
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Ambiguous fragment assignment for high-throughput sequencing experiments

Permalink
https://escholarship.org/uc/item/7zx1s4hr

Author
Roberts, Adam

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7zx1s4hr
https://escholarship.org
http://www.cdlib.org/

Ambiguous fragment assignment for high-throughput sequencing experiments

by

Adam Roberts

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Computer Science

and the Designated Emphasis

in

Computational and Genomic Biology

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Lior Pachter, Chair
Professor Michael Eisen
Professor Yun S. Song

Fall 2013

Ambiguous fragment assignment for high-throughput sequencing experiments

Copyright 2013
by

Adam Roberts

1

Abstract

Ambiguous fragment assignment for high-throughput sequencing experiments

by

Adam Roberts

Doctor of Philosophy in Engineering – Computer Science

University of California, Berkeley

Professor Lior Pachter, Chair

As the cost of short-read, high-throughput DNA sequencing continues to fall rapidly, new
uses for the technology have been developed aside from its original purpose in determining
the genome of various species. Many of these new experiments use the sequencer as a digital
counter for measuring biological activities [70] such as gene expression (RNA-Seq [44]) or
protein binding (ChIP-Seq [56]).

A common problem faced in the analysis of these data is that of sequenced fragments
that are “ambiguous”, meaning they resemble multiple loci in a reference genome or other
sequence. In early analyses, such ambiguous fragments were ignored or were assigned to
loci using simple heuristics. However, statistical approaches using maximum likelihood es-
timation have been shown to greatly improve the accuracy of downstream analyses and
have become widely adopted [71, 64, 34, 67, 53]. Optimization based on the expectation-
maximization (EM) algorithm are often employed by these methods to find the optimal
sets of alignments, with frequent enhancements to the model. Nevertheless, these improve-
ments increase complexity, which, along with an exponential growth in the size of sequencing
datasets, has led to new computational challenges.

Herein, we present our model for ambiguous fragment assignment for RNA-Seq, which
includes the most comprehensive set of parameters of any model introduced to date, as well
as various methods we have explored for scaling our optimization procedure. These methods
include the use of an online EM algorithm and a distributed EM solution implemented on
the Spark cluster computing system. Our advances have resulted in the first efficient solution
to the problem of fragment assignment in sequencing.

Furthermore, we are the first to create a fully generalized model for ambiguous fragment
assignment and present details on how our method can provide solutions for additional high-
throughput sequencing assays including ChIP-Seq, Allele-Specific Expression (ASE), and the
detection of RNA-DNA Differences (RDDs) in RNA-Seq.

i

To Ashley and Sagan.

Contents ii

Contents

Contents ii

1 Introduction 1
1.1 Fragment Assignment . 1
1.2 RNA-Seq . 3
1.3 Prior work . 3

2 The eXpress Model 6
2.1 Problem statement . 6
2.2 Parameters . 6
2.3 Derived values . 7
2.4 Generative model . 8
2.5 Likelihood function . 10

2.5.1 Approximation . 10
2.5.2 Positional uniformity . 11

3 Parameter Estimation with the EM Algorithm 12
3.1 The EM algorithm . 12
3.2 Basic EM algorithm for fragment assignment 12
3.3 Auxiliary parameter estimation . 14
3.4 EM formulation . 15
3.5 Batch estimation algorithm . 16

4 Fragmentation Bias 18
4.1 Background . 18
4.2 Method . 20

4.2.1 Sequence probabilities . 20
4.2.2 Positional bias weights and probabilities 22
4.2.3 Effective length . 23
4.2.4 Updated likelihood . 23
4.2.5 Estimation procedure . 24

4.3 Validation . 24

Contents iii

4.3.1 Comparison to alternative expression arrays 25
4.3.2 Comparison with previous methods 26
4.3.3 Technical replicates . 27
4.3.4 Library preparation methods . 28
4.3.5 Sequencing platforms . 28

5 Scaling the Optimization 31
5.1 Comparisons . 32
5.2 The näıve batch approach of RSEM . 33
5.3 Partitioning the data . 36
5.4 The heuristic partitioning approach of Cufflinks 39

5.4.1 Model . 39
5.4.2 Optimization . 39

5.5 The online EM approach of eXpress . 41
5.5.1 Overview . 41
5.5.2 Mathematical details . 43
5.5.3 Allele-specific expression . 47
5.5.4 Performance comparison . 47
5.5.5 Discussion . 48

5.6 The distributed batch EM approach of eXpress-D 48
5.6.1 Background . 48
5.6.2 Method . 50
5.6.3 Results . 54
5.6.4 Discussion . 56

6 Updating Estimates After Changes to Target Set 57
6.1 Introduction . 57
6.2 Methods . 60

6.2.1 Incremental adjustment of abundance estimates 60
6.2.2 Mathematical details . 60
6.2.3 Improving performance by approximating the affected set 62

6.3 Results . 63
6.3.1 Accuracy of partitioning approximation 63
6.3.2 Application to RefSeq incremental update 64

6.4 Discussion . 64

7 Detecting RNA-DNA Differences 67
7.1 Background . 67
7.2 Previous Methods . 68

7.2.1 Li et al. [35] . 68
7.2.2 Peng et al. [51] . 69

7.3 Method . 70

Contents iv

7.3.1 Generative model . 70
7.3.2 Likelihood function . 72
7.3.3 Optimization of likelihood . 73
7.3.4 Method . 74

7.4 Results . 76
7.5 Discussion . 77

8 Conclusion 78

Bibliography 79

Contents v

Acknowledgments

I would like to thank Lior Pachter for being a truly amazing advisor and collaborator on this
work. It was really a great experience working with you, and I value all that I learned from
you. Thanks to my thesis and qual committees: Yun S. Song for teaching me mathematical
rigor, Michael Eisen for challenging the weaknesses in my understanding in biology, and Dan
Klein for providing a new perspective on the problems herein. Leonard McMillan and Wei
Wang are responsible for introducing me to the field of bioinformatics and pushing me to
get involved in research, and I am grateful for their support throughout my undergraduate
career. Thanks to Cole Trapnell for laying the groundwork for a lot of my research and for
helping me to become a better engineer and to the other members of the Pachter Lab with
whom I’ve collaborated: Harold Pimentel, Lorian Schaeffer, Meromit Singer, Brielin Brown,
Nicholas Bray, Shannon Hateley, and Sharon Aviran. Harvey Feng from the AmpLab was
instrumental in the implementation of eXpress-D. My original officemates in the Song lab–
Andrew Chan, Ma’ayan Bresler, Joshua Paul, and Paul Jenkins–were incredibly helpful in
getting me over the graduate student learning curve and helping me survive my first year.
Thanks to the Brian McClendon for managing the Computational Biology DE group. Also,
thanks to Trey Anastasio, Jon Fishman, Mike Gordon, and Page McConnell for providing the
soundtrack to my research. Most of my work was funded by a National Science Foundation
Graduate Research Fellowship, and I was also supported by NIH grant R01 HG006129.

Finally, I would like to thank my incredible family for supporting me throughout this
time. My parents for always encouraging me to pursue my interests, my brothers for joining
me at concerts, my dog Sagan for forcing me to take a break when he needed a walk, and
my amazing wife Ashley for teaching me to practice yoga, being my editor, and picking up
the slack at home when I was too busy.

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

In recent years, the cost of sequencing DNA molecules has dropped dramatically, leading
to to an explosion of new data and important biological discoveries. While the change is
often attributed to the introduction of new short-read sequencers such as the Illumina Hi-Seq,
ABI SOLiD, and Ion Torrent platforms, the hardware is only a part of the story. These new
machines are no doubt breakthroughs in and of themselves, producing massive amounts of
data quickly and cheaply. However, the data is not of the quality of the previous generation
of Sanger sequencing devices, as the read lengths are an order of magnitude shorter and
the output more error-prone. What has allowed the data to be of valuable to the scientific
community nonetheless is the advanced algorithms and software that have been developed
alongside it.

Morever, the decrease in price and increase and output has led researchers to develop
new assays that essentially turn the sequencing device into a digital counter [70]. Issues
associated with the shorter read length, higher error rates, and biases inherent in library
preparation are being solved in silico in conjunction with statistical inferences for these new
assays by a new class of bioinformatics software, often based on modern machine learning
techniques.

One very important problem associated with modern sequencers and assays is that of
“ambiguous fragment assignment”, which is the focus of this thesis.

1.1 Fragment Assignment

Modern sequencing experiments usually involve the shearing of DNA or cDNA into rel-
atively short fragments for processing on a high-throughput sequencing device such as the
Illumina HiSeq. In the analysis of the resulting data, one of the first steps is to align the reads
representing these partially-sequenced fragments to a set of target sequences. This proce-
dure identifies locations within the target sequences that each fragment may have originated
from using a threshold on mismatches and insertions or deletions (indels), thus reducing the
focus of downstream analysis to only highly probable loci. Numerous read mappers exist to

CHAPTER 1. INTRODUCTION 2

solve this problem with various features and performance characteristics, the most popular
of which are based on the Burrows-Wheeler transform [29, 33].

A common problem in downstream analysis of the resultant alignment data is that frag-
ments often map ambiguously to multiple target sequences. For example, in the case of
RNA-Seq a given fragment might align to multiple isoforms of a gene as well as to multiple
genes within a gene family. This ambiguity makes it difficult to measure the abundance of
transcripts, especially those with few unique regions. A similar problem occurs with ChIP-
Seq data, where fragments align to many regions of the genome, complicating the problem
of peak finding for determining binding sites [11]. Another example is metagenomics, where
researchers wish to detect the presence and relative abundance of various closely related
species of microorganisms in a pooled sample of DNA [42].

We have developed a maximum likelihood estimation approach for determining the most
likely abundances of a set of target sequences to explain the output of a sequencing exper-
iment. These targets can be transcripts in RNA-Seq, binding sites in ChIP-Seq, or entire
genomes in metagenomic analyses. Our model–called the eXpress model–is the most so-
phisticated to date and combines various features of alignments including fragment length,
sequence composition, and profiles of potential sequencer errors in order to compute the
probability of the observed sequencing reads in an experiment. The parameters modeling
these features are simultaneously estimated from the data and used to probabilistically assign
ambiguous fragments as part of an expectation-maximization (EM) likelihood optimization
procedure.

In the interest of scaling our method to the growing size of sequencing datasets, we
have explored several algorithms for optimization including the online EM as well as a
distributed version of the batch EM. In the former case we achieve linear-time scaling in
time with constant memory use while maintaining very high accuracy with a software tool
called eXpress. In the latter, we have shown that it is possible to process any amount of
data in constant time by scaling the size of a cluster in a cloud computing environment (such
as Amazon’s EC2) using eXpress-D.

We have also introduced a method for efficiently updating the results of our analysis after
a modification of the target set with a tool called ReXpress.

Moreover, we have generalized the eXpress model to accept uncertainty in target se-
quences. This extension adds robustness to eXpress while also allowing it to detect differ-
ences between a reference sequence and that from which the fragments are composed, such as
in the case of RNA-DNA Differences (RDDs) or Single Nucleotide Polymorphisms (SNPs).

Earlier versions of this work have been presented in a piecemeal fashion, over the course
of several papers [55, 53, 54]. This dissertation is meant to simplify and unify those previous
works, while also providing an overview of the state of the art for solving the ambiguous
fragment assignment problem.

CHAPTER 1. INTRODUCTION 3

1.2 RNA-Seq

While the methods herein are applicable to many high-throughput sequencing experi-
ments, we shall focus most of our descriptions on RNA-Seq, as isoform abundance estimation
is one of the first areas where the community focused on solving the ambiguous fragment
assignment problem. Applications to other technologies will be discussed more in Chapter 8.

RNA-Seq technology offers the possibility of accurately measuring transcript abundances
in a sample of RNA by sequencing of double stranded cDNA [40]. Unfortunately, cur-
rent technological limitations of sequencers require that the cDNA molecules represent only
partial fragments of the RNA being probed. The cDNA fragments are obtained by a se-
ries of steps, often including reverse transcription primed by random hexamers (RH), or
by oligo(dT). Most protocols also include a fragmentation step, typically RNA hydrolysis
or nebulization, or alternatively cDNA fragmentation by DNase I treatment or sonication.
Many sequencing technologies also require constrained cDNA lengths, so a final gel cutting
step for size selection may be included. Figure 1.1 shows how some of these procedures are
combined in a typical experiment.

1.3 Prior work

Work in the area of ambiguous fragment assignment [19] has, until recently, been focused
in the area of isoform and gene reconstruction and abundance measurements, initially using
expressed sequence tags (ESTs) [71] and later RNA-Seq [44, 23, 67, 32] as input ata.

[71] introduced a simple (and slightly inaccurate–see Section 3.2 and [48]) multinomial
likelihood model and EM optimization procedure for assigning ambiguous ESTs to aid in
reconstructing isoforms using splice graphs. Their model assumes isoforms that are known
to generate many fragments are more likely to generate compatible ambiguous fragments
than others. However, by not taking the isoform length into account, they miss the fact that
an isoform may produce fewer fragments than another simply because it’s shorter and lose
the ability to measure abundance.

In the first paper on RNA-Seq, [44] attempted to solve the problem of assigning fragments
that align ambiguously to the genome, also known as multi-reads. Since [44] is not interested
in finding isoform-level abundances, there is no attempt to disambiguate within the isoforms
of a gene. Instead, the authors introduce a method–later named the “rescue method” by
[32]–for assigning multi-reads based on the length-normalized unique read counts of genes
measured in units of reads per kilobase per million mapped (RPKM). This method is nearly
identical to a single step of the EM algorithm of [71], with a focus on genes instead of isoforms.
Aside from inaccuracies in abundance estimation introduced by using gene-level RPKMs
without regard for isoform-level abundances [65], the rescue method lacks a probabilistic
basis which is likely why a more complete optimization was not used.

Shortly after the introduction of RNA-Seq, [32] and [67] recognized the need for isoform-
level disambiguation and rediscovered role of generative models and the EM algorithm in

CHAPTER 1. INTRODUCTION 4

1. fragmentation of RNA

2. random priming to make sscDNA
(first-strand synthesis)

3. construction of dscDNA
(second-strand synthesis)

4. size selection

5. sequencing

6. mapping

RNA molecules

RNA fragments

sscDNA

dscDNA

Gel cutout

RNA sequence

paired-end read

sense

anti-sense

short long

Figure 1.1: Overview of a typical RNA-Seq experiment. RNA is initially fragmented (1)
followed by first-strand synthesis priming (2), which selects the 3’ fragment end (in transcript
orientation), to make single stranded cDNA. Double stranded cDNA created during second-
strand synthesis (3), which selects the 5’ fragment end, is then size selected (4) resulting
in fragments suitable for sequencing (5). Sequenced reads are mapped to opposite strands
of the genome (6), and in the case of known transcript or fragment strandedness, the read
alignments reveal the 5′ and 3′ ends of the sequenced fragment. All arrows are directed 5′

to 3′ in transcript orientation.

CHAPTER 1. INTRODUCTION 5

solving this problem. Both groups introduced very similar generative models and optimiza-
tion procedures, extending the work of both [71] and [44] and showing a much improved
ability to disambiguate fragment assignments over the latter [32]. Along with the methods,
software implementations were released called RSEM [32] and Cufflinks [67]. Other similar
EM-based solutions have been developed such as MISO [24] and IsoEM [45], but since RSEM

and Cufflinks have become the most widely-adopted and represent most of the breadth in
the field, we will focus on these two methods in our comparisons.

Major differences between the methods include the addition of parameters for paired-
end fragment lengths in Cufflinks and sequencing errors in RSEM as well as a heuristic in
Cufflinks for partitioning the data based on genomic loci (see Chapter 5 for more details).

It is also worth noting that this problem shares many similarities with latent Dirichlet
allocation (LDA) [6].

CHAPTER 2. THE EXPRESS MODEL 6

Chapter 2

The eXpress Model

This chapter will proceed as follows: In Section 2.1 we will formulate our problem as one of
statistical inference and optimization, with respect to a set of parameters modeling a modern
high-throughput sequencing experiment. The details of these parameters and their origins
are introduced in Section 2.2 followed by an explanation of the generative model (Section 2.4)
and resulting likelihood function (Section 2.5). An approximation to the likelihood and an
assumption of uniformity are described in Sections 2.5.1 and Section 2.5.2, respectively. The
latte assumption will be relaxed when we discuss fragmentation bias in Chapter 4 following
the basic EM optimization procedure in Chapter 3.

2.1 Problem statement

Given a set of target sequences T and a set of fragments F generated from T in a
sequencing experiment, we wish to find the set of partial assignments,

Pf =

{
Pf (t, p, l) :

∑
t′,p′,l′

Pf (t
′, p′, l′) = 1

}
for allf ∈ F , (2.1)

that maximize the likelihood of a generative model for the experiment, where Pf (t, p, l) is the
probability that fragment f originated at position p of transcript t with a fragment length
of l.

2.2 Parameters

Before we defining our generative model, we describe the parameters affecting the out-
come of an experiment. For our purposes, we will describe these parameters in terms of
an RNA-Seq experiment as shown in Figure 1.1, but they apply in an identical manner to
many other cases. We will again use f to represent a fragment and its sequence and t, p, l
to represent the target, position, and inferred length of a single alignment, respectively.

CHAPTER 2. THE EXPRESS MODEL 7

• Relative abundance (ρ): The relative abundances are the proportions of the initial,
intact (c)DNA molecules matching each target sequence such that

∑
t ρt = 1. In the

case of RNA-Seq, the targets are transcripts and ρt represents the number of copies of
transcript t relative to the number of copies of all transcripts in the transcriptome T .

• Fragment length (λ): The fragment length distribution measures the probability of
observing various fragment lengths created by the shearing process. As illustrated in
Figure 3.2A this distribution can be often be approximated with a Gaussian due to
the size selection step (4 in Figure 1.1). In the case of single-end reads, the fragment
length cannot be exactly determined since one of the fragment ends cannot be aligned.
For paired-end reads, both ends can be aligned to the target references to determine
an inferred length for each alignment. If multiple alignments exists, the exact length is
still unknown but λl provides the probability of observing a fragment of inferred length
l independent of all other parameters. We also define ML to be the maximum allowed
length such that λl′ = 0 for l′ > ML.

• Position (π): The position of the start and end of a fragment within a target sequence
is known to be non-uniform in sequencing experiments such as RNA-Seq [18, 55]. In
our method, we attribute this non-uniformity primarily to the sequence specificity
of portions of the experimental protocol. Certain steps in the library preparation,
including priming for reverse transcription in RNA-Seq, tend to select certain positions
over others based on the nucleotides present as well as their order. Chapter 4 is
devoted to the details of our model for fragmentation bias which affects the positions
of fragments. For the purposes of this chapter, we will assume the position is chosen
uniformly at random from within the transcriptome, which implies that πp|t,l = (l(t)−
l + 1)−1 where l(t) is the length of target t in base pairs (see Section 2.5.2).

• Fragment sequence (φ): The observed sequence of a fragment is not completely deter-
mined by the sequence of the molecule from which it originated. Sequencing devices
will occasionally emit base substitution errors or even insert nonexistent bases or delete
real ones. The distribution of these errors is dependent on the platform used for se-
quencing as well as the chemistry used in library preparation, among other factors.
Given the target and observed sequences of the fragment, we assume this parameter
to independent of all other features of the fragment.

2.3 Derived values

Using the above set of basic parameters, we derive several other values that will be useful
in simplifying our generative model and likelihood function.

• Effective length (l̃): We define l̃(t) to be the effective length of a target t which, under

CHAPTER 2. THE EXPRESS MODEL 8

the uniform position assumption, can be computed as

l̃(t) =

ML∑
l=1

λl(l(t)− l + 1), (2.2)

where l(t) is the actual length (in base pairs) of target t.

This quantity is important since a fragment can have endpoints at only a limited
number of locations in a target dependent on the fragment’s length. Averaging over
the fragment length distribution allows for a better measure of the targets “length”
in the view of the stochastic process that generates fragments. We will revisit this
quantity and provide more intuition in Chapter 4 when we leave behind the assumption
of uniformity.

• Target sampling probability (τ): The sampling probability of target t, τt, is the proba-
bility of selecting target t to generate a fragment independent of all other parameters.
It can be derived as

τt =
ρtl̃(t)∑
u ρul̃(u)

. (2.3)

Furthermore, as proven in [67], given τ and l̃, ρ can be recovered as

ρt =
τt/l̃(t)∑
u τu/l̃(u)

. (2.4)

We also derive the target sampling probability conditional on fragment length as

τt|l =
ρt · (l(t)− l + 1)∑

u∈T ρu · (l(u)− l + 1)
. (2.5)

With the relationship between l̃, ρ, and τ formally stated, a more intuitive explanation of
the effective length is now possible. The effective length is proportional to the target sampling
probability, given equal abundance. In other words, if one were to select a fragment of any
length (using λ) from a sample where each target had exactly a single copy, then τt ∝ l̃(t).

2.4 Generative model

Figure 2.1 presents a graphical model defining the generative model used by our method.
According to this model, a fragment length l is first sampled from λ. A target is then

selected given l and the target sampling probability τ (which itself relies on ρ, λ, φ–see
Section 2.3 for more details). Next, a position within t is selected given l and the position
distribution π. Finally, the fragment is generated from the target after introducing sequencer
errors based on φ.

CHAPTER 2. THE EXPRESS MODEL 9

fragment

parameters

Lfragment length

T

P

target sequence

position

F

N

� ⌧⇡ �

Figure 2.1: The eXpress generative model. A graphical model describing the generative
process for obtaining fragments that underlies the likelihood function used in our method.
The model represents the relationship between the positional bias (π), fragment length dis-
tribution (λ), target sampling probabilities (τ), and fragment sequence (error) probabilities
(φ) that produce the observed fragment sequences.

