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To Araceli

There is little hope that one who does not begin at the

beginning of knowledge will ever arrive at its end.

—Hermann von Helmholtz (1821–1894)
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ABSTRACT OF THE DISSERTATION

Perceptual Inference in Generative Models

by

John R. Hershey

Doctor of Philosophy in Cognitive Science

University of California San Diego, 2005

Martin Sereno, Chair

Javier Movellan, Co-chair

We see and hear so freely that to the casual observer it is not obvious that

perception would be such a difficult problem for modern science to understand.

David Marr suggested that an understanding of perception requires analyzing

the problems it solves along with the assumptions necessary for a solution. In

this thesis I maintain that generative probabilistic models are a powerful tool to

implement Marr’s approach. In generative models one has to explitly encode the

assumptions and goals of perceptual problems, whereas specific knowledge of the

world is gleaned from the sensory data by learning within the model.

This thesis explores the use of generative models for understanding perception

in audio-visual systems as well as in the individual modalities. The cocktail-party

problem of single-channel sound separation is addressed using competing sound

models, including a novel factorial model that unites pitch tracking and

formant-based models. A convolutional hidden Markov model for video tracking

performs exact inference in maps of object location, using a novel technique to

make this inference tractable for extremely large hypothesis spaces. A model

of non-rigid 3D tracking is presented in which some simple assumptions unify

template matching and optic flow under the same framework. Finally, an

audio-visual model brings together aspects of each of these models to exploit

xvi



cross-modal information for speech enhancement. Along the way, key benefits

of generative modeling, such as the flexibility of inference, the ”explaining-away”

phenomenon, and the ”problem-level” formulation of the models, are introduced

and discussed in light of the research presented.
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Chapter 1

Introduction

Is the problem that we can’t see? Or is it

that the problem is beautiful to me?

—David C. Berman

Everything we learn about the world arrives via the senses. We act in the

world on the basis of perception, and our very survival depends on its accuracy.

Our perceptual abilities are the origin of all acquired truth, and the medium

of all beauty. Yet how this exquisite gift of nature actually functions is a

complete mystery. If seeing is believing, how is it possible that the light focused

on our retinas is transformed into beliefs? How can we confidently step from

stone to stone across a river, when a slight visual miscalculation could prove

fatal? To understand how perception works would be a momentous achievement.

Nevertheless, perception is often taken for granted. We see and hear so freely that

to the casual observer it is not obvious that perception would be such a difficult

problem for modern science to understand.

To researchers of machine perception, who seek to understand perception well

enough to implement it in a machine, our dazzling perceptual abilities are an

inspiration as well as a humbling existence proof. With every doubling of the

1
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computational power of available computers we get closer to an exciting time when

computers will be able to perform as many raw computations per second as the

human visual system. When that time comes, and it may be within our lifetimes,

will we know enough about the problems of perception to implement a worthy

artificial perceptual system? Can we harness this computational power to help us

understand perception?

David Marr (1945-1980) [60] argued that understanding will come by treating

the computation of perception as an empirical science: we must propose principles

and computationally test hypotheses about the nature of perceptual problems.

In other words, if we are to understand perception, we will have to analyze

the assumptions and constraints necessary for perception, implement these

assumptions in a computational system, and test this system with real sensory

input. Given the complexity of perception, however, it seems likely that in such an

analytical scientific approach, important aspects of the problem may escape our

analysis.

Perhaps what is overlooked by an analytical approach may be found in the

statistics of natural sensory data. Moreover, adaptation to these statistics is likely

to be a vital component of perception, and thus any approach to perception must

take learning seriously. Computational learning models have the benefit that they

can adapt to the statistics of sensory data. A central tenet of this thesis is therefore

that whereas we may aspire to a problem-level understanding of perception as

envisioned by Marr, we are also obliged to extract information about the statistics

of the sensory data via learning systems. To the extent that the two processes can

be combined, we may be able to accumulate problem-level knowledge by proposing

assumptions in a framework that allows for adaptation, studying what is learned

by the system, and building new assumptions, based on what we have learned, into

the next iteration.

Probabilistic models are an attractive choice for such a framework because

they permit knowledge of the problem domain to be flexibly encoded in their

assumptions. The assumptions, in turn, yield optimality principles for learning and
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inference. This thesis explores the use of such models for understanding perception

in audio-visual systems as well as in the individual modalities. In the chapters

ahead, a history of psychological theories of perception and developments in

machine perception is used as a backdrop for illustrating the need for a probabilistic

problem-level approach. Each self-contained chapter in the thesis presents

published work in which probabilistic models shed some light on perceptual

problems. The main ideas of each chapter are summarized in an overview, at

the end of this introduction. The conclusion highlights the main contributions of

the research.

1.1 Theories of Perception

1.1.1 Helmholtz and Constructivism

The development of optics and the subsequent understanding of the formation

of retinal images led to a fundamental problem in perception: how do we obtain

knowledge of objects and their form from the two-dimensional retinal images? The

invention of the stereoscope early in the 19th century led to a further question:

how does stereoscopic vision allow us to see structure that is not apparent from

a single view alone? Hermann von Helmholtz (1821-1894) studied the nature of

image formation and construed this problem as unconscious inference about the

state of the world on the basis of raw sensory signals and knowledge of those signals

gained through interaction with the world. The three-dimensional structure of the

scene, and the identity of the objects therein are not provided directly in the

retinal image, but require perceptual inference to interpret. The following passage

concerning the perception of illusions captures the essence of his views[95] p. 307):

We always believe that we see such objects as would, under conditions
of normal vision, produce the retinal image of which we are actually
conscious. If these images are such as could not be produced by any
normal kind of observation, we judge them according to their nearest
resemblance; and in forming this judgment, we more easily neglect the
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parts of sensation which are imperfectly, than those which are perfectly,
apprehended. When more than one interpretation is possible, we
usually waver involuntarily between them; but it is possible to end this
uncertainty by bringing the idea of any of the possible interpretations
we choose as vividly as possible before the mind by a conscious effort
of the will.

Thus, according to Helmholtz, perception selects the most likely state of the

observable surroundings — the scene— given the sensory signal, and empirical

knowledge of likely scenes.

A modern formulation suggests a Bayesian approach to vision in which we

choose the parameters of the scene θ that maximize p(θ|x), where x is the sensory

image [69]. If we encode the knowledge of the scene in a prior probability p(θ) and

the resemblance of the sensory signal to that generated by a given scene in the

likelihood of the sensory signal given the scene, p(x|θ), then we can compute the

desired posterior probability p(θ|x) using Bayes’ rule:

p(θ|x) =
p(x|θ)p(θ)
p(x)

. (1.1)

Such models are termed generative because they are defined in terms of

observations generated from hidden variables. The likelihood term p(x|θ) can be

seen as addressing a synthesis problem: Given the parameters θ of a scene it tells

us what images are likely to be generated. Computing the posterior then solves an

analysis problem: given an image the posterior tells us what scenes are likely to

have generated the image. Having ideas about how scenes produce images helps us

develop reasonable formulations of p(x|θ). Using Bayes’ rule allows us to convert a

synthesis problem into an analysis problem by computing p(θ|x). The computation

of p(θ|x) is known as inference in probabilistic models. How one formulates such

a model and finds the θ that maximizes this posterior probability, and what such

methods can tell us about perception, is the subject of a generative model approach

to perception. This formalism is described in more detail in Section 1.3.

Helmholtz’ views are associated with the constructivist view of perception:

the brain constructs representations of the world to explain sensory input.
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Constructivism is one way to describe the rich three-dimensional structure we see,

and the order we seem to impose upon simplistic two-dimensional sensory input

such as the bistable three-dimensional structure we infer from a Necker cube line

drawing.

The emphasis Helmholtz placed on the active role of the observer have a modern

flavor ([96] p.183):

We are not simply passive to the impressions that are urged on us,
but we observe, that is, we adjust our organs in those conditions that
enable them to distinguish the impressions most accurately. Thus, in
considering an involved object, we accommodate both eyes as well as
we can, and turn them so as to focus steadily the precise point on which
our attention is fixed, that is, so as to get an image of it in the fovea of
each eye; and then we let our eyes traverse all the noteworthy points
of the object one after another.

He stressed the contingency between vision and other modalities such as touch and

motor control in calibrating the relationship between our senses, via his famous

experiments in which prismatic spectacles shifted the retinal image to one side and

visual-tactile contingency caused adaptation of the visual sense of space.

Helmholtz also argued for interactive multi-modal perception in learning to

see ([95] p.304):

The meaning we assign to our sensations depends upon experiment,
and not upon mere observation of what takes place around us. We
learn by experiment that the correspondence between two processes
takes place at any moment that we choose and under conditions that
we can alter as we choose. Mere observation would not give us the
same certainty...

He goes on to describe the infant developing to the stage where it turns a toy in

front of its eyes to discover all of the perspective views it affords.

1.1.2 The Gestalt school

The Gestalt approach, led by Wertheimer, Köhler, and others, rebelled against

the reductionism and empiricism of their predecessors. The structuralists such
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as Wundt had tried to explain perceptual learning as a process of accreting

associations between individual “sensory atoms” to form a representation of objects

[69]. In contrast, the Gestalt school emphasized a holistic approach to vision,

maintaining that the configuration of the parts of an image gives rise to a percept

that cannot be reduced to the properties or associations of the individual parts.

They formulated general principles underlying visual perception motivated by the

idea of an innate energy minimization principle: the brain chooses a perceptual

organization of sensory data that minimizes the representational energy required

to account for them. The energy minimization principle was also called the law of

Prägnanz : if a signal is consistent with a number of different groupings of an array

of features, all other things being equal, the simpler grouping is preferred. Since

there are arbitrarily many arrangements of features into groups given a particular

image, these laws were required to choose the particular grouping that we tend to

see.

The law of Prägnanz was seen as the unifying principle behind a number of

individual constraints by which features would tend to be grouped together, such

as proximity, similarity, continuity. Thus, for example, according to the law of

proximity features that were close to each other tended to be grouped together,

and likewise with similarity and continuity. Similarly, the law of common fate

held that things that are moving in the same way tend to be grouped together.

A higher-level principle of organization, the law of familiarity, maintained that

features that form the shape of familiar objects tend to be grouped together. A

major drawback of this approach was that the perceived grouping was subtle and

subjective. It was also difficult to formulate the relative strength of the various

laws. Ultimately, without a computational framework such a theory could not

provide any real predictive value.

A modern formulation of Gestalt perception can be framed probabilistically.

Minimizing an energy looks like maximizing a log probability and we can easily

imagine a prior probability distribution that prefers simpler groupings of elements

according to the energy function. A likelihood function would be required to
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select the features that correspond to the image, and while the Gestaltists never

defined how this was to be done, feature-based representations of local image

areas in computer vision are now commonplace. In such a formulation, inferring

the grouping would amount to computing a posterior distribution over different

grouping hypotheses. A probabilistic formulation is nice because it provides a

means for either specifying or learning the constraints implied by the grouping

laws, and it provides a language for representing ambiguity or uncertainty among

possible grouping hypotheses given an observation.

Once we have cast both Helmholtzian perception and Gestalt perception

into a probabilistic framework, then we can compare them on an equal footing.

The main difference seems to be the types of problems they tried to solve.

In a probabilistic formulation these different problems would lead to different

assumptions about the priors and likelihood function. The Gestaltists focused

on the segmentation problem, or the problem of grouping together the sensations

from different parts of the retinal image into separate objects. For the grouping

problem, an approach with a Gestalt character would have a likelihood function

that assigns greater likelihood to feature representations that better reproduce

the observed image, and the prior over grouping hypotheses would be defined

via interactions between the local feature representations, such that greater prior

probability is assigned when there is greater similarity, proximity, and so on,

between elements assigned to the same group. Helmholtz was more concerned

with inferring the three-dimensional (3D) structure of the world. For a model

reminiscent of Helmholtz, hypotheses would be 3D interpretations of the scene.

We might define a likelihood function that assigns greater likelihood to 3D

representations that more accurately reproduce the observation when projected

back to the image. A prior probability distribution could be defined over likely 3D

configurations, perhaps based on knowledge of the world. This prior combined with

the likelihood function, would be used to compute a posterior distribution over 3D

scenes. Seen from the perspective of this formulation, the two different approaches

do not seem necessarily incompatible, but rather might be complementary. That
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is, the problem of analysis of patterns and segmentations of surface features at one

level complements the problem of inferring the three-dimensional structure of the

world, in the sense that the two problems might be solved simultaneously using

somewhat different prior knowledge in the solution of each one.

1.1.3 Behaviorism

Both the structuralist and Gestalt schools relied on a methodology consisting

of introspection, in which trained subjects tried to report not just what they saw,

but also the internal processes of seeing. This phenomenological approach resulted

in subjects who would report introspective data that just happened to confirm the

prevailing theories of the labs in which they were trained [80].

The Behaviorism movement of Watson, Thorndike, and (later) Skinner rebelled

against these methodological problems and banished introspection along with

any theory positing such internal states as beliefs, goals, or representations,

deriding them as “folk psychology,” “mentalism,” or at their most charitable,

“intervening variables.” Instead the brain was treated as a black box : only objective

stimuli and response characteristics were to be measured and related by theories.

Behaviorism became the dominant psychological movement in the United States

from about 1920 to 1960 and resulted in the development of mathematical theories

of reinforcement learning which would later contribute to computational work.

Behaviorists, however, completely neglected to account for how organisms interpret

the contents of their stimuli. So for instance although they posited that an object

could act as a stimulus they failed to address the question of how the object was

to be segmented and recognized.

1.1.4 Gibson’s Ecological Approach

The ecological approach, advanced by James J. Gibson, advanced a new

emphasis on ecological validity. Gibson rejected the simplistic stimuli used in

Gestalt and structuralist approaches, instead arguing that the characteristics



9

of the environment under which the organism evolved – its ecology – were of

primary importance. Ecological validity also emphasized, as did Helmholtz, the

importance of the organism as an active observer moving in the environment.

Unlike Helmholtz, Gibson felt that motion in the environment constrained the

problem of vision enough that inference would not be necessary. The theory was

essentially nativist, however Gibson felt that only general perceptual strategies

were inherited, rather than specific visual knowledge. Via evolution, however,

the nativist and empiricist positions both agree on one thing: the structure

of the environment determines what perception is. Whereas Gibson has been

criticized for underestimating the difficulty of perception [60, 34], the ease of

human perceptual performance implies that a satisfactory solution exists. What

is unknown is what assumptions are necessary to find such solutions, and ho the

inference process works.

Gibson argued for direct perception that was unmediated by mental processes,

three-dimensional representations, or other “intervening variables.” Taking an

armchair approach, Gibson analyzed how “direct perception” might be achieved

by looking at patterns in the environment. For example, in optic flow, a concept

introduced by Gibson to describe local motion in image coordinates, the time to

impact of an observer with a surface can be calculated directly without knowing

the distance to the surface, or the relative velocity between the observer and

the surface. Thus a motor system could be activated to avoid or engage the

surface without any need to estimate distances. He called this type of percept an

affordance to emphasize that it directly mediated action, rather than establishing

a three dimensional representation. The idea originated in the Gestalt idea of

the physiognomic character of perception which Kurt Koffka explained thus: “To

primitive man, each object says what it is and what he ought to do with it: a fruit

says ‘eat me,’ water says, ‘drink me,’ thunder says ‘fear me,’ and woman says, ‘love

me.’” ([69], p.410) Gibson elevated it to the primary mode of perception.

Affordances represent a key deviation from the constructivist tradition.

Whereas the constructivists held that when we look at a chair, we first infer
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that it is a chair that we are seeing, and then recall that chairs are for sitting,

and then sit if we so desire. In the ecological approach we would directly

sense that the surfaces of the object were oriented such that one could sit on

them, and sitting would then be liable to occur. Gibson thus questioned the

traditional assumptions about what representation was computed, and emphasized

the role of perception in mediating visually-guided action, and the interactive

role of the moving observer in perception. He supposed that direct perception

of affordances involved “resonating” to the invariant information in the world,

an idea that would form the basis of pattern recognition approaches to vision.

Gibson failed, however, to specify how this process worked, how his primitives

such as optic flow and texture gradients were to be computed, and converted

into affordances. Nevertheless the concept of affordances continues to resurface in

machine perception in approaches that deal with visually guided action.

1.1.5 Information Processing

Meanwhile other forces were bringing back a cognitive viewpoint, in which

internal states and processes are important explanatory hidden variables. The

development of digital computer introduced a new computational way of thinking

about internal states and mechanisms. Simultaneously in psychology, Kenneth

Craik’s The Nature of Explanation “put back the missing step between stimulus

and response, positing that an agent needs a model of its environment and possible

actions in the form of beliefs and goals” ([80], p. 21). According to Craik, the

stimulus must be translated into an internal representation, the representation

may be manipulated by cognitive processes to derive new internal representations,

and these representations are translated into action. This formulation, along with

the specification that these processes were essentially computational, constitutes

the information processing or cognitive view of perception which has become the

dominant paradigm in perceptual theory.

