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Abstract

Distance metrics and clustering algorithms
for detection and classification of process sensitive patterns

by

Justin Ghan

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Kameshwar Poolla, Chair

Detection of process sensitive patterns known as hotspots is critical to maximising yield
in integrated circuit layouts. Design rule checking is a common tool in the industry for
fast hotspot detection, but it is becoming impractical as we approach smaller technology
nodes, due to an exponentially growing rule book which must be manually maintained.

A pattern matching based system for hotspot detection is explored in this dissertation
which has the advantage of being automatically generated while still performing detection
with a runtime comparable to design rule checking. Instead of scanning a design layout
for certain combinations of distances found in a library of rules, we use a pattern matching
tool to find occurrences in the layout of patterns which match or closely resemble known
bad configurations.

In order for such a system to detect hotspots effectively, we require a comprehensive
catalogue of hotspot patterns for the pattern matcher to use. Of course, it is not feasible
to simply store all known hotspots patterns in the catalogue, as the memory requirements
and pattern matching runtimes would be enormous. Instead, the catalogue must contain
a smaller number of hotspot classes, where each class represents a set of geometrically
similar patterns which embody the same type of hotspot. The pattern matching tool is
able to find matches to a hotspot class by matching to a particular representative pattern
of the class, and allowing for small geometric deviations from this representative.
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To build such a catalogue, a large diverse set of hotspot clips must be analysed and
reduced to a small number of hotspot classes. To perform this reduction meaningfully, a
deep understanding of what it means for two hotspots to be the same “type” of hotspot is
required. We perform an in-depth analysis of the process sensitivity of patterns. From this
we design a distance metric which quantifies the extent to which the process sensitivities
of two hotspots are caused by similar geometry of surrounding features.

Equipped with this distance metric, clustering algorithms are used to group a dataset of
clips into a small number of clusters containing similar hotspots. Because the number
of clips to analyse must be very large in order to build a comprehensive catalogue, it
is important to make this process as computationally efficient as possible. To this end,
the distance metric and the clustering algorithm are designed and tailored for maximum
efficiency.

To test our hotspot detection system, we build a catalogue of hotspot classes based on a
dataset of clips extracted from a device layout. A pattern matching tool then uses our
catalogue to detect hotspots, and the results are presented.
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Chapter 1

Introduction

Design for manufacturability is playing an ever-increasing role in the production of
integrated circuits. As we push towards smaller and smaller devices, the computational
complexity of hotspot detection, optical proximity correction and double patterning
colouring grows. The need for faster and more accurate solutions to these tasks is
becoming more urgent as they threaten to become an insurmountable obstacle in the
design flow.

The elimination of hotspots from a layout is among the primary concerns in device design.
Small variations in the lithography process cause the printed contours to deviate from the
nominal condition contours. Patterns which have a particularly high sensitivity to process
variation may cause a reduction in yield if these contour deviations are significant enough
to affect the electrical performance of the device. Such patterns are called hotspots, and it
is critical to detect and fix these to ensure high yield.

Model-based approaches to hotspot detection are the most precise and robust, and these
methods will always have their place in the design flow. However, in the early stages
of the flow, where the ability to perform many iterations of design and verification is
desirable, simulation is too computationally expensive to be relied upon as the only tool.
Faster solutions are required, even if at the slight expense of accuracy.

To play this role, various rule-based approaches such as design rule checking have been
introduced. These methods are typically very fast; however, they are becoming impractical
as the radius of interaction between features grows. An exploding number of increasingly
complex rules are required, and each of these rules must be manually designed and
coded. Decisions must be made as to how restrictive to make the rules, and ultimately
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not all possible geometries can be taken into account.

In this dissertation, we present an alternate hotspot detection system, which has the
capability and speed of traditional design rule checking, but has the important advantage
that criteria for detection can be automatically generated without human analysis or
labour. Instead of detecting hotspots by checking combinations of distances in various
configurations, our hotspot detection system utilises pattern matching. Pattern matching
technology is very fast and powerful, but its use has not yet become widespread in the
industry. We believe that it can potentially be used to solve many major problems in
the field of design for manufacturability, and our hotspot detection system is just a first
example.

1.1 Overview of hotspot detection

Design rule checking has been the industry standard for fast layout verification for many
years. In earlier generations, a small number of simple design rules were sufficient to
assure printability of a layout. An example of a simple early design rule is the tip-to-line
rule. This rule states the minimum allowable space width between the tip of a terminating
line and a second perpendicular line, as shown in Fig. 1.11.1. The mask polygons are shown
in black, and the resulting printed image contours are shown in red. Due to diffractive
effects in the lithography system, the image contours do not exactly match the mask
polygons. The design rule states that, so long as as the space width, a, is greater than the
threshold, ath, as shown on the left, then the two lines will resolve separately, and will
function electrically as intended. However, if the minimum space width is violated, as
shown on the right, then the two lines may be joined in the resulting image. This is called
bridging, and can cause circuit failure.

Simple rules such as these were reliable in the past. However, as we print smaller and
smaller lines with each subsequent technology node, the number of surrounding features
which affect a single edge placement is increasing. Because of this, simple rules are no
longer able to adequately guarantee printability.

As an example, let us examine the tip-to-line behaviour at a current technology node.
Suppose we attempted to use the same simple tip-to-line rule, determining the space
width threshold, ath, by examining isolated pairs of lines as depicted in the previous
examples (Fig. 1.11.1). Now consider a more complex geometry, such as line terminating
inside a U shape, as shown in Fig. 1.21.2. Here, the space width, a, is greater than the
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a > ath a < ath

Figure 1.1: A simple design rule.

threshold, so that in the absence of other features the space would print correctly. At an
older technology node, the surrounding features would have negligible effect, so that the
space would still print correctly; but at newer technology nodes, the additional lines may
cause bridging to occur, despite satisfying the tip-to-line design rule.

This could be fixed simply by increasing the space width threshold for the rule. However,
for many tip-to-line cases such as the first isolated configuration, this would mean forcing
a larger space than is really necessary for printability. Instead of sacrificing pattern
density, it is preferable to define a separate rule which defines the minimum space width
for this particular tip-to-line configuration. In this way, when a design rule is translated
for the next technology node, it may often branch into multiple rules which are more
complex.

Another consequence of printing smaller lines is that the perturbations in the printed
image caused by small process variations are now more significant and potentially
harmful. Figure 1.31.3 shows another example of a line terminating inside a U shape,
but here the space width has been made sufficiently large so that, at nominal process
conditions, the resulting printed image contours, shown in red, do not exhibit any
bridging. However, a small change in the process conditions may cause the image
contours shown in blue to be printed instead.

Thus, we can see that, for each technology node, the design rules must become more
complex and specific to account for a greater number of surrounding features, and must
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a > ath

Figure 1.2: A bridging defect caused by surrounding features.

a > ath

Figure 1.3: A bridging defect caused by process variation.
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also take into account process variation. For these reasons, the number of required rules
has become enormous, and the average number of mathematical operations per rule also
increases with each node [1616]. Additionally, there is a growing number of lithography
technologies available, each with its own specific design rules [1111]. Thus, the amount of
work involved in designing and coding these rules is exploding.

One challenge in defining design rules is determining the various thresholds involved in
each rule. Typically an ad hoc procedure is utilised, where many variations of the same
geometry with slightly different dimensions are simulated across the process window [99].
The results are analysed in order to determine a set of thresholds. Setting the thresholds
too conservatively will ensure higher yield at the cost of feature density. Balancing yield
against density is difficult to achieve consistently across all design rules, and there will
inevitably be some rules which are too lenient, thus allowing yield detracting patterns to
slip through.

Torres [1515] showed that we can speed up model-based hotspot detection by choosing
to simulate only those process conditions at which critical dimensions will have their
worst deviations. However, even with these runtime reductions, full-chip process window
simulation is still orders of magnitude slower than design rule checking.

Hung [1010] proposed a hybrid system for hotspot detection which combines design rule
checking with simulation. Traditional design rule checking is first used to search the
layout, but the rule thresholds are relaxed in order to achieve a higher detection rate.
Since this also results in a large number of false positives being tagged, a process window
simulation step follows in order to separate these from the true hotspots. Because the
simulation only needs to be carried out on small regions surrounding the locations tagged
by the design rule checking, this step does not take as long as a full-chip simulation. This
approach has improved reliability over traditional design rule checking, but at the cost of
speed, and the issue of maintaining a set of design rules is not circumvented.

Yao [1818] and Xu [1717] generalised the concept of design rules by defining range patterns
which describe hotspots, and demonstrated an efficient algorithm for finding matches to
range patterns in a layout. A range pattern is a specific two-dimensional geometric con-
figuration of shapes whose dimensions are permitted to vary within specified constraints.
While range patterns may be more flexible than traditional design rules, they still require
a similar amount of effort to design and code.

Dai [55] generalised design rules further with DRC Plus, in which a specific layout clip
takes the role of a design rule, and pattern matching is used the detection mechanism.
The DRC Plus rules are much simpler than traditional design rules, consisting of known
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bad configurations. However, it is not clear that unweighted pattern matching with some
mismatch tolerance will provide accurate hotspot detection.

A method of automatically creating DRC Plus rules was proposed [44]. Process window
simulations are carried out on training layouts in order to build a dataset of hotspots.
Hotspots in the same geometric configuration are grouped together, and printability
statistics of each group are used to determine whether the geometric configuration will
be turned into a DRC Plus rule.

Our work shares some ideas with DRC Plus, in that we automatically build a catalogue
of representative hotspot configurations by analysing a training dataset of hotspots,
and feed this catalogue to a pattern matching tool to perform hotspot detection in new
layouts. We introduce a sophisticated model-based distance metric which provides a
physically meaningful comparison between hotspots. Together with an efficient clustering
algorithm, this metric allows us to reduce a very large dataset to a compact catalogue of
representatives. Our metric also provides weighted templates for the pattern matching
tool to ensure our hotspot detection is more accurate and robust.