CHAPTER 2. THE EXPRESS MODEL 10

Some discussion of this model is required, as it does not follow be directly from Figure 1.1.
For example, while size selection occurs at the end of the RNA-Seq library preparation, it is
the first step in our generative model. This is a simplification following from an independence
assumption that enables our estimate for λ to directly match the observed fragment lengths.
Without it, the observed length distribution would need to mix λ with the other parameters
in the model. Slightly different orderings of the generative model are used by both Cufflinks

[67] and RSEM [32], but the changes appear to have little affect on the outcome (Figure 5.1).

2.5 Likelihood function

The generative model described above provides the following likelihood function:

L(λ, ρ, π, φ|F) =
∏
f∈F

ML∑
l=1

∑
t∈T

l(t)−l+1∑
p=1

λl · τt|l · πp|t,l · φf |t,p,l, (2.6)

where l(t) is the length of target t and ML is an upper bound on fragment length, based on
the technology being used.

2.5.1 Approximation

Note that in order to compute this likelihood, for each observed fragment sequence we
must sum over approximately every possible fragment length at every position in the set
of target sequences and compute the probability that the fragment originated from that
location. Since the probability of observing a large numbers of errors quickly approaches zero,
we can approximate the above likelihood with the aid of a short read aligner that efficiently
identifies locations where the fragment sequences match the target nearly perfectly. For each
fragment, we can then sum over this set of alignments Âf , ignoring those positions which do
not significantly contribute to the likelihood. The approximate likelihood is then

L(λ, τ, π, φ|F) ≈
∏
f∈F

∑
(t,p,l)∈Âf

λl · τt|l · πp|t,l · φf |t,p,l, (2.7)

which is much easier to compute.

CHAPTER 2. THE EXPRESS MODEL 11

2.5.2 Positional uniformity

We can rewrite this function assuming positional uniformity as

L(λ, ρ, π, φ|F) =
∏
f∈F

ML∑
l=1

∑
t∈T

l(t)−l+1∑
p=1

λl · τt|l · πp|t,l · φf |t,p,l (2.8)

=
∏
f∈F

ML∑
l=1

∑
t∈T

l(t)−l+1∑
p=1

λl · ρt · (l(t)− l + 1)∑
u∈T ρu · (l(u)− l + 1)

· 1

l(t)− l + 1
· φf |t,p,l (2.9)

=
∏
f∈F

ML∑
l=1

∑
t∈T

l(t)−l+1∑
p=1

λl · ρt
Q(l)

· φf |t,p,l (2.10)

≈
∏
f∈F

∑
(t,p,l)∈Âf

λl · ρt
Q(l)

· φf |t,p,l, (2.11)

where Q(l) =
∑

u∈T ρu · (l(u)− l + 1).
When deriving the EM formulation in Chapter 3, we will expand the likelihood function

to specify how the parameters can be estimated from observed data.

CHAPTER 3. PARAMETER ESTIMATION WITH THE EM ALGORITHM 12

Chapter 3

Parameter Estimation with the EM
Algorithm

3.1 The EM algorithm

The expectation-maximization (EM) algorithm [13] is an iterative method for finding
estimates of the latent parameter values that maximize the likelihood of a statistical model.
The method consists of an expectation (E) step for finding the expected value of the like-
lihood function under the current parameter estimates and a maximization (M) step for
finding new parameter estimates that maximize the function. These steps are alternated,
and the estimates after each iteration are guaranteed to increase the likelihood. However, the
maximum likelihood is only guaranteed to be found when the likelihood function is convex.

3.2 Basic EM algorithm for fragment assignment

As mentioned in the Introduction, the first EM-based approach to ambiguous fragment
assignment was introduced for assigning EST fragments to transcripts by [71]. Their model
is very simple in that it only includes a single parameter, what we refer to as τ in Chapter 2.
The likelihood function is then equivalent to

L(τ |F) =
∏
f∈F

∑
t∈T

Xf,tτt, (3.1)

where X is a compatibility matrix with a value of 1 for Xf,t if and only if f aligns to t with
a minimal number of errors.

Since errors are not modeled, it is assumed that the alignment with the fewest mismatches
is the best. Aside from ignoring sequencing errors, this model is fundamentally inaccurate
in that it assumes ρt = τt for all t, which is only true when all transcripts are of equal
length. These simplifications help to produce a log-linear model, implying a convex function.
This allows for a very straightforward implementation of the EM algorithm that guarantees

CHAPTER 3. PARAMETER ESTIMATION WITH THE EM ALGORITHM 13

0.33

0.33

0.33

E-step

M-step

M-step

E-step

E-step

M-step

0.47

0.27

0.27

0.55

0.23

0.23

transcript
abundances

transcripts
aligned to
genome

aligned reads
with proportional
assignment to

 transcripts

genome

a b c
d

e

red
green

blue

0.18

0.18 0.64

Figure 3.1: The basic EM algorithm for RNA-Seq. An illustration of the EM algorithm for
RNA-Seq assuming no errors, uniform coverage, and equal transcript lengths. This specific
example converges after 18 iterations.

convergence to the maximum likelihood solution, as illustrated in Figure 3.1, where we have
made both assumptions.

CHAPTER 3. PARAMETER ESTIMATION WITH THE EM ALGORITHM 14

A

B

Figure 3.2: Examples of typical auxiliary parameter distributions. A) An empirical estimate
of the fragment length distribution from a paired-end RNA-Seq experiment measured with
unique alignments. The distribution is nearly Gaussian due to the size selection step of the
RNA-Seq library preparation. B) An empirical estimate of the probability of a substitution
error for each nucleotide at each position in a 75bp read sequenced on the Illumina platform
and measured using uniquely aligning reads. Note that the error rate tends to increase
towards the end of the read.

The algorithm begins by assuming a uniform (or random) abundance distribution for the
transcripts. In the E-step, the fragments are partially assigned to compatible transcripts
in amounts proportional to the transcript abundances. The partial assignments to each
transcript are then summed and normalized to produce new transcript abundance estimates
in the M-step. The E-step and M-step are repeated until the abundance estimates converge.

3.3 Auxiliary parameter estimation

Later formulations of the EM algorithm for fragment assignment [67, 31] reduced the
model assumptions by including parameters for features such as fragment length, target

CHAPTER 3. PARAMETER ESTIMATION WITH THE EM ALGORITHM 15

(transcript) length, positional bias, and sequencing errors, as described in Section 2.2. These
auxiliary parameters tend to vary little between runs on the same platform and library, but
often vary widely between platforms and preparation methods (see Chapter 4 and [30]).
Unfortunately, with the addition of these parameters to the model, the likelihood function
is not guaranteed to be convex and the EM algorithm may not converge to the maximum
likelihood solution.

One way around this issue is to use a different estimation procedure to estimate the
independent auxiliary distributions (i.e., fragment lengths and sequencing errors). With
these auxiliary parameter estimates fixed, we can use the EM algorithm as before to optimize
the primary parameter of interest: the target abundances.

Treating the fragment lengths as a multinomial distribution and setting ML = 800, we
can estimate its 800 parameters simply by computing the empirical distribution of those
fragments that align uniquely to our targets. An example of such a distribution for RNA-
Seq can be seen in Figure 3.2A.

Similarly, we can treat the sequence errors as four independent models: one for base
substitutions in the first read, one for base substitutions in the second read, one for in-
sertions, and one for deletions. We model base substitutions in each position of the reads
as multinomial distributions for each observed base conditioned on the target bases at the
aligned position as well as one position upstream. Indels are modeled with two separate
multinomial distributions of gap size (up to some maximum allowed size, Mi = 10). The
parameters in these distributions (a total of 9,620 for 75-bp paired-end reads) can also be
estimated empirically using unique alignments. Although there are many parameters, each
alignment provides error information for every position in the reads, so there are effectively
only 84 parameters. An example of the single base substitution probabilities is shown in
Figure 3.2B.

3.4 EM formulation

Because of the large number of abundance parameters (∼ 76, 000 in the human tran-
scriptome for RNA-Seq) and the bias towards single-isoform genes in the above auxiliary
parameter estimation procedures, we cannot rely on a simple empirical estimation for these
parameters of interest. However, with the auxiliary parameters fixed, we can return to a
formulation of the EM algorithm similar to the basic case of [71].

We avoid much of the mathematical detail of the formulation here and simply focus
on deriving the fragment assignment probabilities used in the E-step. This is the only
modification required to the algorithm described in Section 3.2 and Figure 3.1. We direct
the reader to the supplementary material in [32] for a more detailed derivation of the EM
estimation procedure for RNA-Seq.

We begin by rewriting the likelihood function in terms of known auxiliary parameter
estimates with the uniformity assumption and short-read aligner alignment approximation.

CHAPTER 3. PARAMETER ESTIMATION WITH THE EM ALGORITHM 16

Thus,

L(ρ, |λ̂, φ̂, π̂,F) ≈
∏
f∈F

∑
(t,p,l)∈Âf

λ̂l · ρt
Q(l)

· φ̂f |t,p,l. (3.2)

The probability of each alignment is then

P̂f (t, p, l) ≈
λ̂l · ρt

ˆQ(l)·φ̂f |t,p,l∑
(t′,p′,l′)∈Âf

λ̂′l · ρ′t
Q(l′)
· φ̂f |t′,p′,l′

(3.3)

≈ λ̂l · ρt · φ̂f |t,p,l∑
(t′,p′,l′)∈Âf

λ̂l′ · ρt′ · φ̂f |t′,p′,l′
(3.4)

∝ λ̂l · τt
l̃(t)
· φ̂f |t,p,l, (3.5)

where we assume that Q(l1) ≈ Q(l2) for l1, l1 ∈ (0,Ml]. This is a good assumption since the
difference between the length of a target and the length of a fragment alignment is usually
much larger than the difference between the length of two fragment alignments, as evidenced
by a typical λ distribution (see Figure 3.2A). Furthermore, even though this approximation
slightly biases the assignment towards shorter fragment lengths, the difference in the value
of λ will have a much larger effect on the outcome.

With this assumption and given our estimated auxiliary parameters, we initialize τ for
positional uniformity as

τ 0
t =

l(t)∑
u∈T l(t)

, (3.6)

and write the update formula for τ at iteration i as

τ̂ it ←
∑
f∈F

∑
(u,p,l)∈Âf

1(t = u) ·
λ̂l · τ̂

i−1
t

l̃(t)
· φ̂f |t,p,l∑

(t′,p′,l′)∈Âf
λ̂l′ · τ̂

i−1
t′

l̃(t′)
· φ̂f |t′,p′,l′

. (3.7)

Once τ̂ it = τ̂ i−1
t for all t, we can compute the final values of P̂ and ρ̂.

3.5 Batch estimation algorithm

The computation inherent in the above update formula is clearly not efficient. Instead,
the batch estimation algorithm follows the EM structure below:

1. Short read alignment: Align raw reads to target sequences using a short-read aligner,
allowing for a small number of errors.

2. Auxiliary parameter estimation: Compute the empirical fragment length and error
distributions using uniquely aligned reads.

CHAPTER 3. PARAMETER ESTIMATION WITH THE EM ALGORITHM 17

3. Expectation step: For each aligned fragment, compute the assignment probability given
the current parameter estimates, accumulating the portions assigned to each target.
At iteration i, fragments are assigned using

P̂ i
f (t, p, l) ∝ λ̂l · τ̂

i−1
t

l̃(t)
· φ̂f |t,p,l. (3.8)

4. Maximization step: Normalize the counts of partial fragments assigned to each target
to update the target sampling probability estimates (τ̂ i).

5. Iterate: Repeat the previous two steps until τ̂ converges.

In Chapter 5 we will describe several other optimization techniques based on the one
above with varying levels of success in dealing with the exponential growth of input data
while producing accurate estimates.

CHAPTER 4. FRAGMENTATION BIAS 18

Chapter 4

Fragmentation Bias

Early models of sequencing experiments, including RNA-Seq, assumed uniform coverage
of the target sequences for simplicity [32, 67], as we have up to this point. Under this
assumption,

πp|t,l =
1

l(t)− l + 1
, (4.1)

and

l̃(t) =

Ml∑
l=1

λl(l(t)− l + 1). (4.2)

Nevertheless, non-uniformity was discovered early on (see Figure 4.2), and partially explained
in the case of RNA-Seq by biases in fragmentation due to the unequal binding affinities of
primers used for reverse transcription in the synthesis of cDNA copies of the RNA fragments
[18, 55].

In this chapter we describe how we model this sequence-specific bias to derive the po-
sitional probabilities used in our likelihood calculation. We also show that by adding this
correction to the Cufflinks model, which is nearly identical what is described in Chapter 2
without an error model (see Section 5.4), we are able to improve its ability to estimate
transcript abundances. Furthermore, we show that this improvement is greater than that
achieved by two other methods, Genominator and mseq, which do not use an EM-based
approach.

While this section is specifically focused on modeling the biases in RNA-Seq, similar
biases are apparent in other sequencing experiments [18] and this portion of our model is
therefore applicable in other cases.

4.1 Background

The randomness inherent in many of the preparation steps for RNA-Seq leads to frag-
ments whose starting points (relative to the transcripts from which they were sequenced)

CHAPTER 4. FRAGMENTATION BIAS 19

appear to be chosen approximately uniformly at random. This observation has been the
basis of assumptions underlying a number of RNA-Seq analysis approaches that, in com-
puter science terms, invert the “reduction” of transcriptome estimation to DNA sequencing
[23, 32, 46, 50, 67]. However, recent careful analysis has revealed sequence-specific [18, 62]
biases in sequenced fragments. Sequence-specific bias is a global effect where the sequence
surrounding the beginning or end of potential fragments affects their likelihood of being
selected for sequencing. These biases can affect expression estimates [34], and it is therefore
important to correct for them during RNA-Seq analysis.

Although many biases can be traced back to specifics of the preparation protocols (see
Figure 4.1 and [18]), it is currently not possible to predict fragment distributions directly from
a protocol. This is due to many factors, including uncertainty in the biochemistry of many
steps and the unknown shape and effect of RNA secondary structure on certain procedures
[34]. It is therefore desirable to estimate the extent and nature of bias indirectly by inferring
it from the data (fragment alignments) in an experiment. However, such inference is non-
trivial due to the fact that fragment abundances are proportional to transcript abundances,
so that the expression levels of transcripts from which fragments originate must be taken
into account when estimating bias, as Figure 4.1 demonstrates. At the same time, expression
estimates made without correcting for bias may lead to the over- or under-representation of
fragments. Therefore the problems of bias estimation and expression estimation are funda-
mentally linked, and must be solved together. Likelihood based approaches are well suited
to resolving this difficulty, as the bias and abundance parameters can be estimated jointly
by maximizing a likelihood function for the data.

We describe a likelihood based approach for simultaneous estimation of bias parameters
and expression levels using the likelihood framework of Chapter 2. This complements work
of [18, 34] where corrections are developed based on another likelihood model, but do not
take abundance information into account when estimating bias parameters. We demonstrate
that our method improves expression estimates in comparison with independently obtained
qRT-PCR on a benchmark dataset. Using the same data, we also show that our method
improves on the approaches of [18, 34].

RNA-Seq technology is changing rapidly, and this is evident in the development of nu-
merous preparation protocols (for a recent review see [30]) and increasingly longer read
lengths from sequencing machines [25]. When assessing the impact of bias correction, we
have therefore included both early RNA-Seq data of the type that many laboratories might
be producing with older machines, as well as newer data that reflects recent protocol choices
and demonstrates the improvements in sequencing technologies. This has required us to make
our methods robust to both single- and paired-end reads, strand specific and non-specific
protocols, and a variety of priming and fragmentation methods. One of our main findings is
that bias correction improves the correlation of expression estimates obtained from sequence
data generated using different sample preparations and different sequencing technologies.

CHAPTER 4. FRAGMENTATION BIAS 20

4.2 Method

Fragment counts in an RNA-Seq experiment are determined by two different phenomena:
fragments originating from highly expressed transcripts will appear more often in the data
than those originating from lower-expressed transcripts, and library preparations include
biases that may preferentially select some potential fragments over others. By fragment bias
we mean only the over- or under-representation of fragments due to sequence-specific bias
as discussed in Section 4.1. Because expression levels also affect fragment abundances, it is
necessary to jointly estimate transcript abundances and bias parameters in order to properly
learn the bias directly from RNA-Seq data.

This issue is illustrated by example in Figure 4.1 where the need for joint estimation
of bias parameters and expression values is evidenced by comparison of the raw counts of
bases at the starts/ends of fragments (panel A) and the adjusted counts normalized by the
abundances of transcripts (panel B). The latter calculation is affected by the bias parameters,
so that joint estimation is required. We expand upon the likelihood framework described
in [67] in order to perform such parameter estimation, resulting in “learned” bias weights
(panel D Figure 4.1) that are used to adjust expected fragment counts in the computation
of abundances using our likelihood model. Figure 4.2 shows an example of how well these
bias estimates capture the over- and under-representations of reads at different positions of
a transcript, based on its sequence.

We now discuss how we compute the value of πp|t,l, the probability of starting a fragment
at position p given that the fragment is in transcript t and has length l.

4.2.1 Sequence probabilities

We first define a window of size 21 surrounding each end of a fragment, which includes
the extreme base of the fragment as well as 10bp upstream and 10bp downstream of the
end. Our analysis shows that most of the sequence bias exists in this region (see Figure 4.1.
Furthermore, we note that the biases may differ on the 3’ and 5’ end of the transcript, so we
consider them independently. To model the bias in these two windows, we must compute
the probability of a given sequence s, which will denote as ψ5′

obs(s) and ψ3′

obs(s) for the 5’ and
3’ fragment ends, respectively. Given the set of partial assignments of fragments in F , AF ,
we can estimate ψ5′

obs(s) as the sum of the probabilities of fragment assignments where the
sequence in the window around the 5’ end of the fragment is identical to s. More formally,

ψ̂5′

obs(s) ∝
∑
f∈F

∑
t,p,l

Pf (t, p, l) · 1(s = tseq[p− 10, p+ 10]), (4.3)

where tseq[i, j] represents the subsequence of target t from position i to j, inclusive.
The ψobs parameters give us the probabilities of observing certain sequences at the ends

of a fragment in an experiment. Nevertheless, as stated previously, these probabilities are a
function of both the sequence bias as well as the transcript abundances. To aid in removing
the effect of abundance, we also require parameters for expected probabilities given known

CHAPTER 4. FRAGMENTATION BIAS 21

WebLogo 3.0

0.0

0.5

1.0

D
e
n
si

ty

-10

T
C
G
A

T
C
A
G

T
C
A
G

T
C
G
A

C
T
G
A

-5

T
C
A
G

G
T
A
C

C
G
A
T

C
T
A
G

T
C
G
A

0

C
T
A
G

T
C
A
G

T
C
A
G

A
C
T
G

T
C
A
G

5

T
A
C
G

C
T
G
A

C
T
A
G

C
T
G
A

C
T
G
A

10

C
T
A
G

C
T
G
A

C
T
G
A

WebLogo 3.0

0.0

0.5

1.0

D
e
n
si

ty

-10

G
C
T
A

G
C
T
A

C
G
T
A

C
G
T
A

G
C
T
A

-5

C
G
T
A

G
C
T
A

G
C
A
T

C
T
A
G

C
G
T
A

0

C
T
A
G

C
T
A
G

C
T
G
A

C
A
T
G

C
T
A
G

5

C
T
A
G

C
G
T
A

C
G
T
A

C
G
T
A

C
G
T
A

10

C
G
T
A

C
G
T
A

C
G
T
A

WebLogo 3.0

0.0

0.5

1.0

-10

A
G
C
T

G
A
C
T

G
A
C
T

G
A
C
T

G
A
C
T

-5

G
A
C
T

G
A
C
T

A
G
T
C

A
G
T
C

A
G
T
C

0

G
A
T
C

A
G
T
C

A
G
C
T

G
A
C
T

G
A
T
C

5

G
A
T
C

G
A
T
C

G
A
T
C

G
A
T
C

A
G
T
C

10

A
G
T
C

A
G
T
C

G
A
C
T

WebLogo 3.0

0.0

0.5

1.0

-10

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

-5

C
G
A
T

G
C
A
T

G
A
C
T

G
A
C
T

A
G
T
C

0

G
A
C
T

A
G
C
T

G
A
C
T

G
A
C
T

G
A
T
C

5

G
A
C
T

G
A
C
T

G
A
C
T

G
C
A
T

G
C
A
T

10

G
C
A
T

G
C
A
T

G
C
A
T

WebLogo 3.0

0.0

0.5

1.0

D
e
n
si

ty

-10

C
G
T
A

C
G
T
A

C
G
T
A

C
G
T
A

C
G
T
A

-5

C
G
T
A

C
G
T
A

C
G
T
A

C
G
T
A

C
G
T
A

0

C
G
T
A

C
G
T
A

C
G
T
A

C
G
T
A

C
G
T
A

5

C
G
T
A

C
G
T
A

C
G
T
A

C
G
T
A

C
G
T
A

10

C
G
T
A

C
G
T
A

C
G
T
A

3' Fragment End5' Fragment End

B

C

D

A

WebLogo 3.0

0.0

0.5

1.0

-10

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

-5

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

0

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

5

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

G
C
A
T

10

G
C
A
T

G
C
A
T

G
C
A
T

No
rm

al
ize

d
Co

un
t

Ex
pe

ct
ed

Offset from 5' Fragment End Offset from 3' Fragment End

Ra
tio

 (B
ia

s
W

ei
gh

t)

WebLogo 3.0

0.0

0.5

1.0

D
e
n
si

ty

-10

G
C
T
A

C
G
T
A

C
G
T
A

C
G
T
A

C
T
A
G

-5

C
G
T
A

C
G
T
A

C
G
T
A

C
T
G
A

G
C
T
A

0

T
A
C
G

C
G
T
A

G
C
T
A

C
G
T
A

C
G
T
A

5

C
G
T
A

G
C
A
T

G
C
A
T

G
C
A
T

C
G
T
A

10

T
C
G
A

G
C
T
A

C
G
T
A

- -

WebLogo 3.0

0.0

0.5

1.0

D
e
n
si

ty

-10

G
C
T
A

C
G
T
A

C
G
T
A

C
G
T
A

C
T
A
G

-5

C
G
T
A

C
G
T
A

C
G
T
A

C
T
G
A

G
C
T
A

0

T
A
C
G

C
G
T
A

G
C
T
A

C
G
T
A

C
G
T
A

5

C
G
T
A

G
C
A
T

G
C
A
T

G
C
A
T

C
G
T
A

10

T
C
G
A

G
C
T
A

C
G
T
A

- -

WebLogo 3.0

0.0

0.5

1.0

D
e
n
si

ty

-10

G
C
T
A

C
G
T
A

C
G
T
A

C
G
T
A

C
T
A
G

-5

C
G
T
A

C
G
T
A

C
G
T
A

C
T
G
A

G
C
T
A

0

T
A
C
G

C
G
T
A

G
C
T
A

C
G
T
A

C
G
T
A

5

C
G
T
A

G
C
A
T

G
C
A
T

G
C
A
T

C
G
T
A

10

T
C
G
A

G
C
T
A

C
G
T
A

- -

Figure 4.1: Nucleotide distribution surrounding fragment ends and calculation of bias weights.
(A) Sequence logos showing the distribution of nucleotides in a 21bp window surrounding the
ends of fragments from an experiment primed with “not not so random” (NNSR) hexamers
[30]. The 3′ end sequences are complemented (but not reversed) to show the sequence of the
primer during first-strand synthesis (see Figure 1.1). The offset is calculated so that 0 is the
“first” base of the end sequence and only non-negative values are internal to the fragment.
Counts were taken only from transcripts mapping to single-isoform genes. (B) Sequence logo
showing normalized nucleotide frequencies after reweighting by initial (not bias corrected)
FPKM in order to account for differences in abundance. (C) The background distribution
for the yeast transcriptome, assuming uniform expression of all single-isoform genes. The
difference in 5′ and 3′ distributions are due to the ends being primed from opposite strands.
Comparing (C) to (A) and (B) shows that while the bias is confounded with expression
in (A), the abundance normalization reveals the true bias to extend from 5bp upstream
to 5bp downstream of the fragment end. Taking the ratio of the normalized nucleotide
frequencies (B) to the background (C) for the NNSR dataset gives bias weights (D), which
further reveal that the bias is partially due to selection for upstream sequences similar to
the strand tags, namely TCCGATCTCT in first-strand synthesis (which selects the 5′ end)
and TCCGATCTGA in second-strand synthesis (which selects the 3′ end). Although the
weights here are based on independent frequencies, we found correlations among sites in the
window and take these into account in our full model to produce more informative weights.

