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Uncertainties in L-band (1.4 GHz) microwave radiative transfer modeling (RTM) affect the simulation of bright-
ness temperatures (Tb) over land and the inversion of satellite-observed Tb into soilmoisture retrievals. In partic-
ular, accurate estimates of themicrowave soil roughness, vegetation optical depth and scattering albedo for large-
scale applications are difficult to obtain fromfield studies and often lack an estimate of uncertainty. Here, aMarkov
Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters
and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of
simulated and observed Tb at multiple incidence angles, at horizontal and vertical polarizations, and for morning
and evening overpasses. Tb simulations are generated with the land model component of the Goddard Earth
Observing System (version 5) and confronted with Tb observations from the Soil Moisture Ocean Salinity satellite
mission. Themaximum a posteriori density (MAP) parameter values reduce the root-mean-square differences be-
tween observed and simulated long-term Tb averages and standard deviations to 3.4 K and 2.3 K, respectively. The
relative uncertainty of the posterior RTM parameter estimates is typically less than 25% of the MAP parameter
value, whereas it exceeds 100% for literature-based prior parameter estimates. It is also shown that the parameter
values estimated through Particle Swarm Optimization are in close agreement with those obtained from MCMC
simulation. The MCMC results for the RTM parameter values and the uncertainties presented herein are directly
relevant to the need for accurate Tb modeling in global land data assimilation systems.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Uncertainties in radiative transfer modeling (RTM) affect the simu-
lation of brightness temperatures (Tb) over land and the inversion of
satellite-observed Tb to soil moisture retrievals. Quantification of
these uncertainties is crucial to producing, validating and using L-band
(1.4 GHz) passive microwave data, such as those obtained from the
Soil Moisture Ocean Salinity (SMOS, Kerr et al., 2010) and future Soil
Moisture Active Passive (SMAP, Entekhabi et al., 2010) missions. Yet,
it is not particularly clear which RTM formulation and parameter values
to use for large-scale applications.

In the context of large-scale forward Tb simulation, several studies
have analyzed the effect of different RTM formulations for the micro-
wave roughness length, vegetation parameterization and soil dielectric
ight Center, Code 610.1, 8800
4 6945; fax: +1 301 614 6246.
De Lannoy).
model (de Rosnay et al., 2009; Drusch, Holmes, de Rosnay, & Balsamo,
2009), the impact of parameter values (De Lannoy, Reichle, & Pauwels,
2013) and the sensitivity to dynamic land surface variables (Balsamo,
Mahfouf, Bélair, & Deblonde, 2006). Similarly, soil moisture retrievals
based on Tb observations are affected by the RTM formulation and pa-
rameter values (Crosson, Limaye, & Laymon, 2005; Konings, Entekhabi,
Chan, & Njoku, 2011; Panciera, Walker, & Merlin, 2009; Parinussa et al.,
2011), as well as by the choice of background and auxiliary fields, such
as soil temperature and vegetation characteristics (Kerr et al., 2012;
O'Neill, Njoku, Jackson, Chan, & Bindlish, 2012). Collectively, these
studies suggest that RTMs exhibit significant uncertainty and that the
impact of this uncertainty on large-scale Tb simulations and soil mois-
ture retrievals remains unclear.

Estimating microwave RTM parameters and their uncertainty is a
major challenge, especially at larger spatial scales. Field experiments
have provided RTM parameter values (de Rosnay et al., 2006; Grant
et al., 2007; Panciera et al., 2009; Sabater, de Rosnay, & Balsamo,
2011), but mostly without an underlying estimate of their uncertainty.
De Lannoy et al. (2013) derived global-scale RTM parameter values

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2014.03.030&domain=pdf
http://dx.doi.org/10.1016/j.rse.2014.03.030
mailto:Gabrielle.DeLannoy@nasa.gov
http://dx.doi.org/10.1016/j.rse.2014.03.030
http://www.sciencedirect.com/science/journal/00344257
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and ad hoc uncertainty estimates using SMOS observations and Particle
Swarm Optimization (PSO, Kennedy & Eberhart, 1995). PSO is specifi-
cally designed to find the optimal parameter values, without recourse
to estimating their underlying uncertainty.

In this paper, we apply a (Bayesian) Markov Chain Monte Carlo
(MCMC) simulation method to estimate the posterior RTM parame-
ter distribution. The DiffeRential Evolution Adaptive Metropolis
(DREAM(ZS)) algorithm is usedwith parallel direction and snooker sam-
pling from past states (Laloy & Vrugt, 2012; Vrugt, ter Braak, Clark,
Hyman, & Robinson, 2008; Vrugt et al., 2009). Bayesian approaches
such as DREAM(ZS) have several advantages over optimizationmethods
such as PSO. The explicit treatment and analysis of uncertainty help
to understand which parts of the RTM are well resolved and which
elements require further attention. Furthermore, a formal analysis of
the residuals can be used to check the validity of our assumptions
about the probabilistic properties of the errors and to discern whether
reliable parameter values have been derived.

Implementation of the Bayesian paradigm coupled withMCMC sim-
ulation comes at an increased computational expense. Full exploration
of the posterior distribution is very costly, and hence difficult towarrant
in global scale operational applications that rely on evolving modeling
systems in need of frequent re-calibrations. Yet, this paper will demon-
strate that the proposed approach provides important insights into the
uncertainty of large-scale RTM parameters, and can be used to bench-
mark the results from optimization algorithms such as PSO.

The goals of the present paper are thus to infer large-scale RTM
parameters and their posterior uncertainty using a Bayesian method,
and to study the associated simulated Tb uncertainty. This research
complements and advances the work of De Lannoy et al. (2013) where
PSO was used to find parameters without formal statistical estimates
of uncertainty. We are using the Goddard Earth Observing System, ver-
sion 5 (GEOS-5) modeling framework that will be used to generate the
planned global SMAP Level 4 Surface and Root Zone Soil Moisture
(L4_SM) data product through assimilation of SMAP Tb observations
(Reichle, Crow, Koster, Kimball, & De Lannoy, 2012). Here, the focus is
on estimating time-invariant RTM parameters and their uncertainty by
minimizing climatological (long-term) differences between multi-
angular, horizontally and vertically polarized Tb for morning and eve-
ning overpasses from SMOS observations and GEOS-5 simulations,
while explicitly treating and estimating their respective uncertainties.

The time-invariant estimated parameters will be used in a data
assimilation system (outside the scope of this paper), where state
variables such as soil moisture and soil temperature will be updated in
response to short-term variations in the observed Tb. Residual long-
term Tb errors, or biases, that remain after the estimation of the RTM
parameters will be addressed through model refinement and within
the data assimilation system. The (Bayesian) uncertainties of the RTM
parameters and the corresponding estimates of the residual observation
andmodel error presented here will helpwith the development of such
data assimilation systems. Furthermore, the uncertainties of the RTM
parameters reported here will also facilitate sensitivity analyses of soil
moisture retrieval algorithms (Parinussa et al., 2011).

