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SUMMARY

Broadly neutralizing antibodies (bNAbs) against
HIV-1 envelope (Env) inform vaccine design and
are potential therapeutic agents. We identified
SF12 and related bNAbs with up to 62% neutraliza-
tion breadth from an HIV-infected donor. SF12
recognized a glycan-dominated epitope on Env’s
silent face and was potent against clade AE vi-
ruses, which are poorly covered by V3-glycan
bNAbs. A 3.3Å cryo-EM structure of a SF12-Env
trimer complex showed additional contacts to Env
protein residues by SF12 compared with VRC-
PG05, the only other known donor-derived silent-
face antibody, explaining SF12’s increased neutral-
ization breadth, potency, and resistance to Env
mutation routes. Asymmetric binding of SF12 was
associated with distinct N-glycan conformations
across Env protomers, demonstrating intra-Env
glycan heterogeneity. Administrating SF12 to HIV-
1-infected humanized mice suppressed viremia
and selected for viruses lacking the N448gp120
glycan. Effective bNAbs can therefore be raised
against HIV-1 Env’s silent face, suggesting their po-
tential for HIV-1 prevention, therapy, and vaccine
development.
Immunity 50, 1513–1529, J
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INTRODUCTION

Neutralizing antibodies (NAbs) play a key role in antiviral immu-

nity and are the correlate of protection ofmost available vaccines

(Burton, 2002; Plotkin, 2010). The HIV-1 envelope glycoprotein

(Env) is the only potential target for NAbs on the surface of the vi-

rus (Burton and Hangartner, 2016; Kwong and Mascola, 2018;

Wibmer et al., 2015). Env is a trimeric spike composed of

gp120/gp41 heterodimers that has evolved a plethora of immune

escape mechanisms to evade antibody recognition. These

include instability of the trimer, sparsity of spikes on the virion

surface, high sequence divergence across strains, and epitope

masking through its extensive glycan shield (Burton and Hang-

artner, 2016; Haynes, 2015; Klein and Bjorkman, 2010; Kwong

and Mascola, 2018).

Consequently, effective humoral responses to HIV-1 typically

only emerge several years after infection and only in a subset

of HIV-1-infected individuals (Gray et al., 2011; Landais et al.,

2016; Mikell et al., 2011; Rusert et al., 2016; Tomaras et al.,

2011). Although �50% of chronically HIV-1-infected individuals

develop some degree of cross-clade serum neutralization, only

a small fraction of individuals mounts outstandingly broad and

potent antibody responses against the virus (Doria-Rose et al.,

2010; Hraber et al., 2014; Landais et al., 2016; Rusert et al.,

2016; Sather et al., 2009; Simek et al., 2009). The development

and use of single B cell antibody cloning revealed that this activ-

ity can usually be attributed to one or a combination of broadly

neutralizing antibodies (bNAbs) that target HIV-1 Env (Scheid
une 18, 2019 ª 2019 The Authors. Published by Elsevier Inc. 1513
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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et al., 2009a, 2009b, 2011; Walker et al., 2009, 2010; Wu

et al., 2010).

NAbs are proposed to interfere with viral entry in a variety of

ways, including blocking receptor engagement, preventing

membrane fusion, and enhancing decay of Env spikes (Bur-

ton and Hangartner, 2016). Pre-clinical and recent human

studies have highlighted the potential of bNAbs for HIV-1

therapy and prevention (Bar et al., 2016; Bar-On et al.,

2018; Barouch et al., 2013; Caskey et al., 2015, 2017; Gautam

et al., 2016; Julg et al., 2017; Lynch et al., 2015; Mendoza

et al., 2018; Scheid et al., 2016; Shingai et al., 2013). More-

over, structural insights into mechanisms of bNAb binding

have been key to designing novel immunogens and strate-

gies for vaccination (Escolano et al., 2017; Jardine et al.,

2013; Kwong and Mascola, 2018; McGuire et al., 2013;

Sanders et al., 2013; Ward and Wilson, 2017). However, there

remain a number of challenges to the elicitation and clinical

use of bNAbs. For vaccine efforts, these include unusual

structural features of bNAbs such as large insertions/dele-

tions, and/or unusual complementarity determining region

(CDR) lengths as well as extensive somatic hypermutation

(SHM), all of which are rare features in the human repertoire

(Burton and Hangartner, 2016; Haynes and Burton, 2017;

Sok and Burton, 2018). For clinical use of bNAbs, viral

coverage gaps, manufacturability, and pre-existing bNAb

resistance represent potential problems (Escolano et al.,

2017; Gruell and Klein, 2018; Sok and Burton, 2018). Thus,

there is a continuing need to identify bNAbs that may be

more readily elicited by vaccination and that are suitable for

clinical use.

Although many bNAbs have been characterized, their tar-

gets, or ‘‘sites of vulnerability’’, on the HIV-1 Env spike appear

to be limited (Burton and Hangartner, 2016; Kwong and Mas-

cola, 2018; Sok and Burton, 2018; Ward and Wilson, 2017;

West et al., 2014; Wibmer et al., 2015). Numerous monoclonal

antibodies recognize the CD4-binding site, the V3-glycan

patch, the V2-apex, the membrane proximal external region

(MPER), and several epitopes encompassing the gp120-gp41

interface (Burton and Hangartner, 2016; Kwong and Mascola,

2018; Sok and Burton, 2018; Ward and Wilson, 2017; Wibmer

et al., 2015). In contrast, VRC-PG05 is the only donor-derived

antibody isolated to date that binds to the highly glycosylated

‘‘silent face’’ of gp120 (Zhou et al., 2018). However, VRC-PG05

neutralized only 27% of tested HIV-1 strains and had a rela-

tively high mean IC50 of 0.8 mg/mL, leaving uncertain the po-

tential usefulness of this epitope for vaccine design, therapy,

or prevention.

Here, we describe silent face (SF) bNAbs targeting a VRC-

PG05-related epitope that cover up to 62% of evaluated strains

with a mean IC50 of 0.20 mg/mL. To characterize the binding

mechanism of the new antibodies, we determined the 3.1 Å crys-

tal of the unbound SF12 Fab and a 3.3 Å cryo-EM structure SF12

Fab bound to the clade B B41 Env trimer. We found that SF12

binds the center of the Env silent face with a different orientation

and set of contacts than VRC-PG05. The overall breadth and

potency achieved by SF12 suggests that the silent face is an

additional target for vaccine design and that antibodies to this

site may be clinically useful as a complement to other avail-

able bNAbs.
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RESULTS

Isolation of an Antibody Family from Donor 27845 by B
Cell Culture and BG505 Sorting
Donor 27845was diagnosedwith HIV-1 in 1985 and followed in a

cohort of long-term non-progressors at the Fred Hutchinson

Cancer Research Center from 1998–2006. Apart from an inter-

ventional study during which the subject started and stopped

anti-retroviral therapy (ART) at set intervals from 1998–2001,

the subject has been off ART (Figure 1A). The individual’s purified

immunoglobulin G (IgG) isolated from a 2005 time point was

evaluated for neutralization against a 12-virus panel representa-

tive of the global epidemic (deCamp et al., 2014) (Figure 1B) and

found to be both broad and potent with a coverage of 92% and

an average median inhibitory concentration (IC50) of 92.3 mg/mL

(Figure 1B). To inform potential antibody isolation strategies,

neutralization fingerprinting of the subject’s IgG was performed,

but the results were inconclusive due to borderline prediction

confidence scores (Doria-Rose et al., 2017) (Figure 1B).

Based on the fingerprinting results, we employed an unbiased

B cell microculture approach for antibody cloning (Doria-Rose

et al., 2015; Huang et al., 2013). From a starting number of

4.4 3 104 memory B cells, we identified seven B cells, six of

which were members of a single clone, that showed potent

anti-HIV-1 neutralizing activity against two indicator strains.

Subsequent single B cell sorting using fluorescently labeled

BG505.SOSIP.664 native-like Env trimers (Sanders et al., 2013)

yielded two additional members of this antibody family, one of

which was identical to an antibody obtained in the B cell culture.

The members of the clone utilized VH4-59*01 and VK3-20*01

heavy and light chain variable gene segments and included

CDRH3s and CDRL3s of 23 and 6 amino acids, respectively

(Table S1). VH gene segment mutation frequencies ranged

from 17%–25% of nucleotides (21%–39% amino acids), and

VK gene segment mutation frequencies ranged from 15%–21%

of nucleotides (20%–29% amino acids), intermediate rates

of SHM for HIV-1 bNAbs (Table S1). Based on heavy chain

sequences, the family segregated into three phylogenetic

branches (Figure 1C), with the SF5/SF12 branch showing a

three-nucleotide CDRH2 insertion.

When tested on two representative panels of 20 (f61 panel)

and 12 (global panel) viruses (deCamp et al., 2014; Doria-

Rose et al., 2017), members of the VH4-59 clone showed diverse

levels of activity and breadth (Figure 1D). Two closely related

members of the VH4-59 clone that were the most active, SF5

and SF12, were then evaluated against a 119-virus panel repre-

sentative of all major circulating HIV-1 clades (Figure 1E; Table

S2) (Freund et al., 2017; Mouquet et al., 2012). SF5 and SF12

neutralized 58% and 62% of viruses in this larger panel, with

geometric mean IC50s of 0.25 and 0.20 mg/mL, respectively.

Notably, SF12 neutralized all of 18 tested clade AE viruses

across the three panels and showed a pattern of neutralizing

activity that differed from previously described bNAbs (Fig-

ure 1F). Overall, the antibody clone recapitulated the majority

of the polyclonal IgG neutralization activity, with the potency

correlation between isolated monoclonal antibodies (mAbs)

and donor 27845’s IgG resembling those of other elite neutral-

izers from whom we previously isolated bNAbs (Freund et al.,

2017; Scheid et al., 2011).
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Figure 1. Isolation of Antibody Family from Donor 27845 by B Cell Culture and BG505 Sorting

(A) Viral loadandCD4+ T cell counts ofHIV-1-infected subject 27845over time.Arrows indicate timepoints ofB cellmicroculture andBG505.SOSIP.664bait-sorting.

(B) Neutralization data of donor 27845’s serum IgG in 2005 against a 12-virus cross-clade panel (global) and a 20-virus fingerprinting panel (f61). Shown are

median inhibitory concentrations (IC50) in mg/mL. On the right, fingerprinting analysis of f61 serum neutralization. Neutralization testing performed in duplicates,

average shown.

(C) Maximum-likelihood phylogenetic tree of heavy chain sequences of newly isolated antibody family. MC = Antibodies isolated by B cell microculture, BG505-

sort = antibodies isolated by bait-sorting, Both = antibody found both by microculture and bait-sorting.