This cognitive viewpoint carries a burden in the form of the mind-brain
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problem: to define such internal states as beliefs and goals, without resorting to an

unscientific dualism, one must reduce mental states to some properties of the brain.

The prospect of interpreting the brain states in terms of the functional significance

of the computation they perform might not seem at first like a contentious issue.

The problem is that the same computation can in principle be done in a different

physical implementation, such as a computer, so mental states perhaps cannot be

uniquely reduced to brain states, and thus can only be uniquely described at the

level of their computational function. Thus there must be some properties of the

brain, at some microscopic level of analysis, that are sufficient but not necessary

for the functional activity of the mind.

The dissociation between mental states and brain states created a kind of

software-hardware dualism had the effect of polarizing research. Psychologists

and computer scientists were insulated from the need to take the brain into

account, whereas others felt that mental states could never have a scientific basis

in the brain, and so folk psychology should simply be eliminated from science.

At the same time despite this philosophical rift, the computational viewpoint

eventually brought the fields of psychology, neuroscience, and computer science

into cooperation with each other, and the field of cognitive science was able to

begin synthesizing evidence from all three perspectives. Cognitive scientists now

had an effective methodology: they could in principle use computers to implement

their theories, test them on real data, and compare the results with neuroscience

or psychology. On the other hand, the initial unification was achieved by thinking

of the brain as the computer of the era. The brain is teaching us now that this

was a very limited view of what a computer can be.

1.2 Machine Perception

Machine perception, the study of computational aspects of perception, broadly

involves the integration of the senses and the understanding of one modality

in terms of another. The work presented in this thesis strives for this
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broader interpretation. Historically, however, most progress has been made in

modality-specific communities such as computer vision and speech recognition. A

historical review focusing on computer vision and speech recognition will therefore

set the stage for the contributions of this thesis.

1.2.1 Early Artificial Intelligence

The development of modern computers by John von Neumann (1946), the work

of Warren McColloch and Walter Pitts (1943) on a computational abstraction of

neurons, the founding of the field of cybernetics by Norbert Wiener (1947), and

the formulation of neural learning rules by Donald Hebb (1949), introduced the

world to a new way of thinking about the brain.

A science of artificial intelligence (AI) was founded with the goal of

instantiating the powers of the human brain in a programmable computer. The

first artificial intelligence projects took advantage of the symbolic architecture of

programmable computers, and demonstrated breakthroughs with problems such

as theorem proving, problem solving, and playing simple games such as checkers

[80]. These symbolic approaches involved a system of formal symbols representing

knowledge, along with rules for manipulating them to form deductions, and

methods of applying the rules to search the space of possible deductions. That

a computer could prove mathematical theorems and play games this way was

a dramatic result at the time, since these were some of the things that for

humans seem to take deliberate mental effort. However these early successes

spelled trouble for machine perception, because the style of sequential, discrete

rule-based computation that framed all their problems was incompatible with the

more continuous signal-processing approach that now dominates the field.

Early AI approaches to computer vision adopted the symbolic approach

and applied it the problem of inferring three-dimensional (3D) structure from

two-dimensional (2D) images in extremely simple environments consisting of

geometrical objects such as blocks [80]. The first stage of such systems analyzed
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features such the location and orientation of edges, and the types of vertices they

form with each other. These were converted into a symbolic representation of a

line drawing, and symbolic search techniques were employed to deduce the possible

configurations of simple three-dimensional shapes that could give rise to the line

drawings. This symbolic AI approach failed to become a viable machine perception

paradigm. Its reliance on symbolic logic and discrete rules worked well for highly

constrained toy domains, but did not scale well to a continuous multidimensional

sensory domain married to a wild and wooly reality. Despite the development of

many edge-detection schemes, line drawings could not be reliably inferred from

real images, and real images do not consist of simple geometric shapes for which

edges were an appropriate description. In general, the combinatorial explosion of

possibilities in a realistic world made for a spectacular failure of the early symbolic

approach to do anything useful outside of extremely simplified domains.

In their influential book Pattern Classification and Scene analysis [20], Richard

O. Duda and Peter E. Hart advocated a two-pronged approach to machine

perception emphasizing probabilistic methods at a time when probability was

neglected by the AI community. They saw the need for both a descriptive approach

which described the geometric structure in a scene, as well as a classification

approach based in statistics. They outline a classification approach built on a

well-understood Bayesian decision-theoretical framework. Statistical techniques

had long been the tools with which scientists made inferences about underlying

processes in the world from their measurements. Duda and Hart discussed

how an array of statistical techniques, from supervised learning of classifiers

to unsupervised clustering and dimensionality reduction, could be useful for

perceptual inference on sensory data. An important contribution was showing

how particular descriptive mechanisms such as edge detectors could be seen

as arising from a set of probabilistic assumptions. They also described how

incorporating knowledge of projective geometry into a system would help to

determine the projective invariants, that is, properties of objects that remain

unchanged from picture to picture. However they stopped short of linking this
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idea with their probabilistic framework, and ultimately they faced deep problems

of three-dimensional shape representation that persist into the present.

1.2.2 Marr’s Levels of Understanding

David Marr, a theoretical neuroscientist and a computer vision researcher, is

better known for his thoughts about how to conduct vision research than for his

computer vision work. He was instrumental in elevating computational approaches

to vision to a science and uniting that science with the study of the brain under

his framework of levels of understanding. Marr argued that ad hoc approaches to

computer vision and descriptive approaches to visual neuroscience did not explain

what was being computed and why it was a good thing to compute, only how

computation was performed. Therefore there were no principles for determining

the purpose of a particular computation, or judging its optimality to that purpose.

He posited what he called a “computational level of understanding”, that specified

the computational function of a system: what problem is solved, under what

assumptions. The terms problem level and function level perhaps better capture

the intent of this computational level. Beneath this problem level he left intact to

some extent the old software/hardware dualism in the form of a “representation

and algorithm” level (software), which specified abstractly what method was used

to solve the problem, and a “implementation” level (hardware) which specified

how the representation and algorithm were physically realized in a given system.

For convenience, we refer to these two levels collectively as the mechanism level.

Marr felt that a perceptual system such as the brain’s must be understood at

all three levels of understanding. However he emphasized the primary importance

on the problem level of understanding ([60], p. 27):

Trying to understand perception by studying only neurons is like trying
to understand bird flight by studying only feathers: It just cannot
be done. In order to understand bird flight, we have to understand
aerodynamics; only then do the structure of feathers and the different
shapes of birds’ wings make sense.
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How tightly coupled the different levels of understanding are when applied to the

brain, and how likely we are to achieve a problem-level understanding of the human

visual system has been a matter of debate. Likewise, the boundary between the

problem level and the mechanism level is difficult to define. Nevertheless, the

emphasis on understanding the function of a particular computation in terms

of the problem it solves, has been a crucial challenge to both computer vision

and neuroscience and their cooperation in studying perception. Whereas the

problem level of understanding has been influential over the years, the problems

we formulate to understand perception have changed.

Marr also formulated some important general principles, which were

conceptually orthogonal to his levels of understanding. He emphasized a modular

approach to understanding vision, with the modules divided according to the types

of problem that were simple enough to be understood in isolation. For example,

the random-dot stereograms of Julesz isolated stereo disparity from other cues

that might be obtained from forms and objects in an image, showing that we

can robustly perceive depth from disparity cues alone. For Marr, this meant

that we can study the problem of stereo vision by itself. He elevated this to

a principle of modular design, arguing that such a design allows improvements to

be made, whether by a human designer or by evolution, without risking damage

to other systems. This type of approach does not rule out interaction between the

modules, but nevertheless insists that our understanding is aided by a modular

organization of a complex general problem into a collection of simpler specific

problems. Marr points out that modularity assumptions had already had a huge

impact on the progress of machine vision prior to his formulation of the principle

([60], p.102): ”Information about the geometry and reflectance of visible surfaces

is encoded in the image in various ways and can be decoded by processes that

are almost independent. When this point was fully appreciated it led to an

explosion of theories about possible decoding processes,” for specific problems such

as stereopsis, structure from apparent motion, shape from shading, and so forth.

Marr also promoted some practical principles. He once suggested an “inverse
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square law” for theoretical research which stated that the value of a study was

inversely proportional to the square of its generality [21]. Thus his emphasis was

on understanding specific perceptual problems, rather than general theories of

inference.

The principle of graceful degradation [60] stated that whenever possible a

system should be robust with respect to corrupted input information. Although

aimed at the algorithm and representation level, this principle specifies the

conditions and assumptions under which a given system should operate, so it

seems to apply as well to the problem level. At a practical level the insistence on

robustness in natural conditions is an important defense against ad-hoc theories of

perception.

The principle of least commitment [60] admonished against resorting to

time-consuming “hypothesize-and-test” strategies unless the problem is difficult

enough to warrant such an approach. An analogous principle seems fitting

for the computational level: one should not break a simple problem into

difficult intermediate problems. This principle seems to balance the modularity

principle: too much modularity places a burden of commitment to intervening

representations.

Marr, like many of his predecessors, thought that the best route to viewpoint-

and lighting-independent object recognition was to first infer the invariant

3D structure of the world, and then use this structure to recognize objects.

This scene-analysis or descriptive approach was the defining theme of classical

computer vision. Along with Marr and his generation came a variety of

classical mathematical vision approaches to specific aspects of scene analysis

problems, or the 2D-to-3D problems generically referred to as shape-from-X, such

as shape from shading, stereo depth perception, and shape from motion. In

these approaches, unlike the early AI approaches, the objects could typically

be composed of continuously varying surfaces, and typically representations were

continuous-valued functions. The properties of image formation were carefully

studied and incorporated into algorithms.
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In this approach, a variety of simplifying assumptions were often made on the

image formation process as well as the lighting and surface reflectivity properties.

For instance, often the lighting was assumed to be diffuse, the surfaces were

assumed to reflect light with equal intensity in all directions (that is, they are

Lambertian), or the surface was assumed to reflect light with equal intensity (have

a constant albedo) at all points, as a function of the angle of illumination. In

addition the individual problems were often broken into sub-modules: for instance,

shape-from-motion depended on motion, which required solving the correspondence

problem, or computing what points correspond in the 2D image over time. The

correspondence problem, in turn, depended on the selection of which points were

“interesting” in the sense of being easy to track, and this selection became another

module. Because these modules were typically designed to operate independently,

in accordance with Marr’s principle of modular design, their interfaces with each

other had to be assumed. These simplifying assumptions, as well as the reduction

of the problem to specific modules and sub-modules, allowed theoretical progress

to be made.

However there were problems with this approach: perhaps researchers focused

too much on modularity principles, and not enough on least commitment and

graceful degradation principles. The methods studied were still brittle and required

simplified conditions, the models could not learn from data or adapt to different

conditions, the modules were not easy to combine to jointly estimate 3D from

2D using a combination of the cues, and it was not clear how to use the inferred

3D structures for recognition in realistic scenarios, where objects are irregularly

illuminated, partially occluded, and surrounded by clutter.

Marr’s analytical approach also seemed to foster rationalizations for certain

mechanisms, such as his zero-crossing implementation of edge detection, and

subsequent symbolic characterization of the zero-crossing representation. This

analytical approach relied on assumptions about the goals and tasks of perception

and its modules, which biased the resultant computational theory.

For example, so-called early vision is often posed as a problem of inverse optics,
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with the goal of inferring the position and form of surfaces, and perhaps object

boundaries, in a three dimensional scene from a set of two dimensional images.

Similarly the problem of early audition is posed as a cocktail-party problem, or

auditory scene analysis problem (inverse acoustics), in which the goal is to separate

and perhaps locate representations of all of the acoustic sources in an area given

signals from one or more ears or microphones.

However, it is an empirical question whether some tasks can be done directly

without first locating and segmenting, and later pattern recognition techniques

were able to avoid these inverse problems by operating directly on features to

some extent. Marr never addressed the possibility that object recognition could

help with 3D scene analysis, rather than the other way around. Marr also

completely overlooked the probabilistic perspective: he never mentioned learning

or adaptation to data, and he clearly failed to realize that probabilistic methods

are a very useful analytical tool to pursue his problem level analysis.

1.2.3 Neural Networks

The neural network approach, which had been on the sidelines since the

beginning of the theory of computation, took center stage in the 1980s. Whereas

earlier work on pattern recognition with neuron-like elements such as [76] had

shown that learning could be done in a simple single-layered architecture, these

architectures had their limitations [62]. The reason conventional von Neumann

style computer architectures took over in the 1950s, whereas the neurally

inspired architectures stagnated, was the extreme difficulty in programming

a neural network. It wasn’t until methods such as the generalized delta or

“backpropagation” learning rule, along with advances in computer power, had

made it possible to construct more complex nonlinear neural network simulations

to perform a particular task. As a result the parallel distributed processing (PDP)

and connectionist movements [26, 79] saw an explosion of research in a variety of

directions.
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In some cases neural network algorithms were derived from a problem-level

analysis: a notable case is Marr and Poggio’s stereopsis network, which was

derived from a problem-level analysis of the assumptions of stereo vision that

lead to unique solutions [61]. However, much neural network research typically

focused on learned mechanisms rather than understanding function. This focus

on mechanisms was partly a product of the emphasis on neurally-inspired methods

that tried to take into account the constraints of computation in the brain, namely

a large number of highly interconnected, slow processing units. Neural network

researchers believed that the style of computation in the brain was the important

thing, and understanding how computation worked within this style was important

for understanding the brain. [79]. At the time, theories in terms of mechanisms

were a welcome relief from decades of psychological theories phrased in opaque,

irreducible terminology. However, ultimately it was difficult to focus on the

problem level because it was hard to design a useful neural network that satisfied

a set of problem-level assumptions. Thus there was a focus on learning from data,

not so much because of an empirical stance, but rather for practical reasons.

Regardless of its cause, the necessity of learning in neural networks led to an

influx of statistical pattern recognition theory into the neural network community.

Whereas the neural-network approach has also spawned a field of computational

neuroscience that operates in terms of physiologically plausible mechanisms,

gradually the theoretical side of the neural network approach has evolved into

a statistical learning approach. As an index of this, a tradition at a theoretical

neural network conference, Neural Information Processing Systems (NIPS), has

been to use a current learning algorithm to analyze the title words associated with

article acceptance and rejection for comical presentation at the closing banquet. In

recent years “neural network” was most strongly associated with rejection, whereas

“graphical model,” “Bayesian,” and “support vector machine” — all statistical

approaches — were associated with acceptance.
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1.2.4 The Black-Box Pattern Recognition Approach

Marr described the application of pattern recognition to perceptual problems

thus: “The hope was that you looked at the image, detected features on it, and used

the features you found to classify and hence recognize what you were looking at.

The approach is based on an assumption which essentially says that useful classes

of objects define convex or nearly convex regions in some multidimensional feature

space where the dimensions correspond to the individual features measured. ... It’s

not true, unfortunately, because the visual world is so complex. Different lighting

conditions produce radically different images, as do different vantage points.” ([60]

p.340-341).

In the extreme this approach becomes the brute-force application of computing

power and training data. Nearest neighbor classifiers, for instance, assign the

class of the nearest training data point in some feature space to incoming test

cases. As the size of the training set increases, test performance tends to increase.

However, typically more data is required for good performance than one would like

to provide, and each additional training example produces diminishing reductions

in error. More importantly, little light is shed on the nature of the problem being

solved by such an approach. Furthermore, the resulting systems tend to be brittle

in that they serve a narrow purpose and fail to adapt when confronted with input

collected under conditions that differ in any way from the training data. To some

extent this is a result of the combinatorial explosion of possible data conditions

that confront perception. In hearing, there is a vast array of noise, reverberation

and intrinsic sound variations, and likewise in vision there are viewpoint, lighting,

clutter, and object variations. Accounting for every combination of these is difficult

in a system without a modular or combinatorial design.

Speech Recognition

An intermediate version of such an approach, however, was beginning to work

in speech recognition. Speech recognition research had begun in earnest without
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the distraction of the auditory scene analysis problem, or cocktail party problem, in

which the goal was to separate and localize the different sounds in the environment,

because these problems were considered too hard.

Instead researchers focused on directly recognizing speech in clean conditions:

no interfering noise, no reverberation, no unknown microphone transfer function.

After a period of trying many different approaches, standardized databases were

established, and the field settled into a dominant paradigm. Feature sets were

devised to be as invariant as possible to different pronunciations of a phoneme, such

as pitch or vocal tract size. The speech signal was modeled using hidden Markov

models (HMMs), which are probabilistic models consisting of a discrete hidden

state, state dynamics defined by transition probabilities, and state observation

probabilities defined over the features. The forward-backward algorithm was an

efficient unsupervised learning algorithm for training HMMs [6].