To summarize, in this paper we apply MCMC simulation using
multi-angular SMOS Tb observations to (i) determine if the maximum
a posteriori density (MAP) parameter values derived from the posteri-
or distribution sampled with DREAM(ZS) can be approximated using
PSO, (ii) obtain reliable estimates of parameter uncertainty, and (iii)
quantify the impact of errors in parameters and other sources on Tb
simulations. The remainder of this paper is organized as follows.
Section 2 summarizes the modeling system and the SMOS observa-
tions used in the present study. This is followed in Section 3 by a
brief description of the DREAM(ZS) MCMC simulation method. This
section also discusses several quantitative diagnostic metrics to
analyze the simulated Tb uncertainty. Section 4 discusses the main
findings and results of this paper. This is followed in Section 5 with a
summary and conclusions.
2. Observations and model

2.1. SMOS Tb data

Since its launch inNovember 2009, the SMOSmission provides glob-
al L-band Tb data at a nominal spatial resolution of 43 km. On average, a
given location on the equator is revisited once every 3 days. Here we
use the multi-angular, full polarization Tb data from the period 1 July
2010 to 1 July 2012. Specifically, the data are extracted from the
MIR_SCLF1C product, with processor version 504 for the years 2010
and 2011 (reprocessed in 2012), and version 551 from January 2012
onwards. De Lannoy et al. (2013) discuss in detail the various steps
involved in the processing of the SMOS data. Most importantly, the
data are screened extensively using both product-based data quality
information and model-based quality control rules. Furthermore, the
data are spatially mapped onto a 36 km Equal-Area Scalable Earth
(EASE) grid and binned per incidence angle. Consistent with De
Lannoy et al. (2013), only a subset of 6 incidence angles is used: θ =
[32.5°, 37.5°, 42.5°, 47.5°, 52.5°, and 57.5°], where, for example, 32.5°
represents the average of all Tb data with incidence angles between
32° and 33°.

To estimate the microwave RTM parameters, long-term averages
(mo) and standard deviations (so) of the SMOS data are computed sep-
arately for each of the 6 incidence angles, 2 polarizations (horizontal H
and vertical V), and 2 overpass times (ascending at ~06:00 h local
time (LT), descending at ~18:00 h LT). This results in a total of 48 “obser-
vations” per grid cell: 24 (=6×2×2) observations of the long-termav-
erage Tb and 24 observations of the long-term Tb standard deviation.
Section 3 provides a more extensive description of how these 48 obser-
vations are used.

2.2. GEOS-5 Tb modeling

The modeling combines (i) land surface modeling with the Catch-
ment land surface model (CLSM) and (ii) radiative transfer modeling
with a tau-omega model to simulate long-term Tb averages and stan-
dard deviations. As in De Lannoy et al. (2013), the GEOS-5 CLSM
(Koster, Suarez, Ducharne, Stieglitz, & Kumar, 2000) is set up on the
36 km EASE grid and spun up prior to the SMOS observation period.
Surface meteorological forcing data at a 1/2° × 2/3° spatial and hourly
temporal resolution are taken from theModern-Era Retrospective anal-
ysis for Research and Applications (MERRA, Rienecker et al., 2011). The
MERRA-precipitation is corrected with gauge-based precipitation from
the National Oceanic and Atmospheric Administration (NOAA) Climate
Prediction Center “Unified” (CPCU) product (Reichle, 2012). The model
version is the same as that used for the MERRA-Land data product
(Reichle et al., 2011), except for two changes that more closely align
the model with the version that will ultimately be used for the SMAP
L4_SM data product: (i) the surface soil moisture pertains to the top
5 cm surface layer (as opposed to the top 2 cm layer in MERRA-Land),
and (ii) a preliminary version of updated soil parameters from a forth-
coming version of GEOS-5 is used.

The vegetation parameterization in CLSM uses 8 default vegetation
classes. For the RTM simulations, these classes are further refined into
the 16 classes defined by the Moderate Resolution Imaging Spectro-
radiometer (500 m MOD12Q1 V004) International Geosphere–
Biosphere Programme (IGBP) land cover classification (Loveland &
Belward, 1997). Fig. 1 shows the North American study domain which
includes 9 of the 16 IGBP vegetation classes.

In essence, Tb is determined by the surface soil temperature, soil
moisture and other soil and vegetation characteristics. To simulate L-
band Tb, the prognostic CLSM soil moisture, soil temperature, vegeta-
tion water content, air temperature and climatological vegetation
dynamics are used as inputs to a diagnostic zero-order (tau-omega)mi-
crowave RTM, briefly described in Appendix A. The key model parame-
ters that determine the microwave surface roughness h, the scattering
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Fig. 1. Study domain with indication of the dominant IGBP vegetation classes.
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albedo ω, and vegetation optical depth τ will be estimated using the
multi-angular SMOS observations (Section 3). As outlined in Appendix
A, h is a function of soil moisture and the time-invariant parameters
hmin and hmax (Eq. A.4), and τ depends on the leaf area index (LAI) and
the time-invariant parameters bH and bV (Eq. A.6).

3. Methods

3.1. Overview

Keeping upwith De Lannoy et al. (2013), the objective of the param-
eter estimation is to minimize the differences in long-term (climatolog-
ical) averages and standard deviations between multiple types of
SMOS-observed and GEOS-5-modeled Tb. We purposely do not mini-
mize differences in the time domain as the goal of the present paper is
to derive parameter estimates that result in the smallest possible
long-term bias in the simulation of Tb. Short-term differences between
Tb observations and simulations will be addressed in future studies
using sequential data assimilation. We estimate a time-invariant
multi-dimensional parameter set, hereafter referred to as α, that deter-
mines climatological features of the simulated Tb. The parameters are
estimated locally, i.e., for each grid cell independently, and only for
non-frozen land surface conditions as determined by the GEOS-5
modeling system.

In addition to finding parameter estimates that result in accurate Tb
simulations, the Bayesianmethodology used here samples the complete
posterior parameter distribution. This distribution summarizes the dis-
persion of the parameters, and can be used to derive the model simula-
tion uncertainty by propagating each sample of the posterior through
the model. If our probabilistic assumptions about the constituent error
sources that affect the Tb simulations are correct, then our analysis
will provide maximum a posteriori density (MAP) parameter estimates
Table 1
Parameters selected (X) for calibration in different experiment cases (P, D, Dσ) with an indic
vegetation class within the study domain. Δh ≡ hmax − hmin, Δb ≡ bV − bH.

hmin [−] Δh[−]

Case P (PSO) X X
Case D (DREAM(ZS)) X X
Case Dσ (DREAM(ZS)) X X
αmin 0 0
αmax 2.0 1.0

ENF Evergreen needleleaf forest 1.2 0
DBF Deciduous broadleaf forest 1 0
MXF Mixed forest 1.3 0
CSH Closed shrublands 0.7 0
OSH Open shrublands 0.7 0
WSV Woody savannas 0.7 0
GRS Grasslands 0.1 0
CRP Croplands 0.5 0
CRN Crop and natural vegetation 0.7 0
that accurately reflect their true values, and the underlying posterior
uncertainty will be statistically meaningful. In other words, we seek ac-
curate and precise parameter values with a minimum simulation bias,
and statistically meaningful spread.