(D) Neutralization of isolated antibody family members (IC50) against global and f61 virus panels. Legend as in (B). Neutralization testing performed in duplicates,

average shown.

(E) Neutralization coverage and potency of SF5 and SF12 on a 119-virus cross clade panel. Neutralization testing performed in duplicates, average shown.

(F) Neutralization fingerprinting of SF5 and SF12 in comparison to other known anti-HIV-1 bNAbs.

See also Figure S1 and Tables S1 and S2.
We next evaluated potential autoreactivity and polyreactivity

of SF12 and SF5 using HEp-2 staining (Haynes et al., 2005)

and a baculovirus-based polyreactivity assay (Hötzel et al.,
2012), respectively (Figure S1). In contrast to bNAbs with known

autoreactive and polyreactive properties such as 2F5 and 4E10

(Haynes et al., 2005), we found minimal to no autoreactivity or
Immunity 50, 1513–1529, June 18, 2019 1515
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Figure 2. Antibodies SF5 and SF12 Bind a Distinct Epitope on the gp120 Portion of Env

(A) ELISA of SF5 and SF12 against a gp120 monomer and a gp140 foldon trimer derived from HIV-1 strain YU2. Wild-type proteins and various site mutants of the

proteins in common bNAb epitopes (CD4-binding site, V3-glycan, Apex) were tested. Triple mutant = N160K, A281T + D368K, N332K. Data representative of 3

repeat assays.

(B) ELISA of SF5 and SF12 as well as reference bNAbs targeting 6 known epitopes against the BG505.SOSIP.664 trimer. Data representative of 3 repeat assays.

(C) Competition ELISA with reference bNAbs targeting 6 known epitopes to evaluate interference with SF5 and SF12 binding to the BG505.SOSIP.664 trimer.

Competing antibodies were added in a dilution series starting at 32 mg/mL. SF5 and SF12 were added at a constant concentration of 0.5 mg/mL. Data repre-

sentative of 3 repeat assays.

(D) Neutralization testing of SF12 against a panel of YU2 site mutants covering major epitopes on the HIV-1 spike. Neutralization testing performed in duplicates,

average curves shown.

(E) Computational analysis of 119-virus cross clade panel neutralization.

(F) Neutralization testing of SF5 and SF12 against an HIV-1 pseudovirus based on strain YU2 carrying a mutation at the PNGS N448gp120. Testing done in

duplicates, average shown.
polyreactivity for SF5 and SF12 (Figures S1A and S1B). In addi-

tion, the pharmacokinetics of SF12 in mice were similar to those

of 3BNC117, a bNAb that exhibits a typical IgG1 half-life in ma-

caques (Gautam et al., 2016) and humans (Caskey et al., 2015)

(Figure S1C). We conclude that the SF antibody family achieves

substantial anti-HIV-1 neutralization with an intermediate degree

of somatic hypermutation and no evidence for autoreactivity.
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Antibodies SF5 and SF12 Bind a Distinct Epitope on the
gp120 Portion of Env
To map the epitope recognized by SF5 and SF12, we performed

ELISAs using HIV-1 Env proteins. Both antibodies bound to

monomeric YU2 gp120, indicating that a portion of the epitope

is contained within the gp120 subunit of Env (Figure 2A). We sub-

sequently evaluated ELISA binding to site-directed mutants in



monomeric YU2 gp120 and an uncleaved YU2 gp140 foldon

trimer (Yang et al., 2000) that define common epitopes. Mutation

of the CD4-binding site (D368R/D368Kgp120, A281Tgp120) (Dose-

novic et al., 2015; Horwitz et al., 2013; Olshevsky et al., 1990), the

V3 glycan patch (N332A/N332Kgp120) (Horwitz et al., 2013; Mou-

quet et al., 2012), and the V2 apex epitope (N160Kgp120) (Walker

et al., 2009), alone or in combination, did not abrogate SF5 or

SF12 binding (Figure 2A). SF5 and SF12 also bound to a cleaved

soluble native-like BG505.SOSIP.664 trimer (Sanders et al.,

2013) (Figure 2B). Taken together, these results suggested that

SF5 and SF12 bind an epitope that is present on gp120 mono-

mers and both cleaved and uncleaved Env trimers.

We performed competition ELISAs to assess binding to the

BG505.SOSIP.664 trimer using antibodies targeting the CD4-

binding site (3BNC117, 8ANC131), the V3 glycan patch (10-

1074), the V2-apex (PGDM1400) and the gp120-gp41 interface

(8ANC195, PGT151 and 35O22). Both SF5 and SF12 competed

strongly with themselves and each other (Figure 2C). 3BNC117,

a CD4-binding site antibody that bridges adjacent protomers

within a trimer and has a broad contact surface with gp120

(Lee et al., 2017), showed competition with both SF5 and

SF12. Incomplete competition was also observed for the CD4-

binding site antibody 8ANC131 and for the gp120-gp41 interface

antibodies 8ANC195 and PGT151. Moreover, the V3-glycan tar-

geting antibody 10-1074 competed strongly with SF5 but not

with SF12 (Figure 2C). We also assessed the neutralizing activity

of SF12 on a YU2 pseudovirus mutant panel comprising a num-

ber of mutations that impair the activity of CD4-binding site, V3-

glycan and V2-apex antibodies using a TZM.bl-based in vitro

neutralization assay. SF12 neutralizing activity was insensitive

to the mutations, including a triple mutant carrying mutations in

all three epitopes (N280Ygp120, N160Kgp120, N332Kgp120) (Fig-

ure 2D). These data indicate that SF5 and SF12 bind a distinct

epitope near the epitopes for CD4-binding site bNAbs and

gp120-gp41 interface bNAbs 8ANC195 and PGT151.

Computational analysis (West et al., 2013) of available neutral-

ization data suggested that SF5/SF12 depend on the presence of

a glycan at N448gp120 (Figure 2E). To verify that the neutralizing

activity of SF5 and SF12 depended on this potential N-linked

glycosylation site (PNGS), we showed that these antibodies failed

to neutralize a mutant HIVYU2 pseudovirus lacking the N448gp120
glycan (Figure 2F). The PNGS at position 448gp120 is at the center

of one of the most highly glycosylated parts of the HIV-1 trimer,

also known as the silent face (Wyatt et al., 1998). Although

comparisons of synonymous versus non-synonymous mutations

suggested that the silent face is under immunologic pressure

(Stewart et al., 2001), antibodies that bind to the center of this

region have been difficult to isolate. Indeed, VRC-PG05 repre-

sented an, until now, unique example of a host-derived bNAb

that specifically targets the center of the silent face with a focus

on the glycan site at N448gp120 (Zhou et al., 2018). The discovery

and characterization of SF12 and related silent face bNAbs

shows that this epitope can be targeted by antibodies with

greater breadth and potency than VRC-PG05.

Structure of the Natively Glycosylated SF12-Env
Complex
We determined a 3.1 Å crystal structure of the SF12 Fab and a

3.3 Å cryo-EM structure of a natively glycosylated clade B B41
SOSIP.664 trimer in complex with the SF12 Fab and a Fab

from the V3/glycan patch bNAb 10-1074 (Figures 3A and 3B).

Although 10-1074 Fab normally binds with a 3:1 Fab:Env trimer

stoichiometry (Gristick et al., 2016), EM class averages showed

either three or two SF12 Fabs bound to the Env trimer and only

one 10-1074 Fab (Figures S2 and S3). Like VRC-PG05, for which

a crystal structure was solved in complex with a monomeric

gp120 core (Zhou et al., 2018), the SF12-trimer complex reveals

recognition of an epitope focused on the N262gp120, N295gp120,

and N448gp120 glycans on the silent face of Env, rationalizing our

binding and in vitro neutralization results (Figures 2A–2F). Super-

imposition of the free and Env-bound SF12 Fab structures

showed only minor conformational changes resulting from Env

glycan interactions with the SF12 Fab in the Env-bound struc-

ture, as evidenced by the 1.1 Å root-mean-square deviation

(RMSD) relating 245 Ca atoms in the VH and VL domains of the

free and bound Fabs (Figure 3C).

We found three distinct differences between the structures of

a VRC-PG05 Fab-monomeric CNE55 gp120 core and the SF12-

Env trimer complexes (Zhou et al., 2018). First, the longer CDRH3

of SF12was extended in a different conformation from that of the

shorter CDRH3 in VRC-PG05, resulting in a RMSD of 3.1 Å

across 130 Ca atoms when superposing the VH domains from

the Fab-bound structures (Figure 3C). Second, the SF12

CDRL1 and CDRL3 loops adopted conformations different

from those of their VRC-PG05 counterparts (Figure S4). In the

SF12 Fab, the CDRH3 and CDRL loops form a groove at the

Fab-antigen interface that accommodates the N448gp120 glycan,

which contrasts with the wedge between the VRC-PG05 CDRH3

and CDRL1 loops that penetrates through Env glycans (Figures

3D and 3E). Third, the orientation of the SF12 Fab differed from

that of VRC-PG05 Fab, with the SF12 Fab exhibiting an almost

perpendicular binding angle to the silent face epitope compared

with the VRC-PG05 orientation (Figures 3F and S4). To evaluate

this difference, we calculated the rotation and translation of the

VH-VL domains of the Fab portions of the SF12-Env trimer and

VRC-PG05-gp120 complex structures, finding that the orienta-

tions of the SF12 and VRC-PG05 VH-VL domains differed, with

the axis of the SF12 Fab at a steeper angle (by�71�) to the silent

face epitope than the axis of VRC-PG05. Despite differences

in approach angles to the silent face epitope, SF12 and

VRC-PG05 shared a common mode of interaction with the

N448gp120 glycan, mediated in each case by their CDRH3 loops

(Figure 3G). We conclude that SF12 binds a VRC-PG05-related

epitope with a different angle of approach and an altered mode

of recognition from VRC-PG05.

SF12 Recognizes a Mostly Glycan-Focused Epitope on
HIV-1 Env
In contrast to the non-natively glycosylated monomeric CNE55

gp120 core that was complexed with VRC-PG05 Fab (Zhou

et al., 2018), the relatively high resolution cryo-EM structure of

the natively glycosylated SF12-Env trimer complex allowed

modeling of N-linked glycans in the B41 Env trimer (Figure 3).