A few decades of improving the databases, architectures, features, and language

models, brought the speech recognition problem tantalizingly close to a usable

level of accuracy in clean conditions. However, the better the performance of such

systems became, the more data and internal states were required to produce small

improvements in accuracy. On top of that, the addition of environmental noise

proved to be a critical stumbling block, perhaps because the field matured using

databases of clean signals, and then later attempted to make their techniques

robust with respect to noise. By the time databases for noisy speech recognition

were available, the field was entrenched in a narrow paradigm that was only suitable

for clean speech.

Visual Pattern Recognition

The pattern recognition approach to vision had shifted gears from the

traditional AI strategy of scene analysis, followed by recognition. It was difficult

to infer 3D, and somewhat easier to throw large quantities of data at a learning

algorithm and let it figure out what was invariant to changes in lighting and
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viewpoint. Thus instead of Marr’s division of a single scene analysis problem

into sub-problems that could be analyzed independently, the pattern recognition

approach divided research according to categorization tasks that could be learned

independently: each task used different feature sets, training databases, and

learning algorithms. Specifically the categorizations tasks had to do with direct

recognition of so-called high-level properties of interest. So for instance one

system would be developed to recognize the identity of a face independently of

emotional expression, and another to distinguish the emotional expression of the

face independent of identity, while both were intended to be invariant to lighting

and clutter. Not only were such clearly related tasks not encouraged to interact,

they often were not even investigated by the same researchers!

Whereas this pattern recognition approach appeared to be working for speech,

in vision it was harder to control within-class variance, however it was hoped that

this could be overcome with the right feature spaces and classifiers. For a while

progress on real problems was hampered by flawed databases that did not properly

handle these sources of variation. For instance the DARPA FERET database for

face recognition, introduced in 1993, although it contained lighting variation, did

not contain variation in the background, so that any system trained on it would

have little applicability to real-world scenarios. In addition, training was typically

done on registered images in which the object was in a canonical position. Thus in

order to find objects, such a system would have to be applied to every conceivable

scale, translation, and rotation of the area of interest in a larger image, which

at a practical level was thought to be very time consuming. Recognition of an

object from different viewpoints was typically still a difficult problem, even with

these simplifications. These problems were ultimately remedied to some extent.

Data was collected in which backgrounds were as random and varied as possible,

and clever schemes for allocating resources allowed rapid scanning of detectors for

objects at different scales and translations [94], and viewed from different angles

relative to frontal [57].

Despite significant progress, the pattern recognition approach as it was typically
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applied had some important drawbacks. For one thing, it failed to explain the

principles implemented by the learned mechanisms, or what invariances had been

learned. The resulting mechanisms were clearly more accessible than the brain:

one could keep a complete record of the activity in any situation, limited only

by data storage space. However such resulting mechanisms were still essentially

a black box in the sense of obscurity. One had to do a post-hoc probe of such a

system with different stimuli to see what different parts of it responded to. 1

The difficulty was that although the data itself formed one part of the

problem-level specification, the other part — the assumptions being made about

the data — were missing. Marr described earlier neuroscience ideas “according to

which the brain was a kind of ‘thinking porridge’ whose only critical factor is how

much is working at a time.” ([60], p.340) Similarly the black box pattern recognition

approach can be caricatured as a kind of “learning porridge” formulation of

perception that simply exposes a learning algorithm to perceptual data without

manipulating its assumptions. The learning algorithms were capable of taking us

straight from data to mechanisms, without pausing at a level where understanding

was possible. So whereas practical progress was being made, progress in

understanding perception amounted to heuristics about which feature sets, training

sets, and learning algorithms seemed to work in a particular task.

Ultimately it seems difficult to turn the black box approach into a full theory

of perception. At least in its simplest formulation where an image is presented to

a recognizer and an object category is returned, the black box approach fails to

account for our important descriptive abilities, in particular our visual and auditory

scene analysis abilities which allow us to perceive and interact with objects and

sounds that we have never seen or heard before, even in the midst of clutter and

noise. In addition, it is difficult within the black box pattern recognition approach

to incorporate knowledge, such as that of projective geometry. Thus it is difficult

1As an index of the opacity of this process, neural network researchers have sometimes had
to resort to exploratory statistical analysis on the activity patterns of their systems to interpret
what has been learned by the network [22].
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to test assumptions that the model makes about how sensory data are generated

by the world.

1.2.5 Summary of Traditional Approaches

In summary there have been two general approaches to machine perception: a

descriptive approach of scene analysis, and an invariant classification approach.

The viewpoint and lighting cause variance in video, and the acoustics and

interfering sounds cause variance in audio. The descriptive problem addresses

precisely the extraction of the invariant properties of the world. The traditional

artificial intelligence goal was to first solve the descriptive problem, yielding a

3D representation of the scene, and then to categorize the objects based on their

geometry and reflectivity. An analytical approach sought to accomplish this scene

analysis by incorporating knowledge of projective geometry and surface constraints

into scene analysis systems. Later, with developments in pattern recognition, an

empirical approach alternatively sought to directly accomplish the classification

of objects by extracting image features and learning functions of the features that

were invariant to lighting and viewpoint. In these invariant pattern recognition

problems, the goal was to directly classify an object into either broad categories,

such as what type of objects they are (is it a face, or a shovel?), or narrow

categories, such as what properties the object has (is it Javier’s face, or Virginia’s?

is it frowning or smiling?). Each approach has its pros and cons: from the analytical

scene analysis approach we get an understanding of the problem, at the expense

of a brittle system whereas the empirical black-box approach takes advantage of

the statistics of the data to find aspects of the problem that might not occur to

us, at the expense of a clear understanding of precisely how the system works.

Probabilistic methods, addressed in the next section, have recently been used in

a way that seems to be closing the gap between the two approaches, while at the

same time leading to an understanding of the problem.
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1.3 Probabilistic Modeling

Probabilistic models can incorporate knowledge of the problem, as well as

learning from data, and thus are good candidates for a unifying framework for

computer vision. From the 1990s on such models have been rapidly gaining

importance as they are applied to interesting problems of vision and hearing.

Tracking of flexible objects using probabilistic models of dynamics became one

of the most important trends emerging from the active vision movement [12, 43].

The addition of flexible 3D models and optic flow computations to such paradigms

have shown how some very simple projective geometry could provide the crucial

constraints that allow optic flow to track objects [88, 11, 64]. Principled methods

of combining modalities, have been applied to multi-modal processing, in which

simple dependency assumptions led to cross-modal self-supervised learning [7, 37].

Multi-object systems in which problem level specifications of occlusion in video or

masking in audio have led to mechanisms for segmenting partially hidden signals

[91, 28, 38, 51, 53].

1.3.1 Bayesian inference

Bayesian inference provides a framework for posing and understanding

perceptual problems. In this framework prior knowledge of the scene θ is encoded

in a prior probability p(θ), knowledge of how the sensor signal x is generated from

the scene, and how to measure deviations from the expected sensor signals, is

encoded in the likelihood of the sensory signal given the scene, p(x|θ), then we

can solve the inverse problem by computing the posterior probability p(θ|x) using

Bayes’ theorem:

p(θ|x) =
p(x|θ)p(θ)
p(x)

(1.2)

=
1

z
p(x|θ)p(θ), (1.3)
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where z =
∫
p(x|θ)p(θ)dθ is a normalization constant that does not depend

on θ. The term, p(x|θ), is a function of two variables, and has two different

interpretations depending on which variable is allowed to vary. Holding the state

θ constant yields the observation probability distribution, which is the probability

of observations x. Holding the observation constant yields the likelihood function,

which is the probability of the observation as a function of different states in

hypothesis space. The likelihood is not a probability distribution as it does not

integrate to unity: this normalization is the role of the denominator in Bayes’ rule.

Such a model is generative in the sense that it defines a theory of how, given

the state of the world, the sensor data is generated. Given this forward model

inference then solves an inverse problem, thus translating synthesis into analysis.

Because parameters of the distribution of a random variable can also be treated

as random variables, learning and inference are unified. Inference usually refers to

computing the distribution of some hidden variables after the other variables are

observed, whereas learning usually refers to updating the parameters of the model.

In generative models, parameters refer to hidden variables that have the same value

across a set of samples, whereas ordinary hidden variables have a different value

for each sample. Thus if samples arrive over time, we can think of learning and

inference as referring to the same underlying process applied at different time

scales.

An advantage of the generative model is that although we may encode some of

our understanding of the modality into the model we still use learning to extract

knowledge from the sensory input. Because of the probabilistic formulation, there

are principled methods of inference and learning that ensure the optimality of the

inference given the assumptions of the model. Such models can easily be extended,

for instance, by adding temporal dynamics, or dependencies between modalities, in

a principled way while maintaining optimality properties. The generative model

also allows us to use the same model for a variety of inference tasks, such as

reconstructing the signals from one object in the absence of the others, or inferring

properties of each object, such as its location or appearance.
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1.3.2 Graphical models

This flexibility of generative models stems from their formulation in terms of

a complete joint probability distribution over all variables, which allows us to infer

any part of the model from any other, unlike discriminative approaches in which

the direction of inference is typically inflexible. The simple model above can be

written:

p(x, θ) = p(x|θ)p(θ) (1.4)

from the definition of conditional probability. The joint distribution p(x, θ)

is a complete description of a probability model. However, the factorization,

p(x|θ)p(θ), is a useful way to specify the same distribution in terms of a

forward model. Models in which we write the joint distribution in terms of

conditional probability functions can be depicted in the directed graphical model

formalism (undirected graphical models are also used in other situations) [48].

In this formalism the random variables are represented by nodes, and conditional

probability functions are represented using directed edges, where the direction from

parents to a child indicates that the model specifies a conditional distribution of

the child given the parents (see Figure 1.1).

A particular factorization of the joint probabilities implies a particular graph

and vice-versa. Moreover since such factorizations imply independence and

conditional independence relations, the graph makes the same statements about

independence as the factorization. For example, the statement

p(xn, θ) =
N∏

n=1

p(xn|θ), (1.5)

implies that the xi are independent given θ and corresponds to the graph in Figure

1.2. Often we deal with a set of variables xn that are independent and identically

distributed (i.i.d.) given a parameter θ, such as independent samples of a random

variable. Such i.i.d sub-graphs can be represented using a plate notation in which

a box is drawn around the repeated nodes, as in Figure 1.3.
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p(θ)

p(x|θ)

θ

x

Figure 1.1: A simple directed graphical model. Observed variables are typically
placed at the bottom of the graph and shaded.

!

x1 x2 xN

…

Figure 1.2: A graphical model depicting a series of random variables xn that are
conditionally independent given θ.

The key benefit of formalizing the probabilistic models as a graph is that it

allows researchers to apply graph-theory to the solution of inference problems

in more complicated models. The graph formalism allowed general solutions

to be found for graphical models regardless of their specific structure. Thus,

exact methods of inference, such as the junction tree algorithm, deterministic

approximate methods such as variational algorithms, and stochastic methods such

as Markov chain Monte Carlo (MCMC) and Particle Filtering methods can all be

applied in general to many different models. Of course, one still has to find models

in which the inference is effective and tractable using any of these methods [48].



29

θ

xn

N

Figure 1.3: A graphical model as in Figure 1.3, but using a plate to represent that
the variables xn are conditionally independent and identically distributed given θ.

1.3.3 Examples

One of the interesting properties of generative models is the phenomenon of

explaining away. Explaining away describes the interaction of two variables that

are marginally independent, yet both influence a common child. If nothing is

known about the child variable, then the parents remain independent, but if the

child variable is observed, then the parents can become dependent given the child.

This counterintuitive result is easiest to understand by example.

A simple case of explaining away is the fuel gauge example. Suppose the fuel

gauge of your car indicates an empty tank: one hypothesis is that the tank is

indeed empty, an alternate hypothesis is that the battery is dead, and thus the

fuel gauge gives a faulty reading (for the sake of argument suppose that there

are no other possible influences on the fuel gauge). This situation corresponds

to the graphical model in Figure 1.4. After looking at the fuel gauge, you are

inclined to think that either explanation is equally likely given your observation.

You realize that if you turn on the lights, you will see if the battery is working,

and this will help you guess if the gas tank is empty. If the lights do not come on,

then the battery must be dead, and your confidence that you may have some fuel

increases. This is what is meant by explaining away: the fact that the battery is
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dead explains the fuel gauge reading – you may be out of gas as well, but your belief

that you have gas is greater than if you thought the battery was working. Thus

explaining away is a competition between explanations. In generative models, this

competition is implemented in a principled way. The principle of explaining away

allows generative models to infer the most likely explanations for an observation

among several alternatives.

An illustration of Bayesian inference in perception is given by a one-dimensional

pin-hole camera (see Figure 1.5). If x is the one-dimensional sensor image, and

the world consists of a point light source at some hypothetical two-dimensional

location relative to the observer specified in θ, then p(x|θ) might be defined via

the expected pattern of light at the sensor image — the forward model — plus

uncertainty due to sensor noise. Suppose that the observed image is dark except

for a tiny spot at one location. The likelihood as a function of hypotheses, θ, given

the observation would then have larger values concentrated around those points

that could lead to observations similar to x, thus it will be concentrated around

a ray extending out of the aperture of the camera through the actual point light

source. Suppose prior knowledge tells us that the light source is roughly a certain

distance away; that is, p(θ) is concentrated around an area in space at a certain

distance from the camera. Then the posterior will be concentrated around the

intersection of the posterior and the likelihood function, as depicted in Figure 1.5.

The oblong shape of the posterior in this case indicates the uncertainty about the

distance of the light from the camera given this one observation.

A more realistic vision model is discussed in Chapter 4 (see Figure 1.6). This

model (G-flow) simultaneously tracks 3D pose, non-rigid motion, object texture

and background texture. The beauty of this formulation is that we can use our

knowledge of projective geometry to design the general form of the model, yet

leave calibration parameters and noise distributions to be learned from data. Not

everything has to be designed, and not everything has to be learned.
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gas?

fuel
gauge

battery?

lights

Figure 1.4: Explaining away: the fuel gauge example: Your fuel gauge is on empty,
and you suspect that the battery may be dead, or you may be out of gas, or both.
You turn on the lights to see if the battery is working. If the lights come on you
tend to believe that you are out of gas, whereas if the lights are very dim you tend
to believe that you may have gas.
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Figure 1.5: Toy example: Bayesian inference in a pinhole camera. Inside the
camera the observation x∗ is depicted as a plot (black) of intensity as a function
of position received at the sensor (dotted line). The true position of the light
point source in the world is θ∗ plotted as a star in hypothesis space. Given
θ∗ the observation probability as a function of x is depicted as a concentration
around the observation (orange). Given observation x∗, the likelihood function
as a function of θ is plotted as a beam concentrated around points in hypothesis
space consistent with x∗ (yellow). Prior knowledge of likely hypotheses p(θ) is
depicted as an elliptical distribution hovering some distance from the camera
(blue). The posterior p(θ|x∗) is depicted as an elliptical distribution concentrated
on the intersection between the likelihood and the prior (green).
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Figure 1.6: A more complicated graphical model described in Chapter 4, in which
elements of the scene, such as the background, face pose, face morph (deformation),
and surface appearance, all interact to explain the observed video.

1.3.4 Problem-Level Assumptions

The probabilistic modeling approach allows us to build in problem-level

assumptions, such as, for instance, the assumptions that different objects do not

occupy the same space, and individual objects cannot be in multiple places at

once. Certainly some probabilistic models can be relatively unstructured. The

Boltzmann machine [16], for instance, was a binary graphical model that, although

extremely powerful in its learning ability, had little built-in structure, and was thus

somewhat amorphous. However, probabilistic models can be structured in ways

that reflect an understanding of the problem. For example, the Markov random

field (MRF) approach of Geman and Geman [32], which addressed the problem of

enhancing images, incorporated the topological structure of the hidden image, a

model of spatial blurring, distortion, and noise that produce the observed image

given the clean image. Inference in the model can be derived and implemented

according to these constraints in a variety of ways. However the question of what
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is inferred must be understood at a level above the implementation — at the

problem-level.

For generative models, in particular, the assumptions can often be expressed

in terms of properties of the world, and hence their validity is often easy to judge.

If the assumptions are too tight in the sense that they are often violated by

experience, or conversely if the assumptions are too loose in that they allow for

sensory signals that never happen or fail to capture important regularities, then we

can come up with ideas about how to adjust them to bring them closer to reality.

For example, models for vision often assume that there is diffuse lighting and

all surfaces reflect light equally in all directions. Such an assumption limits the

conditions under which inference will be optimal and allows us to predict when the

method will be unreliable. However it also allows us to propose new assumptions

to handle different situations.

1.3.5 Function versus Mechanism

Probabilistic methods explicitly represent uncertainty: a random variable

is represented by a probability distribution over possible values, which can

represent both the most likely values and how certain the system is about

those values. Deterministic systems, such as neural networks, typically do not

explicitly represent uncertainty. However there is a paradox: typically inference

in probabilistic systems operates deterministically, and the representation of

uncertainty may not be apparent when looking at its implementation. Thus,

although probabilistic models can be distinguished from deterministic models

in their specification of assumptions and representation of uncertainty at the

functional level, the mechanisms that result from implementing inference in the

probabilistic model may be indistinguishable from a particular deterministic model.