Table 1 gives an overview of the parameters estimated in different
experiment cases. All cases estimate the 5 most relevant RTM parame-
ters: hmin, Δh ≡ hmax − hmin, bH, Δb ≡ bV − bH and ω. Simultaneous
inference of these select parameters accounts for their correlation inmin-
imizing the error residuals, and such an approach is thus preferred over
sequential (stepwise) fitting of the individual parameters (De Lannoy
et al., 2013). Based on these time-invariant parameters, time-variant
values of h, τH and τV are computed, using dynamic information about
soil moisture for h (Eq. A.4) and LAI for τ (Eq. A.6). Time-averaged results
for bhN and bτN are then presented, where b·N denotes the long-term
time average. The RTM parameters are estimated with DREAM(ZS)

(Section 3.2) or PSO (Appendix B), hereafter referred to as cases D and
P, respectively, both of which estimate hmin, Δh, bH, Δb and ω. Further-
more, a third case, Dσ, additionally estimates the residual Tb error statis-
tics σm and σs, using DREAM(ZS) (discussed below). We thus estimate 5
parameters per grid cell for cases P and D, and 7 parameters per grid
cell for case Dσ.

To derive these parameters, we minimize per grid cell the
climatological, or long-term, differences between 48 Tb observations
and simulations. These 2 × 24 = 48 observations consist of long-
term Tb averages and Tb standard deviations for the 24 combinations
of 2 polarizations, 2 overpass times, and 6 incidence angles. For sim-
plicity, the errors in these observations are assumed to be indepen-
dent, that is, we neglect correlations in instrument errors and
errors between H- and V-polarized observations at identical inci-
dence angles. Similarly, the simulation errors are assumed to be
independent, even though some correlation is to be expected.
Cross-correlations in observation or simulation errors between vari-
ous incidence angles would increase the uncertainty in the posterior
parameter estimates. Note that temporal correlations in the errors
are of little concern because the observations are long-term averages
and standard deviations, and not measurements in the time domain
(Wöhling & Vrugt, 2011).

In keeping up with De Lannoy et al. (2013), the two years of histor-
ical SMOS data are divided into a calibration period (1 July 2011–1 July
2012) and an evaluation period (1 July 2010–1 July 2011). To ensure a
meaningful calibration at each grid cell, we impose a minimum of 20
valid data points (Ni) per year and per overpass time to compute the
long-term Tb average and standard deviation for a particular combina-
tion (i = 1,…, 24) of incidence angle, polarization and overpass time.
The requirement of Ni ≥ 20 is used for the calculation of evaluation sta-
tistics as well. In addition, for the calibration, we always require a min-
imum total number of data points of 480 = 20 × 6 angles × 2
polarizations × 2 overpass times.
ation of the allowed parameter range ([αmin,αmax]) and the prior estimate for each IGBP

ω [−] bH [−] Δb [−] σm [K] σs [K]

X X X – –

X X X – –

X X X X X
0 0 −0.15 1E−5 1E−5
0.3 0.7 0.15 60 40
0.05 0.33 0 1 1
0.05 0.33 0 1 1
0.05 0.33 0 1 1
0.05 0.3 0 1 1
0.05 0.3 0 1 1
0.05 0.3 0 1 1
0.05 0.2 0 1 1
0.05 0.15 0 1 1
0.05 0.15 0 1 1
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This study relies on proper cross-validation using independent cali-
bration and evaluation periods. Preparatory work for the forthcoming
operational SMAP L4_SM product uses all available historical SMOS
data in the calibration, and the results are comparable towhat is report-
ed herein. Given the similar nature of L-band observations from SMOS
and SMAP, we expect that parameters calibrated with SMOS
observations will initially serve well in the SMAP L4_SM system, while
a sufficient SMAP data record is being accumulated for later re-
calibration.

3.2. Markov Chain Monte Carlo (MCMC) sampling

The Bayesian paradigm provides a framework for the treatment of
all sources of uncertainty in modeling Tb. In this paper, we focus on pa-
rameter uncertainty, and treat the other sources of error as a single
lumped term (details to follow). The posterior probability distribution
of the parameters is computed by combining the observation likelihood
p(mo,so|α) with a prior distribution p(α):

p αjmo; soð Þ ¼ p mo; sojαð Þp αð ÞZ
α
p mo; sojαð Þdα:

ð1Þ

The observations consist of long-term averages (mi,o∈mo) and
standard deviations (si,o∈so) of Tb for 24 different combinations of inci-
dence angles, polarizations and overpass times (i = 1,…, 24). The
denominator is a normalization factor and thus it suffices to maximize
p(mo,so|α)p(α) to find the posterior distribution ofα. In practice, it is dif-
ficult to solve this problemanalytically andwe therefore resort toMCMC
simulation to generate a sample of the posterior target distribution.

In this paper, the DREAM(ZS) algorithm (Laloy & Vrugt, 2012; Vrugt
et al., 2008) with sampling from past states is used to efficiently ex-
plore the posterior parameter distribution. This algorithm adaptively
updates the scale and orientation of the proposal distribution during
sampling, and is specifically designed to rapidly explore multi-
dimensional target distributions. In DREAM(ZS), multiple chains are
running in parallel and the update of a chain is determined from an ex-
ternal sample of points that collectively summarizes the search histo-
ry of all the individual chains. The log-likelihood of the current and
proposed parameter values are compared using the Metropolis selec-
tion rule. If the proposal is accepted, the chain moves to this new
point, otherwise the chain remains at its current position. Diminishing
adaptation of the external archive of samples ensures convergence to
the exact posterior distribution.

We assume a Gaussian prior distribution for each of the individu-
al parameters α0,k∈α0. The mean and standard deviation of this
multi-normal distribution p(α) are derived from literature values
summarized in Table 1. Note that these values were referenced as
‘Lit2’ in De Lannoy et al. (2013). The prior RTM parameters were subjec-
tively selected out of a range of possible values in the literature. The prior
mean of parameter k is given by a (vegetation-dependent) value α0,k and
the standard deviationσα0;k is computed asσ2

α0;k
¼ αmax;k−αmin;k

� �2
=12,

where αmax,k and αmin,k denote the respective upper and lower
bounds.

The following log-likelihood function is used to minimize the dif-
ferences in long-term Tb averages and standard deviations between
the observations (mi,o,si,o) and corresponding simulations (mi(α),
si(α)):

L ¼ ln p mo; sojαð Þð Þ ¼ −24
2

ln 2πð Þ−1
2

X24
i¼1

ln σ2
i;m

� �
−
X24
i¼1

mi;o−mi αð Þ
� �2

2σ2
i;m

)
Lm;o

−24
2

ln 2πð Þ−1
2

X24
i¼1

ln σ2
i;s

� �
−
X24
i¼1

si;o−si αð Þ
� �2

2σ2
i;s

)
Ls;o:

ð2Þ
This formulation thus explicitly takes into consideration long-term
biases in the Tb average (Lm,o [−]) and the Tb variability (Ls,o [−]) and
is derived from a classical Gaussian likelihood function:

p mo; sojαð Þ ¼ ∏
24

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

i;m

q exp −
mi;o−mi αð Þ

� �2

2σ2
i;m

0
B@

1
CA

2
64

3
75

:∏
24

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

i;s

q exp −
si;o−si αð Þ

� �2

2σ2
i;s

0
B@

1
CA

2
64

3
75

ð3Þ

where σi,m and σi,s denote the (ensemble) standard deviations of the re-
sidual differences between the observed and simulated values of the
long-term Tb averages and standard deviations, respectively. These
standard deviations provide a lumped description of model, input
data, and observation errors.