Given the asymmetric Fab binding in our complex, we character-

ized the SF12 epitope and paratope using a gp140 protomer in

which the SF12, but not the 10-1074, Fab was bound (Figures

4A–4C). Consistent with differing binding angles and CDR loop

conformations, SF12’s footprint on Env differed from that of
Immunity 50, 1513–1529, June 18, 2019 1517
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Figure 3. Structural Overview of the SF12-B41-10-1074 complex

(A and B) Side-view (A) and top-view (B) of the final 3.3 Å single-particle cryo-EM reconstruction of the SF12-B41-10-1074 complex colored by components (dark

gray, gp41; light gray, gp120; magenta, SF12 VH; pink, SF12 VL; blue, 10-1074 VH; light blue, 10-1074 VL; cyan, N-glycans).

(C) Superposition of VH-VL domains (235 Ca atoms) of unliganded SF12 (orange), Env-bound SF12 (magenta), and core gp120-bound VRC-PG05 (green) Fabs,

showing differences in CDR conformations between SF12 and VRC-PG05.

(D) Surface representation of SF12 (magenta/pink) and VRC-PG05 (green/pale green) Fabs illustrating differences in CDRL1 and CDRH3 loop conformations.

(E) Surface representation of Env-bound SF12 Fab showing interactions with the N262gp120 (pale blue), N295gp120 (pale green) and N448gp120 (red) glycans at the

SF12-Env interface. Cryo-EM density for individual glycans is shown contoured at 6s.

(F) Comparison of VH-VL domain orientations of SF12 (magenta/pink; cartoon) and VRC-PG05 (green/pale green; surface). The VH-VL domain orientation of SF12

on Env trimer is related by a 71� rotation and 0.5 Å translation to the VRC-PG05 variable domains after alignment against gp120 (gray; surface).

(G) Overlay of CDRH3 loops of SF12 (magenta) and VRC-PG05 (green) after alignment of bound gp120s illustrates CDRH3-mediated recognition of the N448gp120
glycan (red; sticks) by both antibodies.

See also Figures S2, S3, and S4 and Tables S3 and S4.
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Figure 4. Details of SF12 Epitope and Glycan Recognition
(A) Sequence of SF12 variable domainswith antibody regions annotated using IMGT sequence analysis (CDR loops are bracketed). SF12 residues that contact N-

linked glycans are in blue (N262gp120), green (N295gp120), and red (N448gp120), while gp120-contacting residues are boxed. Contacting residues in the SF12

paratope and epitope were defined as two residues containing any atom within 4 Å of each other.

(B) Structure of a SF12-B41 gp120 protomer from the trimer complex, showing paratope residues as spheres (inset). Color scheme is the same as in (A).

(C) Surface representation of B41 trimer, with SF12 epitope highlighted in magenta.

(D–F) Stick representation of residue level contacts for N262gp120 (D), N295gp120 (E), and N448gp120 (F) glycans. Potential hydrogen bonds are shown as black

dashes. Cryo-EM density maps contoured at 6s are shown for individual glycans.

See also Figure S4 and Table S5.
VRC-PG05, such that interactions with both N-linked glycan and

peptide components mapped almost exclusively to the SF12

heavy chain (Figures 4A–4C). For example, �7% of the buried

epitope surface resulted from interactions with SF12’s light chain

(�1,843 Å2 buried surface area (BSA) of epitope against SF12

heavy chain versus �135 Å2 against the SF12 light chain; Table

S5), compared with�36% of buried epitope surface at the VRC-

PG05 light chain interface. This difference is likely due to the
longer CDRL1 and L3 loops on VRC-PG05, which penetrate

the glycan-rich epitope (Figures 3C and 3D).

In the Env protomer used for epitope analysis, we interpreted

densities for an ordered GlcNAc2Man7 at N262 gp120, a GlcNAc2
Man6 at N295gp120, and a GlcNAc2Man5 at N448gp120 (Figures

4D–4F). Similar to VRC-PG05, the N262gp120, N295gp120, and

N448gp120 glycans constituted �75% of the epitope surface

(Table S5), although comparisonsmust be interpreted cautiously
Immunity 50, 1513–1529, June 18, 2019 1519
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Figure 5. SF12 Engages Two Distinct

Regions of gp120 Peptide Epitope

(A) Stick representation of SF12 CDRH3 (magenta)

and gp120 (gray) contacts at the SF12-Env inter-

face. Trp100DHC inserts into a hydrophobic

pocket (inset) stabilized by potential hydrogen

bond interactions (black dashes) with neighboring

residues.

(B) Stick representation of SF12 CDRH1 and H2

residues (magenta) contacting gp120 residues

(gray). Potential hydrogen bonds are shown as

black dashes. Density maps for SF12 and gp120

residues are shown as magenta and gray meshes,

respectively, contoured at 8s.

(C) Comparison of SF12 and VRC-PG05 neutrali-

zation breadth for different viral characteristics.

The red dashed line indicates neutralization

breadth for SF12 (62%) and VRC-PG05 (27%)

against a cross-clade panel.

(D) Modeling of the N442gp120 glycan from clade C

426c SOSIP trimer (teal; PDB: 6MYY) was ach-

ieved by aligning gp120 coordinates from the two

structures. Potential clashes with SF12 heavy

chain (magenta) regions are highlighted.

See also Figure S5.
due to (1) the use of a highmannose-only monomeric gp120 core

for the VRC-PG05 complex structure (Zhou et al., 2018) versus a

natively glycosylated native-like Env trimer for the SF12 complex

structure, and (2) the higher resolution (2.4 Å) of the VRC-PG05-

gp120 crystal structure than that of the SF12-Env trimer cryo-EM

structure (3.3 Å). Mapping key residues involved in SF12-Env

interactions identified determinants of glycan recognition medi-

ated by specific regions in the SF12 paratope. For example,

SF12’s CDRH1 and framework region 3 (FWR3) interacted exclu-

sively with the N295gp120 glycan, while CDRH2 solely engaged

the N262gp120 glycan (Figures 4D and 4E). SF12 interactions

with the N448gp120 glycan were mediated mainly by CDRH3,

with additional contacts observed with the light chain CDRL1

and CDRL3 loops (Figure 4F).

Because the frequency of SHM in SF12 is lower than typical

for many HIV-1 bNAbs (Figure 1E; Table S1), we analyzed the

contributions of mutated amino acid residues in the SF12 para-

tope to epitope recognition. Of the 17 V gene segment-en-

coded residues that contact the epitope, 9 arose through

SHM, including an insertion in CDRH2 (Figure S5A). Consistent

with glycans comprising most of the SF12 epitope, SHMs were

mostly observed for residues at the antibody-glycan interface.

However, unlike VRC-PG05, where SHMs mainly resulted in

the removal of bulky tyrosine residues to accommodate gly-

cans (Zhou et al., 2018), SF12 utilized tyrosines, as well as

bulky hydrophilic residues, to facilitate interactions with the
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glycopeptide epitope (Figure S5). This

demonstrates that SHMs adding bulky

residues to the paratopes of antibodies

against the glycan-rich silent face of

HIV-1 Env are not necessarily an imped-

iment to broad and potent neutraliza-

tion by these antibodies (Figures 4D–4F

and S5A).
The protein component of the SF12 epitope (�25% of the

epitope surface) mapped to two regions of gp120 (Figures 5

and S4). The first region involved residues from the gp120 b4

and b7 strands and the N terminus of gp120 that were engaged

by regions of CDRH3 that penetrated the glycan shield (Fig-

ure 5A). In this interaction, SF12 CDRH3 residues R100CHC

and D100BHC formed potential hydrogen bonds with Env resi-

dues K59gp120 and R252gp120, respectively (Figure 5A). These

interactions contributed to the formation of a hydrophobic

pocket on gp120 into which SF12 residue Trp100DHC inserted,

shielding this exposed hydrophobic residue at the tip of the

CDRH3 loop (Figure 5A, inset). The second protein component

of the SF12 epitope resembled part of the VRC-PG05 gp120

protein epitope, involving residues from gp120 b12 and b22

that interacted with the SF12 CDRH1 and H2 loops (Figure 5B).

In this region, SF12 utilized aspartates at positions 30HC and

54HC to mediate contacts with gp120 residues N295gp120,

R444gp120, and S446gp120 (Figure 5B). Unlike VRC-PG05,

SF12 directly engaged the protein component of the epitope,

forming extensive hydrogen bonds with surrounding residues.

The increased epitope surface area contributed by gp120 pep-

tide components (�25% for SF12 versus �12% for VRC-PG05)

likely contributes to the observed differences in neutralization

potency and breadth for the two antibodies (Figure 1E). Overall,

our structure of SF12 bound to a natively glycosylated Env

trimer allows detailed insights into SF12 Env-glycan interactions
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Figure 6. SF12-B41-10-1074 Structural

Asymmetry Is Explained by N295gp120
Glycan Heterogeneity

(A) Comparison of cryo-EM density for N295gp120
(green) and N332gp120 (orange) glycans across

protomers within the SF12-B41-10-1074 trimer

complex. In each protomer, SF12 (magenta) was

bound, but 10-1074 (blue) binding was only

observed when the N295gp120 glycan was

modeled as GlcNAc2 (right panel).

(B) Overlay of N295gp120 and N332gp120 glycans

after aligning gp120 protomers from cryo-EM

structures of SF12-B41-10-1974, PDB: 6CUE,

PDB: 6DCQ, PDB: 5V8M, and PDB: 6CRQ. Posi-

tions for the N295gp120 and N332gp120 glycans in

the SF12-bound Env (stick representation) and all

other models (line representation) are shown.

SF12-induced conformational changes are indi-

cated by the red arrow.

(C) Modeling of the 10-1074 Fab (blue cartoon)

onto the SF12-gp120 protomer (A: left panel).

Potential clashes between 10-1074 CDRH3 and

the N332gp120 glycan are highlighted.

(D) Alignment of gp120 portions of the SF12-

bound (A: left panel) and SF12 plus 10-1074-

bound (A: right panel) protomers. Potential clashes

involving the N295gp120 and N332gp120 glycans

(highlighted stars) when both glycans are pro-

cessed beyond a core pentasaccharide are

shown.

(E) Predictive neutralization profiles for combina-

tion therapy with SF12 and 10-1074 bNAbs at a

10 mg/mL concentration.

See also Figure S5 and Tables S6 and S7.
and demonstrates that SF12 forms more extensive protein con-

tacts with Env than VRC-PG05.