1.2 Outline of work

The pattern matching tool at the core of our system takes a template pattern, then searches
a layout for instances of patterns which are geometrically similar to the template within
some specified tolerance. In order to perform hotspot detection using this tool, we
must first build a catalogue of templates and corresponding tolerances. The catalogue is
constructed by analysing a large dataset of example hotspot patterns, taken from existing
device layouts. The dataset is sorted into groups in such a way that patterns in the same
group are considered to be the same “type” of hotspot. A representative template and
corresponding tolerance can then be extracted from each group in such a way that the
pattern matching tool can use these to find this type of hotspot in new layouts.

In order to determine what is meant by two hotspots being the same “type”, we carry out
a detailed analysis in Chapter 22 of what causes a pattern to be process sensitive. Starting
from first principles, we determine the sensitivities of the position of an edge to variations
in exposure and focus. Then, we quantitatively determine how these sensitivities are
influenced by features in the neighbourhood of the edge. In other words, we are able to
determine which features are causing a hotspot to be hot.
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In Chapter 33, we use our analysis to compare the sensitivities of two hotspots. From
this, we are able to define a distance metric which describes the similarity between two
hotspots. This similarity is based both on the similarity of their process sensitivities, and
on the geometric similarity between the features causing their process sensitivities.

Armed with this distance metric, in Chapter 44 we are able to take a dataset of hotspot
clips and organise them into groups of similar hotspots using a clustering algorithm.
In order to process large datasets, our clustering algorithm needs to be very efficient.
We describe an incremental clustering algorithm called BUBBLE which is suitable for
our needs, and streamline the algorithm further to attain a substantial improvement in
runtime.

Finally, in Chapter 55, we take the clusters created by our algorithm and form our catalogue
of hotspot classes. The pattern matching tool is then used to find patterns in design
layouts belonging to our hotspot classes. We test our system on an actual design and are
successful in achieving a high rate of hotspot detection.
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Chapter 2

Hotspot sensitivity analysis

While the lithography process is tightly controlled, there is inevitably some amount of
process variation present. This variation manifests itself as deviations in the printed
patterns on the wafer from the nominal contours. Certain geometric configurations are
more sensitive to process variation, and will demonstrate larger deviations in response;
these configurations are called hotspots. In locations critical to the electrical performance
of the layout, hotspots can significantly reduce the production yield.

There are various different categories of hotspots, corresponding to different modes
of failure which may occur – for example, bridging, pinching, or line end shortening.
However, in all cases, we can say that hotspots are caused by edge placement sensitivity
to process variation. In some cases, the variation of a single edge placement may lead to
a failure, and in other cases it may be the combination of two or more edge placements.

The two main sources of process variation are defocus and exposure dose error, and these
are the two which we will analyse in this chapter. There are other factors, such as lens
aberrations, pitch variations, or resist thickness variations, which may also be significant
sources of variation, and the techniques used here can be generalised to handle these as
well.

The overall aim of our work is to be able to compare and classify hotspots based upon the
geometry of the features in the local neighbourhood. In order to achieve this, we must
have an understanding of how the surrounding features cause a hotspot to be “hot”. In
this chapter, we start with a model of the lithography system and its process variations.
We then study the movement of an edge placement in response to the process variations,
and analyse the effect of neighbouring regions on the edge placement sensitivity. This
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analysis yields a quantitative map of the contribution of features towards causing a
hotspot, which will play an important role in defining similarity metrics to compare
hotspots.

2.1 Lithography optics review

First, we review the optical model which is used for the lithography system. The
wavelength of the exposure light is denoted by λ, and the numerical aperture of the
projection system by NA. Throughout this work, a normalised scheme is employed
where quantities in the spatial domain, such as coordinates (x, y) and focal error z, are
normalised by λ

NA . (Mask plane coordinates are defined in units of their corresponding
points in the image plane and normalised in the same way.) Quantities in the frequency
domain such as coordinates ( f , g) are normalised by NA

λ .

2.1.1 Hopkin’s equation

Suppose we have a mask with transmission function O(x, y). In our work we consider only
binary masks, so that O(x, y) = 1 for points where light is transmitted, and O(x, y) = 0
otherwise. Then a corresponding aerial image intensity I(x, y) is formed on the wafer
plane. Hopkin’s equation [11] gives the Fourier transform of the aerial image intensity as

I( f , g) =
∫∫
T ( f ′ + f , g′ + g; f ′, g′)O( f ′ + f , g′ + g)O∗( f ′, g′)d f ′ dg′, (2.1)

where O( f , g) is the Fourier transform of the mask transmission function O(x, y), the
asterisk ∗ denotes complex conjugation, and T ( f ′, g′; f ′′, g′′) is the transmission cross-
coefficient,

T ( f ′, g′; f ′′, g′′) =
∫∫
J ( f , g)K( f + f ′, g + g′)K∗( f + f ′′, g + g′′)d f dg. (2.2)

Here, J ( f , g) is the source function. For conventional circular illumination, this is given
by

J ( f , g) =

{
1
πs2 if f 2 + g2 < s2,

0 otherwise,
(2.3)
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where s is the partial coherence factor. Finally, K( f , g) is the pupil function. If we have
zero focal error, this is equal to 1 for those frequencies which are transmitted in the pupil
plane, and 0 elsewhere. So, for a circular pupil, we have

K0( f , g) =

{
1 if f 2 + g2 < 1,

0 otherwise.
(2.4)

If we have nonzero focal error, z, then the pupil function becomes

K( f , g) = K0( f , g)eiπz( f 2+g2). (2.5)

The aerial image intensity I(x, y) is then obtained by taking the inverse Fourier transform
of I( f , g). Note that this image intensity is also normalised so that a clear field mask
transmission, O(x, y) ≡ 1, results in unity image intensity, I(x, y) ≡ 1, regardless of the
exposure dose. The effects of exposure dose are discussed below.

2.1.2 Variational defocus expansion

In order to express the image intensity explicitly in terms of the focus error, z, Eq. (2.12.1)
may be reformulated [1919] as

I(x, y) =
∞

∑
n=0

z2n I2n(x, y). (2.6)

The first term, I0(x, y), gives the in-focus aerial image intensity, where z = 0. The higher
order terms, I2n(x, y), are called the variational aerial image intensities, and they are
given in the frequency domain by

In( f , g) =
∫∫
Tn( f ′ + f , g′ + g; f ′, g′)O( f ′ + f , g′ + g)O∗( f ′, g′)d f ′ dg′, (2.7)

where these variational transmission cross-coefficients are

Tn( f ′, g′; f ′′, g′′) =
(−iπ)n

n!

n

∑
k=0

(
n
k

)
(−1)kTn,k( f ′, g′; f ′′, g′′), (2.8)

Tn,k( f ′, g′; f ′′, g′′) =
∫∫ (

( f + f ′)2 + (g + g′)2
)k(

( f + f ′′)2 + (g + g′′)2
)n−k

×J ( f , g)K0( f + f ′, g + g′)K∗0( f + f ′′, g + g′′)d f dg. (2.9)

If the focus error is small, then we can neglect the z4 and higher order terms of the infinite
series (2.62.6) to yield the approximation

I(x, y) ≈ I0(x, y) + z2 I2(x, y). (2.10)
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2.1.3 Resist exposure threshold

We use a constant threshold model for the resist, so that the resulting contours are given
by I(x, y) = Ith, where Ith is the resist exposure threshold, normalised to the same units
as the image intensity. The accuracy of this model may be significantly improved by
applying a constant bias to the image intensity contours. However, since this bias does
not affect our investigation, we assume a zero bias.

Due to the normalisation, the resist exposure threshold Ith is actually a function of the
exposure dose d, since increasing the exposure dose will also increase the normalisation
factor. The relationship between the two is given by

Ith =
d0

d
, (2.11)

where d0 is the dose-to-clear [22]. At a particular dose called the isofocal dose, diso, the
image is least sensitive to defocus; this is the nominal exposure dose, as it yields the
maximum expected process window.

2.2 Sum of coherent systems

The model presented for the lithography system is not well-suited to fast computation of
the image intensity. The sum of coherent systems decomposition [33, 1414] provides a much
faster route to computing a high accuracy approximation of the image intensity, and it is
particularly suitable for our hotspot sensitivity analysis. A singular value decomposition
is used to express the transmission cross-coefficient, T ( f ′, g′; f ′′, g′′), in the following
form:

T ( f ′, g′; f ′′, g′′) =
∞

∑
k=1
Hk( f ′, g′)H∗k( f ′′, g′′). (2.12)

Then the in-focus aerial image intensity is given by

I0(x, y) =
∞

∑
k=1
|Ek(x, y)|2, (2.13)

where each electrical field component Ek(x, y) is given by

Ek(x, y) = (Hk ? O)(x, y), (2.14)
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where the star ? denotes convolution. The functions Hk(x, y) are called kernels. Assuming
the kernels are sorted in order of decreasing L2-norm, then we can truncate the infinite
sum, Eq. (2.132.13), to a finite number of terms by discarding those terms such that ‖Hk(x, y)‖2

is smaller than some threshold. Then, we are left with the approximation

I0(x, y) ≈
N

∑
k=1
|Ek(x, y)|2. (2.15)

Assuming a sufficient number of terms are taken, this yields a very good approximation
of the true image intensity.

We can decompose the variational transmission cross coefficients in an identical manner:

Tn( f ′, g′; f ′′, g′′) =
∞

∑
k=1
Hn,k( f ′, g′)H∗n,k( f ′′, g′′). (2.16)

Then the variational aerial image intensities are given by

In(x, y) =
∞

∑
k=1
|En,k(x, y)|2, (2.17)

where each electrical field component En,k(x, y) is given by

En,k(x, y) = (Hn,k ? O)(x, y). (2.18)

Again, if the kernels are sorted in order of decreasing L2-norm, then we can truncate this
to a finite number of terms,

In(x, y) ≈
Nn

∑
k=1
|En,k(x, y)|2. (2.19)

2.3 Sensitivity analysis

Now, we have a model which describes the changes in the image intensity when the focus
and exposure dose stray from the nominal. We would like to investigate how this affects
individual edge placement errors. To do this, we choose one point on one edge, and
examine the movement of this point as the focus and exposure dose are varied.
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z = 0
d = diso

z = δz
d = diso(1 + δd)

(0, 0)
δxth

Figure 2.1: Nominal and variational intensity contours for an edge.