CHAPTER 4. FRAGMENTATION BIAS 22

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

0

500

1000

1500

2000

2500

3000

R
e
a
d
 C

o
u
n
ts

NM_004684

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Offset from Start of Transcript

0

50

100

150

200

250

B
ia

s
W

e
ig

h
t

Figure 4.2: Non-uniformity of fragmentation in RNA-Seq. An example showing the effect of
bias correction on the read counts for human transcript NM 004684. The top panel shows raw
read counts (number of 3′ ends of fragments at each location), and the bottom panel shows
the product of the bias weights (see Section 4.2.2) computed at the same locations. We
correctly identify bias at different positions and can therefore correct for the non-uniformity.
Note that the bias parameters were learned from the entire dataset excluding reads mapped
to this transcript in order to cross-validate our results. The RNA-Seq for the experiment
was performed with the NSR protocol [2], which is why 3′ counts were used instead of 5′.

abundances with uniform coverage. Given a set of known relative transcript abundances, ρ,
as well as the cumulative fragment length distribution, λcdf, we can compute the expected
probabilities as

ψ5′

exp(s) ∝
∑
t∈T

l(t)∑
p=1

ρt · λcdf(l(t)− p+ 1) · 1(s = tseq[p− 10, p+ 10]). (4.4)

Without going into full detail, one should note that modeling the full 21bp window
sequences would require 2× 421 parameters. We instead use a third-order Markov chain for
each end, reducing the number of parameters to 2× (4 + 42 + 43 + 18× 44) = 9384.

4.2.2 Positional bias weights and probabilities

Given the observed and expected sequence probabilities and assuming conditional inde-
pendence between the 5’ and 3’ ends, we compute a bias weight at each position in the target

CHAPTER 4. FRAGMENTATION BIAS 23

sequences for every possible fragment length as

wt,p,l =
ψ5′

obs(tseq[p− 10, p+ 10]) · ψ3′

obs(tseq[p+ l − 11, p+ l + 9])

ψ5′
exp(tseq[p− 10, p+ 10]) · ψ3′

exp(tseq[p+ l − 11, p+ l + 9])
. (4.5)

Once these weights are known, the positional probability given a target and fragment length
is easily derived as

πp|t,l =
wt,p,l∑l(t)−p+1

p′=1 wt,p′,l
. (4.6)

Figure 4.1 shows an example of how these weights are calculated when using a 0-order
Markov chain.

Note that if there is no bias (i.e., ∀s, ψobs = ψ3′
exp), then wt,p,l = 1 for all t, p, l and

πp|t,l = 1
l(t)−p+1

, which is the value that was used in earlier models that assumed uniformity

[67, 34] and previously in Section 2.5.2. However, as Figure 4.1D illustrates, the empirical
weights often vary greatly from that assumption.

4.2.3 Effective length

Aside from modifying the positional probabilities, sequencing bias also requires that
we change how the target sampling probabilities, τ are computed, since a target contain-
ing higher-weighted sequences is more likely to have fragments selected for sequencing. In
Section 2.3, we showed the relationship between the target abundance (ρt) and sampling
probabilities (τt) via the effective length (l̃(t)). We update the effective length as follows to
include the effects of sequence-specific bias:

l̃(t) =

∑Ml

l=1

∑l(t)−l+1
p=1 λl · wt,p,l∑

u∈T
∑Ml

l=1

∑l(u)−l+1
p=1 λl · wu,p,l

. (4.7)

Furthermore, the target sampling probability conditioned on fragment length becomes

τt|l =
ρt
∑l(t)−l+1

p=1 wt,p,l∑
u∈T ρu

∑l(u)−l+1
p=1 wu,p,l

. (4.8)

4.2.4 Updated likelihood

We now update our likelihood including sequence-specific fragmentation bias to get

L(λ, ρ, ψ, φ|F) ≈
∏
f∈F

∑
(t,p,l)∈Âf

λl
ρt
∑l(t)−l+1

p′=1 wt,p′,l∑
u∈T ρu

∑l(u)−l+1
p′=1 wu,p′,l

· wt,p,l∑l(t)−l+1
p′=1 wt,p′,l

· φf |t,p,l (4.9)

=
∏
f∈F

∑
(t,p,l)∈Âf

λl · ρt · wt,p,l
Q(l)

· φf |t,p,l, (4.10)

(4.11)

CHAPTER 4. FRAGMENTATION BIAS 24

where Q(l) =
∑

u∈T ρu
∑l(u)−l+1

p′=1 wu,p′,l.

4.2.5 Estimation procedure

Unlike the other two auxiliary parameters, the bias weights are dependent on transcript
abundances and therefore cannot be estimated independently. Our approach is to alternate
the optimization of the ρ and ψ parameters. Since the optimization procedure for ρ (the EM
algorithm) is relatively time-consuming, we restrict ourselves to few (three or less) alternating
rounds. The full optimization procedure is as follows:

1. Short read alignment: Align raw reads to target sequences using a short-read aligner,
allowing for a small number of errors.

2. Auxiliary parameter estimation: Compute the empirical fragment length and error
distributions using uniquely aligned reads.

3. EM optimization of ρ: Run the EM algorithm to convergence as described in Chapter 3
but using the new assignment function:

P̂f (t, p, l) ∝ λl · τ̂
i−1
t

l̃j(t)
· ŵjt,p,l · φ̂f |t,p,l, (4.12)

where j is the alternating round and all positional weights are 1 when j = 0. Note we
have excluded Q(l) for the same reasons as in Chapter 3.

4. Compute bias weights: Given the estimate ρ̂j, compute new estimates for ψ and update
the positional weights and probabilities.

5. Iterate: Repeat the previous two steps several times.

4.3 Validation

We emphasize that our our goal is not to validate RNA-Seq per se, but rather to show that
bias correction improves expression estimation. Therefore, in interpreting the correlations
throughout this section, we focus on improvements in correlation with bias correction and not
on the absolute value. In this regard, we report most of our results as fraction discrepancy
explained, which we calculated by dividing the change in R2 after bias correction by the
difference of the initial R2 from 1 (a perfect correlation). Furthermore, we mention that
we observed that correlation results are sensitive to the extent of filtering of low abundance
fragments and we therefore attempted to eliminate filtering in the experiments we performed.

CHAPTER 4. FRAGMENTATION BIAS 25

0.0 0.5 1.0 1.5 2.0

Normalized TaqMan Expression

0

10

20

30

40

50

60

70

C
u
ff

lin
ks

 F
P
K

M

4 3 2 1 0 1 2 3 4

Log Fold Change

0
5

10
15
20
25
30
35
40
45

Fr
e
q
u
e
n
cy

A

B

Figure 4.3: Comparisons with MAQC qRT-PCR. (A) Expression estimates before bias cor-
rection (tail of arrows) and after correction (points of arrows) for the SRA012427 dataset
compared to qRT-PCR values for the same transcripts. Red arrows show decrease in expres-
sion after correction and blue an increase. Note that we have zoomed in on lower-expression
transcripts (the majority) for clarity. (B) Distribution of log-fold change in expression after
bias correction.

4.3.1 Comparison to alternative expression arrays

A major problem with validating RNA-Seq expression estimates is that there is no clear
“gold standard” for expression estimation. Comparison of RNA-Seq to microarrays has
suggested that the former technology is more accurate than the latter [7]. Quantitative
reverse transcription PCR (qRT-PCR) has served as a benchmark in numerous studies but
it is not a perfect expression measurement assay [15], and it is therefore a priori unclear
which technology currently produces the most accurate expression estimates. Nevertheless,
at present we believe it to be the best measure of expression aside from, perhaps, RNA-Seq
itself. Due to the previously demonstrated superiority of RNA-Seq over microarrays, we
performed all our benchmarking with respect to qRT-PCR.

We begin by comparing the expression estimates on the Microarray Quality Control
(MAQC) Human Brain Reference (HBR) dataset, which includes 907 transcripts with uniquely
mapping TaqMan qRT-PCR probes [60], with RNA-Seq data from the same sample se-
quenced by Illumina (SRA012427) [4] (Figure 4.3). When examining the correlation of the
Cufflinks output with the qRT-PCR expression data, we observe an increase of R2 from
0.753 before correction to 0.807 after correction.

To understand the basis for change in correlation, we further investigated, for each tran-
script, whether its expression estimate increases or decreases after bias correction, and by

CHAPTER 4. FRAGMENTATION BIAS 26

how much. The arrows in Figure 4.3 show the direction and extent of expression change with
correction, and the overall fold-change distribution. Many fragments show large changes in
expression with a median absolute fold change of 1.5 (Figure 4.3B).

To establish the significance of the improvement in correlation, we perform a permutation
test, changing the expression estimates of transcripts randomly according to the fold change
distribution in Figure 4.3B. We obtain a p-value of 0.0007, meaning that the improvement in
R2 our correction accomplishes is highly significant. Together, these results show that bias
correction may dramatically affect expression estimates via both increases and decreases
of expression values, and that these changes provide an overall improvement in abundance
estimates.

4.3.2 Comparison with previous methods

In [18], a method for bias correction is proposed that is based on correcting read counts
for transcripts according to the bias learned for patterns at the start of reads (normalized
using sequences in the interior of reads). This approach uses less information than our
method, as it is restricted to learning bias within the read sequence, and cannot capture
bias surrounding the start site. Furthermore, count-based methods do not fully exploit the
information available in paired-end reads which allow for the determination of fragment
length. Fragment length can help in assigning ambiguously mapped fragments to transcripts
and our method takes advantage of this. On the other hand, since read counts have been
promoted as an acceptable way to measure abundance [1], we compared the method to ours
using the MAQC qRT-PCR data from the previous section. The method of [18], implemented
in the software package Genominator, produced a correlation of R2 = 0.711 initially and
R2 = 0.715 after bias correction.

We also compared our approach to the mseq method in [34]. We again used the MAQC
HBR qRT-PCR data and this time prepared the sequences and learned parameters for models
following the suggested guidelines in [34], i.e. we trained the parameters of a MART model
for bias by learning from the 100 most expressed transcripts in the experiment, and then
tested on the set of 907 transcripts with uniquely mapping TaqMan probes. In this case, we
observed an uncorrected R2 = 0.730 and corrected R2 = 0.755. Note that the even though
the expression was again calculated using counts, the initial correlation of mseq is better
than that of Genominator due to the fact that the implementation in [34] required us to
remap the reads directly to the transcript sequences, which is presumably more accurate
than relying on spliced mapping.

We suspect that the overall inferior results of both the Genominator and mseq in com-
parison to Cufflinks are due in part to the fact that the bias parameters cannot be learned
from raw read counts, but must be normalized by the expression values of the transcripts
from which the reads originate (Figure 4.1). For example, in [34], bias parameters are learned
from what are estimated to be the most highly expressed transcripts based on RPKM, but
these are likely to also be the most positively biased transcripts, and are therefore not rep-
resentative in terms of their sequence content. We also believe that, as we argued in [67], it

CHAPTER 4. FRAGMENTATION BIAS 27

Fr
ac

tio
n

E
xp

la
in

ed
 D

is
cr

ep
an

cy

0.
0

0.
1

0.
2

0.
3

0.
4

SRA008403 SRA010153 SRA008403
vs. qPCR vs. qPCR vs. SRA010153

Figure 4.4: Comparisons of technical replicates. Results of correlation tests showing im-
provement after bias correction for technical replicates. Fraction Explained Discrepancy was
calculated by dividing the change in R2 after bias correction by the difference of the initial
R2 from 1 (a perfect correlation). Note that when two RNA-Seq datasets are compared, the
correction was applied to both. The pairwise correlations of the four SRA010153 replicates
versus qRT-PCR and SRA008403, respectively, were averaged for the figure. Even though
the same RH priming protocol was used by both labs, the bias differs slightly between the
preps, which is why our correction method was able to improve the correlation.

is important to account for fragment lengths in estimating expression, and read count based
expression measures do not use such information. Another issue affecting Genominator is
that instead of computing the expected read count as is done in Cufflinks and mseq, the ob-
served read counts are adjusted. This means that in positions lacking read alignments, there
is no correction of bias. We believe this may partially explain the improved performance of
mseq in comparison to Genominator.

4.3.3 Technical replicates

A recurring worry with RNA-Seq has been that repeated experiments, possibly based on
different libraries or performed in different laboratories, may be variable due to experimental

CHAPTER 4. FRAGMENTATION BIAS 28

“noise”. We investigated these effects starting with an exploration of the correlation between
technical replicates before and after bias correction. We define technical replicates to be
the sequencing of two different libraries that have been prepared using the same protocol
from a single sample. This differs slightly from some previous uses; in particular, technical
replication has also referred to two sequencing experiments from the same library. Such
replicates have already been shown to exhibit very little variability [1, 9].

We postulate that the differences between expression estimates from two different libraries
should be reduced after bias correction and tested this hypothesis in a series of analyses
whose results are shown in Figure 4.4. First, we examined libraries prepared in two different
experiments from the same MAQC Universal Human Reference (UHR) sample. In the
first experiment [68], which we will refer to by its accession SRA008403, the sample was
sequenced from one library preparation. In the second experiment [9], which we will refer to
as SRA010153, the sample was sequenced in four separate library preparations. Although
the same protocol was used in all five replicates, the learned bias weights differ somewhat
between the data produced by the two labs.

Figure 4.4 shows how correlations of the replicates with qRT-PCR and each other were
affected by bias correction. Although the method does improve the pairwise correlations
between different library preparations within SRA010153, the initial correlation is already
so high (average R2 > 0.96) that we only show the average pairwise correlations against qRT-
PCR and the SRA008403 dataset. The greater correlation among the SRA010153 replicates
as compared to the correlation between them and SRA008403 further indicates that bias
is more similar when the protocol is carried out by the same lab, presumably by the same
person. Bias correction clearly recovers much of the differences in quantification between
the replicates introduced by fragmentation bias. Furthermore, as in the initial validation
example, the correction brings both sets closer in line with the qRT-PCR standard.

4.3.4 Library preparation methods

In Figure 4.5 we demonstrate our ability to correct bias specific to libraries prepared
using different protocols. For this experiment, we tried our method on several libraries from
a study comparing strand-specific protocols (SRA020818) using the same yeast sample [30],
as well as a dataset generated using the “not so random” (NSR) priming protocol on the
human MAQC HBR sample [2]. We compared all of these datasets with a standard Random
Hexamer (RH) control for the given sample.

Because the NSR dataset was sequenced from the MAQC HBR sample, we were also able
to compare it to the qRT-PCR standard. We found that our method explained 33.5% of the
discrepancy between an initial estimation and qRT-PCR.

4.3.5 Sequencing platforms

Previous studies on bias in RNA-Seq have focused on experiments performed with Il-
lumina sequencers. To investigate whether bias persists with other prep and sequencing

CHAPTER 4. FRAGMENTATION BIAS 29

Fr
ac

tio
n

E
xp

la
in

ed
 D

is
cr

ep
an

cy

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

dUTP Illumina RNA NNSR NSR
Ligation Ligation

Figure 4.5: Comparisons of library preparation protocols. Results of correlation tests showing
improvement after bias correction of datasets generated using different library prep methods,
all of which are strand-specific. The first four protocols are described in [30] and the final
in [2]. All datasets were compared against a control that was generated using the standard
Illumina RH protocol. The first four datasets used the control from [30] with the same yeast
sample. The last dataset (NSR) was compared against the HBR dataset from SRA010153
since it is also consists of single-end reads.

technologies, we examined bias in a SOLiD experiment that sequenced both MAQC samples
using the standard whole transcriptome (WT) protocol. We saw clear signs of sequence-
specific bias that differs from the other protocols we had examined.

We next compared the expression estimates for the SOLiD dataset with one from Illumina
(accession SRA012427) before and after bias correction. In order to illustrate that our
improvement in correlation does not come solely from correcting bias in the Illumina dataset,
we tested whether there was some improvement from correcting one dataset at a time, as
compared to simultaneous correction for both platforms. We found an increase of R2 from
0.74 to 0.88 (Illumina correction) and 0.85 (SOLiD correction) compared to 0.94 for both.
These results are summarized in Figure 4.6. While one cannot draw general conclusions
based on a single experiment, we note that our approach to quantifying bias is useful for
quantitatively comparing the bias among different sequencing platforms.

CHAPTER 4. FRAGMENTATION BIAS 30

0 50 100 150 200

0
50

10
0

15
0

20
0

In
iti

al
 S

O
Li

D
 F

P
K

M R2 = 0.74
Slope = 0.43

0 50 100 150 200
0

50
10
0

15
0

20
0

R2 = 0.88

0 50 100 150 200

Initial illumina FPKM

0
50

10
0

15
0

20
0

C
or

re
ct

ed
 S

O
Li

D
 F

P
K

M

R2 = 0.85

0 50 100 150 200

Corrected illumina FPKM

0
50

10
0

15
0

20
0

R2 = 0.94
Slope = 0.84

Figure 4.6: Comparisons of sequencing platforms. Results of correlation tests showing im-
provement after bias correction of datasets generated using different sequencing technologies.
The Illumina dataset is SRA012427 (x-axes) and the SOLiD data is SOLiD4 HBR PE 50x25
(y-axes). Both used the same MAQC HBR sample. Red axes and lines denote uncorrected
FPKM values and blue corrected, while purple regression lines denote a comparison between
corrected and uncorrected values. Both datasets are being corrected for different biases,
which causes their expression estimates to become more correlated. Note that the plot is
zoomed in on the lower abundance transcripts for clarity but captures over 98% of those in
the experiment.

CHAPTER 5. SCALING THE OPTIMIZATION 31

Chapter 5

Scaling the Optimization

The proliferation of high-throughput sequencing has resulted in high-volume data that
is increasingly expensive to archive and unwieldy to process [63]. This data is stored as
reads representing partially-sequenced DNA or cDNA fragments in either single- or paired-
end form, along with quality information. The challenges brought by the rapidly increas-
ing depths achieved in modern sequencing experiments include the feasibility of long-term
archiving as well as the increase in memory requirements of informatics tools and analysis
pipelines. For example, uncompressed alignments to the transcriptome for a typical human
RNA-Seq experiment require approximately 1 GB of space for every million fragments se-
quenced. This has constrained algorithm design for high-throughput sequence analysis and
is evident in one of the key computational bottlenecks in sequencing based experiments: the
problem of fragment assignment [19], i.e. inference of the origin of ambiguously mapping
sequence fragments. This problem was previously best addressed using the batch EM algo-
rithm of Chapter 3 with restrictions on the extent of ambiguity allowed for multi-mapping
reads [31, 67]. Limits are necessary because, unlike algorithms used for read mapping, the
batch EM algorithm is not trivially parallelizable. Even with these restrictions, current
methods scale poorly with sequencing depth.

Fragment assignment is a crucial step in many experiments based on high-throughput
sequencing, including RNA-Seq analysis, ChIP-Seq [11], and metagenomic analysis [42]. In
such applications, sequenced reads may map to many transcriptomic or genomic locations,
and the resolution of ambiguity is frequently the focus of the biological question being in-
vestigated. Ad hoc heuristics in fragment assignment algorithms can produce biased results
[64]. Furthermore, as sequencing depth increases, current assignment heuristics are being
adversely affected by “the curse of deep sequencing. The flood of sequence not only over-
whelms hardware resources but also confounds algorithms relying on heuristics that may not
scale.

In this chapter we introduce how scaling was dealt with by previous methods including
RSEM (Section 5.2) and Cufflinks (Section 5.4). We then introduce our method called
eXpress (Section 5.5), which uses an online EM algorithm to solve the problem of abundance
estimation and ambiguous fragment assignment in linear time with constant memory use.