3.3. Likelihood, objective function and algorithm settings

The design of the DREAM(ZS) likelihood function L (Eq. 2) and the
PSO objective function J (Eq. B.1) warrants further discussion. As
discussed above, we sample the climatological, or long-term, Tb aver-
ages and standard deviations over multiple incidence angles, polariza-
tions and overpass times (that is, 2 × 24 observations, i = 1,…, 24)
per location, rather than a series of observations at multiple times. The
long-term Tb averages and standard deviations could also be
interpreted as ‘summary statistics’ or ‘signatures’ of the system, and
hence our approach has elements in common with the diagnostic
model evaluation procedure presented in Vrugt and Sadegh (2013).

The variables σi,m and σi,s measure the (ensemble) standard devia-
tion of the residual differences between the observed and simulated
long-term Tb averages and standard deviations, respectively, for
each observation i. The residual errors are assumed to have a zero
mean and include both SMOS observation and simulation errors, due
to, e.g., inaccurate soil moisture, temperature or vegetation characteris-
tics. These σi,m and σi,s statistics trade off errors in the long-term Tb av-
erages against those of the long-term Tb standard deviations (as well as
deviations from the prior parameter constraints). Since only one sample
is available for each observation, it is impossible to estimate individual
σi,m- and σi,s-values. Therefore, σi,m and σi,s include a homoscedastic
term (σm, σs) and a heteroscedastic factor wi to account for the robust-
ness of the diagnosed long-term Tb averages and standard deviations,
i.e. σi,m

2 = wiσm
2 and σi,s

2 = wiσs
2. The homoscedastic term is identical

for all 24 observations, and we either set σm and σs to a default value
of 1 K (De Lannoy et al., 2013), or alternatively we estimate σm and σs

jointly with the RTM parameters (see Section 3.1). The weights are
given by wi ¼ N

Ni
, where Ni denotes the number of data points in time

that contribute to a particular long-term Tb average (or standard devia-
tion), and N signifies the average contributing number of time steps
across all 24 observations. These weights are typically close to 1 and as-
sign somewhat more (less) weight to climatological Tb differences that
are based onmore (fewer) individual data points in the different 1-year
data time series that underlie the 24 different observations. For exam-
ple, Tb observations at low incidence angles are by design based on
fewer instantaneous data points than Tb observations at high incidence
angles.

Per grid cell, a maximum of 12,000 log-likelihood function evalua-
tions are performedwith DREAM(ZS) using standard settings of the algo-
rithmic variables. For PSO, we use the same algorithmic settings as
reported in De Lannoy et al. (2013), except that a swarm size of 10 par-
ticles is usedwith aminimumof 10 andmaximumof 100 iterations. The
search is terminated if the reduction of the objective function is smaller
than 1E−5 over the last 10 iterations. A total of 12 repetitions are per-
formed, which results in a maximum of 12,000 function evaluations.



Fig. 2. Illustration ofmarginal distributions for (a) RTMparameters and (b) Tb simulations
at a single grid cell. Crosses (×) indicate the MAP estimates, the vertical dashed lines and
white squares indicate the ensemble mean posterior estimates, and horizontal dotted ar-
rows indicate one standard deviation uncertainty around the ensemblemean. The perfor-
mance of the Tb simulations is quantified by comparing either the MAP (mi(αMAP),
si(αMAP)) or the ensemble mean (mi αð Þ, si αð Þ) simulations against (black dots) 24 ob-
served values (mi,o,si,o) with i = 1,…, 24. The differences Δmi and Δmi

contribute to
MSDMm (Eq. (4)) andMSDm (Eq. (6)), respectively.
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3.4. Posterior parameter distribution

The MAP parameter values are defined as those with the largest
value for L (Eq. 2, DREAM(ZS)) or the smallest value for J (Eq. B.1, PSO).
These MAP parameter estimates will subsequently be used in the RTM
that is part of the Tb assimilation system for state updating (not
discussed herein). Note that these MAP values are not necessarily iden-
tical to the posterior ensemble mean of the distribution. For the
DREAM(ZS) experiments, the last 25% of the MCMC chains (3000 sam-
ples) are used to summarize parameter uncertainty by calculating the
standard deviation of each individual parameter. To illustrate this in
more detail for one grid cell, consider Fig. 2a, which depicts themarginal
distributions of the RTM parameters. We define the uncertainty as the

ensemble standard deviation stdv α½ �≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α−αð Þ2

q
centralized around

the ensemble mean α, not around the MAP parameter value αMAP. The
notation � refers to the ensemblemean. Note that the standard deviation
around the MAP estimate stdvMAP[α] can be found as a function of the
centralized standard deviation stdv[α], i.e. stdvMAP[α]2 = stdv[α]2 +
Δα
2, where Δα ¼ α−αMAP is the difference between the ensemble

mean andMAP parameter estimate. We found that, across the different
experiments, Δα is usually small (see Section 4.1), so that stdvMAP[α]
~ stdv[α].
3.5. Tb simulation performance and uncertainty

A number of measures are used to evaluate the long-term Tb simu-
lations and their associated uncertainty. Fig. 2b illustrates some of the
terms used in this evaluation.We assess the quality of the deterministic
Tb simulations with the MAP parameter estimates, using the mean-
square difference (MSD [K2]) between the observed and simulated
long-term Tb averages (Eq. 4) and standard deviations (Eq. 5) across
the 24 different observations:

MSDm ¼ 1
24

X24
i¼1

mi αMAPð Þ−mi;o

� �2 ð4Þ

MSDs ¼
1
24

X24
i¼1

si αMAPð Þ−si;o
� �2

: ð5Þ

If the modeling errors were solely due to inaccurate parameter
values and the observational terms were error-free, these metrics
should be very close to zero. In practice, however, the model structure
is not perfect and model inputs such as soil moisture and temperature
as well as the observational terms are subject to errors. Therefore, the
metricswill substantially deviate from zero and reflect the total residual
simulation and observation errors. The 24 differences contributing to
MSDm are illustrated as Δmi in Fig. 2b.

If the uncertainties are well estimated and biases between observa-
tions and simulations are constrained during the calibration, then the
“actual” (MSDm, MSDs) and “expected” ensemble (σi,m

2 , σi,s
2 ) residual Tb

error variances should be equal, or their ratio should be close to 1.
Note that a similar check of consistency is used to verify the prescribed
observation and simulation uncertainties in data assimilation systems
(Reichle, Walker, Koster, & Houser, 2002) and for ensemble forecast
verification (De Lannoy, Houser, Pauwels, & Verhoest, 2006). The only
difference is that here, the mean values (i.e. the ‘M’, or mean, in MSD)
are derived from multiple observations types (i = 1,…, 24), whereas
in the earlier studies the mean was calculated in the time domain.