We consider a binary mask O(x, y) which prints a vertical edge passing through the
point (0, 0) at the nominal focus (z = 0) and exposure (d = diso). This is shown by the red
contour in Fig. 2.12.1. From Eq. (2.112.11), we have

I0(0, 0) =
d0

diso
. (2.20)

Now we want to characterise the movement of this edge when we have some small
nonzero focus error and dose error. Suppose the focus is now z = δz, and the dose is now
d = diso(1 + δd). This will cause some small perturbation of the edge contour, shown
by the blue contour in Fig. 2.12.1. We are interested in the horizontal displacement of the
contour at the point (0, 0). Let δxth be this horizontal displacement, so that the new
contour passes through the point (δxth, 0), so we have

I(δxth, 0) =
d0

diso(1 + δd)
. (2.21)

We can use the approximation for the defocus image, Eq. (2.102.10), to expand the left hand
side. Then, using Eq. (2.202.20) and approximating 1/(1 + δd) ≈ 1− δd, we get

I0(δxth, 0) + I2(δxth, 0) δz2 ≈ I0(0, 0)(1− δd). (2.22)
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Since δxth is small, we can make the following approximations:

I0(δxth, 0) ≈ I0(0, 0) +
∂I0

∂x
(0, 0) δxth, (2.23)

I2(δxth, 0) ≈ I2(0, 0) +
∂I2

∂x
(0, 0) δxth. (2.24)

Therefore,

I0(0, 0) +
∂I0

∂x
(0, 0) δxth + I2(0, 0) δz2 +

∂I2

∂x
(0, 0) δxth δz2 ≈ I0(0, 0)(1− δd). (2.25)

We can neglect the highest order term, δxth δz2. Rearranging, we obtain

∂I0

∂x
(0, 0) δxth ≈ −I0(0, 0) δd− I2(0, 0) δz2. (2.26)

We can see from this equation that we may approximate the edge placement error as the
sum of two terms; one deriving from the exposure dose error, and the other from the
defocus error.

Now, we define the exposure sensitivity, S, as

S =
∂xth

∂d
. (2.27)

This tells us the relationship between the exposure dose error and the edge placement
error. A larger magnitude of S means that the placement of this particular edge is more
sensitive to exposure dose error. A positive value means that increasing the exposure
dose will move the edge in the positive x direction. From Eq. (2.262.26), we can see that S is
given by

S = − I0(0, 0)
∂I0
∂x (0, 0)

. (2.28)

Next, since the first partial derivative ∂xth
∂z is zero, we define the focus sensitivity, T, as

T =
1
2

∂2xth

∂z2 . (2.29)

This tells us the relationship between the defocus error and the edge placement error. A
larger magnitude of T means that the placement of this particular edge is more sensitive
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to defocus error. A positive value means that defocus error will move the edge in the
positive x direction. From Eq. (2.262.26), we can see that T is given by

T = − I2(0, 0)
∂I0
∂x (0, 0)

. (2.30)

These quantities, S and T, can be each be viewed as a partial measures of the “hotness”,
or process sensitivity, of a hotspot.

Equation (2.262.26) can now be written as

δxth ≈ S δd + Tδz2. (2.31)

2.3.1 Exposure sensitivity

The exposure sensitivity S depends upon the mask features in the context surrounding
the point (0, 0). We would like to know in which regions the features have a greater
impact on S. That is, for each point (X, Y) of the mask, we want to determine the impact
of O(X, Y) on this sensitivity, S. This can be quantified by the functional derivative,

∂S
∂O(X, Y)

.

We call this the exposure sensitivity contribution map. Actually O(X, Y) takes only binary
values, but for the purpose of the analysis, we may assume it can take continuous values.

Equations (2.152.15) and (2.142.14) yield

I0(0, 0) = ∑
k
|Ek(0, 0)|2, (2.32)

Ek(0, 0) =
∫∫

O(x, y)H−k (x, y)dx dy, (2.33)

where H−k (x, y) is a notational shorthand for Hk(−x,−y). From these, we calculate
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various functional derivatives,

∂Ek(0, 0)
∂O(X, Y)

= H−k (X, Y), (2.34)

∂I0(0, 0)
∂O(X, Y)

= ∑
k

2 Re[Ek(0, 0)∗H−k (X, Y)], (2.35)

∂

∂O(X, Y)

(
∂Ek
∂x

(0, 0)
)
=

∂H−k
∂x

(X, Y), (2.36)

∂

∂O(X, Y)

(
∂I0

∂x
(0, 0)

)
= ∑

k
2 Re

[
∂Ek
∂x

(0, 0)∗H−k (X, Y) + Ek(0, 0)∗
∂H−k
∂x

(X, Y)

]
. (2.37)

Finally, we can use these to calculate the exposure sensitivity contribution map by taking
the functional derivative of Eq. (2.282.28):

∂S
∂O(X, Y)

=
I0(0, 0) · ∂

∂O(X,Y)

(
∂I0
∂x (0, 0)

)
− ∂I0(0,0)

∂O(X,Y) ·
∂I0
∂x (0, 0)[

∂I0
∂x (0, 0)

]2 . (2.38)

Note that calculating this contribution map over a neighbourhood of (0, 0) is fast. It can
be seen that it is the weighted sum of the kernels and their spatial derivatives, which can
all be precalculated. Thus, for a given mask, we need only compute the scalar weighting
coefficients of these functions. These coefficients are functions of the electrical field
components Ek(0, 0) and their spatial derivatives ∂Ek

∂x (0, 0); the cost of calculating these is
equivalent to the cost of simulating the nominal aerial image and one spatial derivative
at a point.

The exposure sensitivity contribution map tells us which features of the mask are con-
tributing to the exposure sensitivity, which are detracting, and which have little effect.
For example, suppose that, within some region of the mask, O(X, Y) = 1 and ∂S

∂O(X,Y) is
large and positive. This means that this feature is causing S to be more positive. In the
case that S > 0, this feature is contributing to the exposure sensitivity at (0, 0). If S < 0,
then this feature is reducing the exposure sensitivity.

Figure 2.22.2 shows an example of an exposure sensitivity contribution map for a lithography
system with coherent illumination. The red regions show a positive contribution, the blue
regions show negative contribution, and the yellow regions show zero contribution. It
can be seen that the regions of the mask most heavily affecting the exposure sensitivity
of the edge placement are those closest to the edge. The contribution map tends to zero
as we get further away from the origin, and outside a certain radius we can say that the
effects of features on the exposure sensitivity are negligible.
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Figure 2.2: An example of an exposure sensitivity contribution map.

2.3.2 Focus sensitivity

Next, for each point (X, Y) of the mask, we want to determine the impact of O(X, Y) on
the focus sensitivity, T. This can be quantified by the functional derivative,

∂T
∂O(X, Y)

.

We call this the focus sensitivity contribution map.

Equations (2.192.19) and (2.182.18) yield

I2(0, 0) = ∑
k
|Ek,2(0, 0)|2, (2.39)

E2,k(0, 0) =
∫∫

O(x, y)H−2,k(x, y)dx dy. (2.40)
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From these, we calculate various functional derivatives,

∂E2,k(0, 0)
∂O(X, Y)

= H−2,k(x, y), (2.41)

∂I2(0, 0)
∂O(X, Y)

= ∑
k

2 Re[E2,k(0, 0)∗H−2,k(X, Y)]. (2.42)

Finally, we can use these to calculate the focus sensitivity contribution map by taking the
functional derivative of Eq. (2.302.30):

∂T
∂O(X, Y)

=
2 Re

[
I2(0, 0) · ∂

∂O(X,Y)

(
∂I0
∂x (0, 0)

)
− ∂I2(0,0)

∂O(X,Y) ·
∂I0
∂x (0, 0)

]
[

∂I0
∂x (0, 0)

]2 . (2.43)

Again, note that calculating this contribution map over a neighbourhood of (0, 0) is fast.
As for the exposure sensitivity contribution map, it is the weighted sum of the kernels
and their spatial derivatives. The scalar weighting coefficients are again functions of
Ek(0, 0) and ∂Ek

∂x (0, 0), and for the focus sensitivity contribution map we also require the
variational electrical field components E2,k(0, 0); calculating these is equivalent to the cost
of simulating the variational aerial image at a point.

The focus sensitivity contribution map tells us which features of the mask are contributing
to the focus sensitivity. Figure 2.32.3 shows an example of a focus sensitivity contribution
map for a lithography system with coherent illumination. As for the exposure sensitivity
contribution map, the focus sensitivity contribution map tends to zero as we get further
away from the origin, and outside a certain radius we can say that the effects of features
on the focus sensitivity are negligible.

2.4 Overall process sensitivity

Thus far we have considered the exposure and focus sensitivities separately. However,
in practice, we are interested in the overall process sensitivity of an edge placement.
Therefore, we will now combine these two sensitivities into a single overall measure of an
edge placement process sensitivity, and calculate the corresponding contribution map. In
order to determine how to weight the exposure sensitivity and the focus sensitivity, we
need to examine the process model and utilise the uncertainties in the exposure dose and
the focus.
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Figure 2.3: An example of a focus sensitivity contribution map.

Suppose d and z are independently normally distributed, and their variances σ2
d and σ2

z
are known, δd ∼ N (0, σ2

d ) and δz ∼ N (0, σ2
z ). Now we want to investigate the statistical

properties of xth. Starting from Eq. (2.312.31), the mean of xth is

µxth = E[δxth]

≈ E
[
S δd + T δz2

]
= S E[δd] + T E

[
δz2
]

= Tσ2
z . (2.44)

Next, the variance of xth is

σ2
xth

= E
[
δx2

th

]
− E[δxth]

2

≈ E
[(

S δd + T δz2)2
]
−
(
Tσ2

z
)2

=
(

S2E
[
δd2
]
+ T2E

[
δz4
]
+ 2ST E[δd] E

[
δz2
] )
− T2σ4

z

=
(

S2σ2
d + 3T2σ4

z + 0
)
− T2σ4

z

= S2σ2
d + 2T2σ4

z . (2.45)
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Figure 2.4: An example of an edge placement variance contribution map.