CHAPTER 5. SCALING THE OPTIMIZATION 32

Finally, we introduce eXpress-D (Section 5.6), which applies the eXpress model to a batch
setting using cluster computing. We show that the eXpress-D provides the best accuracy in
our simulations with cloud-based scaling, while eXpress has efficiency that is unmatched in
solving the fragment assignment problem.

5.1 Comparisons

The software methods compared in this chapter vary in both their likelihood models and
the optimization procedures they use. When describing these methods, we will attempt to
properly attribute differences in accuracy to each of these factors.

In order to compare accuracy, four different benchmarks were used, all based on the
ability of the tools to properly estimate the ρ parameters from a set of RNA-Seq reads. We
introduce these benchmarks here so that they may be referenced throughout the chapter.

• Two sets (one assuming uniformity, one with sequence-specific positional bias) of a
billion paired-end reads from an RNA-Seq experiment were simulated using the eXpress
model (Chapter 2 and Figure 2.1) with parameters determined by running eXpress

on RNA-Seq data from the ENCODE project human embryonic stem cells (cell line
H1- hESC) consisting of 50,170,737 75bp paired-end reads (Accession SRX026669).
Bowtie [29] was used for the mapping with the options -a to report all mappings, -X
800 to allow fragments up to length 800, and -v 3 to allow up to three mismatches
in each read, providing proper alignments for 33,189,908 of the pairs. The 73,660
transcripts in the UCSC Genes hg19 annotation (http://genome.ucsc.edu) were used
as the target set. The simulated reads together with the parameters used are available
at http://bio.math.berkeley.edu/eXpress/simdata/.

• A million paired-end reads were simulated as above for the three-isoform gene UGT3A2,
as annotated in human by RefSeq, in order to illustrate the convergence properties of
the methods at various depths of sequencing. Figure 5.2, which presents these results,
will be discussed in more detail in Section 5.5.

• To establish the effectiveness of the methods on experimental data, we re-examined
previous comparisons of RNA-Seq to qPCR ([55, 31] and Section 4.3.1) from the “gold
standard” MAQC dataset [60, 4]. The results are presented in Figure 5.3.

In order to compare resource usage, each algorithm was tested individually on the same
8-core Intel Xeon 2.27 GHz Mac Pro with 24 GB of RAM and 16 hyper threads. Cufflinks
and RSEM were allowed 8 threads for processing, and both were run with the same options
as when computing accuracy. As before, each algorithm was presented with the same multi-
sized subsets of 1 billion simulated reads. For each input size, the total run time and peak
memory use were measured and are displayed in Figure 5.4. Cufflinks and RSEM were halted
once they crashed or began to receive memory errors. eXpress-D was measured separately
due to being run on Amazon EC2 with different numbers of cores. Its scaling properties will

CHAPTER 5. SCALING THE OPTIMIZATION 33

0.85

0.80

0.75

Ac
cu

ra
cy

 (S
pe

ar
m

an
 R

)

1 M 10 M 100 M
Number of Fragments

0.90

1.00

0.70

0.95

10 M 100 M 1 B
Number of Fragments

eXpress-D
RSEM
Cufflinks

eXpress

1 B 1 M

BA Uniform Fragmentation Bias

Figure 5.1: Accuracy comparison. Accuracy of eXpress, eXpress-D, RSEM, and Cufflinks

at multiple sequencing depths in a simulation of a billion fragments (read pairs) generated
with (B) and without (A) positional sequencing bias.

be explained in Section 5.6, but some details can also be seen in Figure 5.5 which represents
how each algorithm scales as a function of input data using the approximated linear rate of
increase.

5.2 The näıve batch approach of RSEM

RSEM takes the most näıve approach of the methods discuss here. The entire set of
alignments are loaded into memory and the batch EM algorithm is executed, requiring
hundreds of iterations. The only heuristic used to reduce complexity is that reads that align
to more than 200 locations are ignored by the algorithm.

Figure 5.4 shows the results of this approach in red. RSEM’s memory and time use
grow exponentially with the size of the input alignments and quickly saturate our machine,
causing it to crash when given 200 million or more fragments. However, because RSEM does
not rely on heuristics to reduce its runtime, it produces very accurate results (Figure 5.1A)
for data without sequence-specific bias. Its poor performance on biased data (Figure 5.1A
and Figure 5.3) is due to these features being left out of the model and not the optimization
procedure itself.

As the most directly implemented version of the EM algorithm, RSEM will act as a good
baseline for what these methods should be able to achieve (on unbiased data).

CHAPTER 5. SCALING THE OPTIMIZATION 34

eXpress (no forgetting factor)

eXpress (optimal forgetting factor)

Cufflinks

RSEM

NR_031764

NM_001168316

NM_174914

A

B

i

ii

iii

iv

Figure 5.2: Single gene convergence comparison. An example of the abundance estimates
produced by eXpress, RSEM, and Cufflinks for different depths of simulated data for the
(A) three-isoform gene UGT3A2, as annotated in human by RefSeq. The dashed lines show
the ground-truth relative abundances used for the simulation. (Bi,ii) eXpress is only able
to process each fragment once whereas (Biii) RSEM and (Biv) Cufflinks iterate over the
data many times before converging to the maximum likelihood solution. Nevertheless, as
more fragments are observed, all three algorithms converge toward the correct answer at
approximately the same depth. In fact, eXpress is more robust than the batch algorithms
at low depth due to its use of a prior. (Bii) The black line with the red octagon (“stop sign”)
shows where eXpress would automatically stop if a convergence threshold was set to 10−6

in terms of the Kullback-Leibler divergence between the abundance estimates at intervals of
100 fragments.

CHAPTER 5. SCALING THE OPTIMIZATION 35

Method w/o Bias Correction w/ Bias Correction
eXpress 0.807 0.834
RSEM 0.791 -
Cufflinks 0.797 0.836

Figure 5.3: Validation with qRT-PCR. Spearman’s rank correlation coefficients for com-
parisons between tested methods’ abundance estimates and qRT-PCR for 907 transcripts
measured by MAQC. While all methods have approximately the same accuracy, eXpress
and Cufflinks benefit from the bias correction method described in Chapter 4 and in [55].
These results are concordant with the improvements due to bias correction reported in [31].

15

10

5

M
em

or
y

(G
B)

200 M 400 M 600 M 800 M 1 B
Number of Fragments

100

80

60

40

20

Ti
m

e
(H

ou
rs

)
20

25

0

eXpress
RSEM
Cufflinks
Word Count

Figure 5.4: Comparison of time and memory requirements. The peak memory usage (dashed
lines) and runtime (solid lines) for each method dependent on the number of paired-end reads
input. All methods used the hg19 UCSC transcriptome annotation and were run on an 8-core
Intel Xeon 2.27 GHz Mac Pro with 24 GB of RAM and 16 hyper threads. Cufflinks and
RSEM were allowed 8 threads for processing, while eXpress only used 2. The stars represent
where each of the software packages crashed or were halted due to the test machines memory
constraint (24 GB). Word count is wc, the UNIX word count program.

CHAPTER 5. SCALING THE OPTIMIZATION 36

Method Runtime Slope (mpmf) Resource Slope (cpmf)
eXpress-D 0.05 0.12
eXpress 1.8 0
Cufflinks 6 0
RSEM 27 0

Figure 5.5: Slopes of runtime scaling. We computed the mean slope between the runtime
samples for eXpress-D and from Figure 5.4 to compare the scaling of the four methods in
units of minutes per million fragments (mpmf). While eXpress, Cufflinks, and RSEM were
all run on the same machine fixed at 8 cores and 24 GB RAM, the resources of eXpress-D
were increased at a rate of 0.12 cores per million fragments (cpmf), allowing it scale in
approximately constant time.

5.3 Partitioning the data

One approach to reducing the complexity and resource use of the batch EM is to partition
the data and process only subsets of the data at a time, treating these subsets as independent.
In Section 5.4 we will discuss a heuristic partitioning used by Cufflinks, but for now
we introduce an “exact” partitioning that respects the independencies of the approximate
(alignment-based) likelihood function.

The ambiguity graph

We can “exactly” partition the data to respect independencies in the approximated like-
lihood using what we call the ambiguity graph of the dataset.

As described in Chapter 2, in order to make the calculation and optimization of our
likelihood function tractable, a read aligner is used to remove unlikely alignments from
consideration, thus providing, for each fragment f ∈ F , a subset of likely transcripts the
fragment is derived from. In this section, we denote the mapping by LF→T , where LF→T (f)
is the set of targets that fragment f ∈ F are aligned to.

The approximation based on these alignments introduces sparsity to the inference, and
allows the likelihood function to be factorized. This factorization can then be used to reduce
the computation necessary for fragment assignment and abundance estimation.

In order to algorithmically leverage the sparsity of alignments, we make use of an ambi-
guity graph. In this graph, vertices represent transcripts and two vertices are connected by
an edge when there is at least one ambiguous fragments aligning to the two transcripts. The
ambiguity graph is defined formally as follows: It is the undirected graph G = (T , E) where
E =

⋃
f∈F{{u, v}|u, v ∈ LF→T (f) ∧ u 6= v}. It is easy to show that each of the compo-

nents of G define a factorization of the likelihood functions used in most RNA-Seq inference
algorithms [48]. Specifically, the set of transcripts in each component can be considered
independently when assigning ambiguous fragments and computing abundances.

CHAPTER 5. SCALING THE OPTIMIZATION 37

A) Target-based alignments B) Genome-based alignments

C) 'Exact' Ambiguity Graph D) Genome-based Partitioning

Figure 5.6: Different alignment and partitioning methods. (A) RSEM and eXpress require
fragments to be aligned directly to the targets. (B) Cufflinks requires spliced alignments
to the genome. Fragments may align to the genome but not the targets (red fragment)
if, for example, the transcript annotations are incomplete or incorrect, which could lead to
missing edges in the resulting ambiguity graph (C). Fragments aligning to multiple genomic
loci (green fragment) will cause Cufflinks to incorrectly partition the data (D).

Figure 5.6 shows the ambiguity graph induced for an example set of alignments, and an
ambiguity graph obtained for a real dataset of 60 million reads is shown in Figure 5.7.

Leveraging the ambiguity graph

Once we have defined the components of the ambiguity graph, they can be optimized
sequentially using the batch algorithm, thereby reducing the memory required at any single
moment to be proportional to the number of fragments in the largest component. Further-
more, smaller components can be optimized in parallel in a manner that keeps the memory
use below this upper bound. We note again that because the processing respects the inde-
pendencies of the data, the results will be identical to those produced by the normal batch
EM algorithm.

While the size of the largest component can still be quite large (Figure 5.7B), the struc-
ture of the data visible in Figure 5.7A suggests that it can be further partitioned without
discarding a significant amount of information. We explore such a technique in Chapter 6

CHAPTER 5. SCALING THE OPTIMIZATION 38

0 10 20 30 40 50 60

1
10

10
0

10
00
0

Cardinality

Fr
eq
ue
nc
y

. . .

3,898
Component Size

. . .

A

B

Figure 5.7: Example ambiguity graph. The ambiguity graph and histogram of component
sizes (B) for the 60 hour time-point in [67] using approximately 30 million mapped 75 bp
paired-end reads. The largest component is shown larger to illustrate its details. Note that
it is partially made up of many strongly connected cliques with weak edges to the rest of
the component, which is the reason for the effectiveness of the greedy partitioning algorithm
we describe in Chapter 6 to reduce complexity of the update method. Edge weights are
illustrated by opacity.

CHAPTER 5. SCALING THE OPTIMIZATION 39

in the context of updating abundance estimates after re-annotation, and believe that such
a method can and should be applied to the initial processing of ambiguous fragments in the
future.

5.4 The heuristic partitioning approach of Cufflinks

5.4.1 Model

The model of Cufflinks is similar to the eXpress Model, except that it assumes indepen-
dence between the fragment length and target sampling and lacks an explicit error model.
In place of an explicit error model, there is an assumption that only the “best” alignments
(the ones with the fewest mismatches) are valid. In terms of the parameters described in
Chapter 2, the likelihood function appears as

L(λ, ρ, π, φ|F) =
∏
f∈F

ML∑
l=1

∑
t∈T

l(t)−l+1∑
p=1

λl · τt · πp|t,l · φf |t,p,l, (5.1)

where φ assigns 1 to all alignments with the fewest mismatches for the fragment and 0 to
any others.

5.4.2 Optimization

The largest difference between Cufflinks and the methods we’ve described previously
is that it makes a much more extreme approximation to the likelihood function involving
alignments, even beyond the mismatch heuristic described above. Cufflinks relies on spliced
alignments to the genome instead of directly to a target set (Figure 5.6)A,B. It then breaks
the set of alignments into overlapping blocks, splitting at positions where a stretch of overlaps
is broken. If an annotation of features of interest is provided, these are used to preserve
stretches of overlaps. In other words, the data will not be partitioned within a feature. Once
partitioned in this way, Cufflinks then runs the batch EM algorithm separately on each
block, considering only the alignments and ambiguities within each [67]. Fragments that
align to multiple genomic loci are split uniformly over those sites.

In the typical case for which Cufflinks was developed, RNA-Seq, the features of interest
are genes and their isoforms. Cufflinks is therefore assuming that ambiguity exists only
within a gene, which allows the likelihood function to be factorized as

L(λ, ρ, π, φ|F) ≈
∏
g∈G

∏
f∈F

∑
(t,p,l)∈Âf :t∈g

λl · τt · πp|t,l · φf |t,p,l
 , (5.2)

where g is a genomic locus represented by a set of transcript targets and G is the full set
of genomic loci. With this factorization, the fragments for each gene can be optimized
independently.

CHAPTER 5. SCALING THE OPTIMIZATION 40

0.85

0.80

Ac
cu

ra
cy

 (S
pe

ar
m

an
 R

)

1 M 10 M 100 M 500 M
Number of Fragments

0.90

1.00

0.75

0.95

Rescue Correction

Disabled
Enabled

Figure 5.8: Effect of multi-mapping reads and “rescue” correction on Cufflinks accuracy.
Cufflinks reduces its time and memory requirements by assuming each set of overlapping
transcripts is independent of all others. Thus, a heuristic is used to disambiguate fragments
that map to multiple genomic locations. The original Cufflinks heuristic (before v1.0,
dashed line) distributed multi-mapping reads uniformly amongst the loci they mapped to.
We modified the software in manner reminiscent of the “rescue method” of [44] to distribute
the fragments according to the likelihood model following initial abundance estimation that
uses a uniform distribution. This is equivalent to a single round of EM over the multi-
mapping reads. The results show improvement at sufficiently high sequencing depth (solid
line). This approach was used for all results in this chapter. Note that additional rounds of
this correction will further improve the accuracy but are computationally expensive.

Performance comparison

This assumption indeed reduces the complexity and memory requirements of Cufflinks
(Figure 5.4) but at the cost of accuracy (Figure 5.1). In fact, the results in Figure 5.1
use a slight improvement we made to the Cufflinks optimization that essentially uses the
so-called “rescue method” of [44] to better assign multiply-aligned fragments (Figure 5.8).

In previous section (5.3), we introduced a method for finding the partition of fragments
and targets that respects the independencies inherent in the approximated likelihood. Fig-
ure 5.6C,D shows how the resultant blocks differ from those based on the Cufflinks heuristic.

We also note that due to its use of genomic alignments and this partitioning heuristic,
Cufflinks is more closely tied to RNA-Seq than either RSEM or eXpress, and no other uses
for the software have been introduced as of yet.

CHAPTER 5. SCALING THE OPTIMIZATION 41

5.5 The online EM approach of eXpress

In order to address the scaling issues of previous methods, we developed an online algo-
rithm for fragment assignment based on processing data one fragment at a time. We special-
ized the online EM algorithm [10] to the fragment assignment problem and adapted it to work
directly with estimated counts rather than relative abundances using a similar technique as
described in [38]. The eXpress model–fully described in Chapters 2,4–includes parameters
for the fragment length distribution, errors in reads (including indels), and sequence-specific
biases thought to result from the fragmentation and priming steps during library preparation
(see [18, 55] and Chapter 4). All of these parameters are estimated jointly with abundances
enabling eXpress to be used for a wide range of experiments.

We will first give a basic overview of eXpress in Section 5.5.1 followed by mathematical
details of the online optimization in Section 5.5.2 and comparisons with the above methods
in Section 5.5.4. We conclude with a short discussion of the opportunities provided by the
performance gains of eXpress in Section 5.5.5.

5.5.1 Overview

Figure 5.9 illustrates in detail how eXpress works. In the algorithm, each incoming
fragment may map to arbitrarily many target sequences and is apportioned to the targets
it maps to according to previously estimated counts. Parameter estimates for the fragment
length distribution, sequence bias, and an error model for reads (including mismatches and
indels)–as described in Section 2.2–are simultaneously updated. Unlike in the batch algo-
rithm used by Cufflinks and RSEM and introduced in Chapter 3, the parameter estimates
are updated after assignment of each observed fragment. To accomplish this, the parameters
are treated as Dirichlet priors with the multinomial update of the assignment producing a
Dirichlet posterior that is used as a prior in the next iteration.

As fragments are processed, they are assigned increasing forgetting mass to allow the algo-
rithm to adapt to improving parameter estimates and partially counteract the overwhelming
weight of the prior during later iterations (see Figure 5.10). This dynamic scheme–based on
the theory of [10]–has favorable convergence properties that are crucial for the performance
of the online algorithm (see Figure 5.2Bi,ii). After an initial learning period, the auxiliary
parameters are fixed due to their faster convergence (Figure 5.11), improving the efficiency
of the algorithm for estimating ρ. Moreover, the convexity of the likelihood function once the
auxiliary parameters are fixed guarantees that the online algorithm converges to the global
maximum (see Chapter 3). More mathematical details can be found in Section 5.5.2.

To enable the use of relative abundance and count estimates in downstream applica-
tions, eXpress quantifies uncertainties in the estimates. Specifically, for every transcript,
the posterior fragment count distribution is approximated by a shifted beta binomial distri-
bution. The accuracy of the approximation was confirmed by simulation study. On average,
we noted that counts could be estimated within 5.4% of the true value implying that for
many transcripts, estimated counts obtained by eXpress can be used directly in differential

CHAPTER 5. SCALING THE OPTIMIZATION 42

����������� ���������������������� �����������

Calculate assignment
probabilities

Update parameters

Get next read pair Update masses

����������� �����������

Align to target references

Sequencing bias

+

...

∝
λ

Error probabiltiies

A
C G T

C
G
T

A

+

︸︷︷︸

Input

Online EM
Algorithm

Output

TargetsL

����������� �����������

Augmented
alignment file

Estimated
counts

Relative
abundances

. .
.

ρ

...

...

Constrain
estimated counts

Effective
counts

...

����������� �����������

Fragment and
sequence

Capture target
sequences

����������� �����������

...

mi = mi−1
(i− 1)c

ic − 1

) ∝ λL · ρ− · ωp|−,L

CAT GT ATCGATTAC AT ATCGAT
CAT GT ATCGAT

·φ−|p,−,L

P(
p

L

mi

P(−)

P(−)

P(−)

∝
α

Figure 5.9: Overview of eXpress. The input to the program consists of reads (multiply)
aligned to a set of target sequences. Either single- or paired-end reads can be processed.
Fragment alignments can be streamed to eXpress, but the program can also process a SAM
or BAM alignment file. If a fragment maps ambiguously to more than one target sequence,
assignment probabilities are calculated for each of the constitutive alignments given previous
estimates of target sequence abundances (initially a uniform prior is used). Next, a forgetting
mass is calculated and partial “counts” are distributed to the target sequences according to
the computed assignment probability. In addition to updating fractional fragment assign-
ments to the target sequences, parameters for fragment length distribution, sequence bias,
and errors in the reads are updated in a similar fashion. The updated parameters are used
in the processing of the next fragment alignment. When processing of input data completes,
relative abundances are calculated from the count distributions, along with distributions of
estimated counts and effective counts to report the estimated number of reads that would
map to each target if there were no bias. In addition, a SAM alignment file is optionally
output that includes a field where the posterior probabilities of the alignments are reported.
Relative abundances can be continuously examined to determine whether further sequence
is needed, allowing eXpress to be used for real-time sequencing and analysis.

CHAPTER 5. SCALING THE OPTIMIZATION 43

Fr
ac

tio
na

l C
on

tri
bu

tio
n

to
 P

os
te

rio
r

Fragment Number

C
um

ul
at

iv
e

M
as

s

No Forgetting (c = 1)
Optimal Forgetting (c = 0.85)

Fr
ag

m
en

t M
as

s

Figure 5.10: Growth of forgetting factor. In the simplest implementation of the online
algorithm, all incoming fragments are given a mass of 1, corresponding to a forgetting factor
of 1. However, as the cumulative mass grows, the fragment mass does not, and later fragment
assignments have progressively smaller influence on the posterior distribution. By increasing
the mass of later fragments using a forgetting factor, the fragment mass grows with the
cumulative mass to reduce the effect of the prior. This allows for much faster convergence in
practice, but can also cause instability if the mass grows too quickly. In this plot, we show
the increase in fragment mass for a forgetting factor of 0.85, which we found empirically to
give the best results in our simulations.

expression packages such as DEseq [1] that model count variability in biological replicates.
When there is uncertainty in the count estimate, the count distribution can be incorporated
in differential analysis [65].

When an analysis is not limited to a single pass of the data, additional information
can be extracted to improve the accuracy of the resulting estimates. We tested various
methods of repetitive analysis using various combinations of batch (parameter updates follow
full processing of the dataset) and online EM rounds (parameter updates following each
observation). The results of our tests are in Figure 5.12. Its clear that additional rounds
increase the likelihood of the output results, the optimal strategy being to use an online
round to seed further batch rounds.