The above total residual Tb error lumps all long-term errors in the
model, input data, and observations. The Tb simulation error due to
parameter uncertainty can be isolated. To this end, we analyze an en-
semble of Tb simulations, obtained by propagating 20 samples from
the MCMC-derived posterior parameter distributions through the
RTM. The performance of the ensemble mean of simulated long-term
Tb averagesmi αð Þ and standard deviations si αð Þ is given by:

MSDm ¼ 1
24

X24
i¼1

mi αð Þ−mi;o

� �2 ð6Þ

MSDs ¼
1
24

X24
i¼1

si αð Þ−si;o
� �2 ð7Þ

where �denotes the ensemblemean. Fig. 2b illustrates the 24differences
contributing to MSDm as Δmi

. Because of the non-linear nature of the
RTM and because α and αMAP generally differ, MSDm and MSDs will
deviate from MSDm and MSDs, but the differences should be limited if
the posterior RTM parameter distributions are narrow.

The Tb uncertainty due to parameter error is quantified by the
ensemble standard deviation in simulated long-term Tb averages
(σi,m,par, illustrated in Fig. 2b) and long-term Tb standard deviations
(σi,s,par). The corresponding ensemble variance for each Tb observation
type i is:

σ2
i;m;par ¼ mi αð Þ−mi αð Þ

� �2 ð8Þ
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σ2
i;s;par ¼ si αð Þ−si αð Þ

� �2
: ð9Þ

Averaged across 24 observations, this results in a mean ensemble
spread of:

MEnSpm;par ¼
1
24

X24
i¼1

σ2
i;m;par ð10Þ

MEnSps;par ¼
1
24

X24
i¼1

σ2
i;s;par : ð11Þ

The abovemetrics are primarily important to quantify the skill of the
posterior Tb simulations. For comparison, we also calculate the MSDm

and MSDs using prior RTM parameters (Table 1). For clarity, all metrics
in this section are expressed as variances [K2], but in the results below
we present Tb uncertainties as the corresponding standard deviations
[K].
Fig. 3. Parameter values for (left) bhN, (middle) bτN, and (right) ω, for the (top row) prio
4. Results

4.1. RTM parameters and their uncertainty

In this section, we analyze the MAP values of the microwave surface
roughness bhN, the vegetation optical depth bτN, the scattering albedo
ω, and their posterior uncertainty (stdv[.]). As will be shown below,
the DREAM(ZS) case Dσ should be considered as benchmark throughout
the paper, because of the statistical rigor of the sampled posterior. Fig. 3
shows maps of the prior parameter values and the MAP estimates de-
rived from experiment cases P, D and Dσ (Table 1). The spatially aver-
aged posterior parameter values are very similar for all 3 cases, with a
microwave roughness bhN around 0.72 ± 0.5 [−], a vegetation optical
depth bτN of 0.26 ± 0.15 [−] and a scattering albedo ω of 0.09 ± 0.07
[−], where the values after the ± sign measure the spatial standard
deviation and reflect the variability of the MAP parameters across the
spatial domain. Note that these latter values should not be confused
with uncertainty estimates. Compared to the prior values, bhN is gener-
ally larger for grassland, bτN is smaller for forests and ω is larger for all
vegetation classes except grassland (details per vegetation class not
shown; these finding are similar to those of De Lannoy et al., 2013).
r distribution and (second row) case P, (third row) case D and (fourth row) case Dσ.



Fig. 4. Uncertainty in parameter estimates for (left) bhN, (middle) bτN, and (right) ω, obtained with DREAM(ZS) (top row) case D and (bottom row) case Dσ. Case D underestimates the
posterior parameter uncertainty (see text).
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The spatial patterns for the 3 experiments are also very similar, with
exceptions discussed below. Moreover, Fig. 3 suggests that MAP values
derived with the PSO algorithm closely match those of DREAM(ZS).

Fig. 4 shows the ensemble parameter uncertainty for cases D and Dσ.
Maps with RTM parameter uncertainty estimates for PSO (obtained as
in De Lannoy et al., 2013) are not shown, because they are statistically
invalid and significantly larger than those derived with DREAM(ZS).
The prior parameter uncertainty is also not shown, because it is spatially
uniform. The values ofαmin andαmax in Table 1 indicate that the relative
uncertainty in the literature-based prior parameters exceeds 100% ofα0.
In contrast, the relative uncertainties for case D (Fig. 4a–c) are less than
10% of theMAP parameter value and substantially smaller than the spa-
tial variability in the MAP values. For case Dσ, the relative uncertainties
are ranging up to 25% of theMAP values: for bhN, the spatially averaged
uncertainty is 0.10 [−], for bτN 0.04 [−] and for ω 0.02 [−]. The uncer-
tainty in bhN typically increases with more complex terrain and is
smallest in the cropped region southwest of the Great Lakes. The
Table 2
Domain-averaged parameter values and their uncertainty stdv[.] for the prior distributions
and the posterior distributions obtainedwith cases P, D and Dσ. The RMSD values forMAP
and ensemble mean Tb simulations (square root of Eqs. 4–7) and the ensemble standard
deviations in Tb simulations due to parameter errors (square root of Eqs. 10–11) are aver-
aged across 24 long-term Tb observations and calculated for the calibration period.

Prior P D Dσ

bhN [−] 0.59 0.72 0.73 0.72
bτN [−] 0.35 0.26 0.26 0.25
ω [−] 0.05 0.09 0.09 0.08
σm [K] – 1.00 1.00 3.45
σs [K] – 1.00 1.00 2.26
stdv[bhN] [−] 0.63 – 0.04 0.10
stdv[bτN] [−] 0.27 – 0.02 0.04
stdv[ω] [−] 0.09 – 0.01 0.02
stdv[σm] [K] – – – 0.78
stdv[σs] [K] – – – 0.51
RMSDm [K] 12.90 2.98 2.90 3.41
RMSDs [K] 3.21 2.57 2.45 2.25
RMSDm [K] – – 2.94 3.37
RMSDs [K] – – 2.51 2.42
RMEnSpm,par [K] – – 0.29 1.00
RMEnSps,par [K] – – 0.15 0.39
uncertainty of bτN is largest in the forested Appalachian mountains
where the highest MAP values of bτN are found. On the contrary, ω is
best defined in this area and uncertainties inω increase in the dryWest-
ern mountain ranges. The bhN-values exhibit more uncertainty where
either the uncertainty in ω (Fig. 4e) or bτN (Fig. 4f) is larger. The global
mean absolute differences between the MAP and ensemble mean pa-
rameter values (not shown; discussed in Section 3.4) for bhN, bτN
and ω are Δα = 0.07, 0.02 and 0.01 [−], respectively, for case Dσ,
and Δα = 0.02, 0.01 and 0.00 [−], respectively, for case D.

In summary, both DREAM(ZS) cases D and Dσ provide MAP parame-
ter values that are very similar and in close agreement with the PSO es-
timates (Fig. 3). The DREAM(ZS) derived posterior parameters appear
well defined with relative uncertainties that are less than 25% of the
MAP values. It will be shown below that the uncertainty estimates of
case Dσ – unlike those of case D – are consistent with the sample root-
mean-square difference (RMSD) between long-term Tb observations
and simulations.