This variance can be used as a measure of the overall edge placement process sensitivity.

Now we would like to determine an overall contribution map which will quantify the
effect of each region of the mask on the edge placement variance, σ2

xth
. This can be found

by taking the functional derivative of Eq. (2.452.45),

∂σ2
xth

∂O(x, y)
≈ 2σ2

d S
∂S

∂O(x, y)
+ 4σ4

z T
∂T

∂O(x, y)
. (2.46)

Figure 2.42.4 shows an example of an edge placement variance contribution map for a
lithography system with coherent illumination.

2.5 Generalised sensitivities

Investigating the variation in a single edge placement is useful when we are looking
at line end shortening. If we are instead interested in the process sensitivity of a line
width or space width, then we can generalise the above analysis to consider multiple
edge placements simultaneously.



21

z = 0
d = diso

z = δz
d = diso(1 + δd)

(x1, 0) (x2, 0)
δx1

δx2
a0

a0 + δa

Figure 2.5: Nominal and variational intensity contours for the two edges of a line.

First, let us investigate the case for pinching hotspots. Suppose we have a mask O(x, y)
which prints a vertical line whose left and right edges pass through the points (x1, 0) and
(x2, 0) respectively at nominal focus and exposure. Therefore, the nominal line width is
a0 = x2 − x1. This is shown by the red contours in Fig. 2.52.5.

Next, suppose the focus is now z = δz, and the dose is now d = diso(1 + δd). This will
cause some small perturbations of the two edge contours, shown by the blue contours in
Fig. 2.52.5. We are interested in the horizontal displacements of the contours at (x1, 0) and
(x2, 0). Let δx1 be the horizontal displacement of the first contour at (x1, 0), and δx2 be
the horizontal displacement of the second contour at (x2, 0). Then the line width is now
a0 + δa, with δa = δx2 − δx1. We let S1 and S2 be the respective exposure sensitivities of
the two edge placements, and T1 and T2 be the respective focus sensitivities.

Now we can investigate the statistical properties of a, as we did in the previous section
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with xth. The mean of a is

µa = E[a]

= a0 + E[δa]

= a0 + E[δx2]− E[δx1]

≈ a0 + (T2 − T1)σ
2
z . (2.47)

Next, the variance of a is

σ2
a = E

[
δa2
]
− E[δa]2

= E
[
(δx2 − δx1)

2
]
− (E[δx2]− E[δx1])

2

≈ E
[(

(S2 − S1) δd + (T2 − T1) δz2
)2
]
−
(
(T2 − T1)σ

2
z

)2

= (S2 − S1)
2σ2

d + 2(T2 − T1)
2σ4

z . (2.48)

This shows that, if the two edge placements have identical exposure and focus sensitivities,
then the line width a will be exactly constant. This is intuitive, since this means that the
two edges will have identical displacements in response to exposure and focus errors.

Now we would like to determine an overall contribution map which will quantify the
effect of each region of the mask on the line width variance, σ2

a . This can be found by
taking the functional derivative of Eq. (2.482.48),

∂σ2
a

∂O(x, y)
≈ 2σ2

d (S2 − S1)

(
∂S2

∂O(x, y)
− ∂S1

∂O(x, y)

)
+ 4σ4

z (T2 − T1)

(
∂T2

∂O(x, y)
− ∂T1

∂O(x, y)

)
. (2.49)

The procedure for examining the variation of the width of a space is exactly the same, so
we can apply the same formulae to bridging hotspots.

We can generalise this even further to consider more edge placements. For example,
we may be interested in the variation in the area of a contact, in which case we would
consider four edge placements.
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Chapter 3

Distance metric

In this chapter, we design a distance metric which may be used to compare two mask
patterns. The ultimate goal of this distance metric is to let us decide which patterns
are the same “type” of hotspot. To this end, we consider two factors in our concept
of “similarity”. First of all, similar patterns should have a similar process sensitivity.
Secondly, their process sensitivity should be caused by geometrically similar features in
the mask patterns.

In order to compare the process sensitivity of two patterns, we could perform lithography
simulations of the two patterns to yield an exact measure of the process sensitivities of
each, using the formulae derived in the previous chapter. However, this is extremely
computationally expensive. Instead, we perform variational analysis of the expressions for
process sensitivity, and obtain an efficient formula for estimating the difference between
the process sensitivities of the two patterns. Next, we adapt this formula to incorporate
a measure of geometric similarity between the features in the two patterns, and this
becomes our distance metric.

In order to make our computation of this distance metric as efficient as possible, we
consider only small clips from masks surrounding the point of interest, and show that
this reduction has negligible impact on our distance metric. Other methods of improving
the computational speed of the distance metric are also discussed.
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3.1 Variance prediction

Suppose we have a mask, O1(x, y), containing a particular dimension of interest, a1,
such as a line end position, or a space width. The variance of this dimension represents
the “hotness” of this feature. Suppose this variance, σ2

a1
, is known. Then the variance

contribution map may be used to extrapolate variances of similar dimensions in other
masks.

Consider a second mask, O2(x, y) with an identical dimension of interest, a2, located at
the same coordinates, but with a different surrounding context. That is, if a1 represents
the horizontal position of a line end which nominally passes through (0, 0) in the first
mask, then a2 represents the horizontal position of a line end which nominally passes
through (0, 0) in the second mask. We can consider all masks containing the same feature
at the same coordinates to belong to the same category.

Note that, when we refer to a “second” mask, this does not imply that the mask is
necessarily distinct from the initial mask. Typically, the second mask is simply a recoordi-
natisation O2(x, y) = O1(x + ∆x, y + ∆y) so that we can compare two features in different
areas of the same mask.

Regarding the second mask as a perturbation of the first mask, a first order approximation
yields:

σ2
a2
≈ σ2

a1
+
∫∫ ∂σ2

a1

∂O1(x, y)
[O2(x, y)−O1(x, y)]dx dy. (3.1)

Thus the difference between the variances of the dimensions between the two masks is
given by the integral over the plane of the mask “perturbation”, [O2(x, y)−O1(x, y)],
weighted by the variance contribution map. The accuracy of these predictions depends
upon the similarity between the two masks. If the two masks differ in only a few small
regions so that the perturbation is zero almost everywhere, then the predictions can be
very accurate.

Figure 3.13.1 shows the result of using the variance of a reference mask dimension to predict
variances of the corresponding dimension in 200 other masks. In this case, the variance
of a line end position in a reference mask was determined, and the variance contribution
map was calculated using Eq. (2.462.46). Then, Eq. (3.13.1) was used to predict the variances
of other line end positions based on the reference variance. These predicted variances
were compared to the variances calculated individually for each of the line ends using
Eq. (2.462.46).
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Figure 3.1: Accuracy of the variance prediction formula, Eq (3.13.1).
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In the figure, the red asterisk shows the variance of the line end position in the reference
mask. The blue dots show the predicted and calculated variances in 200 other masks. It
can be seen that, for masks with very similar variances, Eq. (3.13.1) provides an accurate
prediction of the actual variance. For masks which are less similar, the prediction is less
accurate. Similar results are obtained for other choices of reference mask.

3.2 Comparing hotspots

The preceding section has given us a method of estimating the difference between the
variances of two features of the same category in different masks:∣∣∣σ2

a2
− σ2

a1

∣∣∣ ≈ ∣∣∣∣∣
∫∫ ∂σ2

a1

∂O1(x, y)
[O2(x, y)−O1(x, y)]dx dy

∣∣∣∣∣ . (3.2)

However, although we may use this formula to estimate whether two patterns have
similar “hotness”, it does not tell us much about whether the two patterns themselves are
geometrically similar. Two patterns which have completely different features surrounding
their hotspot may nevertheless produce exactly the same line end variance. We would
like to design a function which has a small value only if two patterns have a similar
dimension variance and they have geometrically similar features.

We take the approximation, Eq. (3.23.2), and bound it above:∣∣∣σ2
a2
− σ2

a1

∣∣∣ ≈ ∣∣∣∣∣
∫∫ ∂σ2

a1

∂O1(x, y)
[O2(x, y)−O1(x, y)]dx dy

∣∣∣∣∣
≤
∫∫ ∣∣∣∣∣ ∂σ2

a1

∂O1(x, y)

∣∣∣∣∣ ∣∣∣O2(x, y)−O1(x, y)
∣∣∣dx dy

=
∫∫

O1 6=O2

∣∣∣∣∣ ∂σ2
a1

∂O1(x, y)

∣∣∣∣∣dA, (3.3)

where the last integral is taken over the differing area between the two masks – that is,
the set of points (x, y) such that O1(x, y) 6= O2(x, y). These last two lines are equal since
we only consider binary masks, so that |O2(x, y)−O1(x, y)| = 1 iff O1(x, y) 6= O2(x, y).
Figure 3.23.2 shows an example of the differing area between two masks.

The last line of Eq. (3.33.3) can be interpreted as a weighted distance between the two masks
(since the unweighted distance between the two masks is simply the standard area of the
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Figure 3.2: Two mask clips and the area where the two masks differ.

difference,
∫∫

O1 6=O2
dA). Since the weighting is the magnitude of the variance contribution

map, it emphasises those regions which have a greater effect on the variance of interest.
Therefore, regions far away from the pertinent feature are given negligible weighting, so
only the immediate surrounding context of the feature is considered.

Note that this inequality in the second line of Eq. (3.33.3) relies upon the first order approxi-
mation in the first line being accurate. The accuracy depends upon the neglected second
and higher order terms being small. We expect this to be true when the differing area is
small. In fact, we expect the approximation to be accurate when the last line of Eq. (3.33.3),
the weighted distance, is small.

This is demonstrated in Fig. 3.33.3. As in Fig. 3.13.1, the variance of a line end position in a
reference mask was used to predict the corresponding variances in 200 other masks using
Eq. (3.13.1). Then the variance prediction error was plotted against the weighted distance
between the masks.

It can be seen that, when the weighted distance between the masks is small, the variance
prediction is very accurate. As the weighted distance increases, the variance prediction
error may increase. Thus, we see that the variance prediction will only be inaccurate
in cases where there is a significant difference between two masks. Similar results are
obtained for other choices of reference mask.