5.5.2 Mathematical details

The online EM algorithm is an iterative algorithm that consists of computing vectors
τn = {τnt }t∈T where n = 1, 2, . . . , |F|. If the fragments are ordered as f1, . . . , f|F| then each

CHAPTER 5. SCALING THE OPTIMIZATION 44

K-
L

D
iv

er
ge

nc
e

fro
m

 T
ru

e
D

is
tri

bu
tio

n

100 1 K 10 M
Number of Fragments

10-5

Error Transitions
Fragment Lengths
Sequence Bias

10 K 100 K 1 M10

10-4

10-3

10-2

10-1

100

Figure 5.11: Convergence of auxiliary parameters. Convergence of auxiliary parameter es-
timates was measured by Kullback-Leibler divergence from the true distributions. In our
simulations all have a divergence below 10−3 by 2 million observed fragments, which equates
to a an average (weighted) relative ratio between the estimate and the truth of 1.001. There-
fore, in our implementation we fix the auxiliary parameters and stop learning after 5 million
fragments.

τnt represents an estimate of the parameter τt after processing the fragments f1, . . . , fn. The
update procedure is given by

τn+1 = (1− γn+1)τn + γn+1τ
n (5.3)

where γn = 1
nc for some constant 1

2
< c ≤ 1 (called the forgetting factor) and

τnt = P (T = t|F = fn) =
∑
p,l

Pfn(t, p, l). (5.4)

The probabilities in (5.4) were derived in Section 4.2.4.

Theorem 1 [10, 38] The online EM algorithm is equivalent to stochastic gradient ascent in
the space of sufficient statistics and assuming that 1

2
< γn ≤ 1, together with mild regularity

assumptions [10], converges to a local optimum.

For fixed auxiliary parameters the likelihood in Section 4.2.4 is convex [67] and it follows
that the online algorithm (also called the stepwise EM algorithm) converges to the (unique)
global maximum.

CHAPTER 5. SCALING THE OPTIMIZATION 45

Lo
g

Li
ke

lih
oo

d

0 50 100 200
Number of Iterations

1

0

Online Only
Batch Only
Batch w/
Online Seed

150
38

/

Figure 5.12: Comparison of different iterative versions of eXpress. The log likelihood was
calculated using our model (see Section 4.2.4) on a set of 25 million simulated pair-end
reads. The batch only curve (red) shows the log likelihood achieved using the standard
batch algorithm where in each round all fragments are incorporated in the expectation step
of the EM algorithm. The online curve (blue) shows the log likelihood achieved by repeated
passes through the data as if it were additional observations (i.e., the weighting is not reset
for each round). The purple curve shows a coupled method where the online algorithm is
used to “seed” the parameters for the batch algorithm. The 0th iteration corresponds to
this seed round. Note that in this experiment, a single round of the online algorithm yields
results equivalent to 38 rounds of the batch algorithm. The “batch with online seed” has
superior performance to the other methods after 21 rounds.

Updating (5.3) requires O(|T |) operations at every step making the algorithm intractable
for large numbers of target sequences. There are two reasons for this. First, computing (5.4)
requires, in principle, calculation of a normalization constant that is based on a sum taken
over all positions in all targets. Second, the update in (5.3) requires changing τnt for all t ∈ T .
The first difficulty can be overcome by limiting the calculation to locations where fragments
map using a heuristic alignment program such as Bowtie [29]. This is reasonable because
the probabilities P (T = t|F = fn) are approximately zero due to the error model when a
fragment does not map to a target. It is important to note that different mappers may be
suitable for other types of sequencing reads (e.g. SOLiD), but the model for assignment is
independent of the technology used. The second difficulty can be addressed by a change of
coordinates that greatly simplifies the calculation.

CHAPTER 5. SCALING THE OPTIMIZATION 46

We replace the τnt with variables αnt where n = 1, 2, . . . , |F| and instead of iterating (5.3)
we compute

αn+1 = αn +mnτ
n (5.5)

where

mn+1 = mn

(
γn+1

1− γn+1

)
1

γn
(5.6)

is called the forgetting mass. When τ t = 0 we have that αn+1
t = αnt . Thus, the online EM

algorithm scales linearly with the number of fragments analyzed, with a (small) constant
number of operations per iteration.

Each vector αn represents an estimate of the number of fragments originating from t from
among the fragments f1, . . . , fn and the α are related to the τ via

τnt =
αnt∑
r∈T α

n
r

. (5.7)

The α estimates can also be interpreted as parameters of Dirichlet distributions, providing
a Bayesian interpretation of the online EM algorithm [38]. In eXpress the online EM
algorithm is used to estimate the auxiliary parameters alongside the abundances.

The basic algorithm for updating the α estimates (illustrated in Figure 5.9) at step n is
as follows:

1. Compute the probabilities of each alignment of the current fragment given the current
parameter estimates and using

P̂fn(t, p, l) ∝ λl · α̂
n−1
t

l̃j(t)
· ŵjt,p,l · φ̂f |t,p,l. (5.8)

2. Increment the appropriate parameters of the α distribution by the product of the
current forgetting mass and the proportion of the fragment assigned to the given target,
i.e., for each target fn aligns to,

αn+1
t ← αnt +mnτ

n
t . (5.9)

For any target, u, that fn does no align to,

αn+1
u ← αnu. (5.10)

3. Repeat until n = |F|.

CHAPTER 5. SCALING THE OPTIMIZATION 47

5.5.3 Allele-specific expression

In the realm of RNA-Seq, a specialized experiment involves comparing the abundances
of the transcripts from multiple haplotypes of an individual, which may differ at locations of
SNPs or indels. Due to the small number of differences between the haplotype transcripts
of an individual, the online estimation procedure is extremely slow to converge. Essentially
useless data in the form of perfectly matching reads overwhelms the informative fragments
that overlap varying sites. While not helpful in differentiating the haplotypes, these non-
informative reads must be taken into account when estimating their abundances relative to
other transcripts.

We have implemented a special procedure for estimating the abundances of haplotype
transcripts. When enabled, the method keeps track of any informative fragments relative
to the transcripts and computes the relative abundances between the haplotypes using the
closed form, maximum likelihood solution. A faux transcript is presented to represent the
haplotypes relative to other transcripts, with these abundances computed in the usual, online
manner.

5.5.4 Performance comparison

We first examine the convergence of eXpress for a three-isoform gene in Figure 5.2.
While eXpress appears to be converging towards the truth in (Figure 5.2Bi), it will require
a huge number of reads, especially compared to RSEM and Cufflinks. However, when a good
forgetting factor is used to weight the observations, eXpress is able to rapidly converge
to the truth (Figure 5.2Bii). While choosing too large of a forgetting factor leads to slow
convergence (as in Figure 5.2Bi), choosing too small of a factor leads to instability causing
eXpress to never converge. Nevertheless, having empirically selected a forgetting factor,
we expect good convergence behavior as shown in Figure 5.2Bii. Note that while eXpress

is able to converge to the truth with approximately the same amount of data as RSEM and
Cufflinks, it is only examining each fragment once where as RSEM and Cufflinks require
many iterations.

Returning to Figure 5.4, most striking is the performance of eXpress, whose running time
is linear in the number of fragments while requiring memory proportional only to the size of
the transcriptome. This is similar to the UNIX word count wc program that simply counts
the number of characters in a file. However, counting the number of fragments mapping to
target sequences (without fragment assignment) cannot be used as a proxy for abundance
[65].

In terms of accuracy, Figure 5.1A shows that eXpress is competitive with RSEM and
outperforms Cufflinks (for reasons discussed in Section 5.4) when simulating without frag-
mentation bias. When sequence-specific positional bias is simulated (Figure 5.1B), both
eXpress and Cufflinks are more accurate than RSEM, which does not model it. Figure 5.3
backs up the simulation of bias based on the model in [55] and Chapter 4 by showing the
correction implemented in Cufflinks and eXpress also improves results for real data.

CHAPTER 5. SCALING THE OPTIMIZATION 48

5.5.5 Discussion

In practical terms, the combined speed and accuracy of eXpress means that it can be used
in the analyses of much deeper sequencing experiments than previously possible. Moreover,
the ability of eXpress to accurately assign fragments using a streaming algorithm means that
it is compatible with sequencing technologies that produce reads incrementally. Although
current high-throughput sequencing technologies such as Illumina produce reads in parallel
while serially adding bases, novel single molecule technologies promise to produce reads
incrementally [8]. In a dynamic sequencing pipeline, eXpress could be coupled directly to a
sequencer and be used to estimate abundances of target sequences in real time as individual
fragments are sequenced.

We examined the use of stopping criteria based on the relative increments of the global
likelihood or the local likelihood for a group of target sequences and found that eXpress

can automatically determine when sufficiently many reads have been processed to guarantee
convergence (Figure 5.2Bii), thus avoiding the complicated issue of choosing a sequencing
depth. We note that such an approach to high-throughput sequencing also eliminates the
need for storing read sequences, providing an alternative to cloud-based bioinformatics [63].

5.6 The distributed batch EM approach of eXpress-D

While these solutions have all used algorithms and heuristics to deal with the memory
issue, another approach in computer science to dealing with the increasing size of datasets
is to scale up the compute resources. We have implemented the batch EM optimization of
the eXpress model for a distributed computing environment using the open source Apache
Spark [73] cluster computing system in a software package called eXpress-D.

5.6.1 Background

While these solutions have all used algorithms and heuristics to deal with bounded com-
puter memory resources, another approach is to handle the increasing size of datasets by
scaling up the compute resources. It is currently infeasible for every small lab to purchase
machines with enough RAM to fully analyze today’s datasets using the batch EM algorithm.
However, large clusters of compute nodes are now available for relatively low cost with pay-
by-use cloud platform services, such as Amazon’s Elastic Compute Cloud (EC2). Developing
software to take advantage of the distributed resources on clusters of commodity machines
is nontrivial, as issues such as failure recovery and communication must be dealt with [20].

MapReduce is an abstraction that allows developers to access the power of large dis-
tributed commodity clusters without having to explicitly handle details such as data parti-
tioning, work scheduling, and software and hardware failures. The MapReduce programming
model involves a series of calls to primitive map and reduce methods, with reordering and
grouping allowed between. MapReduce was originally conceived by Google [12] in conjunc-
tion with the Google File System (GFS) [16], a fault tolerant, distributed file system–the

CHAPTER 5. SCALING THE OPTIMIZATION 49

“disk” that MapReduce utilizes. Both inspired open-source counterparts that compose the
core Apache Hadoop project: Hadoop MapReduce and the Hadoop Distributed File System
(HDFS) [61].

Myrna [27] applies Hadoop MapReduce to the analysis of RNA-Seq data, using Hadoop
to count the unique alignments in an experiment. The map phase iterates through the
alignments, emitting a tuple identifying the transcript that each fragment is aligned to. In
the reduce phase, the unique alignments for each transcript are accumulated to produce the
total counts. Since the fragments can be processed independently in the map phase, Hadoop
can distribute the fragments randomly to multiple nodes. In the reduce phase, Hadoop can
be set to automatically assign tuples for each transcript to the same node, allowing the
accumulations to occur in an independent, distributed manner.

This method could be also extended to handle ambiguous mappings by implementing
the EM algorithm using many iterations of MapReduce. The map phase would correspond
to the E-step, in which a tuple is emitted for each alignment specifying the target and the
probability that it is origin of the fragment based on the likelihood model and a set of
global parameter estimates. The reduce phase would correspond to the M-step, in which the
probabilistic assignments would be accumulated and the values normalized to produce the
updated maximum likelihood parameters estimates for use in the subsequent iteration.

However, the problem with implementing the EM algorithm using Hadoop MapReduce
is that the system is not tailored for data reuse. In Hadoop, the dataset being scanned is
re-read from disk before every map step, and the results of intermediate computations are
written to temporary files after the map. In our application, EM would be implemented as
a map task. This means that the alignments would have to be loaded from disk before the
E-step and a partial set of probabilistic assignments would have to be written to disk after
the M-step. Then, on a single node executing a reduce task, partial sets of probabilistic
assignments are fetched from the temporary files on map nodes and loaded into memory for
rendezvous and normalization. An on-disk file containing likelihood parameters would also
be updated during this reduce step. Thus, disk operations done in Hadoop’s map and reduce
tasks create a significant bottleneck.

The approach we take instead is to use Apache Spark, an open-source framework that
provides in-memory, fault-tolerant cluster computing by implementing resilient distributed
datasets (RDDs) [73]. Spark is an alternative compute engine to Hadoop that implements the
MapReduce abstraction by allowing users to apply map and reduce functions over RDDs.
In conjunction with the a distributed file system–such as GFS, HDFS, or Amazon’s S3–
Spark handles all issues of fault tolerance and partitioning across the cluster nodes. Unlike
MapReduce, however, once a subset of the data is read from the filesystem into memory,
it can be made to persist in the RAM of the compute nodes, allowing an application to
efficiently scan it throughout many iterations.

Furthermore, Spark provides two types of shared variables based on common use cases
that are well suited for the workflow of the EM implementation: broadcast variables and
accumulable variables. A broadcast variable is a read-only piece of data that is distributed
to all worker nodes. An accumulable variable references an append-only data structure that

CHAPTER 5. SCALING THE OPTIMIZATION 50

is updated by each worker node’s local process and then fully combined by the process
running on the master node. Broadcasted and append-only data structures both persist
in-memory. eXpress-D utilizes these shared variables to distribute and update parameters
and accumulate probabilistic assignments. The following section contains more detail on the
implementation.

When given enough RAM, consecutive map executions, broadcasts, and accumulations
can avoid disk spilling, which makes Spark particularly well-suited for the EM algorithm
[21]. By implementing the EM algorithm for ambiguous fragment assignment using Spark,
in conjunction with Amazon S3 for persistent storage, we can easily scale the method to very
large datasets by combining the resources of multiple compute nodes, providing in-memory
storage of alignment data while also taking advantage of large-scale parallel computations.

5.6.2 Method

Our implementation maximizes the likelihood of the eXpress Model (Chapters 2,4).

Preprocessing with eXpress

By default, the distributed file system partitions a dataset stored as text using line
breaks to delineate discrete units of processing. In our case, a discrete unit is the collection
of alignments of a single fragment for the alignment file, and the name and sequence of a
single target for the target file. Since the commonly used formats for alignments and targets
(SAM and FASTA, respectively) do not conform to this standard, we must pre-process the
files to produce inputs that can be partitioned by the file system. At the same time, we wish
to make our input files as small as possible to reduce the time required for network transfers.

To achieve these goals, we modified eXpress–which has already been optimized for pars-
ing the standard SAM and FASTA files–to produce input files compatible with our method.
The format of these new files are newline-delimited, serialized Protocol Buffers, which are
encoded in base64 to ensure no newline characters appear in the serialization itself. The
Protocol Buffer specification is shown in Figure 5.14 for both alignments and targets. We
have avoided including any unnecessary or redundant information and compressed nucleotide
sequences to byte arrays, requiring approximately 2 bits per nucleotide. The resulting files
are significantly smaller than the original binary SAM (BAM) and FASTA files.

Once the input files are loaded into HDFS or S3 on the cluster, our application can be
run on Spark to begin fragment assignment. Figure 5.13 outlines the procedure, which is
described in more detail in the following subsections.

Preprocessing on Spark

The input files are parsed by Spark and loaded into the memory of the slave nodes as
RDDs. The per-alignment indices for accessing the relevant elements of the error and bias
Markov chain parameter matrices are then precomputed and stored in a transformed RDD.

CHAPTER 5. SCALING THE OPTIMIZATION 51

A

C T

C
G
T
A G

Fragment
Lengths

Target
Abundances

Sequencing
Error

Sequence
 Bias

Alignment
RDD

Target
RDD

Partition target and alignment
protobufs to slave nodes

Broadcast current parameter
estimates to alignment slaves

Compute probabilistic fragment
assignments on alignment slaves

Accumulate assignments on master
to update estimates

Broadcast new estimates to
 target slaves

Compute expected sequence bias given
new estimates on target slaves

Accumulate expected sequence bias on
master to update bias parameters

A

B

Figure 5.13: Overview of eXpress-D. The top portion (A) shows the procedure for run-
ning the distributed batch EM algorithm with Spark [73] ignoring sequence-specific bias.
First blocks of partitioned alignments (yellow) and targets (magenta) are distributed to
the slave nodes and loaded into RDDs. An initial set of parameter estimates (green with
black symbols) are broadcast to the slaves with alignments. The alignments on each slave
are probabilistically assigned and new parameter estimates are partially accumulated (green
with white symbols) on each node. These are then sent back to the master to be fully
combined and re-broadcast for the next round. When sequence-specific bias is enabled, ad-
ditional processing (B) takes place between some rounds. The parameter estimates are sent
to the slaves with targets and the expected sequence bias given the current abundance esti-
mates are accumulated and normalized on the master node to produce updated weights (see
Section 4.2). Auxiliary parameters (error, bias, and fragment lengths) are fixed after 1000
rounds. The estimation procedure stops when convergence of the abundance parameters is
reached.

CHAPTER 5. SCALING THE OPTIMIZATION 52

Field Type Description

Fragment
name string Unique query name of fragment in SAM file
paired bool Boolean specifying if both ends were sequenced

alignments FragmentAlignments Collection of alignments for fragment
FragmentAlignment

target id uint32 ID of target aligned to (index in SAM header)
read l ReadAlignment Alignment information for 5’ (left) read, if exists
read r ReadAlignment Alignment information for 3’ (right) read, if exists

ReadAlignment
first bool Boolean specifying if this end was sequenced first

left pos unit32 0-based left endpoint of alignment to reference
right pos unit32 0-based right endpoint of alignment to reference

mismatch indices byteArray Positions in read that differ from reference
mismatch nucs byteArray Nucleotides in read at mismatches, 2 bits/nuc

Target
name string Unique name of target sequence

id uint32 Index of target in SAM header
length uint32 Number of nucleotides in target sequence

seq byteArray Nucleotides of target sequence, 2 bits/nuc

Figure 5.14: Specification of alignment and target Protocol Buffers. eXpress pre-processes
the input data (SAM/BAM and FASTA file) and converts it to a format that is compatible
with the distributed file system’s partitioning scheme. The information for each target
and fragment are put into a space-efficient Protocol Buffer, keeping only the information
necessary for optimization, which is then serialized and encoded in base64. Each target or
fragment takes up exactly one line in the file created for input into eXpress-D.

Each partition of the transformed RDD is approximately 700 megabytes and stores about 1
million fragments.

Processing without bias correction

The algorithm for processing without bias correction is depicted at the top of Figure 5.13.
The current target abundance, error substitution Markov chain, and fragment length dis-
tribution estimates (all initially set to be uniform) are broadcast to the slave nodes storing
alignment RDDs. Given these distributions, the fragments on each slave are probabilistically
assigned to the aligned targets using the likelihood function from Section 2.5. The appro-
priate categories of the latent distributions are incremented by the posterior probabilities of
the assignments at each slave node to produce new empirical distributions. These counts
are then accumulated by the master node and Laplace smoothing is applied before they are

CHAPTER 5. SCALING THE OPTIMIZATION 53

normalized. The updated parameter estimates are then broadcast to the slave nodes and
the procedure is repeated until convergence is detected (see below).

Processing with bias correction

Previous work demonstrates that significant improvements in accuracy can be attained by
modeling sequence-specific bias (Chapter 4 and [55, 31]). We have included a bias correction
mode (enabled by default) to take advantage of these improvements, as illustrated at the
bottom of Figure 5.13. The primary algorithm remains the same as outlined above with
the addition of Markov chain parameters modeling the sub-sequences surrounding the 5’
and 3’ fragment ends. Estimates of these parameters are broadcast to the slaves, used
in the likelihood calculation (Section 4.2.4), and updated empirically, similar to the other
hidden parameters. Instead of probabilities, the bias parameters are ratios of the observed to
expected frequencies of these sub-sequences and are used as weights in the likelihood function.
The observed frequencies are accumulated empirically along with the other parameters as
described above, but the expected frequencies must be computed by sliding windows along
the target sequences and counting the occurrences of various sub-sequences weighted by the
current target abundance and fragment length parameter estimates. To make these repeated
updates efficient, we broadcast the current model parameter estimates to the slave nodes
storing target RDDs and have them compute local frequencies based on sliding windows
over the RDDs in memory. The frequencies are then accumulated by the master node,
allowing the bias weights to be updated before the next iteration.

Freezing of auxiliary parameters

We define the auxiliary parameters to be all parameters of the model except for the target
abundance parameters, which are the main parameters of interest. As previously discussed
in Chapter 3, there are two reasons for freezing the auxiliary parameters after a suitable
number of iterations:

1. The auxiliary parameters can be estimated accurately much earlier than the target
abundance parameters since they are fewer in number. Otherwise the algorithm will
be wasting a significant amount of time unnecessarily updating their distributions at
later iterations.

2. The model is only convex given fixed auxiliary parameters. Since we repeat the EM
steps until convergence is reached, we want a guarantee that processing will not con-
tinue indefinitely. Given fixed auxiliary parameters, the likelihood function is log-linear,
and the EM algorithm is guaranteed to converge to the maximum likelihood solution.

We therefore have chosen to use the following auxiliary parameter update scheme: The
parameters are updated at every iteration for the first 20 and are then only updated every
100 iterations until 1000 iterations are reached, at which point they are frozen.

CHAPTER 5. SCALING THE OPTIMIZATION 54

Numerical stability

To avoid underflow, all probabilities distributions are logged before being used in likeli-
hood computations, which has the extra benefit of allowing the use of faster additions instead
of multiplications. The assignment probabilities are exponentiated before incrementing the
empirical distributions, since there is no concern of numerical instability in the update step.

Convergence detection

We halt the algorithm when convergence of the target sampling probabilities is detected
in a manner similar to [34]. The parameters are considered to have converged when all
targets with a sampling probability of at least 10−7 have a relative change of no more than
10−2 between two consecutive iterations.

5.6.3 Results

Cluster and experiment setup

For running experiments, we used Amazon EC2 clusters comprising m3.2xlarge instances,
each of which has 8 virtual CPUs and 30 GB of memory. A virtual CPU is rated at 3.25 EC2
Compute Units (ECU), which is roughly equivalent to a 1.0-1.2 GHz 2007 Xeon processor.
Even though 30 GB may seem excessive, we found that it was necessary to avoid full, costly
garbage collection runs by the Java Virtual Machine (JVM) that Scala runs on, which could
delay each iteration by tens of seconds.