Resistance to SF12 Is Driven by Glycan Contacts
To confirm our structural findings and assess possible mecha-

nisms of resistance to SF12 and SF5 neutralization, we created

a series of mutant BG505 and YU2 pseudoviruses and evaluated

their sensitivity to neutralization in TZM.bl assays. Disruption of

the PNGS at N448gp120 (N448K, N448S) or N262gp120 (N262S,
Imm
N262W) abrogatedSF5andSF12 neutral-

ization (Table S6). In contrast, removal of

the glycan at 295gp120 slightly improved

neutralization by both SF5 and SF12

for the BG505 and YU2 strains, indicating

that these antibodies accommodate,

rather than make favorable contacts

with, the glycan at N295gp120. This result

was consistent with neutralization data

against strains lacking the N295gp120
glycan (Table S7) and the SF12-B41 com-

plex structure, as one gp140 protomer in

the trimer showed density for GlcNA2 at

the N295gp120 glycan despite the pres-

ence of bound SF12 Fab (Figure 6A).

To explore protein-protein interactions

at the SF12-Env interface, we examined
mutations in positions 214gp120 (P214I, P214Q), 291gp120
(S291P, S291T), 293gp120 (Q/V293E, Q/V293K, Q/V293R), and

444gp120 (R444T) in the Envs of the BG505 and YU2 pseudovi-

ruses.UnlikeVRC-PG05,whereadominantmeans toescapeanti-

bodyneutralizationwasachievedbymutatingE293gp120 todisrupt

a critical contact with VRC-PG05’s CDRL1 and CDRH3 loops

(Zhou et al., 2018), analysis of SF12 neutralization potency against

the mutant pseudoviruses showed that SF12 remained potent

against pseudoviruses with E293gp120 substitutions (Figure 5C;
unity 50, 1513–1529, June 18, 2019 1521



Tables S6 and S7). A 2-fold decrease in sensitivity to SF12 was

observed for the R444T mutation, likely due to disruption of a

hydrogen-bonding network between Env residue R444gp120 and

SF12 residues D30HC and D54HC. Env mutations at positions

214gp120 and 293gp120 preferentially affected the SF5 clonal

variant, which is less potent than SF12. Effects due to mutations

at the 293gp120 residue in both BG505 and YU2 backbones are

likely explained by the presence of R31HC in the SF5 CDRH1,

which would directly engage with residue E293gp120 (Figure S5B).

Interestingly, a threonine at position 444gp120 is a strong pre-

dictor of resistance to SF12/SF5 neutralization, consistent with

increased activity against clade AE and B viruses, which show

a <1% frequency for a threonine at this position (Figure 5C; Table

S7). Computational analysis of viral strains containing residue

T444gp120 (37% of 3260 Env sequences in Antibody Database)

(West et al., 2013) showed that 78% of the T444gp120-containing

sequences included an asparagine at position 442gp120 to create

a 442gp120 PNGS. To determine whether a glycan at position

N442gp120 would disrupt SF12 binding, we modeled coordinates

for the N442gp120 glycan from the clade C 426c DS-SOSIP struc-

ture (Borst et al., 2018) after superposing the PDB 6MYY gp120

onto the gp120 of our Env trimer structure and adding in the

N442gp120 glycan. In the conformation observed on the 426c

Env structure, theN442gp120 glycanwould clashwith SF12 heavy

chain CDRH1 and FWR3 components, sterically hindering ac-

cess to its epitope (Figure 5D). This likely explains SF12/SF5’s

decreased breadth and potency against clade C viruses, 85%

of which encode T444gp120 (Table S7). However, binding of

SF12 could shift the position of the glycan, as seen for the

N295gp120 glycan (Figures 6A and 6B), since SF12 shows

neutralizing activity against some N442gp120 glycan-containing

viruses (Table S7). Our results indicate that resistance to SF12/

SF5 is mediated mainly through mutation of N-glycan sites,

rather than Env protein residues, as seen for VRC-PG05.

Heterogeneity of Glycan N295 Explains SF12-Env
Complex Asymmetry
Given that previous V3-targeting bNAb structures showed sym-

metric binding of three V3-glycan patch Fabs per trimer (Ward

and Wilson, 2017), including a recent cryo-EM structure of a

BG505 DS-SOSIP bound by three PGT122 Fabs (Dingens

et al., 2018), we sought to understand the asymmetric binding

of the V3-directed 10-1074 Fab in the SF12-B41-10-074 struc-

ture (Figures 3A and 3B), noting that potential Env trimer

asymmetry could not have been detected in the VRC-PG05

Fab-CNE55 complex structure, which was solved using a mono-

meric gp120 core (Zhou et al., 2018). Because asymmetric bind-

ing of SF12 and 10-1074 Fabs to the B41 Env trimer prevented

the use of symmetry restraints during reconstruction and model

building, density for each glycan at a PNGS was interpreted

independently across gp140 protomers. Interestingly, glycan

heterogeneity was observed at the N295gp120 glycan, which

correlated with the presence or absence of the 10-1074 Fab

(Figure 6A).

Alignment of SF12-bound gp120 protomers in the absence

and presence of 10-1074 Fab (Figure 6A, left and right panels,

respectively), revealed a low (<0.2 Å) RMSD for 452 gp120 Ca

residues, suggesting that the lack of 10-1074 binding was not

due to alteration in the protein portion of the V3 epitope. Howev-
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er, the N332gp120 glycan exhibited an altered conformation in the

SF12-gp140 protomers without a bound 10-1074 Fab. Indeed,

superposition of gp120 coordinates from cryo-EM structures

that included coordinates for the N295gp120 and N332gp120 gly-

cans showed that SF12 binding induced conformational

changes that resulted in the N332gp12i0 glycan occluding the

underlying protein portion of the V3-glycan patch epitope

(Figure 6B). This conformation for the N332gp120 glycan would

prevent 10-1074 binding due to steric clashes (Figure 6C). More-

over, the N295gp120 glycan conformation in the SF12-bound Env

protomer and the N332gp120 glycan conformation in the 10-

1074-bound Env protomer would be incompatible if both

glycans were present in fully processed forms (Figure 6D). Taken

together, this explains why a 10-1074 Fab could be accommo-

dated on one protomer in our trimer complex, because the

N295gp120 glycan appeared to be under-processed in the

10-1074-bound protomer (GlcNAc2 versus GlcNAc2Man6
observed in the other protomers).

Moreover, Fab interactions with the N295gp120 glycan likely

explains observed differences in SF12 and SF5 binding proper-

ties, as SF5, but not SF12, was strongly competed by 10-1074 by

ELISA (Figure 2B). SF5 includes a tyrosine in heavy chain FWR3

(Y77HC), which arose through SHM to engage the core GlcNAc2
of theN295gp120 glycan (Figure S5C). It is possible that during ac-

commodation of 10-1074 binding, movement of the N295gp120
glycan toward SF5 Fab would clash with Y77HC, compared to

the less bulky N77HC in SF12 (Figure S5D). Despite the possibility

for incompatible modes of binding to the same Env protomer

with fully processed N-linked glycans at 295 and 332, SF12

and 10-1074 delivered as combination therapy could potentially

achieve 90% breadth, as their neutralization patterns comple-

ment each another (Figure 6D). In sum, our SF12-Env trimer

structure revealed N-glycan heterogeneity across different pro-

tomers of the same trimer, which was associated with differential

binding to bNAbs.

Evaluation of SF12 in HIV-1-Infected Humanized Mice
We assessed the in vivo anti-HIV-1 activity of SF12 in humanized

mice. Results from studies in mice are relevant to humans

because clinical trials of HIV-1 bNAbs administered to infected

patients showed that viral escape mutations are similar, if not

identical, to those found in HIV-1-infected humanized mice

(Bar-On et al., 2018; Caskey et al., 2015, 2017; Horwitz et al.,

2013; Klein et al., 2012; Mendoza et al., 2018; Scheid et al.,

2016). Mice were infected with HIV-1YU2 (Zhang et al., 2002)

(n = 7) and subcutaneously administered 1 mg of SF12 IgG fol-

lowed by 0.5 mg of SF12 every 3 days for 3 weeks. Untreated

HIV-1YU2-infected mice (n = 7) with comparable viral loads and

matched stem cell donors served as controls. Mice treated

with SF12 showed an average drop in viremia of 0.68 log10
copies/mL (range: 0.13–1.87 log10 copies/mL) with viral rebound

occurring within 3 weeks after initiation of therapy (Figure 7A). To

document escape mutations, single genome sequencing of

gp160 was performed on mouse plasma samples 4 weeks after

initiation of SF12 therapy. Of 29 independent isolates from 4

SF12-treated mice, we found mutations that abrogated the

PNGS at position N448gp120 in 28 sequences (97%). These mu-

tations exclusively affected position 448gp120 and mutated the N

at position 448gp120 to K, S, D, or I through single nucleotide
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Figure 7. In Vivo Evaluation of SF12 IgG in HIVYU2-Infected Humanized Mice

(A) SF12 monotherapy of humanized mice infected with HIVYU2. The left graph shows absolute viremia (y axis) in mice treated with SF12 (n = 7, dark gray, full

circles) or untreated control mice (n = 7, empty circles) over the course of the experiment (x axis, days). Mice were infected 3 weeks prior to therapy initiation and

received 1mg of IgG as a loading dose followed by twice-weekly administration of 0.5 mg for 3 weeks. The dotted line at bottom indicates the limit of accuracy of

the qPCR assay (384 copies/mL). The right graph shows relative log drop after initiation of SF12 therapy (Dlog10 copies/mL). Thick red lines and thick dashed gray

lines indicate the mean viral load of treated and untreated mice, respectively. Data from one independent experiment.

(B) Amino acid alignment of gp160 of wild-type YU2gp160 (top) with Env gp160 sequences obtained by single genome sequencing from plasma of SF12-treated

mice 4 weeks posttherapy initiation. Each line represents one sequence; mouse identification numbers indicated on left.

(C) Pie chart showing the amino acid distribution at position N448gp120 in mice that received SF12 at 4 weeks posttherapy initiation. Numbers inside pie chart

correspond to number of mice sequenced/number of sequences obtained.

(D) Antibody tri-mix (SF12, 10-1074, 3BNC117) therapy of HIV-1YU2-infected mice (n = 8). Mice (n = 4) with comparable viral loads and matched stem cell donors

served as controls. Data from one independent experiment. Graphs as in (A).
changes, with the mutation to K being most frequent (Figures 7B

and 7C). We conclude that antibody SF12 can reduce viremia

and exerts strong selective pressure on HIV-1 in vivo.

While antibody therapy with two effective bNAbs (PG16,

NIH45-46G54W) failed to mediate long-term viral suppression

(Klein et al., 2012), a triple antibody regimen comprising

3BNC117, 10-1074, and PG16 suppressed viremia in infected
humanizedmice for several weeks (Horwitz et al., 2013). To deter-

mine whether SF12 can contribute to control of viremia in human-

ized mice as part of a triple combination regimen, we treated

HIV-1YU2-infected mice (n = 8) with a tri-mix of bNAbs SF12,

10-1074, and 3BNC117. Mice (n = 4) with comparable viral loads

andmatched stem cell donors served as controls. Mice receiving

tri-mix therapy dropped 1.36 log10 copies/mL (range: 0.38–2.05
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log10 copies/mL) during the 5 weeks of treatment. During the

observation period, viremia was suppressed in all but one of

the treated mice (Figure 7D). Thus, a triple antibody combination

regimen that includes SF12 to restrict overall viral escape can

mediate long-term control of HIV-1YU2 viremia in vivo.