In summary, when the weighted distance is small, the approximation in the first line of
Eq. (3.33.3) will be very accurate, so that the weighted distance is a true upper bound of the
difference between the variances of the two masks. Therefore, the two masks must have
very similar variances. Additionally, the weighted distance itself is a description of the
geometric similarity between the two patterns. So this weighted distance serves our two
criteria for comparing patterns perfectly.
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Figure 3.3: Variance prediction error against weighted distance.
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3.3 General weighting functions

From our analysis in the preceding section, we now define the function

f (O1, O2) =

 ∫∫
O1 6=O2

wO1(x, y)dA

 1
2

, (3.4)

where wO1(x, y) is a weighting function given by

wO1(x, y) =

∣∣∣∣∣ ∂σ2
a1

∂O1(x, y)

∣∣∣∣∣ . (3.5)

The function f is specific to the category and coordinates of the feature whose dimension,
a, is of interest, and both arguments of the function, O1 and O2, must contain this feature
at the correct location, or else the function is not meaningful.

We have shown that this function is useful for comparing hotspot patterns. However,
there are two reasons that this function is not suitable as a metric. First, the function is not
symmetric, since we arbitrarily choose to use one of the masks as our reference, and the
weighting function is based upon this mask. Second, it will be extremely slow to calculate,
since we have to compute a different weighting function for every mask. In order to
combat both of these problems, we would like to have a single weighting function which
we can use for all hotspots patterns of the same category. To investigate whether this is
feasible, we examine the shape of our mask-dependent weighting functions.

Figure 3.43.4 shows the variance contribution maps for a line end position in two different
masks. We can see that the contribution maps are almost identical. Figure 3.53.5 shows the
y = 0 cross-section of the variance contribution maps for a line end position in 50 different
masks. They have almost identical forms, with the chief difference between them being
only a small variation in magnitude. Thus it can be seen that, for mask variances of this
category, the contribution map is almost constant. Similar investigations for other hotspot
categories yield the same conclusion.

Therefore we can use a single weighting function for all masks in the same category
without significant loss of accuracy. We define a new function,

ρ(O1, O2) =

 ∫∫
O1 6=O2

w(x, y)dA

 1
2

, (3.6)
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Figure 3.4: Edge placement variance contribution maps for two different clips.
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Figure 3.5: Cross sections of variance contribution maps for 50 different clips.
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where w(x, y) is a pattern-independent weighting function. We determine this new
weighting function by taking a large number, N, of masks, Oi(x, y), in the same category
and taking the root-mean-square value of their pattern-dependent weighting functions:

w(x, y) =

 1
N

N

∑
i=1

(
∂σ2

ai

∂Oi(x, y)

)2
 1

2

. (3.7)

Since the weighting function w(x, y) is positive almost everywhere, it is easy to show that
the function ρ(O1, O2) is a metric.

Using a single weighting function for all masks in the same category vastly reduces the
runtime of our distance metric computations for clustering, as will be shown in Section 3.63.6.
However, once we have completed our clustering and reduced our dataset to a smaller set
of representative patterns, we can then use the pattern-specific weighting functions for
pattern matching to provide increased detection accuracy without a significant runtime
penalty. This will be discussed further in Chapter 55.

3.4 Rotations and reflections

A limitation of the metric defined above is that two masks may be considered far apart
with respect to the metric, even if they have very similar patterns except that one is a
rotation or a reflection of the other. Assuming that the lithography system treats the
horizontal and vertical directions equally (as is the case for many illumination conditions),
this is undesirable. Since the two patterns will print similarly and have a similar sensitivity
to process variation, the distance between them should be small.

Therefore, the following pseudometric is defined:

ρ̂(O1, O2) = min
τ∈D4

ρ
(
O1, τ(O2)

)
, (3.8)

where D4 is the dihedral symmetry group of eight transformations (corresponding to the
eight symmetries of a square): the four rotations of the pattern, and the four rotations of
the reflection of the pattern (see Fig. 3.63.6). Thus, if O1 is a reflection or rotation of O2, then
ρ̂(O1, O2) will be zero. (This is a pseudometric since ρ̂(O1, O2) = 0 only guarantees O1

and O2 are equivalent up to transformations, but not necessarily identical.)
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Figure 3.6: The eight transformations of a clip.

If we have an illumination source where the horizontal and vertical directions are unequal,
such as a dipole source, then we can replace the symmetry group D4 by D2 in the
definition of the function, ρ̂.

The pseudometric, ρ̂, serves as the distance metric which we will use in the remainder of
this work to compare patterns.

3.5 Clips

The integral in the definition of our distance metric is taken over the entire plane. In
practice, however, it is unnecessary to integrate over the entire plane, since the magnitude
of the weighting function is negligible outside a neighbourhood of the feature of interest.
Thus, we can achieve sufficient accuracy by considering only a smaller region surrounding
the feature.

For the purpose of easy computation, we reduce each mask to a square clip centred about
the feature. Define SR as the square region defined by x, y ∈ [−R, R]. We can choose the
radius R by examining the weighting function, w(x, y), as follows. Once we have limited
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our masks to the region SR, the maximum value of our distance metric is given by

ρmax =

∫∫
SR

w(x, y)dA

 1
2

. (3.9)

This maximum is achieved when O1 6= O2 throughout the region SR. The distance metric
will also have some error caused by ignoring the masks outside SR. The maximum value
of this error is given by

ρ̃max =

∫∫
S′R

w(x, y)dA


1
2

, (3.10)

where S′R is the complement of SR. This maximum error is achieved when O1 = O2

throughout SR, but O1 6= O2 elsewhere. We would like the ratio ρ̃max/ρmax to be small
enough that we may consider the error negligible. This ratio is monotonically decreasing
with R, so we can choose the radius R according to an error ratio threshold that we
choose.

For each mask, Oi(x, y), we define a corresponding clip, Θi(x, y), which is equal to the
mask within the restricted domain SR:

Θi(x, y) =

{
Oi(x, y) if (x, y) ∈ SR,

0 otherwise.
(3.11)

Our distance metric for clips is now

ρ̂(Θ1, Θ2) = min
τ∈D4

ρ
(
Θ1, τ(Θ2)

)
, (3.12)

where

ρ(Θ1, Θ2) =

 ∫∫
Θ1 6=Θ2

w(x, y)dA

 1
2

, (3.13)

and the region of integration is guaranteed to be a subset of SR.

Figure 3.73.7 shows two examples of hotspot clips. The red line shows the location of the
hotspot. The first clip is centred around a bridging hotspot. The second clip is centred
around a pinching hotspot, and the location of the hotspot is taken as the position where
the line width error is greatest.
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Figure 3.7: Two hotspot clips with dimensions 1130 nm× 1130 nm.

3.6 Implementation

In order to perform clustering, the distance metric needs to be calculated for many pairs
of clips. Therefore it is necessary to make this calculation as efficient as possible.

To calculate the distance metric, Eq. (3.123.12), definite integrals of the weighting function
must be calculated over several polygons. However, even rough approximations of the
definite integrals are computationally expensive, and calculating them several times for
each pair of clips becomes prohibitively slow.

This problem can be resolved by pre-integrating the weighting function. An efficient
algorithm for computing the distance metric utilising pre-integration is presented here:

1. The weighting function is pre-integrated over the domain of the clips, SR.

2. Each clip pattern is decomposed into a set of disjoint rectangles.

3. The (weighted) area of each clip pattern is computed.

4. For each pair of clips, the (weighted) area of the overlap is computed for each
rotation/reflection.

5. The maximum overlap is chosen and used to obtain the value of the distance metric
between them.

Each step is elaborated upon below.
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A grid of points is created over the domain SR. For each gridpoint (x′, y′), the definite
integral

W(x′, y′) =
∫ x′

0

∫ y′

0
w(x, y)dy dx (3.14)

is calculated and stored in a look-up table. (Note that the number of definite integrals
calculated here is far less than the number which would be calculated if the distance
for each pair of clips was calculated separately. Symmetry may also be used to further
decrease the number of integrals calculated.) Then, using this table, definite integrals of
the weighting function can be easily calculated over arbitrary rectangles within the clip,
since they can be expressed as a sum/difference of values of W in the look-up table:∫ x2

x1

∫ y2

y1

w(x, y)dy dx

= W(x1, y1)−W(x1, y2) + W(x2, y2)−W(x2, y1). (3.15)

If the vertices of the rectangle do not coincide with the grid points at which the weight-
ing function was pre-integrated, the values of W can be approximated using linear
interpolation between the values at the closest grid points.

Next, we need to be able to determine the regions where two clips differ. Each clip is
stored in memory as a set of polygons, each polygon being stored as a list of vertex
coordinates. Each polygon represents the outside boundary of the dark field portions
of the pattern within the clip, and the remaining regions are light field. In fact, we can
equivalently represent each clip as a set of disjoint rectangles, by decomposing each
polygon into rectangles. (This is possible assuming the polygons in the layout are all right-
angled. There are many algorithms to perform such decompositions, such as Gourley
and Green’s [88].) An example is shown in Fig. 3.83.8.

Suppose clip Θ1 is represented by rectangles {A1, A2, . . . , Am}. The weighted area of each
rectangle, |Ai|, can be found by Eq. (3.153.15), so we can find the total weighted area of the
clip as |Θ1| = ∑m

i=1 |Ai| (where | · | represents weighted area). Next suppose clip Θ2 is
represented by rectangles {B1, B2, . . . , Bn}, and we want to find the total weighted area
where the two clips differ. First we find the weighted area of the overlap between the
rectangles of clip Θ1 and the rectangles of clip Θ2,

|Θ1 ∩Θ2| =
m

∑
i=1

n

∑
j=1

∣∣Ai ∩ Bj
∣∣ . (3.16)

This is demonstrated diagrammatically in Fig. 3.93.9.
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Figure 3.8: Decomposition of a mask clip into rectangles.

= + + +

Figure 3.9: Visual explanation of Eq. (3.163.16).