A cluster was launched for subsets of various sizes of each test dataset. Starting from
3 slave nodes used for 50 million and fewer fragments, the number of slave nodes used
increases proportionally with the dataset size, until we reach 60 slave nodes used for 1
billion fragments. Each set of fragments is broken down to partitions of approximately 1
million fragments, the size of which is 128 MB when stored on disk and 700 MB when stored
in memory as Java objects. The partitions are stored using Amazon’s S3 persistent store,
and for eXpress-D executions is cached on a slave assigned by the Spark scheduler. To
measure how runtimes scale with increasing dataset sizes and cluster resources, we executed
eXpress-D four times on each cluster for every dataset and report the average of those runs
on that cluster. Furthermore, runs over datasets simulated with and without bias were done
sequentially on the same cluster. We also used only trials where no Spark processes were
interrupted due to disconnected instances, or other machine component failures.

Performance comparisons

Figure 5.1 reveals that eXpress-D outperforms all other methods compared for data
simulated both with and without bias. This is unsurprising since it combines the exact
generative model with the full batch EM algorithm for optimization, while the other methods
make various approximations in one or the other. eXpress and Cufflinks use a complete

CHAPTER 5. SCALING THE OPTIMIZATION 55

50 M 100 M 500 M 1 B

Without Bias
With Bias

Number of Fragments

R
un

tim
e

fo
r 1

00
 It

er
at

io
ns

 (M
in

ut
es

)

0
10

20
30

40

Figure 5.15: eXpress-D runtimes. Average time required for 100 iterations on EC2 for
different amounts of input data running on data simulated with (purple) and without (teal)
sequence-specific bias. In the latter case, the timing is for iterations after the first 20, which
require a constant 30 minutes to learn the bias model. The cluster size is scaled as 3 slave
nodes (6 cores) for each 50 million fragments. The results show that eXpress-D running on
Spark maintains constant runtime when resources are scaled linearly with the amount of the
data.

model including bias, but eXpress optimizes with the online EM algorithm and Cufflinks

assumes independence between genomic loci. RSEM optimizes with the batch EM algorithm
but does not model sequence-specific bias. These approximations are made to help the
algorithms process large datasets on a single machine, but by taking advantage of the cloud,
eXpress-D does not need to sacrifice accuracy to scale.

In terms of speed and resource use, Figure 5.15 shows that eXpress-D can provide con-
stant runtime if the number of nodes are increased linearly with the size of the input datasets.
We found that with one CPU core per 1 million fragments, eXpress-D could execute 100
iterations in approximately 30 minutes without bias correction and 40 minutes with bias cor-
rection. There is also a constant 30 minute total overhead for learning the bias model during
the first 20 iterations. Each run requires approximately 500 iterations to converge, meaning
that only 4 hours would be required to process a billion fragments using 60 slave nodes (480
cores). This is just twice is long as is taken by the online EM algorithm of eXpress, which
can’t take advantage of parallelism and has linear scaling in time.

CHAPTER 5. SCALING THE OPTIMIZATION 56

Although it is impossible to directly compare timings across different machines, recall that
we found RSEM to be unable to complete the processing of more than 200 million fragments
on a typical desktop server with 24 GB of RAM or 800 million fragments on a server with
512 GB of RAM (Figures 5.4,5.1), which is more than is available to many labs. Also, we
show in Figure 5.5 that eXpress, Cufflinks, and RSEM scaled with slopes that range from
1.8 minutes per million fragments (mpmf) to 27 mpmf on datasets that were successfully
processed. Since eXpress-D runs in the cloud, it is not limited by the resources on a single
machine and can easily scale to a billion reads with essentially no change in the time required.

5.6.4 Discussion

The distributed implementation of eXpress-D allows us to combine the full model of
eXpress with the batch EM algorithm of RSEM to provide the best results in the least amount
of time for large datasets. A simple extension to eXpress-D that also parallelizes the read
alignment and pre-processing steps–similar to what is done in Myrna and Crowssbow[28]–
would greatly improve performance and move the full analysis pipeline to the cloud.

As more genomic data moves to the cloud for storage, tools that are able to take advantage
of distributed environments and frameworks–such as Spark–will become more widely used
and help remove the barriers to large-scale integrative analysis of high-throughput sequencing
projects.

CHAPTER 6. UPDATING ESTIMATES AFTER CHANGES TO TARGET SET 57

Chapter 6

Updating Estimates After Changes to
Target Set

The target abundances from high-throughput sequencing data requires a time-intensive
step of mapping reads to the target set, followed by an optimization procedure for deconvo-
lution of multi-mapping reads. These procedures are essential for downstream analysis such
as differential expression in the case of RNA-Seq, which this chapter will focus on without
loss of generality. In cases where it is desirable to adjust the underlying target set, for exam-
ple upon the discovery of novel isoforms or errors in existing annotations, current pipelines
must be rerun from scratch. This makes it difficult to update abundance estimates after
re-annotation, or to explore the effect of changes in the transcriptome on analyses.

We present a novel efficient algorithm for updating abundance estimates upon a change
in the target set that does not require re-analysis of the entire dataset. Our approach is
based on a fast partitioning algorithm for identifying transcripts whose abundances may
depend on the added or deleted targets, and on a fast follow-up approach to re-estimating
abundances for all targets. We demonstrate the effectiveness of our methods by showing how
to synchronize RNA-Seq abundance estimates with the daily RefSeq incremental updates.
Thus, we provide a practical approach to maintaining relevant databases of RNA-Seq derived
abundance estimates even as annotations are being constantly revised.

Our methods are implemented in software called ReXpress and are freely available, to-
gether with source code, at http://bio.math.berkeley.edu/ReXpress/.

The research contained in this chapter originally appeared in [54]. While the text focuses
on the specific example of RNA-Seq, the method applies for any type of target set.

6.1 Introduction

Two major bottlenecks in RNA-Seq analysis are the mapping of reads to transcripts,
which is a prerequisite for quantification and differential analysis, and abundance estimation
following mapping. The latter step is particularly complex when multi-mapping reads need

CHAPTER 6. UPDATING ESTIMATES AFTER CHANGES TO TARGET SET 58

to be resolved, which is necessary for estimating isoform-level abundances, or when genes
have been duplicated [65]. Popular programs for multi-read assignment, such as Cufflinks
(Section 5.4, [67]) and RSEM (Section 5.2, [31]), have large memory and time requirements
(see Figure 5.4). Alternative approaches, such as eXpress (Section 5.5, [53]), which uses a
streaming algorithm for assignment, are faster with a low memory footprint but must still
re-process all the data from scratch when the underlying annotation is adjusted. For large
datasets, such as the 3.5 billion reads of [17], a complete run of read mapping with Bowtie

[29], followed by abundance estimation with eXpress, would take approximately 11 days
(with 44 cores used for the mapping).

In cases where an annotation of transcripts in a genome may change after mapping, cur-
rent analysis pipelines require re-mapping of all reads followed by a complete recomputation
of abundances [59, 66]. This has made it time-consuming and impractical to determine the
effects of the addition of possibly novel transcripts on results or the impact of removal of
transcripts that appear to be incorrect. Moreover, in cases of model organisms, it has re-
sulted in the “freezing” of analyses with respect to specific annotation sets, even though
re-annotation efforts are resulting in continuous changes to “reference” transcriptomes [47].

The problem we solve in this paper is how to update quantification of transcript abun-
dances in cases where annotations change without remapping all reads to all transcripts and
running abundance estimation procedures from scratch. This problem is non-trivial for two
reasons:

1. Multi-mapping: Frequently reads map to multiple transcripts, and therefore the re-
moval or addition of transcripts may change the posterior probabilities associated
to read mappings. In particular, the addition of a single transcript may require re-
quantification of many other related transcripts.

2. Abundance estimates from RNA-Seq are relative and not absolute: Since RNA-Seq
abundance estimates are relative, a change in the abundance estimate of a single tran-
script affects all other transcripts.

Given a change in the underlying transcripts, we show that abundance estimates can be
updated by a procedure that only involves mapping reads to a small subset of the transcripts
and by recomputing assignment probabilities of multi-mapping reads for a similarly small set
(Figure 6.1). This is made possible by isolating a small relevant subset of transcripts using
a partitioning algorithm on a graph constructed from read alignments. When abundance
estimation is subsequently performed using a fast online algorithm, the updating of estimates
is particularly fast when the change to the underlying annotation is small.

An implication of this result is that it is possible to easily update RNA-Seq abundance
estimates for annotations that are continuously updated, as is the case with the nightly
Reference Sequence (RefSeq) updates. RefSeq is a large database of sequences that includes
widely used reference transcripts for many organisms. RefSeq is updated nightly to reflect
improvements in annotations, and although the changes are small, we show that they can
affect abundance estimates in RNA-Seq analyses. Our results demonstrate that it is pos-

CHAPTER 6. UPDATING ESTIMATES AFTER CHANGES TO TARGET SET 59

Annotation in
FASTA format

Find differences
between annotations

Alignments in
BAM format

Reads in FASTQ
format

Abundances

New transcripts
in FASTA format

Update ambiguity
graph

Map reads to added
transcripts

Find affected
components and

partition into smaller
blocks if too large

Extract alignments to
components

Updated
alignments in
BAM format

Compute
abundances from
the alignments for
each component

Update abundances

results.xprs

Updated
abundance
estimates

Updated
auxiliary parameter

estimates

Reconciled
annotation in
FASTA format

...

Re-annotation in
FASTA format . ..

. ..

Auxiliary
parameters

Component
alignments in
BAM format

Abundances for
each component

...

Identify renamed
transcripts

Ambiguity graph

Updated
ambiguity graph

Figure 6.1: Overview of ReXpress. Reads are initially aligned to a set of known transcript
sequences and these alignments are used to probabilistically assign multi-mapping reads and
to estimate abundances of the transcripts. The result is a set of relative abundances, for
example in FPKM units. When a new annotation is given, differences are identified. Reads
are mapped to any added transcripts and the ambiguity graph, where vertices correspond
to transcripts and edges correspond to pairs of transcripts to which reads have mapped
ambiguously, is updated (deleted transcripts in red and added transcripts in blue). The
“affected” transcripts whose abundance must be recomputed are obtained from a partitioning
in the graph. Finally, the subset of affected transcripts have their abundances recomputed
using the relevant reads and abundances for the transcriptome are recomputed.

CHAPTER 6. UPDATING ESTIMATES AFTER CHANGES TO TARGET SET 60

sible, with our algorithm, to analyze an RNA-Seq dataset by building up the annotation
one transcript at a time. In particular, our tool ReXpress allows scientists to routinely up-
date abundance estimates for RNA-Seq analyses to reflect best possible results at any time.
Although ReXpress is designed to work with formats produced by the eXpress RNA-Seq
quantification tool, the program is general and suitable for use with many mapping and
abundance estimation methods.

6.2 Methods

6.2.1 Incremental adjustment of abundance estimates

We begin by describing the adjustments that are required to update an RNA-Seq analysis
with respect to a re-annotation. An outline of the algorithm is provided in Figure 6.1. We
will assume that there already exists an initial annotation, alignments, abundances, and
ambiguity graph (see Section 5.3). In our software implementation, we assume that the files
are in eXpress format [53], but eXpress itself does not have to be used to generate the
output.

Given an updated FASTA file containing a re-annotation, the newly added and deleted
transcripts are detected. In some cases, re-annotation can involve simply renaming existing
transcripts, and this case is checked for and ignored if detected (after names/identifiers are
correctly updated). A modified transcript can always be described in terms of a transcript
deletion followed by an addition. For each difference between annotations the nature of the
edit is recorded.

The set of reads are then aligned to the added transcripts, and the ambiguity graph
is updated with new nodes representing these transcripts and edges induced by the new
alignments. The transcripts and alignments associated with independent components of the
ambiguity graph containing added and deleted transcripts are extracted. The abundances
for all transcripts in these components are then re-quantified separately using the updated
annotation. Finally, the new annotation, alignments, abundances (for all transcripts), and
ambiguity graph are output to be used with the next re-annotation update. Below is a more
formal description that explains the steps in detail. Proofs of correctness follow trivially from
the factorization of the standard likelihood function used in RNA-Seq, and are omitted.

6.2.2 Mathematical details

We require two fields from the output of an RNA-Seq quantification program after it
has been used to estimate abundances for a set of transcripts T : the estimates ρ̂T and the
ambiguity graph (defined in Section 5.3) of T which we denote by G = (T , E). We assume
that T ′ consists of T with the addition of a set of transcripts A and the deletion of a set of
transcripts D so that T ′ = (T ∪A) \ D. Finally, we will need the stored alignments from F
to T , which we denote by LF→T = {f → {t|t ∈ T and f aligns to t}}.

CHAPTER 6. UPDATING ESTIMATES AFTER CHANGES TO TARGET SET 61

To simplify the presentation we explain separately the case of adding transcripts (T ′ =
T ∪ A) and the case of deletion (T ′ = T \ D). The general case of addition and deletion
of transcripts can be handled by following addition by deletion, or together by combining
the procedures (details omitted). Furthermore, for simplicity, in the description below we
restrict the exposition to the case of addition/deletion of a single transcript.

• Given a set of transcripts T , let t′ be a transcript with t′ /∈ T . The updating of
estimates when t′ is added to the annotation is performed as follows:

1. Align the reads in F to t′ and denote the subset of reads of F that align to t′ by
F ′ ⊆ F . Denote the alignments of F ′ as LF→t′ .

2. Extract the read alignments for the reads in F ′ from LF→T and denote as LF ′→T =
{f → LF→T (f) for all f ∈ F ′}. In addition, denote by S =

⋃
f∈F ′ LF→T (f) the

set of transcripts in T that appear in LF ′→T .

3. Create the updated ambiguity graph G′ = (T ∪ t′, E ∪ {{t′, v} for all v ∈ S}).
4. Let B = {t : f is in the same component as t′, t 6= t′}. Extract the alignments

in LF→T that consist of a read mapping to a transcript in B as LF→B = {f →
LF→T (f) for all f ∈ F|LF→T (f) ⊆ B}.

5. Merge the alignments to create LF→B∪t′ = LF→B ∪ LF→t′ .
6. Perform quantification on the set of transcripts B∪t′ using the alignments LF→B∪t′ .

This produces a set of estimates {ρ̂′t}t∈B∪t′ .
7. Compute ρ̂TB =

∑
t∈B ρ̂

T
t . Set ρ̂T

′
t = ρ̂TB × ρ̂′t for all t ∈ B ∪ t′.

• Deletion is performed via a similar procedure. Let t′ be a transcript with t′ ∈ T .

1. Let B be the component in G that contains t′.

2. Extract the alignments from LF→T that contain reads mapping to transcripts in
B, denoted by LF→B = {f → LF→T (f) for all f ∈ F|LF→T (f) ⊆ B}.

3. Remove the alignments of reads to t′ from LF→B as LF→B\t′ = {f → LF→B(f) \ t′
for all f ∈ F}.

4. Perform quantification on the set of transcripts B \ t′ using the alignment file
LF→B\t′ . This produces a set of estimates {ρ̂′t}t∈B\t′ .

5. Compute ρ̂TB =
∑

t∈B ρ̂
T
t . Set ρ̂T

′
t = ρ̂TB × ρ̂′t for all t ∈ B \ t′.

6. Create the updated ambiguity graph G′ = (T \ t′, E \ {{t′, v} for all v ∈ B})

Note that in the rare case where this a change in the total number of aligned fragments
after the addition or deletion of a target, and additional step is required to renormalize the
relative abundance between components. This step is trivial and fast, and the details are
omitted.

CHAPTER 6. UPDATING ESTIMATES AFTER CHANGES TO TARGET SET 62

6.2.3 Improving performance by approximating the affected set

There is another issue that can hurt performance in practice: the affected component B
can be very large (see Figure 5.7). In typical RNA-Seq experiments, as much as one fifth of
all transcripts can lie in a single component of the ambiguity graph [53]. These components
typically consists of large gene families and multiple isoform genes that share common se-
quence. To improve performance, it is therefore desirable to restrict the re-quantification to a
smaller subset without sacrificing important information in the form of fragment alignments.
We do this by partitioning a weighted generalization of the ambiguity graph, obtained by
the addition of edge weights representing the number of ambiguous alignments between each
pair of transcripts. For a given mapping LF→T and induced ambiguity graph G, we let
the weight between two transcripts u, v be w({u, v}) =

∑
fF 1({u, v} ⊆ LF→T (f)). Given

these weights, we wish to partition around t′ such that the total weight of edges crossing
the partition cut is small compared to the weight of edges inside the block. Moreover, it is
desirable that the block containing t′ is small.

Many sophisticated objective functions and algorithms exist for partitioning graphs [5]. A
detailed exploration of the applications of these methods to our problem is outside the scope
of this paper. Instead, to demonstrate the feasibility of a partitioning scheme for improving
the performance of our method with large components, we chose to use the greedy approach
outlined below, which is motivated by the objective of removing edges that correspond to
the “least informative” alignments.

First, we define the density of a block S, d(S), as the total weight of edges incident to
a node in the block and a node outside of the block divided by the total weight of edges
incident to the nodes in the block. Intuitively, this is the ratio of edges crossing the cut to
all of the edges touching nodes in the block. Formally,

d(S) =

∑
u∈S,j∈S̄ w(u, v)∑

u∈S,v∈T \S w(u, v) +
∑

(u,v)∈S w(u, v)
. (6.1)

Our objective is to find, for a given transcript t′, a block S that contains t such that
d(S) < θ for a given threshold 0 < θ ≤ 1. We do so using the following greedy update.

1. Begin with S = {t′}.
2. Iteratively add node u = argmaxu∈T w({t′, u}) to S until d(S) < θ.

It is easy to show that for any valid θ, this algorithm will terminate. As we show in the
following section, the method is empirically both fast and accurate.

CHAPTER 6. UPDATING ESTIMATES AFTER CHANGES TO TARGET SET 63

0 200 400 600 800 1000

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Mean Block Size

Sp
ea

rm
an

 C
or

re
la

tio
n

1 0.5 0.1 0.05 0

✓

3898
...

...

Figure 6.2: Tradeoff between approximate affected component size and accuracy for the greedy
partitioning algorithm. 250 transcripts were randomly selected with replacement from the
largest component in Figure 5.7. For 20 values of θ, each transcript was removed from
the dataset and subsequently re-added using ReXpress. The abundance for the transcript
computed by ReXpress was then correlated (using Spearman rank correlation) with the
initial results for those transcripts using the full dataset. While smaller partitions result in
a reduction of this correlation, the computational time is greatly reduced. For θ < 0.1, the
affected component size is reduced by nearly a factor of 20, while the accuracy is still within
the expected error of the eXpress method from Section 5.5.

6.3 Results

6.3.1 Accuracy of partitioning approximation

To validate the performance of our greedy partitioning algorithm, we randomly selected
with replacement 250 transcripts from the largest partition (3,898 transcripts) in the initial
RefSeq time-point and simulated their addition at some earlier date. Each selected transcript
was filtered from the FASTA, alignment file, and ambiguity graph, and was then re-added
using a single step of our algorithm. We show the results of this update using 20 different
values of θ in Figure 6.2. There is a clear tradeoff between the accuracy of the approximation
and the size of the resulting block selected by different values of θ. We note that for θ <
0.1, the correlation is already reasonably close to the accuracy of the eXpress algorithm
demonstrated in [53] and Chapter 5.

CHAPTER 6. UPDATING ESTIMATES AFTER CHANGES TO TARGET SET 64

6.3.2 Application to RefSeq incremental update

To demonstrate the effectiveness of our approach, we applied it to the large RNA-Seq
dataset produced for [67], which consisted of RNA-Seq performed on C2C12 which is a mouse
myoblast cell line. The data was first analyzed in 2010, but since then the mouse RefSeq
annotation has been updated numerous times. Specifically, as a proof-of-concept, we applied
ReXpress (our implementation of the methods above) to 34 days of the RefSeq incremental
update (RIU), which is a daily update of the RefSeq annotation database (see Methods,
Figure 6.3A).

Using 24 free cores, 644 minutes were required for the initial Bowtie2 alignment, 505
minutes for 20 repetitions of abundance estimation with eXpress, and 11 minutes for building
the ambiguity graph. Across the entire month of RefSeq updates, a size 3910 component
was affected seven times, while components of size 15 or less were affected 37 times.

Each subsequent update required, on average, 55 minutes to complete our re-annotation
pipeline. This is compared with the approximately 644 + 505 = 1149 minutes that would be
required for alignment and abundance estimation from scratch with Bowtie2 and eXpress

after each re-annotation.
The abundance estimates for the final time point had a Spearman rank correlation of

R2 = 0.994 with those calculated from scratch. The small discrepancy is due to the fact
that the online EM method in eXpress approximates the maximum likelihood solution, and
therefore is not expected to be exact.

Because some of the transcripts added and deleted over the time period affected the large
components in the ambiguity graph, we also ran the analysis using the greedy partitioning
scheme described above (θ = 0.1). While the speed of the updates was greatly improved by
the partitioning by reducing the size of the (approximate) affected components (Figure 6.3B),
the results were nearly identical.

6.4 Discussion

Despite the difficulties in storing, processing and distribution of high-throughput sequence
data [58], repositories such as GEO have led to an explosion in publicly available genome-
wide expression data. However, numerous technical challenges that arise in re-using data
have limited the utility of publicly archived RNA-Seq reads [57].