DISCUSSION

Anti-HIV-1 bNAbs can control and prevent HIV-1 infection in hu-

manized mice and macaques (Baba et al., 2000; Barouch et al.,

2013; Hessell et al., 2009a, 2009b; Klein et al., 2012, 2014; Mas-

cola et al., 2000; Shingai et al., 2013, 2014). In addition, bNAbs

against two epitopes, the CD4-binding site and the V3-glycan

patch, have been evaluated in humans: the antibodies were

well-tolerated, exhibited typical IgG half-lives, andwere effective

in lowering viremia and preventing viral rebound in subjects un-

dergoing analytical treatment interruption (Caskey et al., 2015,

2017; Lu et al., 2016; Lynch et al., 2015; Mendoza et al., 2018;

Scheid et al., 2016; Schoofs et al., 2016). Anti-viral effects of

bNAbs in pre-clinical models and humans are mediated by a

combination of virus neutralization and Fcg receptor-mediated

elimination of infected cells (Halper-Stromberg et al., 2014; Hes-

sell et al., 2007; Lu et al., 2016), highlighting the potential of Fc

effector functions as modulators of bNAb efficacy. Fc-modified

bNAb variants with increased affinity for the neonatal Fc receptor

showed half-lives of more than 70 days in humans (Gaudinski

et al., 2018), suggesting that passive administration of anti-

HIV-1 bNAbs may be a practical therapeutic strategy.

However, administration of individual bNAbs, like monother-

apy with anti-retroviral drugs, leads to emergence of resistant

viral variants. In contrast, combinations of bNAbs can control

infection for prolonged periods of time in mice, macaques and

humans (Bar-On et al., 2018; Barouch et al., 2013; Horwitz

et al., 2013; Klein et al., 2012; Mendoza et al., 2018; Shingai

et al., 2013). Similarly, a fully protective vaccine will likely require

elicitation of bNAbs targeting multiple HIV-1 Env epitopes. This

highlights a need to identify and clinically develop antibodies to

new epitopes on the Env spike. Here, we studied the antibody

response of a long-term non-progressor, identifying bNAb

SF12 as part of a family of antibodies that target a glycan-

focused epitope on the silent face of gp120. While the silent

face of Env had not been considered a priority target for bNAbs

or for vaccine development, the discovery of potent and broad

antibodies such as SF12 suggests that targeting this site could

contribute to therapies and vaccines.

The cryo-EM structure of SF12 bound to B41 Env trimer

demonstrated that SF12 makes extensive contacts with N-gly-

cans at positions 262gp120, 295gp120 and 448gp120. While our

neutralization and structural data indicated that the PNGS at

295gp120 is dispensable for SF12 neutralization, we found the

highly conserved glycans at N262gp120 and N448gp120 to be

obligate contacts. Although SF12’s epitope is heavily glycan-

focused, the antibody also contacts the protein backbone of

Env, utilizing CDRHs 1 and 2 to mediate interactions at positions

293gp120, 444gp120 and 446gp120. In addition, SF12’s longer

CDRH3, as well as its different angle of Env approach relative

to VRC-PG05, allow SF12 to form additional protein contacts

at positions 59gp120, 214gp120, and 252gp120, which likely explain

the enhanced breadth and potency of SF12 compared to VRC-
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PG05, the only previously characterized antibody against the

Env silent face (Zhou et al., 2018).

Consistent with previous observations suggesting that the

N262gp120 glycan plays a crucial role in CD4-mediated viral entry

(Moore et al., 1994) and that the N448gp120 glycan (>85%

conserved) is less critical for viral infectivity (Behrens et al.,

2016; Falkowska et al., 2014), our in vivo studies showed loss

of N448gp120 as themajor escape pathway upon SF12 treatment.

Interestingly, the protein-protein contacts made by SF12 did not

contribute to routes of viral escape, which contrasts with HIV-1’s

dual mechanism of escape from VRC-PG05 by altering either the

N448gp120 glycan or the glycan-proximal residue E293gp120.

Indeed, viral evasion through alteration of the glycan shield or

sequence diversity dominates most bNAb epitopes (Falkowska

et al., 2014; Mouquet et al., 2012; Wagh et al., 2016; Walker

et al., 2009). Thus, SF12 may represent one of the few glycopep-

tide recognizing bNAbs where sequence variability at the pro-

tein-protein interface does not induce viral resistance to SF12

neutralization.

Despite the highly conserved N262gp120 and N448gp120 gly-

cans comprising its epitope, SF12 showed a gap in coverage

that could not be explained by the removal of the N448gp120
glycan alone. Computational analysis of data from a 119-isolate

viral panel suggested that glycosylation at position N442gp120
contributes to decreased SF12 breadth, likely through shielding

of the N262gp120 and N448gp120 glycans, making it more difficult

for SF12 to bind. SF12’s distinct epitope makes it potentially

useful for therapy or prevention as part of a combination of

bNAbs, particular in regions of the world with a high prevalence

of AE or B HIV-1 clades (both clades lack the N442gp120 glycan).

Indeed, the SF12 class of bNAbs is particularly potent and broad

against clade AE viruses, which represent a coverage gap of the

V3-glycan bNAbs, achieving 100% breadth and 10-fold

increased potencies compared with VRC01. Furthermore, given

its glycan-focused epitope, it may be possible to further improve

SF12/SF5 potency, breadth, and resistance to escape using

structure-based rational design as has been demonstrated for

other anti-HIV-1 bNAbs (Diskin et al., 2011, 2013; Rudicell

et al., 2014; Xu et al., 2017).

Our data support the hypothesis that evolutionary pathways to

silent face recognition are diverse. In addition to being isolated

from two different donors, SF12 and VRC-PG05 arose from

highly divergent VH (VH4-59*01 versus VH3-7*01) and VK genes

(VK3-20*01 versus VK4-1*01) (Lefranc et al., 2009). Moreover,

SF12 uses a long CDRH3 of 23 residues and a relatively short

CDRL3 of 6 residues, while VRC-PG05 uses a moderately long

17-residue CDRH3 and an average 8-residue CDRL3. Sequence

conservation between the CDR3s of the two antibodies is low

with no discernible motifs in common, which contrasts other

anti-HIV-1 bNAb families that show strong CDRH3 or CDRL3

length restrictions and/or recurring sequence motifs (McCoy

and Burton, 2017). In addition, SF12 shows an intermediate

rate of SHM compared with other HIV-1 bNAbs, with 21 and

19 amino acid substitutions in the heavy and light chains,

respectively. This rate of mutation is comparable to or lower

than rates found in V3-glycan patch antibodies, which are a

heavily pursued vaccination target with a similar breadth of

coverage (Escolano et al., 2017; McCoy and Burton, 2017).

Taken together, these differences illustrate the divergence of



solutions evolved by the SF12/SF5 and VRC-PG05 bNAbs to

target the silent face epitope, whereby SF12’s maturation gener-

ated an antibody capable of accommodating Env sequence

diversity at the protein surface.

In the context of eliciting silent face bNAbs, SF12 represents a

promising path forward based on its breadth, potency, and rela-

tively few SHMs. However, eliciting SF12-like bNAbs may face

some of the same hurdles as other potential Env target sites,

given its long CDRH3 and an insertion in CDRH2. In addition,

the SF12-Env structure revealed that, despite targeting non-

overlapping epitopes, SF12 binding induced a conformational

change in the N295gp120 glycan that affected binding of the V3-

glycan bNAb 10-1074. Thus, trimer-based immunogen design

strategies, such as those employed to elicit V3-glycan targeting

bNAbs (Escolano et al., 2017), should consider how alterations in

the glycan shield around the silent face glycan patch may pre-

vent maturation of SF12-like bNAbs.

Zhou et al. (2018) estimated VRC-PG05-like bNAbs are pre-

sent in 10% of individuals in a 38-donor cohort. It is possible

that SF antibodies were missed in previous studies, since the

focus was on isolating antibodies to well-characterized epi-

topes. In particular, protein-based sorting strategies might not

have allowed identification of these antibodies as also seen in

this study, in which only two members of the clone were isolated

by sorting using BG505 Env trimer as bait.

In summary, our results show that the glycan-rich silent face of

HIV-1 Env can be targeted by bNAbs with potencies and

breadths approaching those of antibodies against some of the

more well-characterized epitopes. Overall, our findings extend

current understanding of the recognition of glycan-focused epi-

topes on HIV-1 Env and expand the armamentarium of bNAbs

available for HIV-1 therapy, prevention, and immunogen design.
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Lehmann, C., Suárez, I., Oliveira, T.Y., Lorenzi, J.C.C., et al. (2018).

Combination therapy with anti-HIV-1 antibodies maintains viral suppression.

Nature 561, 479–484.

Mikell, I., Sather, D.N., Kalams, S.A., Altfeld, M., Alter, G., and Stamatatos, L.

(2011). Characteristics of the earliest cross-neutralizing antibody response to

HIV-1. PLoS Pathog. 7, e1001251.

Moore, J.P., Willey, R.L., Lewis, G.K., Robinson, J., and Sodroski, J. (1994).

Immunological evidence for interactions between the first, second, and fifth

conserved domains of the gp120 surface glycoprotein of human immunodefi-

ciency virus type 1. J. Virol. 68, 6836–6847.

Mouquet, H., Scharf, L., Euler, Z., Liu, Y., Eden, C., Scheid, J.F., Halper-

Stromberg, A., Gnanapragasam, P.N., Spencer, D.I., Seaman, M.S., et al.

(2012). Complex-type N-glycan recognition by potent broadly neutralizing

HIV antibodies. Proc. Natl. Acad. Sci. USA 109, E3268–E3277.

Olshevsky, U., Helseth, E., Furman, C., Li, J., Haseltine, W., and Sodroski, J.

(1990). Identification of individual human immunodeficiency virus type 1

gp120 amino acids important for CD4 receptor binding. J. Virol. 64,

5701–5707.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M.,

Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera–a visualization system

for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.

Plotkin, S.A. (2010). Correlates of protection induced by vaccination. Clin.

Vaccine Immunol. 17, 1055–1065.