For instance, in a probabilistic classifier, the maximum a posteriori class (the

most likely class given an observation) can be inferred from observations of the

data. Any function that produces the same mapping from observations to states
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— for instance, a simple decision threshold in the observation space – would be

an implementation of optimal classification within that model. However, such a

mapping may not have an explicit representation of the uncertainty in the posterior

distribution of the classes, or the uncertainty in the probability of the observation

given the classes. Thus, the whole question of the probabilistic versus deterministic

nature of the system hinges upon the level of analysis at which the system is

understood.

1.3.6 Explaining Mechanisms

The fact that probabilistic models define an optimality relationship between

the assumptions of the model and the resulting inference algorithms means that

they can help us understand existing mechanisms. They lend themselves to

an axiomatic approach, in which axioms are stated in terms of assumptions of

functional and probabilistic relationships between variables. These assumptions

lead to optimal methods that can be compared to existing or intuitive methods

of solving a particular problem. If they are similar we gain an understanding of

the conditions under which the existing method is optimal, as well as a family of

related methods that can be obtained by varying the assumptions.

An example of such an understanding of a computational system is given in

the independent component analysis (ICA) literature. ICA, which finds linear

combinations of its inputs that are statistically independent, was formulated by [8]

in terms of a learning rule called Infomax that maximizes the mutual information

between the inputs and outputs of a neural network. One application of ICA was

that if its inputs were linear mixtures of various signals such as speech and music,

the Infomax learning rule could often find the linear combinations that would

separate the input signals.

The same problem can be posed as a generative model in which independence is

assumed in the hidden variables, and the observed variables are linear combinations

of the hidden variables [70]. Under this analysis the nonlinear function of the
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neurons in Infomax plays the same role as the cumulative distribution function of

the hidden variables in the generative model approach. Thus the generative model

approach gave meaning to this nonlinearity by making explicit its assumption

about the probability distribution of the sources. This new understanding made

clear the conditions under which the algorithm would fail, namely when the

assumed source distribution poorly represented the actual source distribution. It

showed that under a special case, when the sources were assumed to be Gaussian,

ICA not only would fail to separate the sources, but would reduce precisely to the

well-known principle components analysis (PCA) problem.

The generative model framework permitted further development of the idea.

The source distribution could now be learned [2] and the algorithm could be

extended. For instance, [70] proposed an extension where the sources contained

temporal correlations, and [49] proposed a Bayesian model in which prior

knowledge of the signal propagation constraints (inverse-square law) could be used

to simultaneously constrain the inference of the sources, their mixing strengths,

and their spatial locations.

1.3.7 Caveats

One problem with the use of generative models is that their generality has

a cost: they may not perform as well for a particular discrimination task as

a system trained to do just that task. For instance, if the goal is to predict

video from audio, it might be better to construct a discriminative model that

specifically optimizes that prediction, rather than a model that tries to explain

the whole joint distribution of audio and video. Generative models describe

the entire joint distribution, so they are much more flexible than discriminative

models: any variable can be treated as observed or hidden. It possible however to

incorporate discriminative models, for instance to provide proposal distributions

for Monte-Carlo inference techniques, as in [91, 24].

In the audio-visual experiments reported in Chapter 6 cross-modal learning
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was difficult to control because they tended to explain the strong within-modality

dependencies at the expense of the weak between-modality dependencies. A

future direction is to investigate the conditions under which cross-modal learning

is optimal in a generative model. Preliminary work suggests that cross-modal

learning can be promoted by incorporating rich models of strong within-modality

dependencies so that there is nothing left to explain but cross-modal dependencies.

Another problem is with the claim that the assumptions of a probabilistic model

are hypotheses that can be tested by the model and that allow us to understand

the mechanisms of its implementation. The flexibility in the implementation of

a probabilistic model means that some of the behavior may have more to do

with how the model is implemented than with the model itself. This raises an

important advantage of the probabilistic framework: it requires one to specify a

set of assumptions about the world, and a specification of what to be inferred,

but leaves open a wide range of strategies for achieving inference, and for using

the inference in decision-making. The caveat is that this flexibility can also be a

liability for the approach, if the success or failure is a by-product of the choice of

implementation rather than the model itself.

In addition, although it is sometimes tempting to suppose that a model explains

a mechanism in the brain, there may be many different models that produce similar

mechanisms. For instance, the G-flow model presented in Chapter 4 leads to a

gabor-like representation similar to that of primary visual cortex simple cells. The

images are first blurred because the assumptions that lead to optic flow demand

spatial smoothness. Then spatial and temporal derivatives are taken, which follow

from the Taylor series expansion in the Laplace approximation. The combination

of a blurring function with a derivative leads to orientation-specific spatial

filters. However, we cannot conclude that this explains what we observe in the

brain: other hypotheses about their role, such as edge-detection, texture analysis,

shape-from-shading, information maximization and redundancy reduction, lead to

similar mechanisms [69, 45]. Perhaps this confluence of explanations reflects a deep

principle, or perhaps it reflects serendipity. Ultimately when we do not understand
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the context in which a mechanism operates, we must be careful not to jump to

conclusions about its purpose.

Regarding the approach in general, one might argue that it is only a matter

of time before we have a learning system that can learn to see without any

assumptions just by observing data as it moves around in the world, and so

forth. Furthermore if and when such a learning system works it may automatically

organize into layers and modules that are easy to understand. This is an extreme

caricature of the black-box learning approach. An answer is that this would be

great if we can get it to work. However, we would still have to sort out which

parts are important for what perceptual task. Another answer is that this is a big

”if” and an even bigger ”when.” In the meantime we have no choice but to make

assumptions, and choose frameworks that allow us to make informed assumptions,

and yet still allow us to learn from data. There may be other architectures that

do this besides graphical models, and there is always room for more approaches.

1.4 Thesis Overview

The remaining chapters of this thesis consist of articles that have been published

or submitted for publication describing research that I have conducted over the

past four years with various colleagues. I began this work in machine perception

by looking at signal-level synchronies between audio and video as a means to

quickly infer the location of a sound given signals from a single microphone and

video camera (see Chapter 2). The resulting system worked well when the targets

had local motion such as lip movements, but was susceptible to large motions

in the video and complex changes in the audio. In addition since the model was

discriminative, it was not obvious how to infer audio from video or vice verse. Thus

it became clear that active tracking using generative models in both domains was

necessary in order to simultaneously infer gross motion and dependencies between

the fine-scale changes in the audio and video. Tracking in turn required more

advanced models of the objects appearance in the video signal and its manifestation
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in the audio signal, and how these signals change over time. After separately

investigating video tracking models (see Chapters 3 and 4), and audio separation

models (see Chapter 5), I returned to an audio-visual paradigm in which audio

and video could be inferred from each other (see Chapter 6). Hence I have gone

from using low-level audio-visual synchrony at one end, through more complex

modeling of audio and video signals, and finally returned to the task of inferring

one signal from the other. Along the way it turned out that taking uncertainty

into account was critical to the success of the models I proposed. The generative

model framework, in addition to providing principled learning methods, served to

organize my thoughts on the perceptual problem to be solved.

1.4.1 Audio-Vision: Using Audio-Visual Synchrony to

Locate Sounds

Chapter 2 presents a model of multi-modal perception. The task was to track

the location of the speaker in image coordinates using only single-microphone and

video camera signals of two people talking. The idea was to do this in a way that

assumed no prior information about the appearance of likely sound sources. Such

cross-modal information appears to be responsible for the adaptation of spatial

hearing relative to vision in animals. Since this type of experiment had never been

done before we wanted to find out if there was enough information in low-level

signal features to locate the sound. Mutual information was used in a system to

detect statistical dependencies between the amplitude of short segments of audio

signal and the brightness of different image areas over time. We found that if the

speakers did not move their heads while they spoke, the system could infer the

source of the sound, however with gross head movements that were statistically

unrelated to the sound the system could no longer make correct inferences.
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1.4.2 Large-Scale Convolutional HMMs for Real-Time

Video Tracking

Chapter 3 deals with a system for rapidly tracking a target face using very

simple features: in this case the color of the pixels in the object. Because color

is highly variable and background colors could be similar to the target color, a

background model, and adaptation to the foreground model were necessary to

achieve good performance. The model was framed as a generative model in which

the entire image was generated as follows: random variables controlled the location

and size of a face bounding box in the video. Pixels inside this bounding box were

drawn independently from a face color distribution, and pixels outside the box were

drawn from a background model distribution. In order to track the face in clutter

it is important to have knowledge of the dynamics of faces. A novel convolutional

hidden Markov model implements this knowledge in an extremely efficient way

that allows the full filtering inference to be solved, and enables tracking using

simple cues. The model also cooperates with a face finding module which supplies

information about the location of the face every once in a while, allowing the

color model to adapt to the changing lighting situation. This adaptation allows us

to take advantage of color features such as intensity that would normally not be

invariant to prevailing lighting conditions.

1.4.3 G-Flow: A Generative Model for Fast Tracking

Using 3D Deformable Models

Chapter 4 concerns a three-dimensional generative model for flexible objects

such as the face, in which simple projective geometry defines the forward model

from face texture, pose, and shape, to the sensor image. The model is constrained

by assumptions about face shapes incorporated into a face model. No other

constraints are imposed. Remarkably the model unifies the two computer vision

approaches of template matching and optic flow. A Laplace approximation yields
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an optic flow computation from one frame to the next. As the model gains certainty

of the texture appearance of the face, it can shift to a template matching approach

that uses the inferred texture to find the face location and pose in each frame.

1.4.4 Single Microphone Source Separation

Chapter 5 presents three experiments in which a forward model of sound

combination, combined with models of the individual sounds can separate

single-channel mixtures of the sounds. In order to do so it was important to adopt

a feature set that was very different from that typically used in speech recognition.

The model exploits the harmonic structure of speech by employing a high frequency

resolution speech model in the log-spectrum domain and reconstructs the signal

from the estimated posteriors of the clean signal and the phases from the original

noisy signal. We achieved substantial gains in signal to noise ratio (SNR) of

enhanced speech as well as considerable gains in accuracy of automatic speech

recognition in very noisy conditions. The model has interesting implications for

perception since it relies on the “explaining-away” property of probabilistic models.

The fact that one sound model explains the observed signal in a particular area

of the spectrum, means that the other model need not explain it. The model’s

explanation of the observed mixture is the result of a competition between two

models to explain different parts of the spectrum. Thus there are top-down aspects

of pattern completion and filling in that are important to the good results we

obtained.

1.4.5 Audio-Visual Graphical Models for Speech

Processing

Chapter 6 introduces a novel generative model that combines audio and

visual signals. The model allows cross-modal inference, enabling adaptation to

audio-visual data. We formulated a flexible object representation in a way that
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provides for unsupervised learning of an appearance-based manifold of prototypes

in a low-dimensional linear subspace embedded in the high-dimensional space of

pixels. The experiment in this chapter has a flavor of understanding the content

of a video via its contingencies with the audio modality as measured by the

contribution of video to speech enhancement. However because it is a generative

model, inference can also be done in the other direction – that is, interpreting

the audio via its contingency with video. This flexible combination of modalities

demonstrates the elegance of generative models of perception.



Chapter 2

Audio-Vision: Using Audio-Visual

Synchrony to Locate Sounds

Abstract

Psychophysical and physiological evidence shows that localization of acoustic

signals is strongly influenced by their synchrony with visual signals. This effect,

known as ventriloquism, is at work when sound coming from the side of a TV

set feels as if it were coming from the mouth of the actors. The ventriloquism

effect suggests that there is important information about sound location encoded

in the synchrony between the audio and video signals. In spite of this evidence,

audiovisual synchrony is rarely used as a source of information in machine

perception tasks. In this chapter we explore the use of audio visual synchrony

to locate sound sources. We developed a system that searches for regions of the

visual scene that correlate highly with the acoustic signals and tags them as likely

to contain an acoustic source. We discuss our experience implementing the system,

present results on a speaker localization task and discuss potential applications of

the approach.
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2.1 Introduction

We present a method for locating sound sources by sampling regions of

an image that correlate in time with the auditory signal. Our approach is

inspired by psychophysical and physiological evidence suggesting that audio-visual

contingencies play an important role in the localization of sound sources: sounds

seem to emanate from visual stimuli that are synchronized with the sound. This

effect becomes particularly noticeable when the perceived source of the sound is

known to be false, as in the case of a ventriloquist’s dummy, or a television screen.

This phenomenon is known in the psychophysical community as the ventriloquism

effect, defined as a mislocation of sounds toward their apparent visual source. The

effect is robust in a wide variety of conditions, and has been found to be strongly

dependent on the degree of “synchrony” between the auditory and visual signals

[19, 10].

The ventriloquism effect is in fact less speech-specific than first thought. For

example the effect is not disrupted by an upside-down lip signal [10] and is just as

strong when the lip signals are replaced by light flashes that are synchronized with

amplitude peaks in the audio signal [72]. The crucial aspect here is correlation

between visual and auditory intensity over time. When the light flashes are not

synchronized the effect disappears.

The ventriloquism effect produces an enduring localization bias, known

as the ventriloquism aftereffect. Over time, experience with spatially offset

auditory-visual stimuli causes a persistent shift in subsequent auditory localization.

Exposure to audio-visual stimuli offset from each other by only 8 degrees of azimuth

for 20-30 minutes is sufficient to shift auditory localization by the same amount.

A corresponding shift in neural processing has been detected in macaque monkeys

as early as primary auditory cortex[73]. In barn owls a misalignment of visual and

auditory stimuli during development causes the realignment of the auditory and

visual maps in the tectum[97, 82, 25].

The strength of the psychophysical and physiological evidence suggests that
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audio-visual contingency may be used as an important source of information

that is currently underutilized in machine perception tasks. Visual and auditory

sensor systems carry information about the same events in the world, and this

information must be combined correctly in order for a useful interaction of the

two modalities. Audiovisual contingency can be exploited to help determine which

signals in different modalities share a common origin. The benefits are two-fold:

the two signals can help localize each other, and once paired can help interpret

each other. To this effect we developed a system to localize speakers using input

from a camera and a single microphone. The approach is based on searching for

regions of the image which are “synchronized” with the acoustic signal.

2.2 Measuring Synchrony

The concept of audio-visual synchrony is not well formalized in the

psychophysical literature, so for a working definition we interpret synchrony as the

degree of mutual information between audio and spatially localized video signals.

Ultimately it is a causal relationship that we are often interested in, but causes

can only be inferred from effects such as synchrony. Let a(t) ∈ Rn be a vector

describing the acoustic signal at time t. The components of a(t) could be cepstral

coefficients, pitch measurements, or the outputs of a filter bank. Let v(x, y, t) ∈ Rm

be a vector describing the visual signal at time t, pixel (x, y). The components of

v(x, y, t) could represent Gabor energy coefficients, RGB color values, etc.

Consider now a set of s audio and visual vectors S = (a(tl), v(x, y, tl))l=k−s+1,··· ,k

sampled at times tk−s+1, · · · , tk and at spatial coordinates (x, y). Given this set of

vectors our goal is to provide a number that describes the temporal contingency

between audio and video at time tk. The approach we take is to consider each

vector in S as an independent sample from a joint multivariate Gaussian process

(A(tk), V (x, y, tk)) and define audio-visual synchrony at time tk as the estimate of

the mutual information between the audio and visual components of the process.

Let A(tk) ∼ Nn(µA(tk),ΣA(tk)), and V (x, y, tk) ∼ Nm(µV (x, y, t),ΣV (x, y, tk)),
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where µ represents means and Σ covariance matrices. Let A(tk) and V (x, y, tk)

be jointly Gaussian, i.e., (A(tk), V (x, y, tk)) ∼ Nn+m(µA,V (x, y, tk),ΣA,V (x, y, tk)).

The mutual information between A(x, y, tk) and V (tk) can be shown to be as follows

I(A(tk);V (x, y, tk)) = H(A(tk)) +H(V (x, y, tk))−H(A(tk), V (x, y, tk))

=
1

2
log(2πe)n|ΣA(tk)|

+
1

2
log(2πe)m|ΣV (x, y, tk)|

−1

2
log(2πe)n+m|ΣA,V (x, y, tk)|

=
1

2
log

|ΣA(tk)||ΣV (x, y, tk)|
|ΣA,V (x, y, tk)|

. (2.1)

In the special case that n = m = 1, then

I(A(tk);V (x, y, tk)) = −1

2
log(1− ρ2(x, y, tk)), (2.2)

where ρ(x, y, tk) is the Pearson correlation coefficient between A(tk) and V (x, y, tk).