Our results show that it is possible to efficiently update RNA-Seq abundance estimates
upon re-annotation, thus removing a major obstacle to re-using publicly available data.
This should prove to be particularly useful in newly sequenced organisms whose annotations
are not stable and undergo periodic revision, and also in human cancer transcriptomics
where structural alterations can be tumor specific [3, 72]. We also believe that ReXpress

will be particularly useful for sequencing centers providing analysis services. Instead of
producing one-time output, it should now be possible to refresh analyses as annotations
improve, without expensive hardware or compute time needed as user bases and datasets

CHAPTER 6. UPDATING ESTIMATES AFTER CHANGES TO TARGET SET 65

11/09
11/26

12/13

-20
-10

0
10
20
30

#
 C

ha
ng

ed
 T

ra
ns

cr
ip

ts

a
Transcripts Deleted
Transcripts Added

1150

b

650

Initial
11/09

11/26
12/13

Refseq Releases from 11/09/12 to 12/13/12

0

50

100

150

200

Pr
oc

es
si

ng
 T

im
e

(m
in

)

Bowtie2 Mapping Time
Ambiguity Graph Build Time
Ambiguity Graph Update Time
eXpress Run Time
Alignment Extraction Time Without Partitioning
Alignment Extraction Time With Partitioning

Figure 6.3: Updates to the mouse RefSeq transcriptome over the course of 34 days. (A)
Numbers of transcripts added and deleted over the 34-day period. Transcripts that kept the
same name but changed sequence were treated as an addition and a deletion. (B) ReXpress
run time, in minutes, on each RefSeq update, with and without partitioning. Initial run
time consists of Bowtie2 alignment time (24 cores) and eXpress abundance estimation time
(3 cores), without ReXpress. Partitioning was done when a changed transcript was part of
a component larger than 300 transcripts, which occurred 7 times over the 34-day period.

CHAPTER 6. UPDATING ESTIMATES AFTER CHANGES TO TARGET SET 66

grow.
Other applications of our work include a randomized approach to optimization of tran-

scriptome assembly in conjunction with abundance estimation [36, 37, 43], and the de-
velopment of an RNA-Seq quantification database for publicly available datasets that is
automatically updated as annotations improve.

Moreover, our work on component identification in and partitioning of the ambiguity
graph can be used to develop more efficient batch methods for abundance estimation. A
common issue in the commonly used batch EM solutions [67, 31] is the necessity of iterating
over a large number of reads, which has a memory bottleneck as shown in Chapter 5. As
mentioned in Section 5.3, a better solution for the memory bottleneck in the batch method is
to iterate over approximately independent partitions of the ambiguity graph whose associated
reads can be fit into memory. Since most components are often small, only the largest will
need to be partitioned as in our method above. The blocks can then be processed in parallel
only a single machine or distributed over a cluster.

Finally, in conjunction with the streaming algorithm for quantification in [53], the present
method provides an online algorithm in both the reads and the targets in any setting
where probabilistic assignment of multi-mapping reads is a bottleneck in analysis of high-
throughput sequencing data.

CHAPTER 7. DETECTING RNA-DNA DIFFERENCES 67

Chapter 7

Detecting RNA-DNA Differences

RNA-DNA differences (RDDs) are known to be produced by the enzymatic “editing”
of RNA after transcription, which serves a clear biological function in the modification of
proteins produced by specific genes. Recent studies have also discovered, to varying degrees,
non-canonical forms of RDD with unclear function or mechanism. The explosion of DNA-
and RNA-Seq data has led researchers to query new datasets for the discovery and validation
of RDDs, but a rigorous statistical analysis has yet to be introduced. Current methods rely
on heuristics and ad-hoc thresholds, and the discrepancies in their results have caused major
disagreements in the interpretation of the same underlying data as to the number and types
of edits that actually occur [26, 39, 52, 49]. Here we lay the groundwork for a more rigorous
statistical method through the extension of the eXpress model described in Chapters 2,4 and
using the online EM algorithm of eXpress (Section 5.5 and [53]) that we hope can put an
end to the current chaos in the field.

7.1 Background

With the success of recently published tools for the detection of genomic variation in the
large-scale sequencing efforts such as the 1000 Genomes project, researchers have begun to
turn their attention to a less explored form of variation: RNA-DNA differences (RDDs). An
RDD is defined as a site in RNA that differs with the DNA from which it was transcribed. A
common form of this variation is due to RNA editing (Figure 7.1), a post-transcriptional pro-
cess whereby the RNA sequence is modified. Typically, this process is performed by ADAR
enzymes, which convert adenosine to inosine (translated as guanosine by the ribosome),
known as A→I(G) editing. Another, more rare form of editing is catalyzed by APOBECs,
which edit cytidine to uridine (C→U) in a similar manner. Furthermore, recent studies
making use of RNA-Seq and applying methods similar to those used for genome variant dis-
covery have provided convincing evidence for other non-canonical forms of editing, especially
transitions [35, 51].

That non-canonical editing occurs is clear. However, there is a large controversy sur-

CHAPTER 7. DETECTING RNA-DNA DIFFERENCES 68

AC
C A

U
APOBEC ADAR

I

DNA

T G

RNA

cDNA

Figure 7.1: Canonical RNA editing. RNA editing leads to RNA-DNA Differences (RDDs)
and is known to occur in two canonical ways. In C→U editing, a cytosine base is deaminated
into a uridine. In A→I editing, an adenosine base is deaminated into an inosine by an ADAR
enzyme and is treated as a guanine in translation.

rounding how widespread these RDDs are in practice. According to one study [35], non-
canonical editing is nearly as common as canonical editing. Nevertheless, multiple other
analyses of the same data [26, 39, 52] as well as newer datasets [51] have concluded oth-
erwise. Thus, variable approaches to the analysis of these data relying on heuristics and
ad-hoc thresholds are producing widely varying results, leading to the conclusion that a
more principled method, based on a statistically-sound generative model, is needed [49].

In the following sections, we indicate potential faults in previous analyses that may lead
to false positives. We then describe our proposed generative model and likehood-based
method for a high-throughput sequencing experiment meant to detect RDDs, which we have
implemented as an extension to eXpress with only minor engineering challenges. Finally,
we will present evidence that our method can accurately identify RDDs.

7.2 Previous Methods

We focus on the two largest studies to date using RNA-Seq for detecting RDDs, one by
Li et al.[35] and one by Peng at al.[51].

7.2.1 Li et al. [35]

In their paper, Li et al. sequenced the transcriptomes of 27 individuals and compared
with their genome data from the 1000 Genomes Project to find RDDs. After analyzing this
data, they announced the discovery of 28,766 RDD events, over 10,000 of which were non-
canonical. This finding was disputed by other researchers in three separate commentaries
[26, 39, 52] for four primary reasons: uneven distribution of events among read positions,
strand specificity, calls at known polymorphic sites, and the existence of paralogous genes
with sequences matching the proposed edit. The first two are signs of systematic errors in
the sequencing and library preparation [41], and the latter two are due to a combination of
incomplete or incorrect reference sequences and mapping errors.

CHAPTER 7. DETECTING RNA-DNA DIFFERENCES 69

Systematic sequencing errors

Uneven distribution of claimed RDD events within reads are demonstrated in all three
commentaries. These likely false positives land near the ends of reads, especially on the 5’
end of the fragment. Several explanatory hypotheses are proposed including the possibility
of systematic sequencing errors [52], overhanging ends of mis-aligned spliced reads [26], and
binding of non-exact random hexamer primers [26], which best explains the 5’ bias. Two
of the commentaries [26, 52] also point out that a large number of the proposed events are
supported by reads in only one direction. This has been found to be a strong indicator of
a systematic error in Illumina sequencers [41], and is a likely explanation for some of the
unexpected findings.

Reference and mapping errors

Many of the alleged false positives in [35] were attributed to errors in the reference as
well as mapping errors that were not accounted for.

In the first case, [26, 39] point out that many of the sites were at positions with the
reference nucleotide was determined using very low coverage DNA-Seq (as low as four reads).
Therefore, a miscalled reference base would appear to be an RDD when compared to deeper
coverage RNA-Seq data. Furthermore, [52] adds that many of the RDD sites are known to be
polymorphic in the human population, which, combined with the low-coverage genotyping
calls explains many of the alleged false positives.

All three commentaries [26, 39, 52] also argue that limiting alignments to an incomplete
transcriptome reference and only considering unique alignments below some threshold led
to further false positives. By remapping the reads to the full genome, the commentators
demonstrated that many multiply align to duplicated genes, some of which are not anno-
tated in the transcriptome. Without knowledge of these multiple mappings, the original
authors substituted inexact false alignments for the true origin of the reads, thus believing
the mismatches to be RDDs. Furthermore, reads covering non-annotated splice junctions
will commonly align to other isoforms of the gene with errors in the last few bases where
a different exon is spliced. [26, 39] found that this artifact appeared repeatedly at sites
reported as RDDs by [35]. This issue is further exacerbated by the fact that the genome
references themselves are incomplete so a full transcriptome reference may only be possible
using a de novo assembly of the RNA-Seq data itself.

7.2.2 Peng et al. [51]

In their paper, Peng et al. deeply sequence the transcriptome of a Chinese individual
whose genome had previously been sequenced [69]. Aware of the controversy surrounding
[35], the authors set out to build a series of filters to remove likely false positives and avoid the
pitfalls of the previous publication. The pipeline focused on removing likely PCR duplicates,
low coverage and repetitive sites, sites with SNVs, sites likely to receive erroneous mappings

CHAPTER 7. DETECTING RNA-DNA DIFFERENCES 70

issues, strand biased sites, sites with similar sequence repeated in the genome, sites of known
variation from other sources (SNPs), sites with multiple types of inferred edits, and sites with
100% of the reads differing between the DNA- and RNA-Seq.

The results in this paper were shown to be much more in line with the expected results
based on what is known about RNA editing. Only a small number of non-canonical sites
were called and many of the canonical sites matched known sites from previous studies.
Furthermore, the authors reanalyzed the data from [35], producing results that also more
closely matched the expectations of [26, 39, 52].

The apparent success of this method is noteworthy. Nevertheless, the heuristic nature of
the approach makes uncertainty difficult to measure and leads to the possibility of introducing
unintended biases into the analysis.

7.3 Method

We have developed a principled likelihood-based approach for RDD detection using a
generative model, which addresses the problems in the previous methods, especially those of
[35].

7.3.1 Generative model

The generative model used is an extension of the eXpress model of Chapters 2,4 and [53]
and is shown in Figure 7.2. The observed variables are a set of RNA-Seq fragments, a set
of DNA-Seq fragments, and a reference genome. The individual genome is generated from a
set of reference genomes and then produces haplotype transcripts that may or may not be
edited from the genome sequence. The two sequencing experiments proceed independently,
beginning by sampling a fragment length followed by the selection of a transcript given the
sampled length, and bias and abundance parameters in the case of RNA-Seq, or only given
the length and bias in the case of DNA-Seq, as abundances are assumed to be uniform. Next
a position is selected in the transcript given the sampled length and transcript, and bias
parameters specific to the experiment. Finally errors are inserted based on the experiment’s
error distribution. Below, more detail is provided on how we deal with the issues pointed
out in the previous section.

Systematic sequencing errors

As in eXpress (Section 5.5 and [53]), this model uses a Markov chain to model the
likelihood of specific base substitutions given position in the read and sequence context. The
model can easily be learned with a relatively small amount of data and should be able to help
discriminate between the likelihood of a base difference being due to sequencing or priming
errors as opposed to a real RDD. The ends of the fragments are modeled separately based on
sequence order, since the sequencing device is biased towards different errors on each read.

CHAPTER 7. DETECTING RNA-DNA DIFFERENCES 71

RNA-Seq
fragment

parameters

Lfragment
length

T

P

transcript

position

F
N

� ⌧⇡

R

reference
genomes

DNA-Seq
 fragmentF

M

G

P position

⇡

L fragment
length

�

individual
genome

�

T T T

transcript
 haplotypes

�

Figure 7.2: Graphical representation of generative model for RDD detection experiment.
Here we assume a stochastic process generates an individual’s diploid genome from a set of
reference genomes, thereby producing a set of transcript haplotypes, possibly including edits.
During a DNA-Seq experiment (red), sequenced fragments are generated from the genome
based on distributions for fragment length, sequencing biases, and sequencer errors. During
an RNA-Seq experiment (blue), sequenced fragments are generated from the transcript hap-
lotypes based on distributions for fragment length, transcript abundances, sequencing bias,
and sequencer errors. Our method attempts to find the set of parameters that maximize the
likelihood given this model. Observed random variables are shown in bold.

However, it may also be useful to further subdivide the reads based on whether they are
the 5’ or 3’ end of the fragment in order to capture errors due to the priming of inexact
sequences [26], although this is not yet implemented.

Based on the findings of [41] that different upstream motifs are features of systematic
error, the uniform strandedness at an error locus appears to be due to the different upstream
sequences in reads from reverse complemented fragments. In this case, the context-dependent
model described above should be able to properly assign a correct error likelihood without
explicitly taking read directionality into account. Nevertheless, it may be necessary to model
other features of systematic error, for example by including base qualities in the error model.

Reference and mapping errors

By allowing for the possibility that any transcript could potentially produce any observed
fragment, our model can avoid the types of mapping errors described above. Of course, we

CHAPTER 7. DETECTING RNA-DNA DIFFERENCES 72

do not wish to consider every possible alignment, but a very liberal mapping procedure
combined with comparing multiple alignments with different mapping scores will make us
less susceptible to error.

Furthermore, as the genome itself is treated as a latent variable that is being inferred from
both the DNA-Seq and RNA-Seq data, we are much less sensitive to the effect of inaccurate
reference sequences. Our method learns, albeit with some uncertainty, the correct base at
each position, taking into account sequencing errors and biases. By requiring all haplotypes
of an individual as inputs, we further reduce the number of false positives at multi-allelic
sites.

7.3.2 Likelihood function

Since our method (below) allows us to decouple the two sequencing experiments, we begin
by focusing on the the likelihood function from Section 2.5 for the RNA-Seq experiment,

L(λ, ρ, π, φ|F) =
∏
f∈F

ML∑
l=1

∑
t∈T

l(t)−l+1∑
p=1

λl · τt|l · πp|t,l · φf |t,p,l, (7.1)

and expand it in the following manner. First, note that in eXpress, φ is made up of a
first order Markov chain for base substitution probabilities due to sequencing errors as well
as an independent model for insertions and deletions. For simplicity, we assume that the
post-transcriptional modification and sequencing do not result in indels. We represent the
substitution probabilities for the 5’ read as

ε5,ia|b,c := P(f 5
i = a|f̃ 5

i−1 = b, f̃ 5
i = c), (7.2)

and similarly ε3,ia|b,c for the 3’ end, where f̃ represents the true sequence of the fragment (no

sequencing or priming errors), the superscript denotes an end of paired-end read, and the
subscript is an index into the sequence. Furthermore, we define

σt,ib := P(ti = b), (7.3)

where ti is the base at index i in the sequence of target t. Then, letting B = {‘A’, ‘C’, ‘G’, ‘T’}
be the set of possible bases and assuming independence between the ends,

φf |t,p,l = φf5|t,p,l · φf3|t,p,l (7.4)

φf5|t,p,l =

l(f5)∏
i=1

∑
a∈B

σt,p+i−1
b

∑
b∈B

σt,p+ib · ε5,i
f5

i |a,b
, (7.5)

with a similar equation for φf3|t,p,l.
We modify the calculations of the bias weights for each potential fragment alignment

wt,p,l, and the effective length of a transcript t, l(t), from Section 4.2 in a similar way so that
the expected distribution, for example, is computed taking base uncertainty into account.

CHAPTER 7. DETECTING RNA-DNA DIFFERENCES 73

The likelihood for the DNA-Seq data is nearly identical, except the transcript abundances
(ρ) used to compute the sampling probabilities (τ) are fixed to be uniform, i.e. ρt = |T |−1

for all t ∈ T .

7.3.3 Optimization of likelihood

Online updates

The likelihood is optimized in the same manner as eXpress, using the online EM algo-
rithm from Section 5.5. The only required modifications are in how to learn and update
the parameters mentioned in the previous section (ε, σ, π). The parameters are represented
by Dirichelet random variables and updated by the multinomial assignments of fragment
alignments, as ε and π are estimated in eXpress. However, due to the fact that the target
sequences are now latent variables, the updates to ε become

ε5,ia|b,c ← (1− γn)ε5,ia|b,c + γn · 1(f 5
i = a)

∑
(t,p,l)∈Âf

P̂f (t, p, l) · σt,p+i−1
b · σt,p+ic . (7.6)

The update for π is similar, but is for a third order Markov chain.
If we let

Âf (t, i) := {(r, p, l) ∈ Âf : t = r∧((p < i < p+ l(f 5)−1)∨(p+ l− l(f 3)−1 < i < p+ l−1))}
(7.7)

be the set of alignments of fragment f that cover position i of transcript t, and let nt,i be
the number of fragments thus far in the experiment that cover position i. Then the update
for σt,ib is

σt,ib ←
(

1−
2−∑(t,p,l)∈Âf (t,i) P̂f (t, p, l)

nt,i

)
σt,ib +

1

nt,i

∑
(t,p,l)∈Âf (t,i)

P̂f (t, p, l)

·
∑l(f5)

j=1 1(i = p+ j − 1)P(f̃ 5
j = b|f 5

j , (t, p, l)) +
∑l(f3)

j=1 1(i = p+ l − j)P(f̃ 3
j = b|f 3

j , (t, p, l))

max(1,
∑l(f5)

j=1 1(i = p+ j − 1) +
∑l(f3)

j=1 1(i = p+ l − j))
,

(7.8)

where

P(f̃ 5
j = c|f 5

j = a, f = (t, p, l)) =

∑
b∈B σ

t,p+j−2
b σt,p+j−1

c ε5,ja|b,c∑
d∈B
∑

b∈B σ
t,p+j−2
b σt,p+j−1

d ε5,ja|b,d
. (7.9)

Note that in place of γn, we are using 1/nt,i as the update mass. This is due to the sparsity of
the informative fragments for any given σ parameter. The first term of 7.8 provides a correct
weighting of the current value based on this update schedule. In the second term, we sum
over each position in both ends of all fragments that overlap with position i, accumulating
the posterior probabilities that any observed bases at position i were produced by there being

CHAPTER 7. DETECTING RNA-DNA DIFFERENCES 74

a b nucleotide in the actual fragment sequence. We use indicator functions here instead of
indexing directly into the fragment sequences since, although the fragments are known to
overlap i, it is not guaranteed that the base was included in the sequenced reads. The
denominator in the second term is so that we don’t double count the evidence a single
fragment provides if both ends cover position i.

Priors

Since we are using the online EM algorithm with vary sparse updates for the sequence
parameters, the prior used in this case is very important. A uniform prior would cause all
positions to look equally likely in terms of the assignment and would ignore the information
provided in the reference sequence. A deterministic prior based on the reference would cause
the distribution to be permanently fixed, reducing our model to that in eXpress.

Instead, we bias our prior towards the reference nucleotide and give non-zero, uniform
probability to the other bases. How close the reference base is to 1, along with how strong
the prior is (in terms of the Dirichlet parameters) will determine how easily the distribution
is allowed to shift given observed alignments. Because we are taking possible sequencing
errors and alternative alignments into account, it is reasonable to assume that a weaker
prior is necessary and sufficient to provide good sensitivity and specificity. However, this is
a parameter of our method that may require more tuning in the future.

7.3.4 Method

Given the generative model and an optimization technique, we now discuss two methods
for detecting RDD in different cases.

Known haplotypes

Assume that we know the true haplotypes of an individual based on some other method
for variant detection, as in both [35, 51]. We now treat G (the genome) as an observed
variable, which decouples the DNA-Seq and RNA-Seq portions of our generative model.
Therefore, we can use the online EM algorithm with the updates described in Section 5.5.2
and above to learn a posterior distribution on the bases at each site given only the RNA-Seq
data.

Aside from the posterior distribution, we also want to determine the significance of the
difference from the reference at each site. To do so, we first define Ot,i as a multinomial
random variable for the frequency of observed (probabilistically assigned) fragment bases
aligned to transcript t at position i. We then compute the MLE as the number of observations

CHAPTER 7. DETECTING RNA-DNA DIFFERENCES 75

of each base in our experiment,

ôt,ib =
∑
f∈F

∑
(t,p,l)∈A(f,t,i)

P̂f (t, p, l) · [1(p < i < p+ l(f 5)− 1) · 1(b = f 5
i−p+1)+

1(p+ l − l(f 3)− 1 < i < p+ l − 1) · 1(b = f 3
p+l(f3)−i)],

(7.10)

as well as the number of observations of the most observed non-reference base,

ôt,imax = −min
b∈B

(1− 1(b = ti)) · ôt,ib , (7.11)

the total number of observations at this position,

ôt,i =
∑
b∈B

ôt,ib , (7.12)

and the expected supporting fragments for each base given the true reference base and the
positions and probabilities of the fragment alignments,

E(Ot,i
b |ti) =

∑
f∈F

∑
(t,p,l)∈A(f,t,i)

P̂f (t, p, l) · [1(p < i < p+ l(f 5)− 1) · ε5,i−p+1
b|ti−1,ti

+

1(p+ l − l(f 3)− 1 < i < p+ l − 1) · ε3,p+l(f3)−i
b|ti−1,ti

].

(7.13)

We can now compute our p-value as the probability that any non-reference base would
be observed as often as the most commonly observed non-reference base, given the true
reference. Thus,

p-valuet,i =
∑

b∈B:b 6=ft,i

P(Ot,i
b ≥ ôt,imax), (7.14)

where Ot,i
b ∼ Normal(np, np(1− p)) for n = ôt,i, p = E(Ot,i

b |t,F)/ôt,i.
Note that the above test implicitly takes into account the depth of coverage. We are

careful to correct for multiple testing using a Bonferroni correction to reduce the number of
false positives.

General case

The more general case is where we do not know the true haplotypes. We require a
reference genome along with DNA-Seq or Exome-Seq reads. Since the observed RNA-Seq
and DNA-Seq data are independent given G, we would expect that if we inferred G from the
DNA-Seq and RNA-Seq reads independently, we would learn the same distribution within
some uncertainty due to our optimization method, sequencing errors, etc. Therefore, our
method in this case is to do this comparison.