For each pair (i, j), it can be easily decided from the coordinates of the rectangles whether
Ai and Bj overlap. If they do, the coordinates of the rectangle Ai ∩ Bj can be found and
the weighted area can be found using Eq. (3.153.15). If they do not,

∣∣Ai ∩ Bj
∣∣ = 0. Finally,

the total weighted area where the two clips differ is given by the XOR of the two sets of
rectangles:

|Θ1 ⊕Θ2| = |Θ1|+ |Θ2| − 2 |Θ1 ∩Θ2| . (3.17)

This is demonstrated diagrammatically in Fig. 3.103.10.

= + − 2×

Figure 3.10: Visual explanation of Eq. (3.173.17).
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Then the distance metric between Θ1 and Θ2 is

ρw(Θ1, Θ2) =
[
|Θ1 ⊕Θ2|

] 1
2
. (3.18)

If we are considering rotations and reflections, then

ρ̂w(Θ1, Θ2) = min
τ∈D4

ρw
(
Θ1, τ(Θ2)

)
= min

τ∈D4

[
|Θ1|+ |τ(Θ2)| − 2 |Θ1 ∩ τ(Θ2)|

] 1
2

=
[
|Θ1|+ |Θ2| − 2 max

τ∈D4
|Θ1 ∩ τ(Θ2)|

] 1
2
, (3.19)

so the weighted area of the overlap needs to be calculated for all eight transformations of
clip Θ2, and the maximum is used in the final distance computation.
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Chapter 4

Clustering

We would like to take a large dataset of example hotspot clips, and build from this a
catalogue of hotspot classes. Each class represents a particular type of hotspot, and each
of the clips from our original dataset is represented by one of the classes. This catalogue
can then be used to detect hotspots in new design layouts.

To build the catalogue, we require a clustering algorithm which can process the dataset
and group the clips into a much smaller number of clusters in such a way that all of
the clips in each cluster are the same type of hotspot, in terms of process sensitivity
and geometric similarity. Mathematically, each cluster should have the property that the
distance between any two clips belonging to it should be small, according to the distance
metric designed in Chapter 33. Additionally, in general, clips should be closer to other
clips within the same cluster than to clips in other clusters.

The clustering algorithm used for our work is based on the BUBBLE algorithm, which
is particularly suited to large datasets in arbitrary metric spaces. After analysis of the
clustering results, we modify the algorithm to tune its performance to the particular
characteristics of hotspot clip datasets.

4.1 Hotspot clip datasets

The hotspot class catalogue created from the dataset will be used for hotspot detection in
new design layouts. Any hotspot types which are not included in the catalogue will be
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missed in the detection process. Therefore, it is important that our original dataset is as
large and diverse as can be practically obtained.

The datasets are extracted from device layers containing hotspots. Multiple device layers
may be used to form a single dataset, as long as they share an identical lithography
process. It may be suitable to use early revisions of layouts instead of final manufacture
layouts, since these are likely to contain a greater number of hotspots.

A full process window simulation is carried out on the layers, from which we get the
set of image contours across the process window. Then geometric checks are used to
compare these contours to the desired target patterns. These checks detect hotspots of
various categories, such as bridging, pinching, and line end shortening hotspots. Each
detected hotspot can be extracted by cutting out a square clip centred around the defect,
with the size of the clip determined by the analysis in Section 3.53.5. These hotspot clips
form our datasets. Each dataset corresponds to a specific category of hotspots (such as
bridging hotspots), and is analysed separately from the other datasets.

For the results shown in this work, the datasets were extracted from a metal layer of
a 755µm× 622µm layout at the 45 nm node. Our datasets were built from pinching
hotspots, where at least one process condition contour violated a minimum width check.
The check results were partitioned into a set of high-severity hotspots which failed
to meet specification, and a set of low-severity hotspots which were marginally within
specification. The size of the hotspot clips extracted from the layouts are 1.13µm× 1.13µm.
Dataset I comprises 782 high-severity hotspots, and Dataset II comprises 13 200 low-
severity hotspots.

4.2 Incremental clustering

Traditional clustering algorithms are global in nature. The basic approach of a global
clustering algorithm is to calculate the distance between all pairs of objects in the dataset.
The resulting distance matrix is then analysed using various techniques depending on
the clustering method.

Various global clustering algorithms were tested on our hotspot clip datasets [1313]. How-
ever, as the datasets grow in size, global algorithms become impractical. As the number
of objects to be clustered becomes very large, it is computationally impractical to cal-
culate the entire distance matrix. For a dataset of n objects, it is necessary to carry out
(n

2) distance metric computations. The runtime of the actual clustering algorithm quickly
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becomes insignificant compared to the runtime of the distance matrix computation. This
is especially true in our case where the computation of the distance metric is relatively
complex (compared to, for example, a Euclidean distance between points). In addition to
the problem of excessive runtime, it is also necessary to store the entire distance matrix
in memory. For a dataset of 10 000 objects, the 10 000× 10 000 distance matrix, stored as
64-bit numbers, requires around 750 MB. For 100 000 objects, the distance matrix requires
around 75 GB.

For these reasons, global algorithms are infeasible for our purpose. Therefore, incre-
mental clustering algorithms were investigated. Instead of looking at the entire dataset
simultaneously, incremental algorithms start by analysing a small subset of the data, then
incrementally accept further small subsets until the entire dataset has been processed.
Distance metrics are only calculated as needed, instead of between all possible pairs of
objects in the dataset. For this reason, smart incremental algorithms can have a drastically
reduced runtime compared to global algorithms. Additionally, incremental algorithms
only require a small amount of data in memory at any given point, so the memory
requirements are also much smaller.

The BIRCH algorithm [2020] is a very efficient incremental clustering algorithm for very
large datasets. The algorithm makes use of a clustering tree which grows incrementally
as objects from the dataset are fed to it. Only a single scan of the dataset is required,
and the memory requirements of the algorithm are very small. However, the BIRCH
algorithm assumes that the objects are represented by points in Euclidean space, which is
not the case for our datasets.

The BUBBLE algorithm [66] is a generalisation of the BIRCH algorithm to arbitrary metric
spaces. This algorithm is specifically targeted for metric spaces in which computation of
the distance metric may be very expensive. Therefore, the BUBBLE algorithm was chosen
as the most suitable algorithm to cluster our hotspot clip datasets.

4.3 BUBBLE algorithm

4.3.1 Description

The centrepiece of the BUBBLE incremental clustering algorithm is a clustering tree
which evolves as objects from the dataset are sequentially fed into it. There are two
parameters controlling the algorithm: the cluster radius threshold, t, which determines
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Figure 4.1: The initial configuration of the clustering tree.

the maximum radius of clusters produced by the algorithm, and the branching factor, B,
which determines the maximum amount of children which may branch out from any
node of the tree.

The tree is initialised as a single node, whose only child is a cluster containing the first
object in the dataset, as shown in Fig. 4.14.1. In the figure, nodes are represented by green
shapes, and each node is linked to its children via brown lines. Clusters are represented
by yellow circles, and the hotspot clips are the small blue squares contained in the clusters.

As the clustering algorithm progresses, the tree grows to contain many nodes and clusters,
shown in Fig. 4.24.2. At any point during the algorithm, each node of the tree has at least 1
and at most B children. (For the examples in the figures, the branching factor is B = 3.)
The children of leaf nodes of the tree are clusters, while the children of nonleaf nodes are
other nodes of the tree.

In order to reduce memory requirements, we do not keep all objects in memory as they
are added to the tree. Instead, we store the structure of the clustering tree, and for
each node and cluster in the tree we store a small summarised representation called the
generalised cluster feature (CF?). The tree structure and the CF?s are updated as objects
are added.

Each cluster has a special member which is the centre of the cluster. The centre object is
the object which has the smallest mean square distance to the other objects in the cluster.
In the figures, the centre object is represented by a darker colour compared to the other
objects in the cluster. The CF? for a cluster contains the centre of the cluster and various
other statistics of the cluster which are required by the algorithm.

While the CF? for a cluster has the centre object as its single representative object, the CF?

for a node of the tree contains several representative objects which belong to the subtree
formed by the node’s descendants. These objects are selected and updated to summarise
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Figure 4.2: A configuration of the clustering tree after more objects are added.

the current contents of the node’s subtree. The CF? for a node also contains various other
statistics about the subtree which the algorithm utilises.

When a new object from the dataset is inserted into the clustering tree, it begins at the
root node. It must first be decided which of the child nodes the object will descend
to. This is achieved by taking the representative objects of each of the child nodes and
calculating the distance metrics between the new object and each of these. The object
then descends to the child node such that the mean square distance to the child node’s
representative objects is the smallest.

An example of a branching decision at a nonleaf node is shown in Fig. 4.34.3. The new
object is shown in red. The upper diagram shows the three child nodes which the object
considers. The lower diagram shows the object descending to one of the three child
nodes.

This branching decision is repeated until the new object reaches a leaf node, at which
point the distance metric is calculated between the object and the centre object of each of
the child clusters. If the smallest distance is within the cluster radius threshold, t, then
the object is added into the corresponding cluster. However, if all of the distances are
greater than t, then a new cluster is formed as a child of the leaf node, with the new
object as its only member.

An example of a branching decision at a leaf node is shown in Fig. 4.44.4. The upper diagram
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? ? ?

?

Figure 4.3: Branching decision at a nonleaf node of the clustering tree.
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? ?

Figure 4.4: Branching decision at a leaf node of the clustering tree.

shows the two child clusters which the object considers. The lower left diagram shows
the object descending to one of the two child clusters. The lower right diagram shows the
object alternatively forming its own child cluster, because it is not close enough to the
centres of the other two child clusters.

Occasionally, when a new object is added to a cluster, the current centre object may no
longer have the smallest mean square distance to the other objects in the cluster. In this
case, the centre object will be updated, as shown in Fig. 4.54.5.

Sometimes the formation of a new child cluster causes the leaf node to have more than
B children. In order to rectify this, the node is split into two new nodes (with the same
parent). The children of the original node are distributed between the two new nodes
in such a way as to maximise the distance between the two new groups. Note that the
splitting of the node may in turn cause its parent node to have more than B children, in
which case this parent node must too be split. This may continue until in some cases the
root node of the tree itself may be split, and a new root node is formed as the parent of
the two new nodes, and thus the height of the clustering tree is increased. An example of
the clustering tree height increasing is shown in Fig. 4.64.6.