For each triple (x, y, tk) we estimate the mutual information between A(tk) and

V (x, y, tk) by considering each element of S as an independent sample from the

random vector (A(tk), V (x, y, tk)). This amounts to computing estimates of the

joint covariance matrix ΣA,V (x, y, tk). For example the estimate of the covariance

between the ith audio component and the jth video component would be as follows

SAi,Vj
(x, y, tk) =

1

s− 1

s−1∑
l=0

(ai(tk−l)− āi(tk))(vj(x, y, tk−l)− v̄j(x, y, tk)), (2.3)

where

āi(tk) =
1

s

s−1∑
l=0

ai(tk−l), (2.4)

v̄j(tk) =
1

s

s−1∑
l=0

vj(x, y, tk−l). (2.5)

These simple covariance estimates can be computed recursively in constant time

with respect to the number of timepoints. The independent treatment of pixels

would lend itself well to a parallel implementation.
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To measure performance, a secondary system produces a single estimate of the

auditory location, for use with a database of labeled solitary audiovisual sources.

Unfortunately there are many ways of producing such estimates so it becomes

difficult to separate performance of the measure from the underlying system. The

model used here is a centroid computation on the mutual information estimates,

with some enhancements to aid tracking and reduce background noise.

2.3 Implementation Issues

A real time system was prototyped using a QuickCam on the Linux operating

system and then ported to NT as a DirectShow filter. This platform provides input

from real-time audio and video capture hardware as well as from static movie files.

The video output could also be rendered live or compressed and saved in a movie

file. The implementation was challenging in that it turns out to be rather difficult

to process precisely time-synchronized audio and video on a serial machine in real

time. Multiple threads are required to read from the peripheral audio and visual

devices. By the time the audio and visual streams reach the AV filter module, they

are quite separate and asynchronous. The separately threaded auditory and visual

packet streams must be synchronized, buffered, and finally matched and aligned by

time-stamps before they can finally be processed. It is interesting that successful

biologial audiovisual systems employ a parallel architecture and thus avoid this

problem.

2.4 Results

To obtain a performance baseline we first tried the simplest possible approach:

A single audio and visual feature per location: n = m = 1, v(x, y, t) ∈ R is the

intensity of pixel (x, y) at time t, and a(t) ∈ R is the average acoustic energy

over the interval [t − ∆t, t], where ∆t = 1/30 sec , the sampling period for the

NTSC video signal. Figure 2.1 illustrates the time course of these signals for a
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(a) M is talking.
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(b) J is talking.

Figure 2.1: Normalized audio and visual intensity across a sequence of frames in
which a sequence of four numbers is spoken. The top trace is the contour of the
acoustic energy from one of two speakers, M or J, and the bottom trace is the
contour of intensity values for a single pixel, (147,100), near the mouth of J.

non-synchronous and a synchronous pair of acoustic energy and pixel intensity.

Notice in particular that in the synchonous pair, 2.1(b), where the sound and

pixel values come from the same speaker, the relationship between the signals

changes over time. There are regions of positive and negative covariance strung

together in succession. Clearly the relationship over the entire sequence is far

from linear. However over shorter time periods a linear relationship looks like a

better approximation. Our window size of 16 samples (i.e., s = 16 in equation

2.3 coincides approximately with this time-scale. Perhaps by averaging over many

small windows we can capture on a larger scale what would be lost to the same

method applied with a larger window. Of course there is a trade-off in the

time-scale between sensitivity to spurious transients, and the response time of

the system.

We applied this mutual information measure to all the pixels in a movie, in the

spirit of the perceptual maps of the brain. The result is a changing topographic

map of audiovisual mutual information. Figure 2.2 illustrates two snapshots in

which different parts of the face are synchronous (possibly with different sign)

with the sound they take part in producing. It is interesting that the synchrony
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(b) Frame 104: J (at right) is talking.

Figure 2.2: Estimated mutual information between pixel intensity and audio
intensity (bright areas indicate greater mutual information) overlaid on stills from
the video where one person is in mid-utterance.

is shared by some parts, such as the eyes, that do not directly contribute to the

sound, but contribute to the communication nonetheless.

To estimate the position of the speaker we computed a centroid were each point

was weighted by the estimated mutual information between the correpsonding pixel

and the audio signal. In order to reduce the intrusion of spurious correlations

from competing targets, once a target has been found, we employ a Gaussian

influence function [35]. The influence function reduces the weight given to mutual

information from locations far from the current centroid when computing the next

centroid. To allow for the speedy disengagement from a dwindling source of mutual

information we set a threshold on the mutual information. Measurements under the

threshold are treated as zero. This threshold also reduces the effects of unwanted

background noise, such as camera and microphone jitter.

Ŝx(t) =

∑
x

∑
y x θ(log(1− ρ̂2(x, y, t)))ψ(x, Ŝx(t− 1))∑

x

∑
y θ(log(1− ρ̂2(x, y, t)))ψ(x, Ŝx(t− 1))

(2.6)

where Ŝx(t) represents the estimate of the x coordinate for the position of the

speaker at time t. θ(.) is the thresholding function, and ψ(x, Ŝx(t − 1)) is the

influence function, which depends upon the position x of the pixel being sampled
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and the prior estimate Ŝx(t−1). ρ̂2(x, y, t) is the estimate of the squared correlation

between the intensity in pixel (x, y) and the acoustic enery, when using the 16

past video frames. −1
2
log(1− ρ̂2(x, y, t)) is the corresponding estimate of mutual

information (the factor, −1
2

cancels out in the quotient after adjusting the threshold

function accordingly.)

We tried the approach on a movie of two people (M and J) taking turns while

saying random digits. Figure 2.3 shows the estimates of the actual positions of the

speaker as a function of time. The estimates clearly provide information that could

be used to localize the speaker, especially in combination with other approaches

(e.g., flesh detection).
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Figure 2.3: Estimated and actual position of speaker at each frame for six hundred
frames. The sources, M and J, took turns uttering a series of four digits, for three
turns each. The actual positions and alternation times were measured by hand
from the video recording
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2.5 Conclusions

We have presented exploratory work on a system for localizing sound sources

on a video signal by tagging regions of the image that are correlated in time with

the auditory signal. The approach was motivated by the wealth of evidence in

the psychophysical and physiological literature showing that sound localization is

strongly influenced by synchrony with the visual signal. We presented a measure

of local synchrony based on modeling the audio-visual signal as a non-stationary

Gaussian process. We developed a general software tool that accepts as inputs all

major video and audio file formats as well as direct input from a video camera. We

tested the tool on a speaker localization task with very encouraging results. The

approach could have practical applications for localizing sound sources in situations

where acoustic stereo cues are unavailable or unreliable. It also might be useful

for learning the calibration of acoustic localization.

While the results reported here are very encouraging, more work needs to

be done before practical applications are developed. For example we need to

investigate more sophisticated methods for processing the audio and video signals.

At this point we use average energy to represent the video and thus changes in the

fundamental frequency that do not affect the average energy would not be captured

by our model. Similarly local video decompositions, like spatio-temporal Gabor

filtering, or approaches designed to enhance the lip regions may be helpful. The

changing symmetry observed between audio and video signals might be addressed

rectifying or squaring the normalized signals and derivatives. Finally, relaxing

the Gaussian constraints in our measure of audio-visual contingency may help

improve performance. While the work shown here is exploratory at this point, the

approach is very promising: It emphasizes the idea of machine perception as a

multimodal process it is backed by psychophysical evidence, and when combined

with other approaches it may help improve robustness in tasks such as localization

and separation of sound sources.
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Chapter 3

Large-Scale Convolutional HMMs

for Real-Time Video Tracking

Abstract

Bayesian filtering provides a principled approach for a variety of problems in

machine perception and robotics. Current filtering methods work with analog

hypothesis spaces and find approximate solutions to the resulting non-linear

filtering problem using Monte-Carlo approximations (i.e., particle filters) or linear

approximations (e.g., extended Kalman filter). Instead, in this chapter we propose

digitizing the hypothesis space into a large number, n ≈ 100, 000, of discrete

hypotheses. Thus the approach becomes equivalent to standard hidden Markov

models (HMM) except for the fact that we use a very large number of states.

One reason this approach has not been tried in the past is that the standard

forward filtering equations for discrete HMMs require order n2 operations per

time step and thus rapidly become prohibitive. In our model, however, the states

are arranged in two-dimensional topologies, with location-independent dynamics.

With this arrangement predictive distributions can be computed via convolutions.

In addition, the computation of log-likelihood ratios can also be performed via

convolutions. We describe algorithms that solve the filtering equations, performing

53
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this convolution for a special class of transition kernels in order n operations per

time step. This allows exact solution of filtering problems in real time with tens of

thousands of discrete hypotheses. We found this number of hypotheses sufficient

for object tracking problems. We also propose principled methods to adapt the

model parameters in non-stationary environments and to detect and recover from

tracking errors.

3.1 Introduction

Bayesian filtering refers to the problem of making inferences about the values

taken by random variables at time t based on a sequence of observations up to

that time. In computer vision the observed variables are typically image sequences

and the unobserved variables are analog in nature (e.g, pose and deformation

parameters of an object). For this reason continuous state filtering approaches are

the preferred choice. While exact analytical solutions exist for continuous filtering

problems the needed assumptions (Gaussianity and Linearity) are too restrictive.

Thus Monte-Carlo approximations (i.e., particle filters) have become the method

of choice in computer vision and much work is being devoted to making these

approximations as efficient as possible [15, 1, 92].

In speech recognition hidden Markov models (HMMs) are used to model the

dynamics of speech. The observable data of interest are phoneme-like segments

of speech and thus can be represented well with a small number of discrete states

or hypotheses (nh ≈ 50). Furthermore the models are typically constrained for

state transitions to have left-to-right constraints. The small number of states

and state transitions allows the filtering problem to be solved exactly in real

time. Unfortunately the filtering equations in the discrete case require order n2
h

operations per time step and thus do not scale well for large, densely connected

hypothesis spaces. This is arguably the main reason why HMMs are not as popular

in computer vision as they are in speech recognition.

While in general the discrete filtering equations scale order n2
h, in most
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computer vision problems there is spatio-temporal structure that can be used to

develop faster inference algorithms. In this chapter we present a new algorithm

that works in order nh operations. This makes it possible to solve inference

problems in real time with tens of thousands of hypotheses. We exhaustively

populate a continuous hypothesis space with a large number of discrete states

and solve the resulting inference problem exactly. To do so efficiently we employ

a double-integral technique to dramatically reduce computation time. Whereas

previous models have discretized hypothesis spaces, as far as we know the use of

the double integral technique to perform inference in such models is novel. We

describe these techniques in the context of 2D tracking problems. Extensions are

discussed in Section 3.8.

3.2 A Generative Model for 2D Tracking

We identify random variables with capital letters, and specific values taken by

those variables with small letters. When possible we use shorthand notation and

identify probability functions by their arguments. For example, p(ht) is shorthand

for pHt(ht), the probability (or probability density) that the random variable Ht

takes the specific value ht. We use subscripted columns to designate sequences.

For example y1:t = y1 · · · yt. Finally we reserve Greek letters for parameters.

We model the image generation process as follows (see Figure 3.1): First a

parameter λt is chosen by a process described in Section 3.5. This parameter

determines the location-dependent probability distribution of image features in

the background bi(· | λt), and the probability distribution of image features in the

object of interest o(·|λt). The image features can be any function of a local patch of

pixels, and can represent for instance texture, color, or motion or object categories

(see [65]). Without loss of generality we formulate the model here using the color

of individual pixels as the feature of interest 1.

1Here color refers to an rgb value and thus it may include intensity, not just hue and saturation.
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The pixels rendered by the object are inside a rectangle of fixed aspect ratio

ht = (xt, st) centered at xt, with scale parameter st. Generalizations to arbitrary

rotations and non-rectangular hypotheses are easy (see Section 3.8) once this case

is understood. The rectangle containing the object pixels is chosen with probability

p(xtst | xt−1st−1) = p(st | st−1)p(xt | xt−1st−1).

Once ht is known, we know which pixels are rendered by the background and

which are rendered by the object of interest. For each pixel location u in the

background, a color yt(u) is chosen with probability bi(yt(u) | λt). For each pixel v

in the object, a color yt(v) is chosen with probability o(yt(v) | λt)

Location of Object 
on Image Plane

Observed Image sequence     Y0

    λ0

    Yt

    λt

 Yt+1

λt+1

             Ht+1               Ht                 H0

Background Model

Object Histogram

Figure 3.1: Graphical Appearance Model: The hidden variableH determines which
pixels belong to the object and which belong to the background. The object pixels
are rendered independently from an object histogram. The background pixels are
rendered independently from a space variant background histogram model.

Image Likelihood Let yt represent the image observed at time t and yt(u) the

value taken by the pixel at location u ∈ R2 in that image. From the description of
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the model above, it follows that:

log p(yt | xtstλt) = log
∏
u∈ht

o(yt(u) | λt)

+ log
∏
u 6∈ht

bi(yt(u) | λt) (3.1)

=
∑
u∈ht

log
o(yt(u) | λt)

bi(yt(u) | λt)
+ Z(yt, λt) (3.2)

where

Z(yt, λt) =
∑

u

log bi(yt(u) | λt) (3.3)

The log-likelihood of a hypothesis ht is a constant Z plus the sum of the

log-likelihood ratios of all the pixels within that hypothesis.

Filtering Distribution Let y1:t = (y1 · · · yt) represent an observed image

sequence up to time t. Our goal is to compute the filtering distribution, i.e.,

the posterior distribution of ht given y1 · · · yt. Using the standard HMM update

equations we have that the posterior probability of a hypothesis ht is proportional

to the product of the probability of the current image given the hypothesis times

the predictive probability of each hypothesis given the past image sequence:

p(ht | y1:tλ1:t) =
p(y1:t−1 | λ1:t)

p(y1:t | λ1:t)

p(yt | htλ1:t)p(ht | y1:t−1λ1:t−1) (3.4)

p(ht | y1:t−1λ1:t−1) =
∑
st−1

p(st | st−1)∑
xt−1

p(xt | xt−1st−1)p(ht−1 | y1:t−1λ1:t−1) (3.5)

where ht = (xt, st), ht−1 = (xt−1, st−1). For each scale, we let the transition

distribution p(xt | xt−1st) be rectangular, uniform and shift invariant. This allows

us to use cumulative probability maps to compute the predictive probability of

each hypothesis with four operations per hypothesis, as described in Section 3.4.
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3.3 Minimum Risk Estimation

In many applications we need to choose a single hypothesis per time step. In

such cases it is reasonable to choose the hypothesis that minimizes the posterior

risk, i.e., the expected average of an error function

ĥt = argmin
h

E(ρ(Ht;h) | y1:t λ1:t) (3.6)

where ρ is an error function that measures the mismatch between two hypotheses.

We experimented with two types of error functions: (1) The correct hypotheses get

zero error and incorrect hypotheses get error 1; (2) An error function that measures

average distance between corresponding object landmarks in two hypotheses.

The first error function is minimized by choosing the hypothesis with maximum

posterior probability (MAP).

The minimization of the second error function is described here. For generality

we allow different object landmarks to have different weights, by using a normalized

relevance map w. Let u represent a point on the image plane. Its standardized

location with respect to the hypothesis x, s is z = (u − x)/s. The weight of this

point is given by w(z). Let µx, σ
2
x represent the mean and variance of the hypothesis

x, s with respect to the relevance map w, i.e.

µx =

∫
u w(

u− x

s
)du (3.7)

σ2
x =

∫
(u− µx)

2 w(
u− x

s
)du (3.8)

Now consider a different hypothesis x′, s′. According to this hypothesis the

landmark u from hypothesis x, s is located at s′

s
(u − x) + x′. The scaled average

distance from equivalent landmarks follows:

ρ2(x, s;x′, s′) =
1

σ2
x

∫
‖u− s′

s
(u− x) + x′‖2 w(

u− x

s
)du (3.9)

This error function has an intuitive interpretation as the expected distance between

corresponding landmarks in the two hypotheses: For example if ρ2 = 0.25 the
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average error is in the order of 0.5 times the scale of the standard object. After

some simple derivations it can be shown that

ρ2(x, s;x′, s′) =

(
si − s′i
s

)2

+

(
µx − x′

σx

)2

(3.10)

For simplicity we can choose a relevance map such that µx = x and σx = s, in

which case

ρ2(x, s;x′, s′) =

(
si − s′i
s

)2

+

(
x− x′

s

)2

(3.11)

The error between two hypothesis (x, s) and (x′, s′) is simply the sum of the squared

scaled difference of locations plus the squared scaled difference of the scales between

the two hypotheses.

