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ABSTRACT 

Communicative exchanges consist of a certain degree of both static and dynamic 
structure that can be used for prediction. Temporal dynamics are often neglected in 
communication studies. We use Shannon’s mathematical theory of communication 
to examine 1,594,690 contributions from 206,184 contributors to 38 open online 
collaborations. We find that about three fourths of the total predictability of turn 
taking stem from participation frequencies (‘static variance’), while one fourth 
originates from the temporal sequence (‘dynamic process’). Most dynamic structure 
is contained within consecutive dyads. We find a trade-off in the importance of static 
and dynamic structure, which we explain with a combination of both theoretical and 
empirical factors. We also show that the stationarity of the communication process 
plays a significant role in this trade-off. These findings have implications both for 
theorizing and methodologically measuring communication as a dynamic process, 
as well as for the practical design of online collaboration systems. 

 

Acknowledgements: We are indebted to Jim Crutchfield for the continuous exposition to the 
depth and beauty of information theory and its extensions, as well as to Robert Bell, Peter Monge, 
Sarah Marzen, Grace Benefield, Harrison Hughes, and reviewers of IC2S2 for helpful comments. 
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The Complementary Importance of Static Structure and Temporal Dynamics 
in Teamwork Communication 

Communication patterns of turn taking of team communication are complex, adaptive, and 
emergent phenomena. The basic signature of complex adaptive systems is their situating between 
structure and randomness: some aspects of them are predictable, while others are inherently 
random (Bialek et al., 2001; Crutchfield and Feldman, 2003; Crutchfield, 1994; Grassberger, 1986; 
Kolmogorov, 1959). We use an approach from the literature of complex systems, which has grown 
out of Shannon’s (1948) mathematical theory of communication, to quantify the amount and kind 
of predictability in turn taking of teamwork communication.  The goal is to deepen our 
understanding of its origins, constituents, and involved trade-offs. 

Static Structure and Dynamic Patterns 

The literature differentiates between variance- and process-based explanations of communication 
patterns (Barnett, Chang, Fink, and Richards, 1991; Monge et al., 1984; Poole, 2007; Poole et al., 
2000). The former emphasizes relations among different variables during a given time window 
and the latter among variables at different points in time. Today, the vast majority of the literature 
analyzes variables or networks derived from a static snapshots or a time-collapsed sequence of 
communication processes (Keegan, Lev, & Arazy, 2016; Leenders, Contractor, & DeChurch, 
2016; Monge et al., 1984; Pilny, Schecter, Poole, & Contractor, 2016). This answers the ‘who 
speaks how often’ question, but neglects the ‘when’ question. For example, we can calculate the 
share of contributions of users in Wikipedia and find that 10% of users make more than 90% of 
the contributions (Ortega, Gonzalez-Barahona, and Robles, 2008). This provides predictability: it 
is quite likely that the next edit will come from a top power-user. In this case, the entire editing 
history is seen as one static event.  

The process-based approach recognizes that “communication is a process and should be 
explained as such” (Poole, 2007, p. 181). For example, we might notice that the contribution of a 
sporadic ad-hoc user might make it more or less likely that a power-user gets involved. Here we 
use dynamical patterns for predictions, conditioning on temporal sequences. The predictability of 
the next communicative turn depends on the particular historical context that immediately precedes 
and currently frames the present exchange.   

In the early 2000, less than 10% of articles in 40 communication journals dealt explicitly 
with temporal dynamics (Poole, 2007). The current neglect of temporal dynamics in the 
communication literature exists despite a focus on processes in early works (Berlo, 1960; 
Schramm, 1955), and despite a big push in the 1970s and 1980s to use dynamical systems theory, 
which included the study of group decision-making (Ellis and Fisher, 1975; Fisher, 1970; Krain, 
1973; Poole and Roth, 1989), relational control in relationships (Ellis, 1979; Fisher and Drecksel, 
1983; Hawes and Foley, 1973), mass communication (Watt and VanLear, 1996), and talk and 
silence sequences in conversations (Cappella, 1979, 1980; Cappella and Planalp, 1981). A main 
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historical account for why this work was discontinued was that “gathering everyday 
conversations… is nearly impossible…. unless one carries a tape recorder around all day (a 
cumbersome and hardly practical endeavor)” (Fisher and Drecksel, 1983, p. 68). Additional 
culprits are the “adoption of approaches from other fields such as psychology that do not 
emphasize process as much as communication” (Poole, 2007, p. 181), “the perceived scope of 
effort required from the researcher” (Monge et al., 1984, p. 28), and that dynamics were “simply 
impractical to compute” (Attneave, 1959, p. 22) before today’s computing power. 

An Opportunity 

Today’s digital reality provides the opportunity to deepen our understanding of communication as 
a process with fresh data and unconventional methods. The digital footprint allows us to obtain 
sequential communication patterns easily and computational power enables unorthodox 
techniques that only provide meaningful statistics with such ‘big’ data.  We work with 38 open 
computer-supported collaborations on crowdsourcing platforms, including Wikipedia, GitHub, 
and OpenStreetMap, with a median of 23,456 conversational turns per collaboration project.  

Building the Vocabulary of Turn-taking  

How can we capture dynamic patterns? We need to create the vocabulary of the dynamic that 
builds a seamless bridge from a static snapshot to a dynamic process. We start by defining the 
shortest (static) unit. There are many possible ways to classify discrete components of a dynamical 
communication exchange. Goffman (1981; p. 5) used “Replies and Responses”. Fisher (1970) 
developed two dozen interaction categories, and Jurgens and Lu (2012) use thousands of different 
types. For reasons of simplicity and tractability, we simply coded for conversational turns of 
participants, following the examples of Butts (2008), Gibson (2003, 2005), and Keegan et al. 
(2016). In order to calculate the static frequency of the distribution, we simply count how often 
different communicators like A and B contribute.  