Pugach, P., Ozorowski, G., Cupo, A., Ringe, R., Yasmeen, A., de Val, N.,

Derking, R., Kim, H.J., Korzun, J., Golabek, M., et al. (2015). A native-like

SOSIP.664 trimer based on an HIV-1 subtype B env gene. J. Virol. 89,

3380–3395.

Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017).

cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determina-

tion. Nat. Methods 14, 290–296.

Raju, N., Setliff, I., and Georgiev, I.S. (2019). NFPws: a web server for delin-

eating broadly neutralizing antibody specificities from serum HIV-1 neutraliza-

tion data. Bioinformatics. Published online February 14, 2019. https://doi.org/

10.1093/bioinformatics/btz097.

Rudicell, R.S., Kwon, Y.D., Ko, S.Y., Pegu, A., Louder, M.K., Georgiev, I.S.,

Wu, X., Zhu, J., Boyington, J.C., Chen, X., et al.; NISC Comparative

Sequencing Program (2014). Enhanced potency of a broadly neutralizing

HIV-1 antibody in vitro improves protection against lentiviral infection in vivo.

J. Virol. 88, 12669–12682.

Rusert, P., Kouyos, R.D., Kadelka, C., Ebner, H., Schanz, M., Huber, M.,
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Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Pamela J.

Bjorkman (bjorkman@caltech.edu). The Bjorkman laboratory cannot lawfully distribute clones in the pTT5 vector. Those wishing to

obtain these clones must first obtain a license from the National Research Council of Canada.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Donor 27845 is an adult male who was diagnosed with HIV-1 in 1985. He was a study participant in Seattle Vaccine Unit Observa-

tional Protocols ‘‘Immune Determinants Favoring Non-Progression in HIV-1 Infection’’ and ‘‘Evaluation of HIV-Specific Immunolog-

ical and Virological Responses of HIV-1 Multiply-Exposed Seronegative Individuals’’ (P.I. MJ McElrath) at the Fred Hutchinson

Cancer Research Center and was followed from 1998 - 2006. Apart from an NIH interventional study during which Donor 27845

started and stopped anti-retroviral therapy (ART) from 1998-2001, the subject has been off ART. Samples for this study were ob-

tained from 2005 and 2006. During the time of follow-up, viral loads ranged from 35 – 23,300 copies/ml (median: 1,640 copies/ml)

and CD4+ T cell counts ranged from 291 to 1,000 cells/mm3 (median: 590 cells/mm3). Studies and procedures were approved

by the Fred Hutchinson Cancer Research Center Internal Review Board (FWA00001920). Samples for analysis were obtained under

protocol MNU-0628 approved by the Rockefeller University Institutional Review Board.

Humanized mice
NOD-Rag1null IL2rgnull (NRG)mice were purchased from The Jackson Laboratory, andwere subsequently bred andmaintained in the

Dezentrales Tierhaltungsnetzwerk Weyertal at University of Cologne. NRGmice were fed ssniff complete feed 1124 during breeding

and ssniff complete feed 1534 during maintenance, and kept under a 12 hr light/dark cycle with specific-pathogen-free (SPF)

conditions. To determine the pharmacokinetics of antibody SF12, 6-week old non-humanized NRG mice (n = 3 per antibody,

male and female mice in both groups) were injected intravenously via the tail-vein with 250 mg of antibody (SF12 or 3BNC117).

Mice were bled on days 1, 3, 6, 9 and 14 after injection from the facial vein into Z-Gel Serum tubes (Sarstedt). Serum levels were

determined using a previously described total IgG ELISA (Klein et al., 2012). Humanized mice for treatment experiments were

generated using a previously described protocol with slight modifications (Klein et al., 2012; Traggiai et al., 2004). In brief,

1-5 days old NRGmice were sublethally irradiated, and 3-6 hours later injected intrahepatically with CD34+ hematopoietic stem cells.

CD34+ cells were enriched by magnetic bead-based positive selection (Miltenyi) from PBMCs obtained from human cord blood and

by placental perfusion under a protocol approved by the ethics committee of the Medical Faculty of the University of Cologne

(protocol #16-110). All cord blood and tissue donors provided written informed consent. Humanization screening was performed

at 12 weeks post injection by flow cytometry as previously described (Klein et al., 2012). For treatment experiments, humanized

mice were infected with HIV-1YU2 (Zhang et al., 2002) (produced in 293T cells) intraperitoneally (Horwitz et al., 2013; Klein et al.,

2012). To determine viral loads, plasma viral RNA was measured using a quantitative PCR (qPCR) assay (Horwitz et al., 2013,

2017) based on pol using primers HIV-1 Pol region F 50-TAATGGCAGCAATTTCACCA-30 and HIV-1 Pol region R 50-GAATGC

CAAATTCCTGCTTGA-30, and probe 50-/56-FAM/CCCACCAAC/ZEN/ARGCRGCCTTAACTG/3IABkFQ/-30. The limit of accuracy of
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the assay (based on the standard curve used) was 384 copies/ml. Plasma viral loads were determined twice before experiment start

and onlymicewith viral loads over 4,000 copies/ml were included in experiments. Male and femalemice (18-67 weeks old) were used

for treatment experiments. Treatment groupswerematched primarily based on viral load and stem cell donor (previously identified as

key determinants of viral load kinetics), with equal or comparable distributions of age and sex across groups. For antibody treat-

ments, 1 mg of each antibody was administered subcutaneously as a loading dose followed by twice-weekly injections of 0.5 mg

of each antibody in PBS subcutaneously for a total of 3 weeks (monotherapy) or 5 weeks (tri-mix). All mouse experiments were autho-

rized by the State Agency for Nature, Environment and Consumer Protection (LANUV) of North Rhine-Westphalia.

Cell lines
HEK293T cells were obtained from the American Type Culture Collection (ATCC) and maintained in Dulbecco’s modified Eagle

Medium (DMEM, GIBCO) with 10% fetal bovine serum (FBS, Sigma Aldrich), 1x Penicillin/Streptomycin (GIBCO), 1 mM Sodium

Pyruvate (GIBCO), 2 mM L-Glutamine (Thermo Fisher Scientific) at 37�C/5% CO2. The HeLa-derived TZM-bl reporter cell line was

sourced from the NIH AIDS Reagent Program andmaintained in DMEM containing 10% fetal bovine serum, 1 mM Sodium Pyruvate,

2 mM L-Glutamine (Thermo Fisher Scientific), 50 mg/ml Gentamicin (Sigma-Aldrich), and 25mMHEPES (Biochrom) at 37�C/5%CO2.

HEK293EBNA1-6E (293-6E) cells were obtained from the National Research Council Canada (NRC) and maintained in Freestyle 293

ExpressionMedium (Thermo Fisher Scientific) containing 0.2%Penicillin/Streptomycin at 37�C /5%CO2with shaking at 90-120 rpm.

The sex of these cell lines is unknown. CHO Flp-InTM cells (Invitrogen) were a kind gift from the lab of John Moore (Cornell University)

and maintained in Ham’s F-12 Medium supplemented with 10% heat-inactivated FBS (Sigma-Aldrich), 200 U/ml penicillin/strepto-

mycin, 2 mM L-glutamine, 20 mM HEPES, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate (GIBCO), and further supple-

mented with 100 mg/ml Zeocin (Invitrogen).

METHODS DETAILS

IgG isolation for polyclonal IgG neutralization testing
IgG from subject 27845 was purified from heat-inactivated (1h 56�C) plasma (late 2005 time point) using Protein G Sepharose 4 Fast

Flow (GE Healthcare), buffer exchanged into phosphate buffered saline (PBS) using an Amicon Ultra 30 kDa (Millipore), and sterile-

filtered.

Neutralization fingerprinting analysis
Neutralization fingerprinting (Figure 1B) of the polyclonal antibody response of subject 27845 was done using a panel of 20 diverse

HIV-1 strains (Doria-Rose et al., 2017). In brief, the neutralization fingerprint of a serum/polyclonal IgG (the potency-defined pattern of

neutralization of a set of diverse viral strains) is represented as a combination of the neutralization fingerprints of a reference set of

bNAbs, grouped in ten epitope-specific clusters. Using this method, the prevalence of each of the ten antibody groups can be

estimated for the given serum/polyclonal IgG, with prevalence scores ranging between 0 (low) and 1 (high). Additionally, two mea-

sures (Residual score and Median of scores) are computed as a way to estimate prediction confidence for the prevalence scores

(Georgiev et al., 2013; Raju et al., 2019). For neutralization fingerprinting of monoclonal antibodies (Figure 1F), a set of 80 viruses

for which data was available for all antibodies was used. The tree was constructed with a distance metric based on the similarity

of the neutralization patterns of the different antibodies. First, the correlations between the neutralization fingerprints (the

antibody-specific pattern of neutralization of a set of diverse HIV-1 strains) were computed for each pair of antibodies. The

antibody-antibody correlation matrix was then used as input to a hierarchical clustering algorithm to generate a neutralization

fingerprinting-based antibody tree. Generally, antibodies that cluster closely together in the tree may indicate similar patterns of

neutralization sensitivity/resistance for the given set of strains.

B cell microculture
Sorting and culturing of memory B cells was performed according to a previously published protocol (Doria-Rose et al., 2015; Huang

et al., 2013). In brief, peripheral bloodmononuclear cells (PBMCs) were stained with LIVE/DEAD Fixable Aqua (Invitrogen), CD19-PE-

Cy7, CD16-Pacific Blue, CD3-APC-Cy7, IgM-PE-Cy5 and IgD-FITC. Gating was done on IgM- and IgD- negative B cells, and these

were bulk sorted using a FACS Aria II cytometer. Bulk B cells were then diluted and plated at 2 B cells per well in 384-well plates.

B cells were cultured for two weeks in the presence of IL-2 (Roche), IL-21 (Life Technologies) and CD40L-expressing NIH 3T3 cells

as described (Doria-Rose et al., 2015; Huang et al., 2013). To assess culture success, a total IgG ELISA was performed on

supernatants after two weeks of culture to determine the number of wells with positive IgG production. Cell supernatants were

then screened in a microneutralization TZM.bl assay against viruses BaL.26 and BG505.T332N. Wells with neutralization > 50%

against one or both strains were amplified using various sets of previously described primer sets for heavy chain and light chain

(Doria-Rose et al., 2015; Scheid et al., 2011). Clone specific primers in the leader region were designed when necessary to obtain

fully native sequences of the entire framework 1 region (FWR1). Positive bands were sanger sequenced using reverse amplification

primers. In the case that multiple B cells were present (double peaks were obtained), bands were subcloned using the TOPO-TA kit

(Invitrogen), colony PCR was performed, and bands were again sequenced by Sanger sequencing. Antibody sequences were

analyzed using both IgBLAST and the international ImMunoGeneTics information system (IMGT) (Lefranc et al., 2009; Ye et al.,

2013). Obtained heavy and light chain genes were cloned into human Igg1-, Igk or Igl-expression vectors using sequence and
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ligation independent cloning (SLIC) (Jeong et al., 2012; Tiller et al., 2008; von Boehmer et al., 2016). The correct heavy and light chain

pairing of the SF5/SF12 antibody family was confirmed by single B cell BG505 bait sorting data.