The minimum risk hypothesis for this error function can be found by

differentiating the posterior risk with respect to x, s, setting it to zero and solving

the resulting equation. The results are as follows:

ŝ =
1

E(1/S | y1:t λ1:t)
; x̂ =

E(X/S | y1:t λ1:t)

E(1/S | y1:t λ1:t)
(3.12)

3.4 Computational Complexity

To compute the filtering distribution at time t+ 1 first we need to to compute

the predictive distribution at time t + 1. This is the distribution of hypothesis at

time t+ 1 based on the observed images up to time t. The predictive distribution

contains all the information about the hypotheses prior to the observation of the

image at time t + 1. It is obtained by propagating the filtering distribution at

time t + 1 via the state transition function p(ht+1 | ht). Following Bayes’ rule we

then need to compute the likelihood of the image at time t + 1 for each possible

hypothesis and multiply the predictive probability (prior) times the likelihood of

each hypothesis. In this section we describe methods to acheive the desired results

in order nh + np operations, making it possible to work with a very large number

of hypothesis in real time.
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Figure 3.2: Double integral of log likelihood ratios: The log-likelihood of a
hypothesis is the sum of the log-likelihood ratios of each pixel. This can be
computed in 4 operations using cumulative log-likelihood ratio maps: l(h) =
L(1)−L(2)−L(3)+L(4), where L(i) is the cumulative log likelihood ratio evaluated
at pixel i.

Double Integral Likelihood Ratio Maps A brute force approach for

computing the likelihood-ratios would require order np × nh sums, where np is

the number of pixels on the image and nh the number of hypotheses. In practice

we can compute the log-likelihood ratio of all the hypothesis using np + 4nh sums.

First for each pixel location x = (x1, x2)
T we compute the likelihood ratio of the

value taken by that pixel

l(x) = log
o(yt(x) | λt)

bx(yt(x) | λt)
(3.13)

This can be done using table-lookups for the likelihood-ratio function. Then we

compute the double integral log-likelihood ratio map L:

L(x) =

x1∑
u1=0

x2∑
u2=0

l(x) (3.14)

Once L is known, the probability of each hypothesis can be computed in 4

operations (see Figure 3.2).

Double Derivative Predictive Maps For the general case the problem of

computing the predictive probability from the filtering probability takes n2
h
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operations

p(xt+1st+1 | y1:tλ1:t) =
∑
xt,st

p(xtst | y1:tλ1:t)

p(xt+1st+1 | xtst) (3.15)

=
∑
st

p(st+1 | st)
∑
xt

p(xtst | y1:tλ1:t)p(xt+1 | xtst) (3.16)

If the transition probabilities are shift invariant this amounts to a convolution

operation for each of the scales, with cost of order ns × np log np, where ns is

the number of scales under consideration. Here we propose a new approach that

allows updating in ns × (np + 4nx) operations. The method relies on propagation

of probability derivatives. Once the probability derivative map is computed, the

actual probabilities are obtained by integration. Let the double derivative of a

probability mass p be as follows follows

∇2
xp(x) =

∑
i,j∈{−1,1}

p(x+ uij) (3.17)

where uij = (i, j)T . Thus

∇2
xp(xt+1, st+1 | y1:tλ1:t) =

∑
st

p(st+1 | st)∑
xt

p(xtst | y1:tλ1:t)∇2
xp(xt+1 | xtst) (3.18)

and since p(xt+1 |xtst) is a square centered at xt and with height 2st it follows that

∇2
xp(xt+1 | xtst) =


1 if xt+1 = xt ± (1, 1)T

−1 if xt+1 = xt ± (−1, 1)T

0 else

(3.19)

Table 3.1 shows the cost of an iteration of the filtering algorithm. By use of

cumulative log-likelihood ratio maps and rectangular transition probabilities, the

cost is order nh + np.



62

Task Sum/Diffs Prods/Ratios Exps LLRs If
CLR np np

LI 4nh nh

PD 4nh + np

UFD nh

NFD nh nh

MAP nh

MRS nh 1
MRL nh nh + 1

Table 3.1: Computational cost per iteration: nh: Number of hypothesis; np:
Number of pixels; LLR: Log-likelihood ratio of a single pixel; If: Logical
“if” operation; CLR: Cumulative Likelihood Ratio Map; LI: Likelihoods;
PD: Predictive Distribution; UFD: Unnormalized Filtering Distribution; NFD:
Normalized Filtering Distribution; MAP: Maximum Posterior Hypothesis; MRS:
Minimum Risk Scale; MRL: Minimum Risk Location. Log-likelihood ratios (LLR)
and exponentials can be implemented via look-up tables.

Thus, to construct the gradient predictive probability map we just need to send

four numbers per hypothesis (one for each of the corners of the square centered

at the center of the hypothesis). Once the gradient map is built, the predictive

probability can be obtained by integrating the map, which costs np operations per

map and obtaining the value of the integral map at xt+1 for scale st (see Figure 3.3

p(xt+1st+1 | y1:t) =

xt+1(1)∑
i=1

xt+1(2)∑
j=1

∇2
xp(xt+1st+1 | y1:t) (3.20)

The standard forward filtering recurrence for HMMs requires order n2
h

operations per time step, where nh is the number of hypotheses. The use

of cumulative probability maps reduces it to 8nh algebraic operations and nh

exponentials. This allows filtering problems with about 100, 000 hypotheses to

run in real time on a state of the art PC. In practice this provides more than

enough resolution for difficult Tracking problems (see Section 3.6).
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p(xtst|y1:t) ∇xp(xt+1st+1|y1:t) p(xt+1st+1|y1:t)

Filtering Distribution Predictive DistributionDouble Derivative of the
Predictive Distribution

Figure 3.3: The double derivative method for computing the predictive
distribution: For each hypothesis from the filtering distribution we add 4 numbers
(2 positive and 2 negative) at the corners of the transition probability kernel for
that hypothesis. The sum of all these numbers is the double derivative map of
the predictive distribution. The double integral of this map gives us the desired
predictive distribution.

3.5 Unknown and Non-stationary Model

Parameters

The appearance of the background and the object of interest may change due

to changes in illumination, camera movement, or the movement of objects in and

out of the image plane. Thus we need a scheme to adaptively change the model

parameters.

Let M represent the set of possible image generation models. When the model

is unknown and non-stationary, optimal inference calls for marginalizing across all

possible image sequence models

p(ht | y1:t) =
∑
λ1:t

p(λ1:t | y1:t)p(ht | y1:tλ1:t), (3.21)

where p(λ1:t | y1:t) is the parameter adaptation term. In practice we need to

approximate this by: finding reasonable estimates ŷ1:t and letting p(λ1:t | y1:t) ≈
δ(y1:t, ŷ1:t), i.e.,

p(ht | y1:t) ≈ p(ht | y1:tλ̂1:t) (3.22)
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This approximation while efficient is risky and thus methods are needed to detect

when the approximation is not working well and to recover from error.

In our current implementation we rely on an auxiliary object detector whose

main role is to help with parameter estimation and error recovery of the primary

object tracker. The secondary detector is set to have very small number of

false alarms, thus when it detects the object of interest we can safely assume

that the object was there. The disadvantage of the auxiliary detector is higher

computational cost than the primary detector and the fact that it can only detect

the object of interest in a particular pose. In our experiments the auxiliary detector

is a Viola & Jones [93] style detector of frontal/upright faces described in [65].

Non Stationary Environments We model changes in illumination, camera

movement and background movement as a continuous time Poisson jump process:

The background and object models are constant except for specific jump points

that occur at unknown random times. The time between jump points is

independent of previous jump points and is governed by an exponential density

function with parameter θ. At jump points new model parameters are chosen from

a distribution of known mean.

Let T1, T2, · · · represent the unknown times at which the object and background

model changed (the jump times). Let S1, S2, · · · be the unknown object and

background parameters chosen at jump times T1, T2, · · · . Since these values are

independent samples from a continuous random vector it follows that P (Si = Sj) =

0 if i 6= j. Let λt represent the unknown color and background models at time t,

i.e.,

λt = STi
for Ti ≤ t < Ti+1. (3.23)

Suppose by time t the auxiliary detector has found the object of interest at times

τ1 < τ2 < · · · < τn ≤ t. By doing so it provided samples pixels from the background

and from the object. Lee xi = (hτi
, yτi

) represent the information provided by the

auxiliary detector at time τi. Our goal is to use this information to obtain estimates

of λt. One reasonable estimate is the posterior mean of λt given x1 · · ·xn. Let An+1
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be the event that at least one jump occurred after τn. Thus

P (An+1) = p(λt 6= λτn) = e−θ(t−τn). (3.24)

For j = 2, · · ·n let Aj represent the event that the last jump occurred between

τj−1 andτj. Thus

Aj = ∩n
i=j{λt = λτi

} ∩j−1
i=1 {λt 6= λτi

}. (3.25)

That is, the probability that at least a jump occurred between τj−1 and no jump

occurred afterwards:

P (Aj) = (1− e−θ(τj−τj−1))e−θ(t−τj) (3.26)

= e−θ(t−τj) − e−θ(t−τj−1). (3.27)

Finally let A1 be the event that the last jump occurred prior to τ1. Thus

A1 = ∩n
i=1{λt = λτi

} (3.28)

P (A1) = e−θ(t−τ1),
n+1∑
j=1

P (Aj) = 1. (3.29)

Thus

λ̂t = E(λt | x1:n) = P (An+1)E(λt) +
n∑

j=1

P (Aj)E(λt | xj:n Aj). (3.30)

where E(λt | xj:i Aj) = E(λt | yτ1hτ1 · · · yτi
hτi

) are the object and background

histograms obtained by segmenting the images yτ1 · · · yτi
into object and

background as determined by hτ1 · · ·hτi
clumping all the object pixels together

and all the background pixels from the same location together. After some algebra

it can be shown that λ̂t consists of weighted frequency counts of colors found

in the object and the background locations, where the weight of a pixel decays

exponentially with the length of time since the pixel was collected.

Error Detection and Recovery The auxiliary object detector may be slow

or may run with low priority; thus it may provide information with some delay.
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Suppose at time t the auxiliary detector tells us that at time t − ∆ the correct

hypothesis was ht−∆. We also have information that at that time the tracker

chose ĥt−∆. Ideally we should go back in time and propagate forward the new

information. However due to the fact that we adapt the model parameters λ

based on our knowledge about ht−∆ this would require buffering the distribution

p(ht−∆ |y1 : yt−∆λ̂t−∆) and the image sequence yt−∆:t. If this information is lost by

time t, we are presented with the problem of combining two experts whose opinions

are derived from different information sources: (1) The auxiliary detector provides

us with p(ht | ht−∆), which does not make any assumptions about λ. However if

∆ is large, p(ht | ht−∆) will be almost flat, and thus uninformative. (2) The main

tracker provides us with p̂(ht |y1:tλ̂1:t), which relies on the assumption that λt:t is a

good estimate of the actual object and background models. A reasonable approach

is to choose the minimum risk expert. The risk for expert 1 is

R1 = min
h
E (ρ(Ht, h) | ht−∆) . (3.31)

The risk for expert 2 is

R2 = E
(
ρ(Ht, Ĥt) | ht−∆, ĥt−∆,∆

)
. (3.32)

If R1 < R2 we discard the current distribution and restart the system with the

distribution p(ht+∆ | ht) proposed by the auxiliary detector. In practice we model

R2 using some reasonable heuristic (3.34) or by using a labeled dataset in which

we estimate how the error of the system changes as a function of time ∆ and the

starting error ρ(ht−∆, ĥt−∆).

3.6 Simulations

A video tracking simulation was performed on a dataset comprised of five

minutes of video. Footage was collected from three subjects. Each subject

performed two action sequences consisting of rapid camera movements, in plane

translations, rotations, and hand/arm occlusions. The goal was to simulate
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the very difficult tracking conditions typically found in pet robots. During the

sequence the lighting was changed by adding two blue illumination sources. The

resulting video footage was converted to 160x120 color images. The simulation

was developed and tested on a 3.0 GHz Pentium 4 computer.

The model is specified by the initial distribution of H, the transition kernel

p(ht+1 | ht), the average time 1/θ between parameter jumps, and the prior

distribution for object and background models, the error function ρ and the risk

estimation method. In the experiments presented below we used the following

architecture: The initial distribution for H was uniform across hypotheses, the

transition kernel was uniform rectangular with width and height equal to 1/2

the scale of the parent hypothesis. The average time between model jumps was

set at 5 seconds (i.e., θ = 0.2 seconds. The face color model for the tracker was

implemented as a twenty-bin histogram. The prior distribution for the background

and object models was assumed to be flat. The prior histogram model for faces

was based on the model published in Jones [47]. For risk estimation we used the

following:

R1 = min
h
E(ρ(Ht, h) | ht−∆) = max

ht

p(ht | ht−∆) (3.33)

E
(
ρ(Ht, Ĥt) | ht−∆, ĥt−∆,∆

)
≈ p(ht−∆ | y1:t−∆λ1:t−∆). (3.34)

The system could run in real time with a space of 100,000 hypotheses.

3.7 Previous Work

The use of double integral functions to measure rectangular sets is well known

in measure theory, probability theory, and statistics. This approach is also used

in computer animation for fast rendering of rectangular objects. Viola and Jones

[93] popularized this method in computer vision. Stochastic filtering approaches

to tracking have been popular for more than a decade in the computer vision

community. Most approaches nowadays find approximate solutions to the filtering

problem using Monte-Carlo methods (particle filters). Monte-Carlo approaches
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Figure 3.4: Evolution of priors, likelihoods, and posteriors: The two rows of
images represent hypotheses at two different scales. The left column represents the
most likely hypotheses. The center image represents the prior distribution based
on the previous image, the right-sice column shows the posterior distribution of
hypotheses.

Figure 3.5: An example of uncertainty propagation: The left side shows the most
probable hypotheses at time t, i.e., the filtering distribution. The image on the
left shows the predictive distribution for time t + 1, i.e, the prior distribution for
the nexst time step.
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to filtering were first described in [36] and introduced to the computer vision

community by [44]. Current work in this field has focused on the development of

intelligent sampling methods to find good approximations with very few particles

[1, 92, 87]. The discretization of hypothesis space has been explored previously,

for instance in grid-based methods for map-building by robots, [86], or in models

for tracking objects [46]. As far as we know this is the first work to point out

that the double integral method can be used to efficiently compute likelihood-ratio

maps, and that double derivative maps can be use to efficiently compute predictive

probabilities in such discretized hypothesis spaces.

3.8 Extensions

While the specific architecture presented here is limited to upright rectangular

hypotheses, additive log-likelihood functions, and rectangular transition

probability kernels, extensions are possible that preserve the computational

complexity of the method while providing great generality.

Complex geometries can be obtained by producing double cumulative functions

at several orientations. The transition kernels or the features underlying the

likelihood computation do not need to be uniform. For example, one can apply

double cumulative sums recursively (cumulative sums of cumulative sums ...) to

obtain Gaussian-like transition kernels and Gabor-like features. More complex

likelihood-ratio functions are also possible, using such kernels as object windowing

functions.

In this chapter we treat objects a single blobs. Multi-part objects can also be

tracked using as many likelihood-ratio maps as object parts. Coarse histogram

matching can also be done using one likelihood-ratio map per histogram bin.
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3.9 A General Architecture for Machine

Perception

We described methods for solving the stochastic filtering problem in order

nh operations. This allows us to work with tens of thousands of hidden states,

and solve large-scale non-linear filtering problems exactly in real time. While we

focused on visual tracking problems, the methods proposed here can be used in a

wide variety of real-time machine perception and robotics problems.

The algorithms presented in this chapter exploit the fact that in many computer

vision problems the computation of likelihoods and the propagation of probabilities

are convolutional. The methods presented here solve these convolutions in order

nh operations. Frequency domain methods could also be used, which would work

in order np log np operations.

HMMs are already the architecture of choice for speech recognition problems.

Working with a similar architecture in vision facilitates approaching problems that

require combination of acoustic and visual information (e.g., audio-visual tracking,

audiovisual speech recognition). Particle filter approximations are being used in

robotics for real-time inference and control problems[85, 87]. The architecture

presented here may allow these problems to be solved more efficiently.

The proposed architecture shows a surprising resemblance to the functional

architecture of visual cortex: A set of topographical organized hyper-columns,

where each hyper-column has scaled and rotated replicas of the same detectors.

The hyper-columns are interconnected by lateral connections (see Figure 3.6). The

short distance lateral connections in the filtering algorithm take care of propagation

of probability maps. These maps represent the posterior distribution of hypotheses

given an observed video sequence. We can now efficiently simulate such systems

on a grand scale.
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Figure 3.6: Topographical implementation of the algorithm: The optimal inference
algorithm can be implemented using a topographically organized set of columns,
where each column computes the likelihood ratio of rotated and scaled versions of
an image patch.
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Chapter 4

G-Flow: A Generative Model for

Fast Tracking Using 3D

Deformable Models

Abstract

We present a generative model (G-flow) and inference algorithm for

simultaneous tracking of 3D pose, non-rigid motion, object texture and background

texture. Under this model inference about pose and texture can be performed

efficiently using a bank of Kalman filters for texture whose parameters are

updated by an optic-flow-like algorithm. The inference algorithm unifies optic

flow-based and texture-based tracking methods, dynamically adjusting the relative

importance of each component in a principled manner. Classic optic flow and

template-based algorithms emerge as special cases, and the conditions under which

they are optimal are elucidated by the model. For instance, the Lucas-Kanade

optic-flow algorithm is a special case that is optimal under certain conditions

(complete certainty of the current location of the object in each frame, and

knowledge of its texture only via its current location).