In order to introduce dynamics, we analyze blocks of sequences over time. If we only have 
two communicators, A and B, we have exactly four possible blocks of length two: AA, AB, BA, 
BB. We can analyze how often each of these blocks occurs. We might find that some of them 
never occur, while others are quite frequent. Knowing this increases our predictability of temporal 
patterns of two consecutive turns. For sequences of three consecutive turns, we have eight possible 
turn motifs, and for four consecutive turns, sixteen, etc.. The result is a dictionary whose 
vocabulary are the existing temporal motifs. 

Creating the frequency statistics of these motifs provides for temporal predictability. If AB 
and BA occur more frequently than AA and BB we can predict temporal reciprocity in turn taking. 
In the more colorful words of more recent literature, such “sequential structural signatures” 
(Leenders et al., 2016, p. 98) provide the “meaningful unit of analysis” (Keegan et al., 2016, p. 
1070) that results in the temporal “rhythms that give it structure” (Begole, Tang, Smith, and 
Yankelovich, 2002, p. 334). Existing literature often chooses the length of such motifs ex-ante, 
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such as two- (Fisher & Drecksel, 1983), four- (Gibson, 2003, 2005), or five consecutive turns 
(Keegan et al., 2016). Since this seems a bit arbitrary, we use a systematic and data-driven 
approach and test for the importance of all possible sequences of length 1, 2, 3, 4, etc. This leads 
to our first concrete research question: 

Research Question 1 (RQ1): What is the contribution of communication motifs of 
different length to the total predictability of the overall communication pattern? 

Quantifying Structure and Process 

The statistics of the blocks of concatenated conversational turns allows us to quantify the roles of 
static structure and temporal process. The distribution among the motifs of length 1 provide the 
static frequencies: how often does each communicator contribute? From a static perspective, which 
assumes that the process is independent and identically distributed (i.i.d.), what makes 
communication predictable is the skewness of the distribution of individual contributions. If we 
have an upper limit of total predictability of the pattern, we can calculate how much of the total 
predictability stems from the skewedness of the collapsed time series, and how much from the 
vocabulary of concatenated conversational turns in time. Formal theorems from information theory 
allow us to ask such question: 

Research Question 2 (RQ2): How much of the total predictability of large-scale 
communication structures originates from the static distribution of communication frequency 
and how much from the dynamic temporal sequence?  

Changing Dynamics of Temporal Patterns 

One of the main opportunities of today’s massive datasets is that it allow us to delve deeper into 
profound conceptual differences, such as the two complementary notions of generalizability. From 
a static perspective, phenomena are detected and generalizable across a sufficiently large number 
of similar cases. If two teams are sufficiently similar, we can predict one from the other. From a 
dynamic perspective, phenomena are detected and generalizable across a sufficiently large number 
of repetitions across other periods. It two periods are sufficiently similar, we can predict one from 
the other. This implies two kinds of scientific generalizability. The generalization among static 
cases requires the ceteris paribus assumption: the cases need to be sufficiently similar. The 
generalization among temporal events requires the stationarity assumption: the periods need to be 
sufficiently similar. Stationarity demands that general summary statistics do not change throughout 
the time series: the dynamic persists over time.  

What complicates things is that social dynamics are almost always changing while 
unfolding. Their non-stationarity originates endogenously, through life cycles (Ellis and Fisher, 
1975; Fisher, 1970; Poole and Roth, 1989) or the ambition of social agents to improve the process 
(Hilbert, 2014; Madsen, Flyverbom, Hilbert, and Ruppert, 2016), or exogenously through external 
shocks (DeDeo, 2016; Poole et al., 2000). Given the useful properties of stationarity and its rare 
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appearance, it is often swept under the methodological rug and no statistical tests are executed, not 
even when published under the scrutiny of the world’s most highly ranked Journals, (Song, Qu, 
Blumm, and Barabási, 2010). We confront the topic head-on and ask:  

Research Question 3 (RQ3): How do static structure and temporal dynamics relate to 
the level of stationarity of the communication process? 

Method: the Mathematical Theory of Communication 

The notion of using motif dictionaries for the identification of structure in communication 
was formally generalized by Shannon’s (1948) mathematical theory of communication. He mainly 
explored statistical patterns of block codes to calculate the “Prediction and Entropy of Printed 
English” (Shannon, 1951, p. 50). He called the blocks “n-gram” (Shannon, 1948, p. 387), which 
is a term that found its way into modern content analysis and computational linguistics. Today, 
Shannon’s comprehensive intellectual framework is known as “information theory” (for a general 
introduction, see Gleick, 2011, and Pierce, 1980; for a more technical treatment, see Cover and 
Thomas, 2006, and MacKay, 2003).  

We use this framework to calculate the predictability of communication patterns in open 
teamwork. Just like individual letters make up more or less frequently appearing words (while 
certain sequences of letters never appear), we look for empirical evidence for certain ‘words’ that 
emerge from the ‘letters’ representing the contributions of different communicators. Such 
adoptions of information theory to distinguish among structural and random components of 
(nonlinear) dynamics is quite common in statistical mechanics, neuroscience, and dynamic 
systems theory in general (Bialek, Nemenman, and Tishby, 2001; Crutchfield and Feldman, 2003; 
Crutchfield, 1994; Crutchfield and Packard, 1983; Grassberger, 1986; Kolmogorov; 1959). 
Recently, this analytical approach has been applied to study the predictability of human mobility, 
showing that next location of individuals is up to 93% predictable (Lu, Bengtsson, & Holme, 2012; 
Smith, Wieser, Goulding, & Barrack, 2014; Song et al., 2010).  

Measures: Basic Quantities of Information Theory 

We will work with the most fundamental measure of information theory: entropy. We then 
calculate its rate and apply it to a mathematical theorem to obtain the overall predictive limit of a 
dynamic (Cover and Thomas, 2006, Chapter 2). 