This algorithm does not provide any guarantees on the separateness of the resulting
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Figure 4.5: Updating the centre object of a cluster.

clusters. It can happen that two clusters in different parts of the tree are in fact very close
and are better represented as a single cluster. To merge close clusters of this kind, a final
global clustering algorithm may be applied to the representative objects of each cluster.

Further details of the implementation of the BUBBLE algorithm to cluster hotspot clip
datasets are given in previous works [77, 1212].

4.3.2 Results

The BUBBLE algorithm was used to cluster the 782 hotspot clips from Dataset I. The clips
were grouped into 58 clusters. An example of a cluster produced by the algorithm is
shown in Fig. 4.74.7. The centre clip of the cluster is shown in the top left. The sizes of the
clusters produced are shown in Fig. 4.84.8. It can be seen that there is great variation in the
sizes of the clusters, with the largest cluster containing almost one-fifth of the clips, and
many clusters containing only a single clip.

Figure 4.94.9 shows the time elapsed against the number of clips clustered, during a single
run of the BUBBLE algorithm for the 13 200 hotspot clips from Dataset II. Note that we
can infer from this graph the total time required to cluster any number of hotspot clips up
to 13 200 using the BUBBLE algorithm, since the algorithm performs a complete clustering
of the current set of objects before taking the next object. Thus the plot shows us the total
runtime of the BUBBLE algorithm against the number of hotspot clips being clustered.

Of course, the exact runtime depends upon the properties of the dataset being clustered,
as well as the values chosen for the cluster radius threshold, t, and the branching factor,
B. For example, a dataset with objects which fit into just two clusters would be clustered



46

? ? ?

Figure 4.6: Increasing the height of the clustering tree, due to node splitting.
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Figure 4.7: An example of a cluster produced by the BUBBLE algorithm.
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Figure 4.8: Sizes of the clusters produced by the BUBBLE algorithm.
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Figure 4.9: Total runtime of the BUBBLE algorithm.

much faster with this algorithm, since at most two distance metric calculations would be
required to place each object in the tree.

4.4 Plucking modification

4.4.1 Description

Upon examining the clustering produced by the BUBBLE algorithm for various sets of
layout clips, it was found in all cases that there were a small number of clusters containing
a large proportion of the clips. For example, Fig. 4.84.8 shows that 649 of the 782 clips are
contained in just 10 out of the 58 clusters.

This is due to the amount of repetition present in the source layouts from which the
datasets were extracted. The presence of these large clusters motivates a modification of
the clustering algorithm which optimises for such datasets.

If, at some point during the clustering algorithm, a particular cluster is growing much
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faster than the average cluster, then it is reasonable to expect that this cluster will continue
to collect a significant proportion of the incoming objects, since the datasets are not
ordered in any special way. Therefore, the clustering algorithm is modified as follows.

A new parameter, L, is chosen as a threshold size of a cluster. If an object is added to
a cluster so that it now contains more than L objects, then the BUBBLE algorithm is
interrupted. The remaining objects in the dataset yet to be inserted into the clustering
tree are taken one at a time, and checked to see whether they belong to this large cluster
by calculating the distance metric from each to the centre object. Those objects which
are within distance t of the centre object are added to the cluster, and this cluster is then
removed from the clustering tree, since it has found all its members and will not grow
further. If there are any nodes left childless, then these nodes are also removed from the
clustering tree. Then the BUBBLE algorithm is resumed, and the remaining objects are
added sequentially as before.

We call this the plucking modification, since the cluster is plucked from the tree once it is
full. Figure 4.104.10 shows an example of plucking. In the upper diagram, the highlighted
cluster has reached the threshold size. The remaining objects are scanned and some of
these are added to the cluster. The cluster is then removed from the clustering tree, as
shown in the middle diagram. Since its parent is now childless, this node is also removed
from the clustering tree, as shown in the lower diagram.

The benefit of the plucking modification can be seen in the following ad hoc analysis. At
the time of the interruption, assume that there are M unclustered objects remaining in the
dataset, m of which belong to the large cluster. Additionally, assume that the remaining
objects require an average of k distance metric computations to traverse from the root of
the tree into a cluster. (Here, k is on the order of the branching factor, B, multiplied by
the height of the tree.)

Then, in the original BUBBLE algorithm, an average of k distance metric computations are
required to insert each of the M remaining objects. With the modification, the large cluster
is filled in by performing one distance computation for each of the M objects, then the
remaining M−m objects are inserted into the tree as usual with an average of k distance
metric computations. Therefore, our modification saves us Mk − (M + (M − m)k) =

mk−M distance computations. Thus, we achieve a reduction in runtime if mk−M > 0.
Reformulating, we can say that we achieve a reduction in runtime if the proportion of
remaining objects which are expected to belong to the the large cluster, m/M, is greater
than 1/k.

The precise overall reduction in runtime achieved by the plucking modification to the
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Figure 4.10: Plucking a large cluster from the clustering tree.
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Figure 4.11: Sizes of the clusters produced by the BUBBLE algorithm using plucking.

BUBBLE algorithm is highly dependent on the dataset being clustered. For example, if
we have more than k clusters of roughly equal size, then our modification would not
improve the runtime at all. (It would not increase the runtime either; no plucking would
occur due to the lack of large clusters.) Therefore, we demonstrate the benefit of the
plucking modification via experimental results in the following section.

4.4.2 Results

The BUBBLE algorithm with plucking was used to cluster the 782 hotspot clips from
Dataset I. This time, the clips were grouped into 47 clusters. Figure 4.114.11 shows the sizes
of the clusters produced. We can see that there are now even larger clusters present.
Comparing the clustering to that produced without plucking, we find that some of the
larger clusters have merged.

Figure 4.124.12 shows the time elapsed against the number of clips clustered, during a single
run of the BUBBLE algorithm using plucking for 13 200 hotspot clips. We can see that the
algorithm clusters large numbers of clips very quickly at the beginning due to plucking,
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Figure 4.12: Time elapsed during a run of the BUBBLE algorithm using plucking.

and slows down significantly towards the end as it clusters all those clips which were not
added to one of the plucked clusters.

In contrast to the BUBBLE algorithm without plucking, we cannot infer from this graph
the total time required to cluster a smaller number of clips, because in this case the
algorithm will cluster the objects in a different order due to the plucking breaks, thus
affecting the runtime. Figure 4.134.13 shows the total time taken for the BUBBLE algorithm
using plucking for various numbers of hotspot clips. The runtime is roughly linear
with the number of clips. (The lighter lines show the cumulative time elapsed against
the number of clips clustered for each individual run of the BUBBLE algorithm using
plucking.)

It can be seen that the plucking modification makes the BUBBLE algorithm significantly
faster at performing clustering. Figure 4.144.14 shows a comparison of the runtimes for the
BUBBLE algorithm with plucking (shown by the coloured line) and without plucking
(shown by the black line). The reduction in runtime is greater for larger datasets. For the
largest dataset of 13 200 clips, the modified algorithm is over forty times faster.
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Figure 4.13: Total runtime of the BUBBLE algorithm using plucking.
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Figure 4.14: Runtime comparison of the BUBBLE algorithm with and without plucking.
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Chapter 5

Hotspot detection

Now we are ready to build our catalogue of hotspot classes which will allow us to detect
hotspots in new layouts. We will be using pattern matching tools to scan layouts in
order to detect patterns which match the hotspot classes in our catalogue. In order to
achieve this, we must analyse our clusters of hotspots to produce a template and matching
threshold which the pattern matching tool can use.

5.1 Hotspot classes

Each of the clusters produced by our clustering algorithm is a subset of our original
dataset of hotspot clips. The clips belonging to a particular cluster have been grouped
together due to similar process sensitivity and pattern geometry. However, clearly there
are other possible hotspot patterns which were not among the clips in the original dataset
but which share a similar process sensitivity and pattern geometry to those in the cluster.
Thus, instead of considering the set of concrete clips in the cluster, we define an abstract
set of possible clips which are all of the same hotspot “type” as those in the cluster. We
call this a hotspot class.

In contrast to the hotspot cluster, which consists of a discrete set of objects, a hotspot
class represents continuous set of clips. Corresponding to each of the hotspot clusters, we
define a hotspot class, Hi, in terms of our distance metric, ρ̂, by specifying by a centre
clip, Θi, and radius, ri,

Hi = {Θ : ρ̂(Θi, Θ) < ri} . (5.1)
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The centre clip is simply determined by the centre of the corresponding cluster. The
radius is determined by the maximum distance from the centre clip to the remaining
objects in the cluster. If the cluster consists of just a single object, the radius is set to zero.
Then each of the radii can be increased by some small nominal amount, because in most
cases the members of the clusters should not define the exact boundaries of the hotspot
class but rather lie inside them.

Of course, it will often be the case that not every possible clip belonging to the class
Hi will be a hotspot. It is preferable to choose the radius conservatively, because false
positive results are easily checked by performing a simulation on a small clip, while false
negatives can cause expensive delays further on in the design flow.

An optional method of increasing the detection rate of the pattern matching is to define
the hotspot classes in terms of a pattern-specific weighting function, instead of the pattern-
independent root-mean-square weighting function as defined in Eq. (3.73.7). In hotspot class
Hi, we are specifically looking for patterns which have a similar process sensitivity to
Θi, so it makes sense to use the pattern-specific weighting function, wΘ1(x, y), as defined
in Eq. (3.53.5). Since there are only a small number of hotspot classes, the computation
required to calculate these weighting functions is not very significant. The distances to
the other objects in the cluster should be recalculated in order to determine the radius, ri,
in terms of the new pattern-specific distance metric.

5.2 Pattern matching

Conveniently, current pattern matching tools are able to search layouts precisely for
patterns belonging to sets of the form given by Eq. (5.15.1). The pattern matching tool used
in our work is Cadence’s ÉclairPM software. Given a template pattern, the tool seeks
to find the same or similar patterns in a layer. It achieves the comparison between the
template pattern to the layer at each test position by checking a value called the match
factor.