Single B cell bait-sorting
BG505 SOSIP.664-Avi for B cell sorting was produced in CHO cells and purified using a PGT145 immunoaffinity column as described

(Pugach et al., 2015; Sok et al., 2014). Biotinylation of BG505 was done using BirA-ligase (Avidity) according to the manufacturer’s

instructions. An aliquot of BG505 SOSIP.664-Avi-biotin was freshly coupled to Streptavidin-PE (Invitrogen) using 2.5 mg and 1 ml

(0.2 mg/ml) of Streptavidin-PE in a total volume of 10 ul PBS. For the sort, 20 million PBMCs were freshly thawed and stained

with the following fluorophore-coupled anti-human antibodies: IgG-APC, IgM-BV605, CD19-BV421, CD20-BV421, CD3-PerCP-

Cy5.5, CD14 PerCP-Cy5.5, CD335 PerCP-Cy5.5, CD606 PerCP-Cy5.5 and 1:20 Streptavidin-PE coupled BG505.SOSIP.664 mix

described above. Staining was performed for 30 mins at 4�C. Sorting was done on a FACS Aria II. The gating first included singlets,

followed by exclusion of unwanted cells (CD3-, CD14-, CD335-, CD606-), selection for B cells (CD19+, CD20+) and finally sorting of

single IgG+ PE+ cells into 96-well plates containing lysis buffer. B cell antibody genes were amplified and Sanger sequenced. Anti-

body sequences were analyzed using both IgBLAST and the international ImMunoGeneTics information system (IMGT) (Lefranc

et al., 2009; Ye et al., 2013). Sequences of interest were cloned into human Igg1-, Igk or Igl-expression vectors by SLIC as described

above.

Phylogenetic analysis of SF family heavy chain sequences
The IgVH4*59*01 Homo sapiens allele sequence was obtained from the international ImMunoGeneTics information system (IMGT)

(Lefranc et al., 2009). Antibody heavy chain nucleotide sequences of the SF family were aligned with the IgVH4*59*01 sequence in

Geneious R8 (v8.1.9) using ClustalW. The maximum-likelihood tree was generated using the RAxML plugin (v 7.2.8) with a GTR

Gamma model using the ‘Rapid Bootstrapping and search for best-scoring ML tree’ function with 100 bootstrap replicates. The

best-scoring ML tree was then formatted using FigTree (v1.4.3).

Antibody production for ELISA, neutralization assays and in vivo experiments
293-6E cells were maintained in Freestyle 293 Expression Medium (Thermo Fisher Scientific) containing 0.2% Penicillin-Strepto-

mycin (Thermo Fisher Scientific). Paired heavy and light chain expression constructs were transfected into 293-6E cells (NRC) using

branched polyethylenimine (PEI) 25 kDA (Sigma). After 7 days of culture, cells were spun down at 4200 g for 40 mins at 4�C and

supernatants were filtered through 0.22 mM aPES (Thermo Nalgene Rapid-Flow). Antibodies were then purified from filtered super-

natants using Protein G Sepharose 4 Fast Flow (GE Healthcare) according to standard protocols. Antibodies were buffer exchanged

and concentrated into PBS using Amicon Ultra centrifugal filter (Millipore) with either a 30 or 50 kDAmolecular weight cutoff (MWCO).

Enzyme-linked immunosorbent assay (ELISA) of (mutant) YU2 gp120/gp140 proteins
Wild-type and mutant His-tagged YU2 gp120/gp140 proteins were expressed by transient transfection of 293-6E cells and purified

usingNi-NTA according tomanufacturer’s instructions. Corning Costar 96-Well Assay high-binding plates were coated for 1h at 37�C
with 2 mg/ml of the respective protein (YU2 gp120WT, YU2 gp120 D368Rgp120, YU2 gp120 N332Agp120, YU2 gp120 N160Kgp120 and

YU2 gp140WT, YU2 gp140 A281Tgp120/D368Kgp120, YU2 gp140 N160Kgp120 A281Tgp120/D368Kgp120 and N332Kgp120 (triple mutant))

using a volume of 50 ml/well. Plates were washed 6x using PBS-Tween20 (0.05%), and subsequently blocked using 3% BSA in

PBS for 1h at 37�C (200 ml/well). After washing, serially-diluted antibodies were added (starting at 4 or 10 ug/ml, 1:3 dilution series)

at 50 ml/well in 1% PBS/BSA and incubated for 1h at room temperature or 37�C. After another wash step, anti-human IgG (Southern

Biotech or Jackson Immunoresearch) was added at 1:5000 (50 ml/well) in 1% PBS/BSA for 30 mins at 37�C. Development was done

using 100 ml/well ABTS 1-Step Solution (Thermo Fisher Scientific), and absorbance wasmeasured at 405 nm on a FluoStar Omega or

415 nm on a Tecan Sunrise.

BG505 SOSIP.664-His ELISAs
Corning Costar 96-Well Assay high-binding plates were coated overnight at room temperature or for 1h at 37�Cwith 2 mg/ml anti-His-

tag antibody (Abcam) in PBS (50 ml/well). Plates were washed 6x using PBS-Tween20 (0.05%), and subsequently blocked using 3%

BSA in PBS or 2% milk powder in PBS for 1h at 37�C (200 ml/well). After washing, purified BG505 SOSIP.664-His (de Taeye et al.,

2015; Sanders et al., 2013) was added at 2 mg/ml in 1% BSA in PBS (50 ml/well), and incubated for 1h at 37�C, followed by another

washing step. Next, serially-diluted antibodies were added (starting at 4 or 10 ug/ml, 1:3 dilution series) at 50 ml/well in 1%PBS/BSA,

and incubated for 1h at room temperature or 37�C. After washing, anti-human IgG (Southern Biotech) was added at 1:5000 in 1%

BSA in PBS (50 ml/well) for 30 mins at 37�C. Post washing, development was done using 100 ml/well ABTS 1-Step Solution (Thermo

Fisher Scientific), and absorbance was measured at 405 nm on a FluoStar Omega or 415 nm on a Tecan Sunrise.

Competition ELISAs
Antibodies SF5 and SF12 were biotinylated using the FluoReporter Mini-Biotin-XX Protein Labeling Kit (Thermo Fisher Scientific).

Corning Costar 96-Well Assay high-binding plates were coated overnight at room temperature or for 1h at 37�C with 2 mg/ml anti-

His-tag antibody (Abcam) in PBS (50 ml/well). Plates were washed 6x using PBS-Tween20 (0.05%), and subsequently blocked using

3% BSA in PBS for 1h at 37�C (200 ml/well). After washing, BG505 SOSIP.664 was added at 2 mg/ml in 1% BSA in PBS (50 ml/well),
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and incubated for 1h at 37�C, followed by another washing step. Next, serially-diluted competitor antibodies (starting at 32 mg/ml, 1:3

dilution series) were added at 50 ml/well in 1% PBS/BSA and incubated for 1h at room temperature. Plates were washed and

biotinylated SF5 or SF12 were added at 0.5 mg/ml (50 ml/well in 1% PBS/BSA) and incubated for 1h room temperature. After another

wash step, Streptavidin-HRP (1:1000) was added at 50 ml/well in 1% PBS/BSA for 30 mins at room temperature. Development was

done using 100 ml/well ABTS 1-Step Solution (Thermo Fisher Scientific), and absorbance was measured at 405 nm on a FluoStar

Omega or 415 nm on a Tecan Sunrise.

Generation of mutant HIVYU2 and HIVBG505 pseudoviruses
Point mutations were introduced into the HIVYU2 and HIVBG505T332N gp160 expression plasmids using the QuikChange site-directed

mutagenesis kit (Agilent Technologies) or the Q5 Site-directed mutagenesis kit (NEB) according to manufacturer’s specifications.

Pseudoviruses were produced by co-transfection with pSG3DEnv into HEK293T according to an established protocol (Sarzotti-Kel-

soe et al., 2014).

In vitro neutralization assays
Neutralization activities of polyclonal IgG and monoclonal antibodies were determined using a luciferase-based TZM.bl assay (Li

et al., 2005; Sarzotti-Kelsoe et al., 2014; Seaman et al., 2010), which measures the reduction of Tat-induced luciferase expression

in TZM-bl reporter cells during a single round of infection. Samples were assayed at least in in duplicate. Polyclonal IgG neutralization

assays were done using a starting concentration of 500 mg/ml andmonoclonal antibodies were assayed at starting concentrations of

10, 25 or 50 mg/ml. IC50s and IC80s were derived 5-parameter curve fitting. Neutralization was also assessed against murine leukemia

virus (MuLV) to detect unspecific activity (Sarzotti-Kelsoe et al., 2014). Neutralization data for Figures 1E and 2E were analyzed and

graphed using Antibody Database (v 2.0) (West et al., 2013).

Autoreactivity and polyreactivity assays
Autoreactivity of antibodies SF5 and SF12 and reference antibodies 4E10 and 2F5 was determined using the commercially-available

HEp-2 based assay NOVA Lite kit (Inova Diagnostics) at an IgG concentration of 25 mg/ml. Slides were photographed on a Leica DMI

6000 Bwith an exposure of 800ms, Gain of 10 and Intensity of 100%.Measurements were done in duplicate. Representative images

are shown in Figure S1.

Polyreactivity assays were conducted using ELISA detection of non-specific binding to baculovirus extracts as described (Hötzel

et al., 2012). Briefly, a solution of 1% baculovirus particles in 100mM sodium bicarbonate buffer pH 9.6 was absorbed onto the wells

of a 384-well ELISA plate (NuncMaxisorp) using a Tecan FreedomEvo liquid handling robot, and the plate was incubated overnight at

4�C. The plate was then blockedwith 0.5%BSA in PBS for 1 hour at room temperature. Purified IgGs (diluted to 1 mg/mL in PBS, 0.5%

BSA) were added to the blocked assay plate and incubated for 3 hours at room temperature. Bound IgG was detected as the

luminescence signal at 425 nm using an HRP-conjugated anti-human IgG (H&L) secondary antibody (Genscript) and SuperSignal

ELISA Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific).