72
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4.1 Introduction

Many approaches have been proposed in the computer vision literature to solve

the object tracking problem. In general these can be divided into motion-based and

template-based approaches. Motion-based approaches compute local estimates of

optic flow, typically using a variation of the Lucas-Kanade optic-flow algorithm

[58], then combine these estimates using global object constraints [14]. The

advantage of a motion-based approach is that it makes few assumptions about

the appearance of the object being tracked. When given two images yt, yt+1 at two

consecutive time steps, and the position of the object at time t, the approach gives

us an estimate of the position of the object at time t+ 1. This method implicitly

assumes good knowledge about the location of the object at each time step, and

thus it has a tendency to drift as errors accumulate. Initialization and recovery

from drift are open issues in motion-based approaches, and they are typically

handled using heuristic methods.

At the other end of the spectrum template approaches assume good knowledge

about the appearance of the object of interest. The advantage of these approaches

is that they require little knowledge about the current location of the object,

provided the template is correct. Local or global search methods are then

used to find the pose that best fits the image plane. A known problem with

template-based approaches is dealing with realistic sources of variation (pose,

illumination, identity, expression, etc). Template-based methods typically rely

on heuristics that allow for dynamic updating of the templates and periodic

re-registration.

In practice, the issues of model initialization, dynamic update of templates,

error detection, and re-initialization are still unsolved. Finding principled solutions

to these problems is arguably the most important impediment to the widespread

application of computer vision technology in daily life.

In this chapter, we present a generative model (G-flow) for video sequences. The

model, while relatively simple, provides a rich framework for analyzing the problem
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of how to dynamically combine motion-based and texture-based information in

an optimal manner. A contribution of the model is that classic optic flow and

template-based algorithms emerge as special cases of optimal inference under

limited conditions. Optic flow is optimal when the location of the object is known

and its appearance is unknown. Template-based algorithms are optimal in the

opposite case. In practice optimal inference under G-flow comprises a combination

of motion and template-based information that is dynamically re-weighted as new

images are presented. Standard approximations can be used to solve the inference

problem very quickly, allowing for on line, real time 3D pose and expression

tracking, geometry estimation, and texture recovery.

3D Object 
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3D Object 
Texture

2D Background

Observed 2D Image
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Figure 4.1: The G-flow video generative model: The pose and texture of the
object in 3D are projected onto 2D and then combined with the background to
generate the observed video sequence. The model parameters include the initial
distributions πu, πv, πb, the texture transition certainties ΨvΨb, the rendering noise
parameter Ψw and the pose transition probabilities p(ut | ut−1). Except for the
pose transition probabilities, the distributions controlled by these parameters are
assumed Gaussian. The goal is to make inferences about (Ut, Vt, Bt) based on the
observed video sequence Y1 · · ·Yt.
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4.2 Video generation model

Unless otherwise stated capital letters represent random variables, small letters

represent specific values taken by random variables, and Greek letters represent

fixed model parameters. When possible we use informal shorthand notation and

identify probability functions by their arguments. For example, p(x, y) is shorthand

for the probability (or probability density) that the random variable X takes the

specific value x and the random variable Y takes the value y. We use subscripted

columns to indicate sequences. For example X1:t = X1 · · ·Xt. The term Ip stands

for a p × p unit matrix. E stands for expected value, V ar for covariance matrix

and V ar−1 for precision matrix, the inverse of the covariance matrix. The notation

An ⊗ Ac refers to the set of n × c matrices whose elements are in the set A. The

following terms will be used throughout the chapter:

• yt ∈ Rp, the vectorized version of an image with p pixels.

• ut ∈ R2n a vector containing the position of n points on the image plane.

These n points are thought to belong to the same object, the rest of the

points on the image plane belong to the background.

• vt ∈ Rn, bt ∈ Rp vectors with the texture map of the object and background

respectively. We refer to each element of vt and bt as a texel.

• av : R2n → {0, 1}p ⊗ {0, 1}n, a function whose input is the position of the

object points on the image plane and whose output is a p×n matrix of zeroes

and ones. If there is a one at row i, column j it means that the jth object

point projects on pixel i. There should be a total of n ones and at most a

one per row.

• ab : R2n → {0, 1}p ⊗ {0, 1}p is a function whose input is the position of the

object points on the image plane and whose output is a p×p diagonal matrix.

If there is a one at row j, column j it means that the background texel j

projects on pixel j on the image plane. We put the constraint that if avij = 1
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then abjj = 0, i.e., if a pixel i is rendered by the object, it is not rendered by

the background.

The functions av, ab encapsulate the projection model and filtering effects of the

imaging device.

Example: Suppose we have a 4-pixel image plane, p = 4, and a 2-point object

n = 2. Suppose the object can only take 2 locations in 3D: q1 = (−1, 0, 1)

q2 = (1, 0, 1). When at q1 the object projects onto the two pixels on the left.

When at q2 it projects on the two pixels on the right.

av(q1) =


1 0

0 1

0 0

0 0

 av(q2) =


0 0

0 0

1 0

0 1



ab(q1) =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 ab(q2) =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


Model Specification: G-flow models the video sequence as a stochastic process

governed by a partially observable difference equation (see Figure 4.1 and 4.2).

There are three hidden processes: A background process B, an object motion

process U , and an object texture process V . They generate images as follows: The

object pose, Ut determines which pixels the object and background project on,

which we formulate using the projection function c(Ut) =
(
av(Ut), ab(Ut)

)
. The

object and background textures Vt and Bt then project to the image Yt via c(Ut)

with additive noise as formulated below:

Yt = c(Ut)

(
Vt

Bt

)
+Wt, for t = 1, · · · (4.1)
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The system dynamics are as follows:

Ut ∼ p(ut | ut−1) for t = 2, · · ·
Vt = Vt−1 + Zv

t−1 for t = 2, · · ·
Bt = Bt−1 + Zb

t−1 for t = 2, · · ·

p(ut |ut−1) is the pose transition distribution, Zv, Zb,W are sequences of zero mean,

Gaussian processes independent of each other and of the initial conditions. Their

respective precision matrices are Ψv,Ψb,Ψw. The form of the pose distribution is

left unspecified for the sake of generality. Because the image generation process is

nonlinear as a function of pose, our methods must accommodate this nonlinearity

anyway, and hence we need not restrict the motion dynamics to a Gaussian form.

The model is specified by the following terms: (1) Initial conditions, which

consist of a distribution for the object position U1, and Gaussian distribution of

object and background texture, V1 and B1, all of which are independent of each

other. In addition we assume the variance of V1 is diagonal and the variance of B1

is a scalar times a unit matrix. (2) The precision matrices for the state transitions,

Ψv,Ψb. (3) The pose transition distribution p(ut | ut−1). (4) The precision matrix

for the image rendering noise is of the form Ψw = Ipσ
−1
w , where σw is a scalar. The

imaging model (e.g., perspective projection) determines the functions av and ab.

Structure of the Inference Problem: Inference requires computing the

distribution of pose and texture given an observed sequence of images. The main

difficulty in solving this problem centers around the motion posterior Ut. Since

the object and background textures are not a linear function of the position of

the pixel, then the observed images Yt will in general not be a linear function of

Ut. However, if U1:t were known then the object and background texture processes

Vt, Bt would be linear and Gaussian and thus could be solved using Kalman filter

equations with time variant parameters, as determined by U1:t. This suggests the

following scheme: Use approximate methods to obtain highly probable samples, of

U1:t, then use Kalman filtering equations to determine the distribution of V1:tB1:t
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for each sample. Another important aspect of the problem, that we want to use to

our advantage, is that the observed images have a strong spatio-temporal structure.

4.3 Filtering Distribution

Our goal is to find an expression for the filtering distribution p(utvtbt | y1:t), for

t = 0, · · · . Using the law of total probability we have that

p(utvtbt | y1:t) =

∫
p(utvtbtu1:t−1 | y1:t)du1:t−1 (4.2)

=

∫
p(utvtbt | u1:t−1y1:t)p(u1:t−1 | y1:t)du1:t−1 (4.3)

We can think of the first term p(utvtbt | u1:t−1y1:t) as the opinion about ut, vt, bt of

an expert that believes in the past the object was at u1:t−1. The second term of

the equation p(u1:t−1 | y1:t) is the credibility of that expert.

4.3.1 The Opinion Equations

The opinion of expert u1:t−1, can be written as the product of the opinion about

pose Ut times the opinion about texture Vt, Bt given pose.

p(utvtbt | u1:t−1y1:t) = p(vt, bt | u1:ty1:t)p(ut | u1:t−1y1:t) (4.4)

Texture opinions: Because V1, B1 are Gaussian, the distribution of VtBt given

u1:t−1y1:t−1 is also Gaussian with a mean and covariance that can be obtained using

time dependent Kalman estimation equations (a.k.a. the correction equations)

V ar−1(Vt, Bt | u1:t, y1:t) = V ar−1(Vt, Bt | u1:t−1, y1:t−1) + c(ut)
′Ψwc(ut) (4.5)

E(Vt, Bt | u1:t, y1:t) = V ar(Vt, Bt | u1:t, y1:t)
[
V ar−1(Vt, Bt | u1:t−1, y1:t−1)

E(Vt, Bt | u1:t−1, y1:t−1) + c(ut−1)
′Ψwyt−1

]
(4.6)
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This requires the distribution of Vt, Bt given u1:t−1, y1:t−1, which can be obtained

using the Kalman prediction equations

E(Vt, Bt | u1:t−1, y1:t−1) = E(Vt−1, Bt−1 | u1:t−1, y1:t−1)

V ar(Vt, Bt | u1:t−1, y1:t−1) = V ar(Vt−1, Bt−1 | u1:t−1, y1:t−1)

+

(
Ψ−1

v 0

0 Ψ−1
b

)
(4.7)

Note the expected value E(Vt, Bt | u1:t, y1:t) contains texture maps (templates) for

the object and background. V ar(Vt, Bt | u1:t, y1:t) keeps the degree of uncertainty

about the object and background templates. Due to the fact that pixels cannot

be simultaneously rendered by the object and background, i.e., avij(ut) = 1 →
abjj(ut) = 0, and av is a permutation matrix, and ab is diagonal, it can be shown

that V ar(VtBt | u1:ty1:t) has the same structure as V ar(V0B0), i.e., it is diagonal,

and the variances of all the Bt elements given u1:t, y1:t are equal.

Pose Opinions: The projection function c(ut) determines how the object and

background templates render the image plane, i.e., which pixels are rendered by

the object and which are rendered by the background. Since the effect of ut on the

likelihood function is non-linear, we will not attempt to find an analytical solution

for the pose opinion equations. Instead we will find the most probable value of ut,

given u1:t−1, y1:t for each expert and approximate the distribution as a Gaussian

bump about that point. Note

p(ut | u1:t−1, y1:t) =
p(y1:t−1 | u1:t−1)

p(y1:t | u1:t−1)
p(ut | ut−1)

p(yt | u1:t, y1:t−1) (4.8)

where

p(yt | u1:t, y1:t−1) =∫
p(vt, bt | u1:t−1, y1:t−1)p(yt | ut, vt, bt)dvtdbt (4.9)
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using the fact that Vt, Bt are independent of Ut given u1:t−1, y1:t−1, i.e.,

p(ut, vt, bt | u1:t−1, y1:t−1) =

∫
p(vt−1, bt−1 | u1:t−1, y1:t−1)

p(ut, vt, bt | u1:t−1, vt−1, bt−1)dvt−1dbt−1

=

∫
p(vt−1, bt−1 | u1:t−1, y1:t−1)p(ut | ut−1)

p(vt, bt | vt−1, bt−1)dvt−1dbt−1

= p(ut | u1:t−1, y1:t−1)

∫
p(vt−1, bt−1 | u1:t−1, y1:t−1)

p(vt, bt | vt−1, bt−1, u1:t−1, y1:t−1)dvt−1dbt−1

= p(ut | u1:t−1, y1:t−1)p(vt, bt | u1:t−1, y1:t−1) (4.10)

We saw in the previous section that p(vt, bt | u1:t−1, y1:t−1) is Gaussian. Since

p(yt |ut, vt, bt) is also Gaussian it follows that p(yt |u1:t, y1:t−1) is Gaussian with the

following mean and variance:

E(Yt | u1:t, y1:t−1) = c(ut)E(Vt, Bt | u1:t−1y1:t−1) (4.11)

V ar(Yt | u1:t, y1:t−1) = Ψ−1
w

+ c(ut)V ar(Vt, Bt | u1:t−1, y1:t−1)c(ut)
′ (4.12)

LetO(ut) be an ordered set of indices to the pixels rendered by the object according

to ut. For i ∈ O(ut) let µv(u1:t, i) be the texel from the object texture map

E(Vt | u1:t−1, y1:t−1), that renders the image pixel i as determined by ut. Let

σv(u1:t, i) be the variance of that texel. For j 6∈ O(ut) let µb(u1:t, j) be the texel

from the background texture map E(Bt |u1:t−1, y1:t−1), that renders the image pixel

j as determined by ut, and let σb(u1:t, j) the variance of that texel. It follows that

log p(yt | u1:t, y1:t−1) = −1

2
log |V ar(Yt | u1:t, y1:t−1)|

− 1

2

∑
i∈O(ut)

(yt(i)− µv(u1:t, i))
2

σv(u1:t, i) + σw

− 1

2

∑
j 6∈O(ut)

(yt(i)− µb(u1:t, i))
2

σb(u1:t, i) + σw

(4.13)
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Moreover ut simply permutes V ar(Yt | u1:t, y1:t−1) and E(Yt | u1:t, y1:t−1). Thus

|V ar(Yt | u1:t, y1:t−1)| is constant with respect to ut. Let

ût(u1:t−1) = argmax
ut

p(ut | u1:t−1, y1:t) (4.14)

Thus

ût(u1:t−1) = argmax
ut

p(ut | ut−1)p(yt | u1:t, y1:t−1)

= argmin
ut

1

2

∑
i∈O(ut)

(yt(i)− µv(u1:t, i))
2

σv(u1:t, i) + σw

+
1

2

∑
j 6∈O(ut)

(yt(i)− µb(u1:t, i))
2

σb(u1:t, i) + σw

− log p(ut | ut−1)

Moreover, since ∑
j 6∈O(ut)

(yt(i)− µb(u1:t, i))
2

σb(u1:t, i) + σw

=
∑

j

(yt(i)− µb(u1:t, i))
2

σb(u1:t, i) + σw

−
∑

j∈O(ut)

(yt(i)− µb(u1:t, i))
2

σb(u1:t, i) + σw

(4.15)

and
∑

j
(yt(i)−µb(u1:t,i))2

σb(u1:t,i)+σw
is constant with respect to ut, it follows that

ût(u1:t−1) = argmin
ut

1

2

∑
i∈O(ut)

(
(yt(i)− µv(u1:t, i))

2

σv(u1:t, i) + σw

−(yt(i)− µb(u1:t, i))
2

σb(u1:t, i) + σw

)
− log p(ut | ut−1) (4.16)

ût(u1:t−1) can be found very quickly using a Gauss-Newton method. The

inverse Hessian σ̂t(u1:t−1) also falls out easily from the Gauss-Newton

method. The posterior distribution can then be approximated as a Gaussian

g(· | ût(u1:t−1), σ̂t(u1:t−1)) centered at ût(u1:t−1) and with variance σ̂t(u1:t−1).

Optic Flow as a Special Case: Suppose p(ut | ut+1) is uninformative, the

background is a white noise process, i.e. σb(ut, i) →∞ for all t, i and by time t−2

we are completely uncertain about the object texture, i.e.

V ar(Vt−1 | u1:t−2, y1:t−2) →∞ (4.17)
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It follows that

E(Vt | u1:t−1, y1:t−1) = av(ut−1)yt−1 (4.18)

i.e, our object texture map at time t is determined by the pixels from yt−1 that

according to ut−1 are rendered by the object. Thus

argmax
ut

p(ut | ut−1, y1:t) =

= argmin
ut

∑
i∈O(ut)

(yt(i)− av(ut−1)yt−1(i))
2

σv(ut, i) + σw

(4.19)

The most probable ut is that which minimize the mismatch between the image

pixels rendered by the object at time t−1 and the image at yt shifted according to

ut. The Lucas-Kanade optic flow algorithm is simply the Newton-Gauss method

as applied to minimize this error function.