Entropy. Entropy is a measure of uncertainty and randomness, and therefore also for 
structure and predictability. Entropy is at its maximum if we are faced with a uniform distribution 
of possible events (maximal uncertainty) and at its minimum if there is only one possible choice 
(no uncertainty and perfect predictability). In our case, it is a summary measure of the uniformity 
or skewedness of the communication components. Our approach to estimating the entropy of our 
time series is somewhat refined from the black-box approach used in recent studies of human 
mobility (e.g. Song et al., 2010). Since we want to understand the accumulative importance of 



  STATIC STRUCTURE AND TEMPORAL DYNAMICS  6 
 

 
 

motifs with different length, we use a sliding window with increasing lengths (Crutchfield and 
Feldman, 2003), more in line with early information theory applications (Attneave, 1959, p. 25; 
Miller and Frick, 1949). 

As shown in Figure 1, we slide a window of a specific length over the entire time series, 
one component at a time. We will start with a window of length 1, and increase the window length 
to 2, 3, 4, 5, etc. We denote a sequence 𝑆𝑆 of L consecutive variables by 𝑆𝑆𝐿𝐿. Unique blocks of length 
L give us our different motifs. We then identify the probability distribution that different motifs 
occur in the overall time series, 𝑃𝑃(𝑠𝑠𝐿𝐿), and calculate its entropy 𝐻𝐻(𝐿𝐿), which is defined as:  

𝐻𝐻(𝐿𝐿) = − � 𝑃𝑃(𝑠𝑠𝐿𝐿) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2𝑃𝑃(𝑠𝑠𝐿𝐿)
𝑠𝑠𝐿𝐿∈𝐴𝐴𝐿𝐿

              (1) 

The sum in equation (1) runs over all possible blocks of L consecutive symbols (Figure 
1a); 𝐴𝐴𝐿𝐿 is the set that consists of all motifs of length L (concatenated words from single 
contributions represented with an alphabet 𝐴𝐴), and since we use the logarithm of base 2, entropy 
is measured in bits. 𝐻𝐻(𝐿𝐿) is never negative and at its maximum if all different motifs 𝑠𝑠𝐿𝐿 are equally 
likely.  

  Entropy rate. We then take the discrete differences of entropies of different motif 
length L. This represents the uncertainty captured by motifs that are one symbol longer.  

∆𝐻𝐻(𝐿𝐿) = 𝐻𝐻(𝐿𝐿) − 𝐻𝐻(𝐿𝐿 − 1)               (2) 

The unit of ∆𝐻𝐻(𝐿𝐿) is bits/symbol, or in our case, bits per turn. It is never negative: 𝐻𝐻(𝐿𝐿) ≥
𝐻𝐻(𝐿𝐿 − 1). ∆𝐻𝐻(𝐿𝐿) is also called the entropy gain, since it is the uncertainty we gain when working 
with longer motifs (Crutchfield and Feldman, 2003).  

Following the logic of order-R Markov processes, ∆𝐻𝐻(𝐿𝐿) can also be written as a 
conditional entropy of the distribution of motifs with length L, conditioned on the distribution of 
motifs with length L-1:  ∆𝐻𝐻(𝐿𝐿) = ℎ𝜇𝜇(𝐿𝐿) = 𝐻𝐻(𝑆𝑆𝐿𝐿|𝑆𝑆𝐿𝐿−1) (Cover and Thomas, 2006). In this 
equivalent approach, we calculate the probability of the next turn conditioned on the previous 
motif. For motifs with a certain length L, ℎ𝜇𝜇(𝐿𝐿) is the estimate of the remaining randomness 
(uncertainty) of the pattern if the structural (predictable) components of block length L are 
considered (Crutchfield and Feldman, 2003). In words, ∆𝐻𝐻(𝐿𝐿 = 4) = ℎ𝜇𝜇(𝐿𝐿 = 4) asks: given all 
occurring motifs of length 4, what is the average uncertainty of the next turn?  

Entropy curves. By calculating the average uncertainty of the occurrence of motifs with 
increasing lengths, we expand our dictionary of possible motifs and aim at capturing ever more 
structure in the time series. The structure is the amount of information contained in the 
specification of the motifs in the arising dictionary of sub-sequences, while the irreducible 
randomness is contained in the remaining entropy.  
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Example. For reasons of pedagogical illustration, let us assume two communicators, A and 
B. Without anything else given, entropy is 1 𝑏𝑏𝑏𝑏𝑏𝑏 (50% chance of each contributing). Let us assume 
a simple communication process that follows the deterministic pattern of ABBB: 
[ABBBABBBABBB…] (e.g. a question about location, and the answer in the form of the three 
coordinates of spatial dimensions). In this simple communication pattern, symbol A appears 25% 
of the time and B makes 75%. This is our static frequency. It results in 𝐻𝐻(𝐿𝐿 = 1) ≈ 0.81 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠 
(equation (1)) and therefore reduces uncertainty and provides useful predictability: B is more likely 
than A. Armed with this insight, our best prediction for the next turn would always be B. We would 
be right 75 % of the time. Now we also track all motifs of block length two, of which we find three 
possible sequences: AB (25% of the time), BB (50%), BA (25%). This dictionary of dyads results 
in 𝐻𝐻(𝐿𝐿 = 2) = 1.50 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠 (equation (1)). Therefore, according to equation (2), ℎ𝜇𝜇(𝐿𝐿 = 2) =
𝐻𝐻(𝐿𝐿 = 2) − 𝐻𝐻(𝐿𝐿 = 1) = 1.50 −  0.81 ≈ 0.69 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠. We find four motifs of block length three 
(ABB, BBB, BBA, BAB), all equally likely, which results in  𝐻𝐻(𝐿𝐿 = 3) = 2.0 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠, and also four 
uniformly distributed motifs of block length four (ABBB, BBBA, BBAB, BABB), which also 
implies 𝐻𝐻(𝐿𝐿 = 4) = 2.0 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠. This leads to the fact that  ℎ𝜇𝜇(𝐿𝐿 = 4) = 0. There is no uncertainty 
remaining when considering motifs of block length 4. This is the necessary consequence of a 
deterministic process: after the period is reached, the process becomes completely predictable, as 
we capture all of the inherent structure. Figure 1 illustrates that the entropy rate (lower curve) is a 
discrete derivative of the entropy (upper curve).  