Single genome sequencing of plasma HIV-1 Env genes
Amplification of genes encoding HIV-1 Env gp160 from single viral genomes was carried out as described previously with slight

modifications (Keele et al., 2008; Salazar-Gonzalez et al., 2008). In brief, complementary DNA (cDNA) was synthesized using primer

YB383 50-TTTTTTTTTTTTTTTTTTTTTTTTRAAGCAC-30 and Superscript III (Invitrogen) according to manufacturer’s instructions.

cDNAwas then serially diluted andHIV-1 Envwas amplified in two rounds of nested PCRusing PlatinumTaqGreenHot Start (Thermo

Fisher Scientific) and primers specifically adapted for HIVYU2NL4-3 (1st round primers were YB383 and YB50 50- GGCTTAGGCAT

CTCCTATGGCAGGAAGAA-30 ; 2nd round primers YB49 50-TAGAAAGAGCAGAAGACAGTGGCAATGA-30, YB52 50-GGTGTG

TAGTTCTGCCAATCAGGGAAGWAGCCTTGTG-30). Positive Bands from amplifications with less than 30% efficiency were PCR-

purified using the Nucleospin Gel and PCR-Clean Up kit (Macherey Nagel) and Sanger sequenced using a set of 8 primers. Env se-

quences were assembled using the Geneious 8.1.9 (Biomatters) de-novo assembly tool. Assembled sequences were cross-checked

against sequencing traces again to validate assemblies, and sequences with full coverage of gp160 Env were used in downstream

analyses.

Protein expression and purification for structural studies
Fabs fromSF12, SF5 and 10-1074 IgGswere produced as described (Scharf et al., 2015). Briefly, Fabswere expressed by transiently

transfecting HEK293-6E cells with vectors encoding the appropriate light chain and C-terminal 6x-His tagged heavy chain genes.

Secreted Fabs were purified from cell supernatants using Ni2+-NTA affinity chromatography (GE Healthcare), followed by size exclu-

sion chromatography (SEC) with a Superdex200 16/60 column (GE Healthcare). Purified Fabs were concentrated and maintained at

4�C in storage buffer (20 mM Tris pH 8.0, 150 mM NaCl, 0.02% sodium azide).

A gene encoding soluble B41SOSIP.664gp140 trimer, including SF501Cgp120, T605Cgp41, and I559Pgp41 substitutions, an enhanced

gp120–gp41 cleavage site (REKR to RRRRRR), and a stop codon after residue 664gp41 (Env numbering according to HXB2 nomencla-

ture), was stably expressed in Chinese hamster ovary cells as described (Chung et al., 2014; Pugach et al., 2015). Secreted Env trimers

expressed in the absence of glycosylation inhibitors were isolated from cell supernatants using 2G12 immunoaffinity chromatography

by covalently coupling 2G12 IgGmonomer to an activated-NHSSepharaose column (GEHealthcare) as described (Scharf et al., 2015).
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Trimers were eluted using 3M MgCl2 and immediately dialyzed into storage buffer before SEC purification with a Superdex200 16/60

column (GEHealthcare) against the same buffer. Peak fractions pertaining to SOSIP trimers were pooled and repurified using the same

column and buffer conditions. Individual fractions were stored separately at 4�C.

Crystal structure of SF12 Fab
Purified Fab was concentrated to 10-15 mg/mL by centrifugation with a 30-kDa concentrator (Amicon). Initial matrix crystallization

trials were performed at room temperature using the sitting drop vapor diffusion method by mixing equal volumes of protein sample

and reservoir using a TTP LabTechMosquito robot and commercially-available screens (Hampton Research andQIAGEN). Initial hits

were optimized and crystals were obtained in 0.1 M HEPES pH 7.0, 1.6 M Sodium Formate at 20�C. Crystals were cryo-protected

stepwise to 3.0 M Sodium Formate before being cryopreserved in liquid nitrogen.

X-ray diffraction data were collected for SF12 Fab at the Stanford Synchroton Radiation Lightsource (SSRL) beamline 12-2 on a

Pilatus 6M pixel detector (Dectris). Data from a single crystal were indexed and integrated in XDS (Kabsch, 2010) and merged with

AIMLESS in the CCP4 software suite (Winn et al., 2011). Structures were determined by molecular replacement in PHASER (McCoy

et al., 2007) using a single search with coordinates of the F105 Fab (PDB 1U6A), which had �85% sequence identity to SF12 after

removal of CDR loops. Models were refined using B-factor refinement in CNS (Brunger, 2007) and Phenix (Adams et al., 2010),

followed by several cycles of manual building with B factor sharpening in Coot (Emsley et al., 2010).

Cryo-EM sample preparation
Complexes of B41-SF12-101074 were assembled by incubating purified SF12 Fab with B41 SOSIP.664 trimer at a 1.2:1 Fab:gp120-

protomer molar ratio. Following overnight incubation at RT, 10-1074 Fab was incubated with the complex at a 1.2:1 Fab:gp120-

protomer molar ratio for 5 h. SF12–B41–10-1074 complexes were diluted to 0.5-0.8 mg/ml in TBS and 3mL was added to Quantifoil

R2/2 300 mesh copper grids (Electron Microscopy Services) that had been freshly glow-discharged using a PELCO easiGlow (Ted

Pella). Samples were immediately vitrified in 100% liquid ethane using a Mark IV Virtoblot (Thermo Fisher Scientific) by blotting for

2.5-4 s with Whatman No. 1 filter paper at 20�C and 100% relative humidity.

Cryo-EM data collection and processing
Single-particle cryo-EM data were collected on a Titan Krios transmission electron microscope (Thermo Fisher Scientific) operating

at 300 kV, using the EPU automated image acquisition software (Thermo Fisher Scientific). Movies were collected on a Gatan K2

Summit direct electon detector (DED) operating in counting mode at a nominal magnification of 130,000x (1.09 Å/pixel) using a

defocus range of�1.2 mm to�3.0 mm.Movies were collected over an 8 s exposure with an exposure rate of�4.8 e- /pixel/s, resulting

in a total dose of �40 e-/Å2.

Movies were motion corrected and doseweighted using the MotionCor2 frame alignment program in RELION-3 (Zivanov et al.,

2018). Non-doseweighted summed images were used for CTF determination using Gctf (Zhang, 2016), and reference-free particle

picking from 18micrographs was achieved using Laplacian-of-Gaussian filtering in RELION-3 (Zivanov et al., 2018). An initial stack of

1,907 particles was 2D classified and the best classes representing top-down and side views of Env-trimers was used for subsequent

automated template-based picking in RELION-3. 676,161 particles were extracted from 2,209 dose-weighted micrographs, binned

4x4 (4.36 Å/pixel), and subjected to reference-free 2D classification in RELION-3 and a 240 Å circular mask. A total of 371,665

particles corresponding to class averages that displayed secondary-structural elements and represented views different views of

Fab bound Env-trimer were extracted and re-centered prior to heterogenous ab inito model generation using cryoSPARC v2.2

(Punjani et al., 2017).

The generated volumewas low-passed filtered to 40 Å and used as an initial model for 3D auto-refinement in RELION-3. Due to the

observed low occupancy of 10-1074 Fab, particles were re-extracted unbinned (1.09 Å/pixel) and 3D classified (C1 symmetry, k = 8)

with a soft mask generated from the initial model (5-pixel extension, 10-pixel soft cosine edge). Classification resulted in two distinct

classes comprising three or two SF12 Fabs bound per trimer and one 10-1074 Fab bound per trimer. Particles from each class were

then separately refined, followed by 3D auto-refinement using a soft mask in which Fab constant domains were masked out. Class 1

(301,920 particles) refined to a final estimaled resolution of �3.28 Å (SF123—B41–10-10741; C1 symmetry) and class 2 (55,136

particles) refined to a final estimated resolution of �4.36 Å (SF122—B41–10-10741; C1 symmetry) according to gold-standard

FSC (Bell et al., 2016).

Modeling and refinement of cryo-EM structures
For the final reconstruction of class 1 (SF123—B41–10-10741; C1 symmetry), initial coordinates were generated by docking reference

models into the cryo-EM density using UCSF Chimera v1.13 (Goddard et al., 2007) (gp120-gp41, PDB 6CH9; 10-1074 Fab, PDB

4FQQ; SF12 Fab, this work). Initial models were then refined into the EM maps using one round of rigid body, morphing, and

simulated annealing followed by subsequent rounds of B-factor refinement in Phenix (Adams et al., 2010). Models were manually

built following iterative rounds of real-space and B-factor refinement in Coot (Emsley et al., 2010) and Phenix (Adams et al., 2010)

with secondary structure restraints. Modeling of glycans was achieved by interpreting cryo-EM density at PNGS in Coot using a

mapwith a�75 Å2 B-factor sharpening value, contoured at 6s due to the lower resolution of glycans at the periphery of the structure.

Validation of model coordinates was performed using MolProbity (Chen et al., 2010) and Privateer (Agirre et al., 2015).
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Structural and bioinformatic analyses
Superpositions and figures were rendered using PyMOL (Version 1.5.0.4 Schrodinger, LLC), and protein electrostatic calculations

were done using APBS and PDB2PQR webservers (Unni et al., 2011). Buried surface areas (BSAs) were determined with PDBePISA

using a 1.4Å probe (Krissinel and Henrick, 2007). Potential hydrogen bonds were assigned using a distance of < 3.6Å and an A-D-H

angle of > 90�, while the maximum distance allowed for a van der Waals interaction was 4.0Å. Putative H-bonds, van der Waals

assignments and total BSA should be considered tentative, owing to the relatively low structure resolutions. Computational analysis

of neutralization panel data (Table S7) was done as previously described (West et al., 2013). For determining the difference in

orientation of the antibody variable domains of the SF12-Env and VRC-PG05-Env complexes, those structures were aligned on

gp120, and then the transformation relating the VH-VL domains was calculated by using TM-align (Zhang and Skolnick, 2005).

The corresponding screw transformation was calculated as described (Siciliano and Khatib, 2008) and visualized using Antibody

Database (West et al., 2013).

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the nucleotide sequences of SF-family members are GenBank: MK722158–MK722171. The accession

numbers for the cryo-EM reconstructions of the SF12–B41–10-1074 complexes comprising three or two SF12 Fabs are Electron

Microscopy Data Bank (EMDB): EMD-20100 and EMD-20101, respectively. The accession numbers for coordinates for atomic

models of the cryo-EM SF12–B41–10-1074 complex (class 1: three SF12 Fabs and one 10-1074 Fab) and the unliganded SF12

Fab crystal structure are Protein Data Bank (PDB): PDB 6OKP and PDB 6OKQ, respectively.
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