CHAPTER 7. DETECTING RNA-DNA DIFFERENCES 76
C

ov
er

ag
e

O
bs

er
ve

d
Ex

pe
ct

ed
Po

st
er

io
r

A
C
G
T

Precision (0.01 FDR): 0.993

Coverage Threshold

R
ec

al
l (

0.
01

 F
D

R
)

A) Real Data B) Simulated Data

10 20 50 100 200 500 1000 2000

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

x

y

Figure 7.3: Results for real and simulated data. (A) The posterior, expected, and observed
distributions of bases for a portion of a transcript (NM 001199739) learned with the data
from [51]. The black arrowheads denote positions with significant p-values (after Bonferroni
correction) according to our method. All are A→I edits and were validated by [51]. (B)
Simulations of 50 million paired-end reads and 200 randomly selected RDD sites shows near-
perfect precision and excellent recall for significant sites (p-value < 0.01) after Bonferroni
correction. Recall improves with coverage and is perfect for all sites with a depth of at least
237 reads.

We again divide the model and infer the transcript sequences given the two datasets in
turn. The RNA-Seq data is processed as above. The DNA-Seq data has a similar model
except the transcript abundances are fixed to be uniform. This produces two sets of posterior
distributions on the bases at all positions.

We now wish to determine if the differences in these distributions are significant. However,
we must also take into account a possible difference in coverage between the two experiments.
Therefore, we compute our p-value using the bootstrap. For each position in each experiment
we sample from the posterior the number of bases covering that position. For each pair of
samples we use Fisher’s exact test to find a p-value and then take the average p-value over
some large number, B, of samples. This average p-value can then be used as a significance
score for the position, after correction for multiple testing.

Note that this more general case also applies when a distribution over the genome se-
quence is provided by some alternative means, without the need to re-infer the genome.

7.4 Results

Figure 7.3 presents initial results for our method. In (A) we show an example of the
output of our method on the data analyzed by Peng et al.[51]. The positions that we
identify as significant in this selection match their findings but in a more statistically-sound
manner. A full re-analysis of the data should be completed shortly.

CHAPTER 7. DETECTING RNA-DNA DIFFERENCES 77

In (B) we present results for a synthetic dataset where we randomly selected 200 sites
to be “edited” in the reference. We then processed 50 million transcriptome-wide synthetic
reads generated with errors under the eXpress model. Our precision was nearly perfect after
Bonferroni correction and our recall was excellent even at low coverage. Furthermore, we
had perfect recall for any site with at least 237 reads. This analysis using synthetic data
lends great support to our method and also provides useful information for determining a
coverage threshold in real analyses.

7.5 Discussion

We have presented a likelihood-based method for discovering sites of RDD using a gen-
erative model that captures various aspects of the sequencing experiment. We have also
described how we believe this model addresses many of the issues that led to false positives
in [35] without resorting to the heuristic filtering of [51].

However, there are a few issues that still need to be better addressed by our method.
For example, we have not described a way to prevent some of the mapping errors that
plagued the analysis of [35]. One solution may be to include the entire genome as a pseudo-
transcript in the transcriptome set used in our mappings. This would allow us to better
resolve the probabilistic assignment of fragments that come from repeat regions or non-
annotated isoforms.

Furthermore, we may need to learn a separate error model based on the fragment end (5’
or 3’) in additional to the sequencing order, as mentioned previously. Based on the observed
importance of relative quality scores in calling systematic errors [41], it may be necessary to
include these in our error model along with the read position.

Our initial results provide a proof-of-principle for statistically sound detection of RDDs,
however a complete analysis of an entire genome is beyond the scope of this thesis.

CHAPTER 8. CONCLUSION 78

Chapter 8

Conclusion

In the preceding chapters we have presented an overview of the ambiguous fragment as-
signment problem, with a focus on RNA-Seq (Chapter 1), a generative model for a typical
sequencing experiment called the eXpress model (Chapter 2), an EM-based optimization
procedure for estimating the hidden parameters of our model (Chapter 3), an improvement
to the model and estimation procedure for capturing the effects of sequence-specific frag-
mentation bias (Chapter 4), multiple ways of scaling the optimization to larger datasets
including partitioning the data, using the online EM algorithm of eXpress and using cluster
computing with eXpress-D (Chapter 5), an efficient method for updating estimates after
a change in the target sequences (Chapter 6), and a new method for detecting RNA-DNA
Differences in RNA-Seq experiments (Chapter 7).

While we have primarily focused on RNA-Seq in this document, only simple modifications
are necessary to use eXpress and associated methods for other high-throughput sequencing
experiments. For example, we have already added a feature to eXpress that provides ability
to assign multi-reads in ChIP-Seq experiments. This procedure uses binned portions of
the genome as target sequences and allows for fragment count estimates of “neighboring”
targets to be used in the formula for probabilistic assignment. This procedure is similar to
[11] except that it includes models for errors and bias. Metagenomics provides an even more
straightforward application whereby full genomes are treated as target sequences. Other
applications could include ribosomal profiling [22], which has similarities with RNA-Seq,
and copy number variation detection [14], which has similarities with ChIP-Seq.

As more methods are introduced that take advantage of modern sequencing technologies
for digital counting and datasets continue to grow larger, the ability to scale solutions to
the fragment assignment problem will become even more critical. Furthermore, as new
technologies are introduced, likelihood models must be able to adapt to the peculiarities of
different platforms while remaining general enough to be widely applicable. In this document,
we have described a model and methods that we have shown to be general, precise, adaptable,
and scalable to the coming influx of high-throughput sequencing data.

BIBLIOGRAPHY 79

Bibliography

[1] S Anders and W Hüber. Differential expression analysis for sequence count data.
Genome Biology, 11:R106, 2010.

[2] CD Armour, JC Castle, R Chen, T Babak, P Loerch, S Jackson, JK Shah, J Dey,
CA Rohl, JM Johnson, and CK Raymond. Digital transcriptome profiling using selective
hexamer priming for cDNA synthesis. Nature Methods, 6:647–649, 2009.

[3] YW Asmann, BM Necela, KR Kalari, A Hossain, TR Baker, JM Carr, C Davis, JE Getz,
G Hostetter, X Li, SA McLaughlin, DC Radisky, GP Schroth, HE Cunliffe, EA Perez,
and EA Thompson. Detection of redundant fusion transcripts as biomarkers or disease-
specific therapeutic targets in breast cancer. Cancer Research, 72:1921–1928, 2012.

[4] KF Au, H Jiang, L Lin, Y Xing, and WH Wong. Detection of splice junctions from
paired-end RNA-Seq data by SpliceMap. Nucleic Acids Research, 38:4570–4578, 2010.

[5] CE Bichot and P Siarry, editors. Graph Partitioning. John Wiley and Sons, Inc., 2011.

[6] D Blei, A Ng, and M Jordan. Latent dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

[7] JR Bradford, Y Hey, T Yates, Y Li, SD Pepper, and CJ Miller. A comparison of mas-
sively parallel nucleotide sequencing with oligonucleotide microarrays for global tran-
scription profiling. BMC genomics, 11(1):282, 2010.

[8] D Branton, DW Deamer, A Marziali, H Bayley, SA Benner, T Butler, M Di Ventra,
S Garaj, A Hibbs, X Huang, SB Jovanovich, PS Krstic, S Lindsay, XS Ling, CH Mas-
trangelo, A Meller, JS Oliver, YV Pershin, JM Ramsey, R Riehn, GV Soni, V Tabard-
Cossa, M Wanunu, M Wiggin, and JA Schloss. The potential and challenges of nanopore
sequencing. Nature Biotechnology, 26:1146–1153, 2008.

[9] JH Bullard, E Purdom, KD Hansen, and S Dudoit. Evaluation of statistical methods
for normalization and differential expression in mRNA-Seq experiments. BMC Bioin-
formatics, 11:94, 2010.

[10] O Cappé and E Moulines. On-line expectation-maximization algorithm for latent data
models. Journal of the Royal Statistical Society, 71:593–613, 2009.

BIBLIOGRAPHY 80

[11] D Chung, PF Kuan, B Li, R Sanalkumar, K Liang, EH Bresnick, C Dewey, and S Keles.
Discovering transcription factor binding sites in highly repetitive regions of genomes
with multi-read analysis of ChIP-Seq data. PLOS Computational Biology, 7:e1002111,
2011.

[12] J Dean and S Ghemawat. MapReduce: simplified data processing on large clusters.
In Proceedings of the 6th conference on Symposium on Operating Systems Design &
Implementation - Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX
Association.

[13] AP Dempster, NM Laird, and DB Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
pages 1–38, 1977.

[14] J Duan, JG Zhang, HW Deng, and YP Wang. Comparative studies of copy number
variation detection methods for next-generation sequencing technologies. PloS one,
8:e59128, 2013.

[15] S Fleige and MW Pfaffl. RNA integrity and the effect on the real time qRT-PCR
performance. Molecular Aspects of Medicine, 27:126–139, 2006.

[16] S Ghemawat, H Gobioff, and ST Leung. The Google file system. In ACM SIGOPS
Operating Systems Review, volume 37, pages 29–43. ACM, 2003.

[17] BR Graveley, AN Brooks, JW Carlson, MO Duff, JM Landolin, L Yang, CG Artieri,
MJ van Baren, N Boley, BW Booth, JB Brown, L Cherbas, CA Davis, A Dobin,
R Li, W Lin, JH Malone, NR Mattiuzzo, D Miller, D Sturgill, BB Tuch, C Za-
leski, D Zhang, M Blanchette, S Dudoit, B Eads, RE Green, A Hammonds, L Jiang,
P Kapranovand L Langton, N Perrimon, JE Sandler, KH Wan, A Willingham, Y Zhang,
Y Zou, J Andrews, PJ Bickel, SE Brenner, MR Brent, P Cherbas, TR Gingeras,
RA Hoskins, TC Kaufman, B Oliver, and SE Celniker. The developmental transcrip-
tome of drosophila melanogaster. Nature, 471:473–479, 2010.

[18] KD Hansen, SE Brenner, and S Dudoit. Biases in Illumina transcriptome sequencing
caused by random hexamer priming. Nucleic Acids Research, 38:1–7, 2010.

[19] T Hashimoto, MJ de Hoon, SM Grimmond, CO Daub, Y Hayashizaki, and GJ Faulkner.
Probabilistic resolution of multi-mapping reads in massively parallel sequencing data
using MuMRescueLite. Bioinformatics, 19:2613–2614, 2009.

[20] U Hoelzle and LA Barroso. The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 1st edition,
2009.

BIBLIOGRAPHY 81

[21] T Hunter, T Moldovan, M Zaharia, S Merzgui, J Ma, MJ Franklin, P Abbeel, and
AM Bayen. Scaling the mobile millennium system in the cloud. In Proceedings of the
2nd ACM Symposium on Cloud Computing, page 28. ACM, 2011.

[22] NT Ingolia, S Ghaemmaghami, JRS Newman, and JS Weissman. Genome-wide anal-
ysis in vivo of translation with nucleotide resolution using ribosome profiling. science,
324:218–223, 2009.

[23] H Jiang and W Wong. Statistical inferences for isoform expression in RNA-Seq. Bioin-
formatics, 25:1026–1032, 2009.

[24] Y Katz, ET Wang, EM Airoldi, and CB Burge. Analysis and design of rna sequencing
experiments for identifying isoform regulation. Nature methods, 7(12):1009–1015, 2010.

[25] M Kircher and J Kelso. High-throughput DNA sequencing– concepts and limitations.
BioEssays, 32:524–536, 2010.

[26] CL Kleinman and J Majewski. Comment on Widespread RNA and DNA sequence
differences in the human transcriptome. Science, 335:1302, 2012.

[27] B Langmead, KD Hansen, JT Leek, et al. Cloud-scale rna-sequencing differential ex-
pression analysis with myrna. Genome Biology, 11:R83, 2010.

[28] B Langmead, MC Schatz, J Lin, M Pop, and SL Salzberg. Searching for SNPs with
cloud computing. Genome Biology, 10:R134, 2009.

[29] B Langmead, C Trapnell, M Pop, and SL Salzberg. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology, 10:R25,
2009.

[30] J Levin, X Adiconis, M Yassour, D Thompson, M Guttman, M Berger, L Fan, N Fried-
man, C Nussbaum, A Gnirke, and A Regev. Development and evaluation of RNA-Seq
methods. Genome Biology, 11:P26, 2010.

[31] B Li and C Dewey. RSEM: accurate transcript quantification from RNA-Seq data with
or without a reference genome. BMC Bioinformatics, 12(1):323, 2011.

[32] B Li, V Ruotti, RM Stewart, JA Thomson, and CN Dewey. RNA-Seq gene expression
estimation with read mapping uncertainty. Bioinformatics, 26:493–500, 2010.

[33] H Li and R Durbin. Fast and accurate short read alignment with Burrows-Wheeler
Transform. Bioinformatics, 25:1754–1760, 2009.

[34] J Li, H Jiang, and WH Wong. Modeling non-uniformity in short-read rates in RNA-Seq
data. Genome Biology, 11:R50, 2010.

BIBLIOGRAPHY 82

[35] M Li, IX Wang, Y Li, A Bruzel, AL Richards, JM Toung, and VG Cheung. Widespread
RNA and DNA sequence differences in the human transcriptome. Science, 333:53–58,
2011.

[36] W Li, J Feng, and T Jiang. IsoLasso: a LASSO regression approach to RNA-Seq based
transcriptome assembly. Journal of Computational Biology, 18:1693–1707, 2011.

[37] W Li and T Jiang. Transcriptome assembly and isoform expression level estimation
from biased RNA-Seq reads. Bioinformatics, 28:2914–2921, 2012.

[38] P Liang and K Klein. Online EM for unsupervised models. Proceedings of NAACL,
pages 611–619, 2009.

[39] W Lin, R Piskol, MH Tan, and JB Li. Comment on Widespread RNA and DNA
sequence differences in the human transcriptome. Science, 335:1302, 2012.

[40] S Marguerat and J Bähler. RNA-Seq: from technology to biology. Cellular and Molec-
ular Life Sciences, 67:569–579, 2010.

[41] F Meacham, D Boffelli, J Dhahbi, D Martin, M Singer, and L Pachter. Identification and
correction of systematic error in high-throughput sequence data. BMC Bioinformatics,
12:451, 2011.

[42] P Meinicke, KP Asshauer, and T Linger. Mixture models for analysis of the taxonomic
composition of metagenome. Bioinformatics, 27:1618–1624, 2011.

[43] AM Mezlini, EJM Smith, M Fiume, O Buske, G Savich, S Shah, S Aparicion, D Chiang,
A Goldenberg, and M Brudno. ireckon: Simultaneous isoform discovery and abundance
estimation from RNA-Seq data. Genome Research, 23:519–529, 2012.

[44] A Mortazavi, B Williams, K McCue, and L Schaeffer. Mapping and quantifying mam-
malian transcriptomes by RNA-Seq. Nature Methods, 2008.

[45] M Nicolae, S Mangul, II Mandoiu, and A Zelikovsky. Estimation of alternative splicing
isoform frequencies from rna-seq data. Algorithms for Molecular Biology, 6(1):9, 2011.

[46] M Nicolae, S Mangul, I Mǎndoiu, and A Zelikovsky. Estimation of alternative splicing
isoform frequencies from RNA-Seq data. Algorithms in Bioinformatics, 6293:202–214,
2010.

[47] CA Ouzounis and PD Karp. The past, present and future of genome-wide re-annotation.
Genome Biology, 3, 2002.

[48] L Pachter. Models for transcript quantification from RNA-Seq. arXiv, 2011.

[49] L Pachter. A closer look at RNA editing. Nature Biotechnology, 30:246–247, 2012.

BIBLIOGRAPHY 83

[50] B Paaniuc, N Zaitlen, and E Halperin. Accurate estimation of expression levels of
homologous genes in RNA-Seq experiments. In Bonnie Berger, editor, Research in
Computational Molecular Biology, volume 6044 of Lecture Notes in Computer Science,
pages 397–409. Springer Berlin / Heidelberg, 2010.

[51] Z Peng, Y Cheng, BCM Tan, L Kang, Z Tian, Y Zhu, W Zhang, Y Liang, X Hu, X Tan,
J Guo, Z Dong, Y Liang, L Bao, and J Wang. Comprehensive analysis of RNA-Seq
data reveals extensive RNA editing in a human transcriptome. Nature Biotechnology,
30:253–260, 2012.

[52] JK Pickrell, Y Gilad, and JK Pritchard. Comment on Widespread rna and dna sequence
differences in the human transcriptome. Science, 335:1302, 2012.

[53] A Roberts and L Pachter. Streaming fragment assignment for real-time analysis of
sequencing experiments. Nature Methods, 1:71–73, 2013.

[54] A Roberts, L Schaeffer, and L Pachter. Updating RNA-Seq analyses after re-annotation.
Bioinformatics, 29:1631–1637, 2013.

[55] A Roberts, C Trapnell, J Donaghey, JL Rinn, and L Pachter. Improving RNA-Seq
expression estimates by correcting for fragment bias. Genome Biology, 12:R22, 2011.

[56] G Robertson, M Hirst, M Bainbridge, M Bilenky, Y Zhao, T Zeng, G Euskirchen,
B Bernier, R Varhol, A Delaney, N Thiessen, OL Griffith, A He, M Marra, M Sny-
der, and S Jones. Genome-wide profiles of STAT1 DNA association using chromatin
immunoprecipitation and massively parallel sequencing. Nature Methods, 4:651–657,
2007.

[57] J Rung and A Brazma. Reuse of public genome-wide gene expression data. Nature
Reviews Genetics, 14:89–99, 2013.

[58] A Sboner, XJ Mu, D Greenbaum, RK Auerbach, and MB Gerstein. The real cost of
sequencing: higher than you think! Genome Biology, 12:125, 2011.

[59] S Schultheiss, G Jean, J Behr, R Bohnert, P Drewe, N Görnitz, A Kahles, P Mudrakarta,
VT Sreedharan, G Zeller, and G Rätsch. Oqtans: a Galaxy-integrated workflow for
quantitative transcriptome analysis from NGS data. BMC Bioinformatics, 12:A7, 2011.

[60] L Shi, LH Reid, WD Jones, R Shippy, JA Warrington, SC Baker, PJ Collins,
F de Longueville, ES Kawakasi, KY Lee, et al. The MicroArray Quality Control
(MAQC) project shows inter- and intraplatform reproducibility of gene expression mea-
surements. Nature Biotechnology, 24:1151–1161, 2006.

[61] K Shvachko, H Kuang, S Radia, and R Chansler. The Hadoop distributed file system.
In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on,
pages 1–10. IEEE, 2010.

BIBLIOGRAPHY 84

[62] S Srivastava and L Chen. A two-parameter generalized Poisson model to improve the
analysis of RNA-Seq data. Nucleic Acids Research, 38:e170, 2010.

[63] LD Stein. The case for cloud computing in genome informatics. Genome Biology, 11:207,
2010.

[64] M Taub, D Lipson, and TP Speed. Methods for allocating ambiguous short-reads.
Communications in Information and Systems, 10:69–82, 2010.

[65] C Trapnell, DG Hendrickson, M Sauvageau, L Goff, JL Rinn, and L Pachter. Differential
analysis of gene regulation at transcript resolution with RNA-Seq. Nature Biotechnology,
31:46–53, 2013.

[66] C Trapnell, A Roberts, L Goff, G Pertea, D Kim, DR Kelley, H Pimentel, SL Salzberg,
JL Rinn, and L Pachter. Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks. Nature Protocols, 7:562–578, 2012.

[67] C Trapnell, BA Williams, G Pertea, A Mortazavi, GK, MJ van Baren, SL Salzberg,
BJ Wold, and L Pachter. Transcript assembly and quantification by RNA-Seq re-
veals unannotated transcripts and isoform switching during cell differentiation. Nature
Biotechnology, 28:511–515, 2010.

[68] ET Wang, R Sandberg, S Luo, I Khrebtukova, L Zhang, C Mayr, SF Kingsmore,
GP Schroth, and CB Burge. Alternative isoform regulation in human tissue transcrip-
tomes. Nature, 456:470–476, 2008.

[69] J Wang, W Wang, R Li, Y Li, G Tian, L Goodman, W Fan, J Zhang, J Li, J Zhang,
Y Guo, B Feng, H Li, Y Lu, X Fang, H Liang, Z Du, D Li, Y Zhao, Y Hu, Z Yang,
H Zheng, I Hellmann, M Inouye, J Pool, X Yi, J Zhao, J Duan, Y Zhou, J Qin, L Ma,
G Li, Z Yang, G Zhang, B Yang, C Yu, F Liang, W Li, S Li, D Li, P Ni, J Ruan,
Q Li, H Zhu, D Liu, Z Lu, N Li, G Guo, J Zhang, J Ye, L Fang, Q Hao, Q Chen,
Y Liang, Y Su, A San, C Ping, S Yang, F Chen, L Li, K Zhou, H Zheng, Y Ren,
L Yang, Y Gao, G Yang, Z Li, X Feng, D Kristiansen, GK Wong, R Nielsen, R Durbin,
L Bolund, X Zhang, S Li, H Yang, and J Wang. The diploid genome sequence of an
Asian individual. Nature, 456:60–65, 2008.

[70] B Wold and RM Myers. Sequence census methods for functional genomics. Nature
Methods, 5:19–21, 2005.

[71] Y Xing, T Yu, YN Wu, M Roy, J Kim, and C Lee. An expectation-maximization
algorithm for probabilistic reconstructions of full-length isoforms from splice graphs.
Nucleic Acids Research, 34:3150–3160, 2006.

[72] D Yorukoglu, F Hach, L Swanson, CC Collins, I Birol, and SC Sahinalp. Dissect:
detection and characterization of novel structural alterations in transcribed sequences.
Bioinformatics, 28:i179–i187, 2012.

BIBLIOGRAPHY 85

[73] M Zaharia, M Chowdhury, T Das, A Dave, J Ma, M McCauley, M Franklin, S Shenker,
and I Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, pages 2–2. USENIX Association, 2012.