Limit of Predictability  

We now ask about the probability (Π) that the best predictive algorithm can correctly 
predict which communicator will make the next contribution. We are indifferent about the 
specificities of the predictive algorithm. It can consist of (non-)linear extrapolation, Bayesian 
inference, cutting-edge artificial intelligence with deep learning, or something else. Information 
theory tells us that regardless of the method, the limit of predictability must be subject to Fano’s 
inequality (Fano, 1961). The inequality relates the probability of error of any prediction, 𝑃𝑃𝑒𝑒, to the 
entropy rate, i.e. ℎ𝜇𝜇(𝐿𝐿) = 𝐻𝐻(𝑆𝑆𝐿𝐿|𝑆𝑆𝐿𝐿−1), and provides a lower bound for error (Cover and Thomas, 
2006): 

𝑃𝑃𝑒𝑒 ≥
𝐻𝐻(𝑆𝑆𝐿𝐿|𝑆𝑆𝐿𝐿−1) − 1

log|𝐴𝐴|                (3.1) 

Where |𝐴𝐴| is the size of the alphabet, in our case, the number of different contributors 
among which we try to predict the next one. Since the error is always larger than the right-hand 
side of equation (3.1), no predictive algorithm can be better than our limit of predictability 𝛱𝛱: 

𝛱𝛱 = 1 − 𝑃𝑃𝑒𝑒               (3.2) 
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Separating Atemporal and Temporal Uncertainties 

We calculate the limit of predictability for three kinds of entropies. First we estimate the 
predictability 𝛱𝛱𝐴𝐴 when merely knowing the number of different communicators. We know neither 
their frequencies nor any temporal pattern and therefore assume all communicators make the same 
amount of contributions in a random order (maximum entropy): ℎ𝜇𝜇𝐴𝐴(𝐿𝐿 = 0) = 𝑙𝑙𝑙𝑙𝑙𝑙2|𝐴𝐴|.  

Next, we estimate the predictability when knowing the distribution of contributions, but 
not their temporal pattern. Predictability 𝛱𝛱𝐻𝐻 is calculated by ℎ𝜇𝜇𝐻𝐻(𝐿𝐿 = 1) = 𝐻𝐻(𝐿𝐿 = 1). This 
measures the entropy of single symbols, and entropy is a measure of the skewness of a distribution. 
By assessing the mere distribution, it essentially estimates the predictability of a static aggregation 
of what is actually a dynamic conversation (akin to a static variance of contributions). The more 
skewed the distribution of contributions, the more predictable.  

Last, we use our sliding-window approach on the empirically recorded time series and 
calculate the limit of predictability when considering both the distribution and the temporal order, 
𝛱𝛱, by calculating ℎ𝜇𝜇(𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚). Naturally, uncertainties will decrease with the consideration of 
more detailed patterns (ℎ𝜇𝜇 ≤ ℎ𝜇𝜇𝐻𝐻 ≤ ℎ𝜇𝜇𝐴𝐴), while predictability will increase: 𝛱𝛱 ≥ 𝛱𝛱𝐻𝐻 ≥ 𝛱𝛱𝐴𝐴. 

Stationarity and predictability 

While econometric time series analysis has developed a solid theoretical framework to tests for 
stationarity in scalar, or at least ordinal variables (Wooldridge, 2008), communicative turns consist 
of categorical/qualitative data. We follow an approach developed to test the stationarity of 
transition probabilities of Markov chains (Anderson and Goodman, 1957). It has previously been 
applied to communicative turn-taking (Cappella, 1980) and consists of a 𝜒𝜒2 test among the first-
order distributions of contributions of different periods (that is, for word length 1). This previous 
research has cut the total period in rather qualitatively defined sub-periods and tested subsequent 
pairs. Being equipped with more computational power nowadays, we suggest cutting the total time 
series in as many sub-periods as allowed by the 𝜒𝜒2 test and test all possible combinations of pairs 
of sub-periods. The number of possible sub-periods 𝑙𝑙 is defined by the length of the time series 
|𝑇𝑇|, the alphabet size |𝐴𝐴|, and the 𝜒𝜒2 test demand that (at least 80% of) the expected count in the 
resulting matrix is over 5 (Yates, Moore, and McCabe, 1998, p. 734):   

𝑙𝑙 =
|𝑇𝑇|

|𝐴𝐴| ∗ |𝐴𝐴| ∗ 5
             (4)  

Data: in Need of ‘Big’ Data 

The length of analyzable communication motifs is limited by data availability. Given the 
exponential growth of the combinatorial possibilities of how symbols create motifs (or ‘letters 
create blocks of words’), datasets of considerable size are required to achieve minimum statistical 
representativeness. Past research has limited the number of considered communicators 
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distinguishing among some 3-4 participants (Gibson, 2003, 2005) and worked with 
communication motifs of maximal block length 3 (e.g. Fisher, 1970; Poole and Roth, 1989). For 
sequence length 𝐿𝐿 = 4, when distinguishing among merely 7 different communicators (e.g. A, B, 
C, D, E, F, G), the guarantee of at least 10 appearances of each possible motif already requires a 
time series with more than 24,000 sequential records. The required length 𝑇𝑇 of the time series is 
affected by both the diversity of the alphabet |𝐴𝐴| (distinct communicators) and the length 𝐿𝐿 of the 
block sequences (length of motifs) through the following equation: 

|𝑇𝑇| = 𝑛𝑛 ∗  2𝑙𝑙𝑙𝑙𝑙𝑙2(|𝐴𝐴|)∗𝐿𝐿             (5)  

where 𝑛𝑛 is the estimated number of times each motif will appear in the time series (the 
sampling of words). Equation (5) specifies the worst-case scenario, as it assures that each motif 
should appear at least the indicated number of times 𝑛𝑛. It could be relaxed by replacing 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝐴𝐴|) 
with ℎ𝜇𝜇 (Marton and Shields, 1994).  