4.2. Residual Tb error standard deviations

To analyze the differences between cases D and Dσ, or specifically
the effect of estimating the residual error standard deviations of the
long-term Tb averages (σm) and standard deviations (σs), we list the
domain-averaged MAP parameter values and their associated uncer-
tainties in Table 2 for all experiment cases. In addition, Fig. 5 depicts
the results for different vegetation classes. As discussed above, cases D
and Dσ return similar MAP values for the RTM parameters with some
local exceptions, such as for example for ω over cropland (Fig. 5e).
The estimated posterior RTM parameter uncertainty increases about
2–3 times, when σm and σs are included in the parameter estimation
(i.e., case Dσ). For case Dσ, the domain-averaged values are σm = 3.5 K
and σs = 2.3 K (Table 2), whereas case D uses default values of σm =
σs = 1 K. The σm and σs estimates are not defined for the simulations
with prior parameters.

The residual error standard deviations σm and σs are estimated to be
larger than the initially imposed 1K because of significant Tb observation
and simulation errors that are not due to parameter errors. It is necessary
to use this increased residual Tb error in the RTM parameter estimation
to ensure parameters that do not, or at least onlyminimally, compensate
for errors other than parameter error (i.e. error in geophysical input
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fields, auxiliary information, RTM structure or in observations). The local
differences between the MAP values for cases D and Dσ are thus ex-
plained by how much the parameter values are forced to compensate
for errors other than parameter error. As will be shown below, this can
result in suboptimal parameter values for case D. The uncertainty in
the RTM parameters for Dσ is larger, because we allow for more realistic
Tb simulation and observation error, resulting in awider range of accept-
able RTMparameters. From a Bayesian perspective, the observation like-
lihood function becomeswider (larger σm and σs) and thus the posterior
parameter probability function is expected to be wider.

The value of σm and its posterior uncertainty are largest in cropped
regions (Fig. 5g) where residual Tb errors are dominated by less skillful
model simulations. This is to be expected because irrigation is not sim-
ulated and the climatological LAI estimates do not account for interan-
nual crop rotations. The parameters should not compensate for these
errors, and the default values of σm = σs = 1 K make cases D and P
vulnerable to suboptimal solutions. For example, the relatively larger
differences between D and Dσ for σm over cropland result in larger
differences in their respective MAP values of ω (Fig. 5i). For forests,
σs = 1 K appears to be a good estimate (Fig. 5i) because the variability
in Tb is expected to be low due to vegetation attenuation.

Both the MAP values and the uncertainties for σm are always larger
than those derived for σs. One of the reasons for the higher σm values
are the opposite signs in the biases for the long-term Tb averages at
morning and evening overpasses, which cannot be mitigated with
time-invariant RTM parameters. These biases are due to sensor error
and modeled temperature errors as discussed in De Lannoy et al.
(2013). In a separate exercise (not shown herein), we verified that the
σ-values absorb biases in geophysical fields: by re-scaling the soil mois-
ture the RMSD and σ-values are jointly reduced.

Based on these new insights, we currently use globally uniform
values of σm = 3.5 K and σs = 2.3 K for the SMOS-based calibration of
the RTM parameters that will be needed to generate the forthcoming
SMAP L4_SM product. This represents an advance over the mere
guesses of σm = σs = 1.0 K used in earlier work (De Lannoy et al.,
2013). The resulting parameter estimates optimallymimic the true rela-
tionship between land surface fields and Tb. However, larger σ-values
likely increase the error of the Tb simulations, because the model
parameters will compensate less for local biases in, for example, soil
moisture. These issues will be addressed through model development
and bias correction inside the data assimilation system.

4.3. Posterior Tb simulation performance

The quality of the estimated MAP parameters can be measured by
the skill of the corresponding Tb simulations. Fig. 6 shows the misfit
between observed andMAP simulated long-term Tb averages and stan-
dard deviations (RMSDm, RMSDs, square root of Eqs. 4 and 5) across the
24 observations for the calibration and evaluation period, averaged per
vegetation class. Table 2 lists the domain-averaged RMSDm and RMSDs

values during the calibration period. The prior parameters result in
RMSDm = 12.9 K and RMSDs = 3.2 K. The skill is greatly improved
after parameter estimation and very similar for cases P, D and Dσ

(RMSDm around 3 K and RMSDs around 2.5 K), which is not surprising
given that the three different cases generate similar MAP parameter
estimates. During the evaluation period, the RMSDm increases up to
8 K for cropland (Fig. 6b), and the RMSDm reaches values of 5 K for
cropland in the evaluation year (Fig. 6d). Cropland exhibits the larg-
est errors, because of known simulation errors (see above). The larg-
er errors in the evaluation period suggest that Tb simulations for
interannually varying agricultural areas will be compromised when
using time-invariant RTM parameters and climatological vegetation
information.

Table 2 also shows the RMSDm and RMSDs (square root of Eqs. 6 and
7) for the ensemble mean of the Tb simulationsmi αð Þ and si αð Þ. Ensem-
bles are generated by sampling the posterior parameter distribution.
The limited uncertainty in the posterior parameters results in compara-
ble ensemble mean and deterministic Tb simulations, so that RMSDm∼
RMSDm and RMSDs∼RMSDs.
4.4. Actual and expected Tb simulation errors

If the parameter estimation procedure is statistically consistent, then
the actual Tb errors (RMSDm, RMSDs, Section 4.3) and the estimated
residual Tb errors (σm, σs, Section 4.2) should be of similar magnitude.
Indeed, for case Dσ the RMSDm values during the calibration period
(Fig. 6a) and the σm estimates (Fig. 5g) show similar variations across
vegetation classes. Likewise, the RMSDs values (Fig. 6b) and the σs esti-
mates (Fig. 5i) show similar variations across vegetation classes. For
case D, however, the same is not true. Moreover, Table 2 suggests that
the domain-averaged ratio of RMSDm and RMEnSpm for the long-term
average Tb is 2.9 for case D and 1.0 for case Dσ. Similarly, the domain-
averaged ratio of RMSDs and RMEnSps is 2.5 for case D and 1.0 for case
Dσ. Adequate results are thus only found for case Dσ by estimating σm

and σs, whereas case D falls short with respect to these metrics. Note
that during the evaluation period (not shown), the ratios always exceed
1, because of an increased RMSDm and RMSDs. Nevertheless, case Dσ is
still more consistent than case D.

Table 2 also lists the square root of themean simulation uncertainty
due to posterior parameter error, i.e. RMEnSpm,par and RMEnSps,par
(square root of Eqs. 10 and 11). These metrics are not shown for the
prior and PSO cases, because those parameter distributions are not sam-
pled adequately. After parameter estimation, RMEnSpm,par = 0.3 K and
RMEnSps,par = 0.2 K for case D, whereas RMEnSpm,par = 1.0 K and
RMEnSps,par = 0.4 K for case Dσ. The uncertainty associated with the
posterior parameter values is only a small fraction of the total residual
error, that is, RMEnSppar ≪ σ after parameter estimation. This gives us
confidence that the RTM parameters have been estimated reliably and
that other errors dominate the residual errors or biases in the long-
term Tb averages and standard deviations.
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Fig. 7 illustrates that the estimated ensemble residual Tb error
standard deviations of case Dσ are consistent with the actual residuals
between Tb observations and simulations. Specifically, Fig. 7a shows
the SMOS observed mi,o as dots and the GEOS-5 simulated mi(αMAP)
for H-polarized Tb at 6 angles at morning overpasses for cases D and
Dσ, as horizontal dashes. The error bars around the Tb simulations
reflect twice the lumped uncertainty due to ensemble simulation and
observation errors, or 2σi,m and 2σi,s. The plotted results are an average
over the entire study domain for themorning overpasses. Fig. 7b shows
the same for V-polarized Tb, and Fig. 7c and d provide this information
for the long-term Tb standard deviations. The results for the 24 observa-
tions derived from evening overpasses are very similar and not shown.