The template pattern, T̄(x, y), is a real- or complex-valued function defined within some
domain D, so T̄(x, y) = 0 for (x, y) 6∈ D. The domain D is commonly a rectangle, but
it can be any set we like. The origin (0, 0) is called the anchor point of the template,
and each position (X, Y) in the layer is checked by overlaying the template on the layer
with the anchor point above (X, Y). The match factor at this point, MF(X, Y), is then
defined as the inner product between the template and the layer. Importantly, the pattern
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matching tool considers the layer numerically equal to 1 where light is transmitted and
−1 otherwise, in contrast to the usual convention in our work which uses values of 1 and
0. Thus the matching area of the layer is given by

Ō(X,Y)(x, y) =


1 if (x, y) ∈ D and O(X + x, Y + y) = 1,

−1 if (x, y) ∈ D and O(X + x, Y + y) = 0,

0 if (x, y) 6∈ D.

(5.2)

Then, the match factor is given by

MF(X, Y) =
∫∫

T̄(x, y)Ō(X,Y)(x, y)dA (5.3)

Given a template pattern and a match factor threshold MFth, the pattern match tool will
return all test positions (X, Y) in the layer for which MF(X, Y) > MFth.

We would like to use the match factor threshold as a means to enforce the distance
metric threshold describing our hotspot class, given by Eq. (5.15.1). This can be achieved by
defining our template as

T̄i(x, y) = w(x, y)Θ̄i(x, y), (5.4)

where Θ̄i(x, y) is the same as the centre clip, Θi(x, y), adjusted to follow the convention
of the pattern matching tool,

Θ̄i(x, y) =


1 if (x, y) ∈ D and Θ(x, y) = 1,

−1 if (x, y) ∈ D and Θ(x, y) = 0,

0 if (x, y) 6∈ D,

(5.5)

where the domain is chosen to match the square domain of our clips, D = SR.

Using this template, the match factor is now

MF(X, Y) =
∫∫

T̄i(x, y)Ō(X,Y)(x, y)dA

=
∫∫

w(x, y)Θ̄i(x, y)Ō(X,Y)(x, y)dA (5.6)

Now, note that since Θ̄i(x, y) = ±1 and Ō(X,Y)(x, y) = ±1, we have

Θ̄i(x, y)Ō(X,Y)(x, y) =

{
1 if Θ̄i(x, y) = Ō(X,Y)(x, y),

−1 if Θ̄i(x, y) 6= Ō(X,Y)(x, y).
(5.7)
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Then,

MF(X, Y) =
∫∫

Θ̄i=Ō(X,Y)

w(x, y)dA−
∫∫

Θ̄i 6=Ō(X,Y)

w(x, y)dA

=
∫∫
D

w(x, y)dA− 2
∫∫

Θ̄i 6=Ō(X,Y)

w(x, y)dA

=
∫∫
D

w(x, y)dA− 2ρ(Θ̄i, Ō(X,Y)). (5.8)

Therefore, we can set

MFth =
∫∫
D

w(x, y)dA− 2ri, (5.9)

so that

{(X, Y) : MF(X, Y) > MFth} =
{
(X, Y) : ρ̂(Θi, Ō(X,Y)) < ri

}
=
{
(X, Y) : Ō(X,Y) ∈ Hi

}
. (5.10)

Thus, with this particular choice of template and match factor, the pattern matching tool
will return exactly those positions in the layer where the pattern belongs to the hotspot
class, Hi.

An example of a template pattern, Θ̄i(x, y), created by multiplying a centre clip and the
weighting function is shown in Fig. 5.15.1. In the figure, the yellow regions correspond to
near-zero values, red regions correspond to positive values and blue regions correspond
to negative values.

5.3 Results

In order to test the capability of our system in detecting hotspots in new layouts, 500 of
the 782 high-severity hotspot clips from Dataset I were chosen randomly as a training
set. Clustering was performed on these 500 clips, and a catalogue of hotspot classes was
formed. A pattern matching tool then used this catalogue to scan the layout from which
the Dataset I hotspots were taken. The aim of the experiment was to determine how many
of the remaining 282 high-severity hotspots would be found by the pattern matching tool.
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Figure 5.1: An example of a weighted clip used by the pattern matching tool.

The incremental clustering algorithm (with the plucking modification) grouped the
training set into 41 clusters. A global clustering algorithm (specifically the single-linkage
hierarchical algorithm) was then used to merge close clusters, resulting in 30 clusters.
These clusters were then analysed to obtain a catalogue of 30 hotspot classes.

The pattern matching tool was run 30 times. Each run yielded a list of results consisting of
coordinates in the layout for a match location, and a pattern match factor. The coordinates
of each result in the lists were analysed to determine whether the pattern at the location
was a high-severity hotspot, a low-severity hotspot, or a cold spot. The pattern match
factors were converted to distance metric values, using Eq. (5.85.8).

A summary of the results for a single run of the pattern matcher is shown in Fig. 5.25.2. Here
the template used was the centre of a medium-sized cluster containing 34 high-severity
hotspots. The graph is a cumulative breakdown of the results into high-severity hotspots,
low-severity hotspots and cold spots, as the distance metric threshold is increased. The
left end of the graph shows the pattern match results with the smallest distances; that is,
those patterns which were most similar to the template. It can be seen that all of these
early results are high-severity hotspots. It is only when we increase the distance metric
threshold that some low-severity hotspots and cold spots appear in the results.
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Figure 5.2: Pattern matching results for a medium-sized cluster.

The red vertical line represents the distance metric value corresponding to the radius
of the class, so this was the cut-off point used for the results. At this point, there were
127 pattern matching results. 102 of these were high-severity hotspots, and 4 of these were
low-severity hotspots, leaving only 21 cold spots in the results. All of the 34 high-severity
hotspots from the original cluster are included in the results. Thus it can be seen that the
pattern matching in this case is very successful in detecting hotspots, and there is a low
false positive rate.

Similar favourable results were found for most of the 30 pattern matching runs. However,
some of larger clusters yielded a higher false positive rate. The results from the centre
of one of the largest clusters containing 99 high-severity hotspots is shown in Fig. 5.35.3. It
can be seen that a large proportion of the early results with the smallest distance metric
values are high-severity hotspots. However, as the distance metric threshold decreases,
this proportion drops. At the cut-off point corresponding to the cluster radius, there
were 2411 pattern matching results. 333 of these were high-severity hotspots, and 220 of
these were low-severity hotspots, leaving 1858 cold spots. Of course, the cost of testing
these 2411 locations for process sensitivity is much less than the cost of performing a
full process sensitivity simulation across the entire layout. It may be possible to reduce
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Figure 5.3: Pattern matching results for a large cluster.

the overall false positive rate by modifying the global clustering algorithm to produce
smaller or rounder clusters.

Finally, the 30 sets of results were amalgamated to produce a list of potential hotspots
identified by the system. Of the 282 high-severity hotspots in the layout which were not
included in the training set, 269 of these were found within the total pattern matching
results, leaving only 13 undetected.

Those high-severity hotspots not found within the pattern matching results were unable
to be detected because their class of hotspots was not represented in the training set.
For example, hotspot clips #29, #37 and #39 were not found in the pattern matching
results. From the clustering result of the full Dataset I, it can be seen that these three clips
comprise a cluster. However, none of these hotspots were included in the training set of
500 clips. Since this class of hotspots is not represented in the training set, they are not
included in the hotspot classification catalogue, and therefore hotspots of this type are
unable to be identified by the resulting system.

Note that the failure to find a few of the hotspots was an expected outcome of this
experiment, due to the limited nature of the training set. In a true implementation, the
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catalogue would not be built just from hotspots taken from a single device layer, as was
the case here. In order to increase the detection rate, the training set should be drawn
from a number of layouts, including a combination of test layouts and early designs.

This is a fundamental limitation of a system which does not have a simulation-based
approach to hotspot detection. Just as traditional design rule checks are unable to detect
a hotspot unless a previously found similar hotspot has prompted the definition of a
rule to prevent it, the accuracy of our system in detecting all of the hotspots in a new
layout is dependent upon the size and diversity of the training dataset used to build the
catalogue. As stated from the outset, the goal of our hotspot detection system is not to
replace a full process window simulation for catching hotspots in tape out, but to act as
a fast detection tool in early design stages, without the burden of needing to manually
devise and implement design rules.
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Chapter 6

Conclusions

In this dissertation, we described the generation and usage of a hotspot detection and
classification system. In contrast to traditional design rule checking systems, where
design rules must be manually created, our system can automatically build a catalogue of
hotspot classes by analysing input device layers containing hotspots. This catalogue can
then be used together with a pattern matching tool to detect hotspots in any new design
layouts sharing the same lithography process.

In order to build the catalogue, hotspot clips are first extracted from the provided device
layers. Then these clips are grouped into clusters containing similar hotspots. These
clusters can then be analysed to form the catalogue.

Two original inventions were developed in order to form meaningful clusters from our
dataset of hotspot clips. The first is a distance metric which is designed to describe the
similarity between two hotspot patterns. The key component of this distance metric is
the variance contribution map, which quantifies the effect of features across the mask on
the process variance of a particular dimension.

The second original invention is a clustering algorithm used to efficiently process a very
large dataset. This clustering algorithm is based on the BUBBLE algorithm, and analysis of
clustering results leads to our plucking modification which results in enormous runtime
improvements for our datasets.

Finally, we demonstrate the application of our catalogue to hotspot detection. The form
taken by our distance metric conveniently allows us to use existing pattern matching
tools to find instances of our hotspot classes in new layouts. Note that our system not
only detects the hotspots in a layout, but also determines the hotspot class to which each
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found hotspot belongs. This feature is useful to designers because it enables them to
group similar results and work on multiple instances of the same type of hotspot together.

The system was tested by using a subset of hotspots in a device layer as a training set, and
using the resulting hotspot catalogue to detect the remaining hotspots. A high detection
rate was achieved, although with a significant number of false positive results. A hotspot
catalogue built from a more extensive dataset, collected from several layouts, would be
expected to produce better results.

Our hotspot detection system demonstrates the power of pattern matching to provide
efficient design for manufacturability solutions. We believe that hotspot detection is
just one example of its use, and envision similar systems being created in the future
to accelerate various other design steps, such as optical proximity correction or double
patterning colouring.
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