We tracked the largest open teamwork datasets we could publicly find online since the 
beginning of their existence until February 2016. We analyzed the 10 largest GitHub projects (a 
web-based repository hosting a version control system for software development); the 2 largest 
OpenStreetMap collaborations (a collaborative platform to create free and editable maps); and 26 
Wikipedia pages (a collaborative online encyclopedia), including the10 largest open- and the 16 
largest semi-protected pages (participation requires an (auto)confirmed account) (Table 1).  

It is important to point out that the nature of these group dynamics is different from most 
face-to-face decision-making processes in teams. First, these groups are open to the general online 
public. Second, they are big and with growing group size, the likelihood of parallel 
communications increases. Third, they are asynchronous, in a sense that anybody can chime in on 
any topic at any time. Someone might hold a long monologue without bothering anyone, in stark 
contrast to offline teamwork. For example, for GitHub we track ‘commits’, which keeps record of 
what changes were made to the collective product, when and by who (usually containing a brief 
description) and for Wikipedia we track ‘revisions’. Of course, also face-to-face communication 
can consist of parallel conversations and untethered monologues, but the decentralized and 
asynchronous nature of these computer-supported collaboration platforms provides more 
opportunity for flexibility, and therefore, for more uncertainty and potentially less predictability. 

The mean of the number of contributions is 41,966 and the median, 23,456. On average, 
5,426 different contributors communicate per project, with a median of 5,971. Naturally, an 
alphabet size of over 5,000 different symbols would not provide representative statistics in 
agreement with equation (5). We analyze three different coarse-graining mechanisms that combine 
certain kinds of communicators into groups.    
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Table 1. Included databases. 
 Platform Project contributions contributors 

1 

Gi
tH

ub
 

Linux 573,066 14,641 
2 Homebrew 60,242 6,371 
3 Rails 55,914 3,553 
4 Rust 49,666 1,445 
5 Swift 31,944 314 
6 Atom 27,404 316 
7 Go 26,032 716 
8 gitlabhq 23,144 1,009 
9 django 22,007 1,198 

10 docker 21,583 1,411 
11 OpenStreetMap Russia 34,034 90 
12 Germany 18,587 259 
13 

W
ik

ip
ed

ia
 S

em
i-p

ro
te

ct
ed

 

George W. Bush 45,875 14,456 
14 United States 35,800 9,789 
15 Wikipedia 33,992 13,209 
16 Michael Jackson 27,677 6,522 
17 Jesus 28,112 6,788 
18 List of programs broadcast by ABS-CBN 25,239 5,409 
19 Barack Obama 24,740 6,648 
20 Adolf_Hitler 24,631 8,272 
21 World War II 23,767 7,534 
22 India 22,318 6,402 
23 The Undertaker 22,196 7,207 
24 Wii 21,743 7,022 
25 United Kingdom 21,635 6,621 
26 Roger Federer 20,993 7,024 
27 FC Barcelona 20,702 6,099 
28 Global warming 20,544 4,693 
29 

W
ik

ip
ed

ia
 O

pe
n 

List of WWE personnel 42,610 4,574 
30 Catholic Church 26,523 6,108 
31 List of Ben 10 aliens 21,077 5,843 
32 ATP World Tour records 20,733 2,679 
33 2006 Lebanon War 20,532 4,144 
34 Kane (wrestler) 20,401 8,045 
35 Jehovah's Witnesses 20,369 5,388 
36 List of programs broadcast by GMA Network 20,312 4,018 
37 PlayStation 3 20,069 6,609 
38 List of Total Nonstop Action Wrestling personnel 18,477 3,758 

 
We always coarse-grain according to the same schema: we track each one of the (|𝐴𝐴| − 2) 

most prolific communicators. For example, we distinguish among each one of the top 5 
communicators with the most contributions. We then group all those communicators with only 1 
and 2 contributions as one single group of communicators (ad-hoc user), and the remaining users 
into another group. As a result, we distinguish among |𝐴𝐴| = 7 different entities: the five most 
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prolific users, and two aggregated groups. Applying the sizes of our datasets to equation (5), using 
7 different communicators (|𝐴𝐴| = 7), allows for representative motif lengths between 𝐿𝐿 = 4 and 
𝐿𝐿 = 6. Distinguishing among the top 15 contributors (|𝐴𝐴| = 17), we obtain representative motif 
lengths of 3 and 4 consecutive turns, and when distinguishing among the 35 most prolific 
contributors (|𝐴𝐴| = 37), we may merely work with motif length between 2 and 3 turns.  

 

 

Results 

RQ1: Length of Communication Motifs 

The importance of motifs of different length (RQ1) is best seen with the example our largest 
database, the “Linux” project on GitHub (573,066 consecutive turns). It counts an average of about 
39 interventions per contributor, and the most prolific contributor, the Linux creator Linus 
Torvalds, taking the proverbial talking stick some 3.5% of the time.    

