activations were saved following
the input of the third word in the second sentence.
The task of the recall network was to decide whether
or not a given probe word had been encountered in
the preceding input sequence. For those cases in
which the target had indeed been present (two-thirds
of the cases), the distance between the interruption
point and the target was two words. The sentence
boundary intervened for half of these cases and a
word intervened for the remainder. This, therefore,
was the simplest test for boundary effects.

The network was trained for 30 replications of
10 epochs each. A replication involved resetting the
weights to small random values and randomly
selecting a new set of targets and distracters from
632 sentence pairs. Thus, both "subjects” and
materials were treated as random factors. The
results of this simulation demonstrated, as
hypothesised, that the speed and accuracy of
response were impeded by the presence of a
sentence boundary. A "yes" response was deemed to
have been made if the activation of the "yes" unit
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exceeded 0.5. A similar level of activation on the
"no” unit was taken to indicate a "no" response.
Mean squared error (MSE) was used as an analogue
of response time (Seidenberg & McClelland, 1989).
Table 2 summarises the results of the simulation
averaged over the 30 replications. The difference
between the boundary/no-boundary conditions was
significant for both the accuracy (1=7.12; df=29;
p<0.001) and MSE data (r=-2.28; df=29; p=0.03).

Table 2: Results from the recall network of
Experiment 1 averaged over 30 replications.

Proportion Mean squared
correct error
“No Boundary  0.94 0.072
Boundary 0.69 0.087

Experiment 2: Clause Boundary Effects and
Memory for Relevant Information

The purpose of Experiment 2 was to determine if
the effects found for sentence boundaries also held
for clause boundaries. An additional goal of this
experiment was to explore what kind of information
survives boundary transitions, and what information
does not.

The training corpus for the recall network used
in this experiment was derived in a similar way to
the previous one: A sect of 128 sentences was
constructed, which was input to the SRN, and a set of
hidden unit vectors were saved at a number of
interruption points. The input to the SRN comprised
three-word sentence fragments, each fragment
having one of two forms: N who N and N VN. Where
N could be boy(s), girl(s), dog(s), or cat(s), and V

“could be see(s), hear(s), chase(s), or feed(s). The

first noun in each fragment was the target, and the
second noun, the interruption point. Note that the
end of a who-fragment is still within a clause, but
that the end of a verb-fragment is at the end of a
clause. If clause boundaries behave in a similar way
to sentence boundaries, the target should be less
accessible in the verb-fragments than in the who-
fragments.

The task of the recall network in this
experiment was varied slightly from the previous
ones in order to ensure that the boundary
phenomenon was not an artefact of the particular
type of recall network used. Rather than indicate
whether or not a target word had occurred in the
fragment, the recognition network was trained to



carry out two tasks simultaneously: (1) to output the
number of the target word (i.e., singular or plural),
and (2) to indicate whether the target was human or
animal. If the SRN is to perform its task
successfully, it must be sensitive to verb and noun
number.  Consequently, number is the type
information that should persist over a several input
elements. The human/non-human distinction, on the
other hand, is one which is of no relevance to the
SRN, and is less likely to be encoded in the sentence
representation.

sing/plural (1)

=

hidden (30)

!

sentenbe (70)

human/non-human (1)

/

Figure 4: Experiment 2 recall network

The recall network for this experiment was
trained for 30 replications of 25 epochs each. The
results indicated that number information was
retained, but to a lesser degree for the verb-
fragments than for who-fragments. This difference
was statistically significant for both the accuracy
(t=19.23; df=29; p<0.001) and MSE data (t=-25.41;
df=29; p<0.001). However, the network behaved at
chance level in the retention of the human/non-
human distinction for both types of fragment (1<1.0).
Details of the analysis of the number data are given
in Table 3.

Table 3: Recall of number information in
Experiment 2 averaged over 30 replications.

Proportion Mean squared
correct error

Within clause  1.00 0.078

End of clause  0.61 0.228

Experiment 3: Replication of Caplan's study

The purpose of Experiment 3 was to extend the
results of the previous experiments by carrying out a
more detailed replication of Caplan's (1972)
findings. The architecture of the recall network was
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similar to Experiment 1, but the training corpus was
more extensive.

The training corpus was devised by selecting a
subset of the 10,000 sentences used in the fourth
phase of the SRN training described above. On this
occasion, the subset consisted of the 716 sentences
that were exactly nine tokens long (including the full
stop). These sentences were then made into 358
pairs. A word location was selected at random in
the middle of the pair (i.e., near the end of the first
sentence and near the beginning of the second).
This was used as the interruption point (P). For
66% of the pairs a word was then chosen, again at
random, from within four words to the left of the IP.
For the remainder, a word was chosen that was not
present in this four word range. Because the P and
the target word were chosen at random, for some
proportion of cases the target word was in the first
sentence of the pair, and for others it was in the
second sentence. This corpus was then used as input
to the SRN network in Figure 2, and for each IP the
vector of hidden unit activations was saved. This,
along with the 10-unit word representation vector,
was used as input to the recall network.

The recall network was trained 30 times for 300
epochs each, using the modified version of the back-
propagation learning algorithm discussed in
Experiment 1. For each replication a different set of
targets and interruption points was chosen so that
again there was randomisation over materials as well
as "subjects". This yielded a dataset that could be
compared with data from the first experiment in
Caplan's study. Caplan's data were reaction times
for target words as a function of the presence of a
clause boundary and distance in syllables between
the boundary and end of sentence. A similar set of
data were derived from the simulation, again using
MSE as a reaction time analogue, and with the
interruption point being treated as the end of
sentence. Both sets of data are graphed in Figure 5.
As in Caplan's study, the boundary condition was
significant, with reaction time and accuracy
significantly impeded by the presence of a boundary
(F(1,29)=31.29, p<0.001, for MSE, and
F(1.29)=65.28, p<0.001, for the accuracy data).
There was, however, a significant interaction
between the presence of the boundary and the
distance of the boundary from the P (F(1,29)=11.76,
p=0.002, for MSE, and F(1.29)=5.74, p=0.23, for
accuracy). This type of interaction was not found in
Caplan's data. Note, however, that the apparent
trend in the opposite direction in his data was not
statistically significant.



Figure 5: Comparison of Caplan's
Experiment 1 data and simulation

Caplan simulation
:452 o—° 005
. Om 3
s O\'O no boundary 003
430 / o
420 001
410 0
3 4 2 3
Syllables Words
Boundary distance
Discussion

The results described above agree with the overall
findings of Caplan (1972) and Jarvella (1971): both
accuracy and speed of recall is impeded by the
presence of sentence and clause boundaries. This
suggests that the types of distributed representation
generated by SRNs have some psychological
plausibility. The significant interaction between
boundary distance and boundary presence in
Experiment 3 may be due to SRNs having a more
limited capacity memory than people.

These results are significant because they arise
as a side-effect of the sentence representation, and
not from an interaction between the representation
and some external memory mechanism, as is the
conventional explanation. It could be argued that
SRN representations are created in a psychologically
implausible manner (i.e., by backprop), and
consequently the work reported here is of limited
relevance. But the manner in which the
representations are created need not invalidate the
simulation results, since these arise from the
distributed and dynamic nature of the
representations, and are not dependent on how the
representations are created.

The findings also suggest a new way of thinking
about representation in language processing.
Information in a sentence is preserved on a "need-to-
know basis": only information that is necessary is
maintained. This property could provide a natural
way of capturing some of the strategic effects in
language processing that have complicated the
interpretation of many psycholinguistic experiments
in the sentence and discourse area (see Garnham,
1989, for an excellent analysis of this problem).
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