If the uncertainty treatment underlying the parameter estimation is
consistent, then 95% of the observations are expected to fall within 2σm

or 2σs around both sides of the Tb simulations (assuming Gaussian dis-
tributions). The error bars for case Dσ envelop all observations, whereas
the error bars for case D enclose less than half of all observations. Fig. 7
also explains the nature of the residual misfit. With the exception of the
57.5°-angle, the Tb simulations mi(αMAP) for morning overpasses con-
sistently underestimate the SMOS-observed mi,o for H-polarization
(Fig. 7a) and randomly deviate at V-polarization (Fig. 7b). In contrast,
the evening simulations mi(αMAP) slightly overestimate the SMOS-
observed mi,o at H-polarization (not shown herein, see De Lannoy
et al., 2013). The SMOS-observed si,o is always larger than the simulated
si(αMAP). This is probably dominated by observation noise, but could
also be attributed to an underestimation of the variability in the Tb sim-
ulations. For example, an increase in the RTM parameter h not only
compensates for a cold Tb bias but simultaneously also reduces the Tb
variability. Fig. 7 thus clearly illustrates why the uncertainty estimates
obtained from case Dσ are superior.

4.5. Convergence and computational cost

The effectiveness of the parameter sampling algorithm is also mea-
sured by the convergence of the sampled posterior distribution to the
target distribution. For DREAM(ZS), the potential scale reduction factorffiffiffi
R

p
by Gelman and Rubin (1992) should be near 1 to inspire confidence

that the different MCMC chains have converged to the appropriate tar-
get distribution. The target variance is estimated based on the variances
within and between chains up to the current iteration. The

ffiffiffi
R

p
metric

measures by which scale the posterior distribution at the current itera-
tion would shrink as the number of MCMC iterations would go to infin-
ity to reach the target distribution. Fig. 8 shows the evolution of

ffiffiffi
R

p
,

averaged over all estimated parameters and across the study domain.
Initially, the values of

ffiffiffi
R

p
are rather large (due to random initial sam-

pling) before they settle down and reach values close to 1.
Finally, we report that the derivation of the posterior distributions

requires approximately 225 s of wall time for a single grid cell using
DREAM(ZS) on a state-of-the-art, single-processor computing platform.
For global applications that involve 105–106 grid cells, exploration of
the posterior distribution may be too costly. Yet, if our main interest is
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Fig. 8. Gelman–Rubin convergence diagnostic
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p
for the two DREAM(ZS) MCMC simula-

tion cases. The metric is averaged over all calibrated parameters, and across the study
domain.
in the MAP values, and we thus only aim at obtaining a long-term unbi-
ased modeling system, then PSO or DREAM(ZS) are both viable options.

5. Conclusions

Accurate estimates of microwave RTM parameters for large-scale L-
band applications are difficult to obtain. The available parameter esti-
mates are generally based on small-scale field experiments and often
comewithout any estimate of their uncertainty. This complicates radia-
tive transfermodeling for both the forward simulation of L-band Tb over
land and the retrieval of soil moisture based on Tb observations. Our
study presents reliable, large-scale estimates of RTM parameter values
and their uncertainty, based on the combination of long-term (climato-
logical) information from satellite observations and landmodel simula-
tions. These estimated parameter values can serve to limit biases in
large-scale Tb simulations and soil moisture retrievals. The estimates
of parameter uncertainties help to derive better informed uncertainties
for long-term (climatological) Tb simulations and retrievals, and
they aid in the development of land surface data assimilation systems.
This is a significant advancement compared to the common practice of
relying on literature-based parameter values or parameter calibration
approaches that do not use Bayesianmethodswith proper characteriza-
tion of model and observation errors.

More specifically, the present paper expands earlier research report-
ed in De Lannoy et al. (2013) to derive time-invariant RTM parameters
and their uncertainties using observations of the long-term average Tb
and the long-term Tb standard deviation obtained from SMOS data.
The overall objective is to optimize GEOS-5 Tb simulations prior to
sequential assimilation of SMOS or SMAP Tb data, such as planned for
the SMAP L4_SM product (Reichle et al., 2012), and to examine the un-
certainties involved in the optimization. Per grid cell, 48 observations of
the long-term SMOS Tb averages and standard deviations are construct-
ed, i.e. Tb averages and standard deviations for 24 different combina-
tions of 6 incidence angles, 2 polarizations and 2 overpass times. The
differences between the observed and GEOS-5 simulated long-term Tb
averages and standard deviations are minimized (as opposed to mini-
mizing differences between Tb observations and simulations in the
time domain) and used along with the prior parameter information to
derive posterior parameter estimates.

The full posterior distribution of RTM parameters is derived using
MCMC simulation with the DREAM(ZS) algorithm. To our knowledge,
this is the first large-scale application of the DREAM(ZS) algorithm for
the estimation of RTM parameters and their underlying uncertainty.
The results serve as a benchmark to verify the results from simpler
parameter optimization algorithms, such as for example PSO. Such algo-
rithms may be desirable for global-scale operational applications that
rely on evolving modeling systems in need of frequent re-calibrations,
without a need to fully sample the posterior parameter distribution.

Firstly, we verified that the MAP RTM-parameter values derived
from converged posterior distributions with DREAM(ZS) can be approx-
imated by a simpler optimization algorithm (PSO), which corroborates
our earlier research (De Lannoy et al., 2013). The MAP parameters will
later be used in an RTM that is part of a data assimilation system to en-
sure minimally biased Tb simulations. Secondly, we obtained reliable
estimates of parameter uncertainty with DREAM(ZS), which cannot be
obtained with PSO. The relative parameter uncertainties are generally
less than 25% of the MAP value for bhN, bτN and ω, when including an
estimation of the residual (observation and simulation) error standard
deviations (σm, σs) of the long-term Tb averages and standard devia-
tions. This relative parameter uncertainty is substantially reduced com-
pared to the relative uncertainty in literature-based parameter values,
which easily exceeds 100%.

The third objective of this paper was to quantify the importance of
parameter and other errors on long-term Tb simulations. The MAP
parameters reduce the RMSD in long-term Tb averages and standard
deviations to 3.4 K and 2.3 K, respectively. This is a reduction by 74%
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and 30% compared to results with prior parameters. Of this total poste-
rior Tb uncertainty, only 1 K and 0.4 K are associated with the posterior
uncertainty in the parameter values.

The actual RMSD in the long-term Tb averages and standard devia-
tions is matched by the estimated ensemble residual Tb error standard
deviation (σm = 3.5 K, σs = 2.3 K, assumed homoscedastic), obtained
with DREAM(ZS) case Dσ. In otherwords, the joint estimation of RTMpa-
rameters and σm and σs results in a balance between actual and expect-
ed errors in Tb simulations, and in statistically adequate parameter
values and uncertainty estimates. The prior estimate of 1 K for σm and
σs, used in case P, case D and De Lannoy et al. (2013) was thus too
low, except for σs over forests which exhibit limited Tb variability due
to vegetation attenuation. The largest σm-values are found in cropped
regions where the lumped residual Tb errors are probably dominated
by errors in geophysical fields (e.g. vegetation, soil moisture and tem-
perature) that constitute important inputs to the Tb simulations.