Figure 1c shows the resulting entropy curves for a coarse-graining to |𝐴𝐴| = 7. The 
theoretically maximum uncertainty among seven uniformly distributed contributors is log2(7) ≈
2.8 bits per turn. We ask how much the consideration of temporal motifs can reduce this 
uncertainty. Following equation (5), the size of the dataset assures an adequate statistical 
representation of 𝑛𝑛 occurrences per motif for motif lengths up to 𝐿𝐿 = 6 (see the vertical dashed 
lines in Figure 1c). The biggest drop in uncertainty reduction happens when we expand our motif 
from length 1 to length 2 (ℎ𝜇𝜇(𝐿𝐿 = 1) = 0.68, ℎ𝜇𝜇(𝐿𝐿 = 2) = 0.53). This is in agreement with 
previous findings (Dabbs & Ruback, 1987; Ellis, 1979; B. A. Fisher & Drecksel, 1983; Keegan et 
al., 2016; Krain, 1973; Parker, 1988; Stasser & Taylor, 1991). After that, we see that the entropy 
rate converges to about ℎ𝜇𝜇 = 0.49 bits per turn. This is the intrinsic randomness of the process 
that cannot be explained with our data. The uncertainty reduction contributed by expanding the 
motif dictionary from lengths 4 to 5, and from 5 to 6 is merely some 0.006 bits per symbol. This 
implies that there is more structure in shorter subsequences, while longer motifs contribute with 
sharply decreasing returns. It might as well be that we would discover more structure in longer 
motifs (maybe some recurring cycle that repeats every few dozen contributions?). The size of our 
dataset does not allow us to explore this in a meaningful way (increasing the length of motifs will 
quickly lead to overfitting).  
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Figure 1: (a) Sliding window of block length-4 sequences: 𝑆𝑆4. (b) Entropy curves with increasing 
motif length L, for period-4 process: [ABBBABBB…]. Entropy curve for block entropies 𝐻𝐻(𝐿𝐿) 
and entropy rate with convergence ℎ𝜇𝜇(𝐿𝐿 = 4) = 0. (c) Application to the Linux project on GitHub 
until 01/22/2016, with |𝐴𝐴| = 7. Non-deterministic process with remaining uncertainty. 

 



  STATIC STRUCTURE AND TEMPORAL DYNAMICS  13 
 

 
 

Figure 2 shows the entropy rate curves for our 38 datasets, for coarse-grained processes 
among 7 communication units (Figure 2A), and 17 communication units (Figure 2B). On average, 
without any temporal information (ℎ𝜇𝜇𝐻𝐻(𝐿𝐿 = 1) = 𝐻𝐻(𝐿𝐿 = 1)), the distribution among 17 different 
communicators represents 2.37 bits of information (Figure 2B). That is, simply by knowing the 
skewness of the distribution, we already know that from the possible 17 communicators, any of 
about 22.37 ≈ 5.2 do the talking. Static skewness reduced our uncertainty from 17 possibilities to 
about 5. Considering motifs of sequence length 2, we can reduce our uncertainty to any of  21.83 ≈
3.6 individuals, and with motifs of length 3, we can specify that at any given point it is the 
communicational turn of any one of 21.71 ≈ 3.3 participants. As shown in Figure 2, our response 
to RQ1 is that largest process contribution to communicative structure consists in the registration 
of the dyadic exchanges (from motif length 𝐿𝐿 = 1 to 𝐿𝐿 = 2). 

 

Figure 2: Motif length L against entropy rates for the 38 databases from Table 1, (a) with coarse-
graining to |𝐴𝐴| = 7, and (b) coarse-graining to to |𝐴𝐴| = 17. 

 

 

RQ2: Frequency-, Sequence-, and Total Predictability, 

We now employ Fano’s inequality from equation (3) to calculate the limits of predictability 𝛱𝛱, 
which is what we need to meaningfully quantify the contributions of static frequencies and 
temporal dynamics (RQ2). Figure 3 shows the results for our different level of coarse-graining. 
Naturally, the next contributor is easier to predict if we distinguish among less contributors |𝐴𝐴|.  

When distinguishing among 37 different groups, the best prediction algorithms cannot 
predict the next contribution with better than 75.3% accuracy (black triangles in Figure 3a). When 
coarse-graining among 17 different contributing units, the best predictive algorithms cannot 
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exceed an accuracy of 81.2%. When coarse-graining to 7 different communicative units, we get a 
limit of maximal predictability of 𝛱𝛱 = 89.7%. In other words, with almost 90% accuracy we can 
predict if the next contribution will come from one of the top-5 power-users, from a sporadic ad-
hoc contributor, or from the group in-between. This shows that a considerable amount of 
communicative structure emerges in large-scale collaborative teamwork. Figure 3a also shows the 
constituents of this total predictability, the empirically derived baseline predictability 𝛱𝛱𝐴𝐴 and the 
static frequency contribution 𝛱𝛱𝐻𝐻. 

Figure 3b takes the differences between these constituents of total predictability. The 
combined total predictability gain is the difference between our baseline and the total limit of 
predictability [𝛱𝛱 −𝛱𝛱𝐴𝐴]. It is between 51.2% and 55.4%. This total consists of the sum of the 
contribution of static frequencies, [𝛱𝛱𝐻𝐻 − 𝛱𝛱𝐴𝐴], plus the predictive gain from temporal sequence: 
[𝛱𝛱 − 𝛱𝛱𝐻𝐻]. Figure 3b shows that static frequencies contribute with a predictability gain of some 
40% (or some ¾ of the total), while the consideration of temporal sequence contributes an 
additional 13% (the remaining ¼ of the total predictability).  

 

Figure 3: Comparing for |𝐴𝐴| = 7; |𝐴𝐴| = 17; |𝐴𝐴| = 37. (a) Limits of predictability 𝛱𝛱, baseline 
𝛱𝛱𝐴𝐴 (knowing the alphabet), and 𝛱𝛱𝐻𝐻 (knowing the static distribution). (b) Predictive gains of 

static frequencies: [𝛱𝛱𝐻𝐻 − 𝛱𝛱𝐴𝐴]; temporal sequences: [𝛱𝛱 − 𝛱𝛱𝐻𝐻]; and combined total: [𝛱𝛱 − 𝛱𝛱𝐴𝐴]. 

 

(a) 

 

 

 

 

(b) 
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A quite surprising finding is that these predictability gains are very similar among the 
different level of coarse-graining: ¾ and ¼ of the total predictability. While the averages of the 
obtained limits of predictability among the 38 projects from Figure 3a are all significantly different 
(all paired sample t-tests p ≤ 0.000), the averages in Figure 3b are not (with the sole exception of 
the difference of the total gain between |𝐴𝐴| = 17 and |𝐴𝐴| = 37). 

A closer inspection of Figure 3 shows that the predictability gain based on frequencies, 
[𝛱𝛱𝐻𝐻 − 𝛱𝛱𝐴𝐴], correlates positively with total predictability gain, [𝛱𝛱 − 𝛱𝛱𝐴𝐴] (r(112) = 0.865, p ≤ 
0.000), while the predictability gain based on the sequence, [𝛱𝛱 − 𝛱𝛱𝐴𝐴], correlates negatively with 
the total predictability gain (r(112) = -0.339, p ≤ 0.000). The higher the gain in predictability due 
to a skewed frequency distribution, the lower the gain in predictability due to temporal sequence. 
There is a certain trade-off in predictability gains. 

Therefore, we can answer and even fine-tune RQ2. On average, static structure contributes 
about ¾ to the predictability of teamwork turns and temporal patterns ¼. This is the average of a 
trade-off between predictability from static structure and temporal dynamics. 

RQ3: Frequencies, Sequences, and Stationarity 

Figure (4) combines the frequency and sequence gains with the results for stationarity tests. We 
obtain the percentage of stationary sub-periods by counting how many of those pairs are not 
significantly different at p ≥ 0.01. For example, Linux can be meaningfully tested for stationarity 
when divided into 2,339 equal length sub-periods for |𝐴𝐴| = 7 (resulting in 2,734,291 𝜒𝜒2 tests 
among possible combinations), and in 84 groups for |𝐴𝐴| = 37 (3,486 paired combinations).  

The total predictability gain is positively correlated with the stationarity of the time series, 
although surprisingly weak (r(112) = 0.309, p ≤ 0.000). Stationarity is positively correlated with 
the predictability gain from static frequencies (r(112) = 0.530, p ≤ 0.000) and negatively correlated 
the gain obtainable from temporal sequences (r(112) = -0.598, p ≤ 0.000). Figure 4 also visualizes 
the statistically significant trade-off between predictive gains from static frequency and temporal 
sequence (r(112) = -0.765, p ≤ 0.000).  
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Figure 4: Predictive gains vs. stationarity. Bubble size shows total predictability gain: (𝛱𝛱 − 𝛱𝛱𝐴𝐴)2 

 

 

 

 

 

 

 

 

 

 

Discussion 

We found that static first-order variance contributes three times as much predictability in 
open computer-supported collaborations on crowdsourcing platforms than higher order temporal 
processes (¾ - ¼); that there is trade-off between the predictability gains from static structure and 
temporal dynamics; and that static structure predicts more strongly in a stationary process and 
dynamics in a nonstationary process. The following discusses each finding.  

The ¾ - ¼ Rule of Predictability in Collaborative Turn Taking  

The fact that we found a surprisingly stable share of predictability gains from static and temporal 
signatures independent from the level of course-graining has to be qualified by three issues: the 
chosen indicators, the chosen coarse-graining, and the chosen datasets. 

Our turn-taking indicator could be complemented by additional externally related variables 
(e.g. socio-economic attributes of the communicator or exogenous events) (Butts, 2008; Pilny et 
al., 2016), or by specifying content type (e.g. length or meaning of contribution). This could 
explain more or different kinds of structures and therefore change the finding. 

Our chosen coarse-graining might also confound this result. Having a closer look at the 
data reveals that static skewedness originates for different reasons: in OpenStreetMap projects 
from the dominance of one power-user, in the Linux project, from the dominance of the diverse 
group of regular contributors, which are neither power-users, nor sporadic ad-hoc contributors. 
This latter case is an artifact of joining different users into a common group (dealing with equation 
(5)). Figure 4 reveals that more fine-grained approaches increase the contribution of temporal 
dynamics within the Linux project (compare Linux17 and Linux37 in Figure 4). 
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As for the chosen datasets, we worked with the contributions or commits of open computer-
supported collaborations on crowdsourcing platforms. Of these, we chose the cases with the most 
contributions (again, dealing with equation (5)). It is important to notice that those two consecutive 
Wikipedia or GitHub contributions do not necessarily have to be connected. This leads to the 
longstanding question of the importance of coherence in group communication (Poole, 1985). 
“The claim that a group's communication plays a significant role in the outcomes of its discussion 
presupposes that the members of the group were in actuality communicating with one another” 
(Pavitt & Johnson, 1999, p. 303). We did find that the vast amount of structure is contained in the 
dyadic exchange between two consecutive conversational turns (RQ1), which is in agreement with 
previous findings (Dabbs & Ruback, 1987; Ellis, 1979; B. A. Fisher & Drecksel, 1983; Keegan et 
al., 2016; Krain, 1973; Parker, 1988; Stasser & Taylor, 1991). Given that these open and large-
scale platforms allow for asynchronous parallel communication, it is not always guaranteed that 
two consecutive turns constitute a reply and response dynamic among different participants. In 
some cases, we find that consecutive dyads more often originate by two consecutive contributions 
of the same user. For example, in the case of the Russian map, the most prolific user makes on 
average 127 consecutive contributions. At one point, the user holds on to the proverbial ‘talking 
stick’ for 3,062 consecutive turns. Such concatenated contributions could be collapsed, and future 
studies should look into the arising differences. Our presented methods lends itself for the detection 
of differences. As for our study, we set out not to collapse dynamics, and asked about predictability 
in temporal processes as observed. If the user feels that these are different contributions, we accept 
this choice as a unit. 

The Structure-Dynamic Trade-Off 

As for the detected trade-off, we offer an empirical and two mathematical explanations. Taking a 
closer look at the data reveals that in all 38 empirically analyzed cases the amount of sequence 
gains is quite stable. The magnitude of their contribution is more similar than frequency gains 
(over all 38 cases: frequency gain (M = 0.40, SD = 0.14); sequence gain (M = 0.13, SD = 0.07), 
see also axis in Figure 4). This means that a similar amount of sequential structure is found in 
communication processes with much and little static skewedness.  