In practice, these findings prompt us to revise the global RTM
calibration of De Lannoy et al. (2013) with improved residual error
estimates in preparation for the SMAP L4_SM product. The revised ap-
proach ensures parameters that optimally describe the true relationship
between land surface fields and Tb, while minimally compensating
for potential biases in any of these fields. Furthermore, the findings of
the present study indicate that, after RTM parameter estimation, the
residual climatological uncertainties reside in Tb observation error and
GEOS-5 Tb simulation error that is not, or only to a limited extent,
related to RTM parameter uncertainty.

In summary, the Bayesian inference of the posterior distribution of
the RTM parameters ensures reliable Tb simulations with GEOS-5. The
MAP parameter estimates guarantee a Tb assimilation systemwith lim-
ited biases and a realistic connection between Tb and land surface fields
such as soil moisture and temperature. Furthermore, the DREAM(ZS) al-
gorithm reveals the importance of observation error and simulation
error that cannot be explained by the RTM parameters. The posterior
Tb uncertainties in this studypertain to long-termTbaverages and stan-
dard deviations and are thus indicative of biases (i.e. long-term errors).
These residual biases will be addressed by model refinement and bias
mitigation during the assimilation of satellite-observed Tb data.
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Appendix A. Radiative transfer model (RTM)

Adiagnostic zero-order (tau-omega)microwaveRTM is used to sim-
ulate L-band Tb at the top of the atmosphere (TbTOA,p [K]). The TbTOA,p at
polarization p=[H,V] (horizontal or vertical) is a combination of (i) soil
emission, possibly attenuated by vegetation, (ii) vegetation emission,
possibly reflected by the soil, and (iii) atmospheric effects:

TbTOV ;p ¼ Ts 1−rp
� �

Ap þ Tc 1−ωp

� �
1−Ap

� �
1þ rpAp

� �
þ Tbad;prpA

2
p

ðA:1Þ

TbTOA;p ¼ Tbau;p þ exp −τatm;p

� �
TbTOV;p ðA:2Þ

where TbTOV,p [K] is the top of vegetation Tb, Ts [K] is the surface soil
temperature, Tc [K] is the canopy temperature (assumed equal to Ts),
Tbad,p [K] and Tbau,p [K] are the downward and upward atmospheric
radiation, Ap [−] is the vegetation attenuation, exp(−τatm,p) [−] is the
atmospheric attenuation, τatm,p [−] is the atmospheric optical depth,
rp [−] is the rough surface reflectivity, andωp [−] is the scattering albe-
do. The atmospheric contributions (Tbad,p, Tbau,p and exp(−τatm,p)) are
described by Pellarin et al. (2003). The rough surface reflectivity rp [−]
is derived from the smooth surface reflectivity Rp [−] following
Choudhury, Schmugge, Chang, and Newton (1979) and Wang and
Choudhury (1981):

rp ¼ Q Rq þ 1−Qð ÞRp

� �
exp −hð Þ cosNrp θð Þ ðA:3Þ

whereQ [−] is the polarizationmixing ratio and typically set to 0 for L-
band (Kerr & Njoku, 1990), θ [rad] is the incidence angle, h [−] is the
roughness parameter accounting for dielectric properties that vary
at the sub-wavelength scale, Nrp [−] is the angular dependence, and
q = V for p = H and vice versa. The smooth surface reflectivity Rp [−]
is given by the Fresnel equations as a function of the dielectric constant,
which itself depends on soil moisture, temperature, texture, incidence
angle andwavelength.We select theWang and Schmugge (1980) soil di-
electric mixingmodel for this study. The results with this model are sim-
ilar to what is obtained with theMironov, Dobson, Kaupp, Komarov, and
Kleshchenko (2004) model, and both are in a better agreement with
the SMOS data than the Dobson, Ulaby, Hallikainen, and El-Rayes
(1985) model. We include the dependence of h on soil moisture
(SM [m3·m−3]) through a stepwise linear expression (adapted from
the proposed SMOS soil moisture retrieval algorithm (CESBIO, IPSL,
INRA, Reading University & Tor Vergata University, 2011; Kerr et al.,
2012)):

h ¼
hmax if SM≤wt

hmax þ
hmin−hmax

poros−wt
SM−wtð Þ if wt b SM≤poros

8<
: ðA:4Þ

where poros [m3·m−3] andwt [m3·m−3] are the porosity and tran-
sition soil moisture, respectively. The latter is modeled as wt =
0.48 · wp + 0.165 (Wang & Schmugge, 1980) where wp [m3·m−3] is
the wilting point.

The vegetation attenuation Ap [−] is based on the (Jackson &
Schmugge, 1991) vegetation opacity model:

Ap ¼ exp −
τp
cosθ

� �
;with ðA:5Þ

τp ¼ bp VWC ¼ bp LEWT LAI ðA:6Þ

where τp [−] is the nadir vegetation optical depth, which is a function of
a vegetation structure parameter bp [−] and the vegetation water
content (VWC) [kg·m−2]. The latter is modeled as the product of LAI
[m2·m−2] and the leaf equivalent water thickness (LEWT) [kg·m−2].

Appendix B. Particle swarm optimization (PSO)

The PSO algorithm (Kennedy & Eberhart, 1995) is a global search
method that uses a dynamic swarm of particles to explore the parame-
ter space. The best positions of each individual particle (cognitive
aspect) and of the entire swarm (social aspect) are used to guide the
particles towards the optimal solution. The iterative swarm search is
performed in several independent repetitions to account for sampling
variability.

The fitness of each parameter combination in the swarm is mea-
sured by an integrated ‘cost’ or ‘objective function’ J [−] that measures
the distances between the observed and simulated long-term Tb aver-
ages (Jm,o [−]) and standard deviations (Js,o [−]). To make sure that
the estimated parameter values honor the prior information (as used
in DREAM(ZS)), we also include a penalty term that quantifies deviations
of the parameters from their a priori expected values (Jα [−]). This
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results in the following definition of the objective function to be
minimized:

J ¼
X24
i¼1

mi;o−mi αð Þ
� �2

2σ2
i;m

)
Jm;o

þ
X24
i¼1

si;o−si αð Þ
� �2

2σ2
i;s

)
Js;o

þ
XNα

k¼1

α0;k−αk

� �2

2σ2
α0;k

)
Jα

ðB:1Þ

whereNα signifies the number of simultaneously estimated parameters.
Note that Eq. (B.1) is a polished version of Eq. (6) in De Lannoy et al.
(2013), which differs in the presentation of the weight factors and con-
stants. This formulation is essentially similar to the definition of the pos-
terior density used in DREAM(ZS). The main difference is that PSO
handles the prior information of the parameters explicitly as penalty
term Jα in the objective function, whereas in DREAM(ZS), the prior pa-
rameter distribution is handled independently from the likelihood func-
tion by application of Bayes law. Both methods should thus find the
same “best” parameter values.
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