The first mathematical reason that converts this empirical particularity into the detected 
trade-off is that the limit of predictability is capped at 100%. In those cases where almost all 
predictability originates from the static skewedness, such as in the Russian and German 
OpenStreetMaps and Linux17 (see Figures 2 and 4), the most prolific group makes some 90% of 
the contributions. If first-order static structure already provides much predictability, second-order 
dynamic structure cannot provide much more. In general, if static frequency already explains more 
than half of the total predictability, the math assures that temporal dynamics cannot add more than 
the other half of the total 100%. 
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On the contrary, if the frequency of contributions is more uniform, the stable amount of 
temporal structure accounts for a lot, in relative terms. In django_|A|=17, the most prolific 
contributor makes 13% of the contributions, the second and third both 9%, the fourth 8%, etc. This 
static frequency distribution is quite uninformative, and only contributes 13% to the predictability 
gain. The tracking of temporal motifs, however, contributes 34%, mainly stemming from 
consecutive dyads (ℎ𝜇𝜇(𝐿𝐿 = 1) = 3.6 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠, and ℎ𝜇𝜇(𝐿𝐿 = 2) = 2.3 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠) (Figure 2b). A stable 
amount of dynamic structure is relatively larger in a smaller total predictability.  

The second mathematical reason is more subtle. A few dominant power-users result not 
only in much static predictability, but also in less temporal patterns, because the same power-users 
are involved in almost all the patterns, thus limiting the number of possible patterns. A more 
uniform distribution among individual contributions will result in richer set of occurring temporal 
combinations. This can increase the role of dynamic signatures. Both of these reasons show that 
the general trade-off between static and dynamic structures is actually to be expected. 

Stationarity 

Stationarity is the elephant in the room of dynamical analysis of categorical variables. Our large 
datasets and today’s computational power allowed us to confront it head-on and we found that 
stationarity plays an important role in our trade-off: the more stationary, the less important 
temporal dynamics, and the more important static frequencies (Figure 4).  

This is to be expected, as stationary processes enable skewed participation structures to 
carve out its peaked distribution over time. Two periods are likely to be similar if both are 
dominated by the same power-user, who is the same power-use that also carves out the skewedness 
of the static frequency distribution. On the contrary, a changing time series dynamics result in a 
more uniform distribution through mixing. For example, consider the pseudo time series 
AAABAAAB BBBABBBA. If the dynamic of the first half would continue, power-user A would 
dominate and create static predictability. However, stationarity breaks in the middle of the series, 
which flattens the distribution of contributions. Over the entire period, the static structure is most 
uninformative: 50% chance for A and 50% for B. This kind of mixing leads to the proportionally 
smaller contributions of static structure in less stationary processes (Figure 4). Additionally, if the 
first half would continue, we would never see the temporal patterns BB, BBB, BBA, BAB, and 
ABB. Less stationarity produces more diversity in temporal sequences. Combined, these two 
effects result in temporal dynamics playing a more important role in less stationary processes, and 
static statistics in more stationary processes. 

While this was again a mathematical reason, the empirically detected universal persistence 
of temporal motifs through dyads can also play a role. Continuing with our non-stationary pseudo 
time-series, we clearly have much dyadic structure throughout, especially AA during the first half 
and BB during the second. We see the same signature in our data. For example, the GitHub django 
project was mainly driven by a small and cohesive group during its first half (2005-2012), and by 
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one/two-time contributors during the second (2012-2016). This change reduces stationarity, but 
still provides dyadic temporal structure of two consecutive contributions: power-users during the 
first half, and sporadic users during the second. Some kind of dyad still dominates the sequence 
vocabulary, even with low stationarity. In cases where total predictability is small, this represents 
a larger share of total predictability in relative terms (see the small bubble size of django in Figure 
4).  

Outlook 

Going forward, the detected role of stationarity shows that it is essential to further deepen 
our understanding of the issue of stationarity for the categorical variables of communicative 
exchanges (as for example done in DeDeo, 2016). This should consider the length and type of the 
involved time series. Naturally, more fine-grained time series are also less stationary (see the three 
almost parallel diagonal alignments in three dimensions in Figure 3).1 

Second, the presented approach can be used to study more practical problems of dynamics 
in group communication. Quantifying the structural and temporal patterns can help developing 
procedures that aim at increasing teamwork productivity, and in the design of related information 
systems. For example, our method can contribute to the search for the optimal sweet spot between 
hierarchical structure and decentralized randomness in digitally enabled peer production (Kreiss, 
Finn, & Turner, 2011; Shaw & Hill, 2014). A better understanding of stationarity in social 
communication dynamics also allows to tackling potential lock-in effects from the application of 
machine learning to time series data. If we assume that the past is equal to the future, machine 
learning is useful. If not, filter bubbles and personalized price discrimination can lock humans into 
their own past (Hilbert, 2014; Madsen et al., 2016). 

A technical point is that our method is confined to consecutive act sequences and so will 
miss sequences in which irrelevant acts intervene between meaningful ones. Future studies could 
extend the presented methodology to test for the role of intermittent or other irregular structures. 

Last but not least, another outstanding question is where these different communication 
patterns come from. They are surely the result of a mix of mutually entangled social-, 
communicative-, and psychological characteristics, such as local and global coherence (Pavitt & 
Johnson, 1999), habits (Fisher, 2004), reciprocity in trust building (Ostrom and Walker, 2003), 
path-dependencies and reciprocity (Butts, 2008), and the role of exogenous incidents (Poole et al., 
2000). Our approach to quantify static and temporal patterns allows to explore if different 
generative mechanisms can be linked to the emergence of different patterns of communicative 
structure. As such, our approach contributes to deepening our understanding of the complementary 
importance of static structure and temporal dynamics in communication patterns.  

                                                           
1 Correlations are r(36) at p ≤ 0.000, ordered according to |𝐴𝐴| = [7; 17; 37]: stationarity and 
frequency gain: [0.881; 0.740; 0.567]; stationarity and sequence gain: [-0.811; -0.695; 0.567]. 
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