Template matching as a Special Case: If p(ut | ut−1) is uninformative, the

background is a white noise process and by time t − 2 we are certain about the

object texture map, i.e., V ar(Vt−1 | u1:t−2, y1:t−2) = 0, then

E(Vt | u1:t−1, y1:t−1) = E(Vt | u1:t−2, y1:t−2) (4.20)

and

argmax
ut

p(ut | ut−1, y1:t) =

= argmin
ut

∑
i∈O(ut)

(yt(i)− µv(ut, i))
2

σw

(4.21)

where µv(ut, i) is simply the fixed object template, shifted by ut. This is the error

function minimized by standard template match algorithms.

General Case: In general minimizing (4.16) results in a weighted sum of optic

flow and template matching, with the weight of each approach depending on the

certainty about the object template.
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Importance Sampling: Suppose we are given a set of pose sequences {u(i)
1:t−1 :

i = 1 · · ·nt−1}. For each of these sequences we can obtain unbiased statistics

from p(ut | u1:t−1y1:t) using importance sampling [27]. We generate a set of

independent samples {u(i,j)
t : j = 1 · · · s(i)

t } from a Gaussian distribution centered at

ût(u
(i)
1:t−1) with variance proportional to σ̂t(u

(i)
1:t−1) and assign each sample a weight

proportional to the ratio between the sampling distribution and the posterior

distribution:

p̂(ut | u(i)
1:t−1, y1:t) =

s
(i)
t∑

j=1

δ(ut − u
(i,j)
t )

wt(i, j)∑s
(i)
t

k=1wt(i, k)
(4.22)

wt(i, j) =
p(u

(i,j)
t | u(i)

t−1)p(yt | u(i)
1:t−1u

(i,j)
t y1:t−1)

g(u
(i,j)
t | ût(u

(i)
1:t−1), ασ̂t(u

(i)
1:t−1))

(4.23)

where p̂ stands for an unbiased estimate of the corresponding probability term and

α > 0 is a parameter that determines the sharpness of the sampling distribution.

As α → 0 we simply choose ût(u1:t−1), the state that maximizes the posterior

probability p(ut | u1:t−1, y1:t).

4.3.2 Credibility Equations

The credibility of the expert u
(i)
1:t−1 is proportional to the product of a prior

term and a likelihood term

p(u
(i)
1:t−1 | y1:t) =

p(u
(i)
1:t−1 | y1:t−1)p(yt | u(i)

1:t−1, y1:t−1)

p(yt | y1:t−1)
(4.24)

In Section 4.3.3 we explain how to obtain running estimates for the prior

p(u
(i)
1:t−1 | y1:t−1). Regarding the likelihood, note that

p(yt | u1:t−1, y1:t−1) =

∫
p(ytut | u1:t−1, y1:t−1)dut

=

∫
p(yt | u1:t, y1:t−1)p(ut | ut−1)dut

(4.25)
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We already generated a set of samples {u(i,j)
t : j = 1 · · · s(i)

t } from p(ut | u(i)
1:t−1y1:t).

We can now use these samples to obtain an unbiased estimate of the likelihood

p(yt | u(i)
1:t−1, y1:t−1) =

∫
p(yt | u(i)

1:t−1, ut, y1:t−1)p(ut | u(i)
t−1)dut

=

∫
p(yt | u(i)

1:t−1, ut, y1:t−1)g(ut | ût(u
(i)
1:t−1), σ̂t(u

(i)
1:t−1))

p(ut | u(i)
t−1)

g(ut | ût(u
(i)
1:t−1), σ̂t(u

(i)
1:t−1)

dut ≈
∑s

(i)
t

j=1wt(i, j)

s
(i)
t

(4.26)

If we only sample the most probable state ût(u1:t−1) then the likelihood is

approximated by the maximum value of the integrand.

4.3.3 Combining Opinion and Credibility

Opinion and credibility can be combined to obtain running estimates of the

filtering distribution.

Initialization:

• Obtain n1 samples {u(i)
1 : i = 1 · · ·n1} from p(u1). We refer to these

samples as experts. For each expert the initial Gaussian prior distributions

p(v1, b1 | u(i)
1 ) = p(v1, b1) are given as part of the model specification. The

relative weight of the ith expert, r
(i)
1 is set proportional to the probability of

the image given the expert

r
(i)
1 ∝ p(y1 | u(i)

1 ) (4.27)

and the weights are normalized to add up to one. This provides a

Monte-Carlo estimate of the filtering distribution at the first time step:

p̂(u1 | y1) =

n1∑
i=1

r
(i)
t−1δ(u1 − u

(i)
1 ) (4.28)
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Update:

• By time t − 1 we are given nt−1 pose experts {u(i)
i:t−1 : i = 1 · · ·nt−1}.

Each expert u
(i)
1:t−1 comes with a relative weight r

(i)
t and with the mean

and variance of the filtering distribution for texture given that expert,

i.e., E(Vt−1, Bt−1 | u(i)
1:t−1, y1:t−1), V ar(Vt−1, Bt−1 | u(i)

1:t−1, y1:t−1). The weights

provide an estimate of the filtering distribution for pose at time t− 1, which

serves as the prior for time t

p̂(u1:t−1 | y1:t−1) =

nt−1∑
i=1

r
(i)
t−1δ(u1:t−1 − u

(i)
1:t−1). (4.29)

For each expert, we compute the most probable pose ût(u
(i)
1:t1) and estimate

the uncertainty about that pose σ̂t(u
(i)
1:t−1).

Based on the distribution of relative weights {r(i)
t−1 : i = 1 · · ·nt−1} we assign a

number of descendants to each expert. This is usually known as a resampling

step in the particle filtering literature [27], which discusses the pros and

cons of different resampling rules. Suppose the resampling rule assigns s
(i)
t

descendants to expert i. We then generate as many independent samples

{u(i,j)
t : j = 1 · · · s(i)

t } from the distribution g(· | ût(u
(i)
1:t−1), σ̂t(u

(i)
1:t−1)), and

compute the importance weight of each sample wt(i, j). This provides an

estimate for the opinion

p̂(ut | u(i)
1:t−1, y1:t) =

s
(i)
t∑

j=1

δ(ut − u
(i,j)
t )

wt(i, j)∑s
(i)
t

k=1wt(i, k)
(4.30)

and for the likelihood of each expert

p̂(yt | u(i)
1:t−1) =

s
(i)
t∑

j=1

wt(i, j)

s
(i)
t

(4.31)

The likelihood times the prior gives us the credibility of each expert

p̂(u
(i)
1:t−1 | y1:t) ∝

r
(i)
t−1

s
(i)
t

s
(i)
t∑

j=1

wt(i, j) (4.32)
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From this we obtain p̂(u1:t | y1:t),

p̂(u1:t | y1:t) =

∫
p̂(u1:t−1 | y1:t)

p̂(ut | u1:t−1, y1:t)du1:t−1 (4.33)

=

nt−1∑
i=1

r
(i)
t−1

s
(i)
t

∑s
(i)
t

j=1wt(i, j)∑nt−1

k=1

r
(k)
t−1

s
(k)
t

∑s
(k)
t

l=1 wt(k, l)
δ(u1:t−1 − u

(i)
1:t−1)

s
(i)
t∑

m=1

δ(ut − u
(i,m)
t )

wt(i,m)∑s
(i)
t

n=1wt(i, n)

=

nt−1∑
i=1

s
(i)
t∑

j=1

δ(u1:t − u
(i)
1:tu

(i,j)
t )

r
(i)
t−1

s
(i)
t

wt(i, i)∑nt−1

k=1

∑s
(k)
t

l=1

r
(k)
t−1

s
(k)
t−1

wt(k, l)
(4.34)

Note this behaves a set of experts {u(i)
1:t : i = 1 · · ·nt} obtained by

concatenating descendants to all the experts that generated them and

dropping all the experts that did not generate any. The relative weight

of the new expert u
(k)
t formed by concatenating u

(i,j)
t to u

(i)
1:t is as follows

r
(k)
t ∝

r
(i)
t−1

s
(i)
t

wt(i, j) (4.35)

normalized so that the weights add up to one. In addition the texture

opinions for each expert are found using the Kalman filter equations.

4.4 Tracking 3D deformable objects

The spatial location of the n points on the object varies with time due to

rigid transformations (rotation, scale, translation) and non-rigid transformations

(e.g., changes in expression). The rigid transformations are controlled by a

rotation matrix Rt and a displacement vector Dt. The non-rigid transformations

are modeled as linear combinations of a set of k 3-Dimensional morph keys
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φ(1), · · · , φ(k). Here φ(i) is an n × 3 dimensional matrix, containing the 3-D

position of the n object points on key-morph i. Let

φ = (φ(1), · · · , φ(k)) (4.36)

be an n× 3k matrix containing all the morph keys. The vector Ct ∈ Rk contains

the morph coefficients of the object at time t.

Let Xt ∈ R2n contain the 2-D coordinates of the projection of the n object

points onto an image plane, i.e. X2i−1, X2i are the horizontal and vertical

coordinates of the projection of the ith point. Under weak perspective projection

we have that

Xt = βUt (4.37)

where

β =

1 b11(1) b12(1) · · ·
0 0 · · · · · ·
...

...
...

...

1 b11(n) b12(n) · · ·
0 0 · · · · · ·

b3k(1) 0 0 · · · · · · 0

0 1 b11(1) b12(1) · · · b3k(1)
...

...
...

...
...

...

b3k(n) 0 0 · · · · · · 0

0 1 b11(n) b12(n) · · · b3k(n)


(4.38)

and

Ut = (Dt(1), Rt(1, 1)Ct(1) · · ·Rt(1, 3)Ct(k), Dt(2),

Rt(2, 1)Ct(1) · · · , Rt(2, 3)Ct(k))
′ (4.39)
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The matrix β contains the set of fixed animation morphs and the random variable

Ut contains 3D pose and expression parameters. Standard techniques exist to

recover the values of Rt and Dt once Ut is known [14].

To apply G-flow to this problem we need to find methods to find values for ut

that maximize p(ut | u1:t−1, y1:t).

Let ȳt represent a matrix version of yt, and v̄t a matrix version of the object

texture map Ē(V̄t | u1:t−1, y1:t−1). For the case in which the background is a white

noise process, maximizing p(ut | u1:t−1, y1:t) is equivalent to minimizing

L(ut, ut−1) =
n∑

i=1

(ȳt(xi)− v̄t(βut))
2 (4.40)

Brand [14] showed that functions of this type can be optimized in real time using

the Newton-Gauss algorithm.

4.5 Comparison to Other Approaches

Inference in G-flow belongs to a class of non-linear filtering problems known as

“conditionally Gaussian problems”. They can be solved using non-linear filtering

techniques for the non-linear part and then propagate the solution to the linear

part using time dependent Kalman filters. In the particle filtering literature this

approach is known as Rao-Blackwelization [1].

A major problem with applications of particle filters to video tracking is the so

called “Needle in a Haystack” problem (see Figure 4.4). The simplest approach to

particle filtering starts with a set of samples from the filtering distribution at time

t − 1. For each particle samples are taken from the state transition distribution.

Then the image at time t is observed and each particle is weighted by the

image likelihood function. Unfortunately in most tracking problems the likelihood

function is highly peaked at the correct location (the needle) and relatively flat

at the incorrect locations (the haystack). If the samples miss the peak of the

likelihood function they will provide a very inefficient estimate of the filtering
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distribution. The problem gets worse as the number of parameters increases. For

example, in 2D the likelihood function may not only be highly peaked but it may

also have a strong orientation . Samples will be wasted by random sampling at the

wrong location or with the wrong orientation (see Figure 4.5). Here we reduce this

problem by explicitly computing the peak and orientation (i.e., precision matrix)

of the opinion distribution distribution once the image has been observed. This is

possible due to the the fact that the observed sequence (video images) is smooth

in space and time, something that may not be necessarily the case for filtering

problems in general.

[18] used an extended Kalman filter approach for a problem in which the 2D

pose of an object and the texture of the object were tracked simultaneously. This

limited the approach to unimodal solutions, which are known to be risky for

tracking problems. They did not take advantage of the conditionally Gaussian

nature of the problem and did not incorporate background information.

Brand [14] showed that one can combine the outputs of optic-flow solutions

computed independently at different image points, along with their uncertainty,

to find the rigid motion and non-rigid deformation parameters that best fit those

flow solutions. We found that the approach is formally equivalent to directly

propagating the linear constraints without intermediate computation of optic flow,

which is the approach we use in our simulations. [89] presented an approach to

propagate general non-rigid motion constraints on top the standard optic flow

algorithm. Both [14] and [89] rely on unimodal state distributions, and do not

learn object or background texture maps.

4.6 Simulations

We collected video of a person while making a variety of facial expression on

command. An additional motion capture session was used to create a 3D model of

the face and a set of 3D animation morphs. We are currently working on a system
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that will automatically find face geometry parameters based on a large dataset of

3D faces.

Twenty particles were initialized using the first frontal pose and propagated

using the G-flow algorithm. A video of the entire sequence is available at our

Web site. Figures 4.6 and 4.7 shows the distribution of particles for 3D pose and

animation coefficients as a function of time. Note how the system can maintain

multimodal distributions when necessary.

The system can run at about 1/n real time in Matlab, where n is the number

of particles. Unfortunately more rigorous testing has not been possible at this

time due to the lack of ground truth data for non-rigid object motion. This is a

difficult problem because determining ground truth usually requires placing visible

marks on the face for stereo motion capture. Such marks would make the tracking

problem much easier. However to remedy this situation work is in progress to

create data-sets from which ground-truth can be extracted by using a combination

of infra-red cameras and marks, along with visible light cameras.

4.7 Conclusions

We presented a generative model (G-flow) for video sequences. The model

provides a useful framework for studying the problem of how to dynamically

combine motion and appearance information in a principled manner. Current

optic flow and template based algorithms emerge in this model as optimal inference

processes under specific conditions. In more realistic conditions optimal inference

consists of a dynamically weighted combination of motion and appearance based

information.

4.8 Acknowledgements

Chapter Four is adapted from [64], which was published in Computer Vision

and Pattern Recognition Workshop on Generative Models for Vision in 2004. My



91

co-authors, Javier Movellan, Tim Marks, and J. Cooper Roddey, supervised and

collaborated with me on the research which forms the basis of this chapter.



92

Bt Vt

Ut

Yt

c(Ut)
Assigns texels 

to pixels

Figure 4.2: The G-Flow projection model: c(Ut) determines which texel is
responsible for rendering each pixel on the image plane. Some of these will be
rendered by object texels, some by background texels.
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Figure 4.3: An algorithm for solving the G-flow inference problem.
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p̂(ut−1 | y1:t−1)

p̂(ut | y1:t−1)
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p̂(ut | y1:t)

Likelihood Function 
Observation at time t

Filtering distribution at t-1

Sample from State
Transition Probabilities

Predictive Distribution

Filtering distribution at t

Figure 4.4: A 1D version of the Needle in a Haystack Problem: If the likelihood
function for the image at time t is very peaked, blind sampling approaches are
likely to miss it and provide inefficient estimates of the filtering distribution. In
G-flow this problem is reduced by explicitly computing the peak of the distribution
after the image has been observed and sampling about that peak.
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t−1
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Equal Likelihood  

Contours for

Figure 4.5: A 2D version of the Needle in a Haystack Problem: The likelihood
function is peaked and oriented. The descendants of particles u

(1)
t−1 and u

(2)
t−1

distribute about low likelihood regions due to poor location and blind sampling.
The descendants of particle u

(3)
t−1 are well located but the sampling distribution

does not have the right orientation, thus wasting a large number of particles. In
G-flow the problem is reduced by explicitly computing the peak and orientation
(i.e., the precision matrix) of the opinion distribution.
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Figure 4.6: Particle filtering results: This figure displays the locations of object
points for 10 particles from an early frame (top) to a later frame (bottom) of
the video sequence. The radius of the circles is proportional to the weight of the
particles.
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Figure 4.7: Tracking results for a video sequence: There were 6 pose parameters
and 4 morph parameters. The graphs contain the filtering distribution for 2 pose
parameters using 20 particles.



Chapter 5

Single Microphone Source

Separation

5.1 High-Resolution Signal Reconstruction

Abstract

We present a framework for speech enhancement and robust speech recognition

that exploits the harmonic structure of speech. We achieve substantial gains in

signal to noise ratio (SNR) of enhanced speech as well as considerable gains in

accuracy of automatic speech recognition in very noisy conditions.

The method exploits the harmonic structure of speech by employing a high

frequency resolution speech model in the log-spectrum domain and reconstructs

the signal from the estimated posteriors of the clean signal and the phases from

the original noisy signal.

We achieve a gain in signal to noise ratio of 8.38 dB for enhancement of speech

at 0 dB. We also present recognition results on the Aurora 2 data-set. At 0 dB

SNR, we achieve a reduction of relative word error rate of 43.75% over the baseline,

and 15.90% over the equivalent low-resolution algorithm.

98
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5.1.1 Introduction

A long standing goal in speech enhancement and robust speech recognition

has been to exploit the harmonic structure of speech to improve intelligibility and

increase recognition accuracy.

The source-filter model of speech assumes that speech is produced by an

excitation source (the vocal cords) which has strong regular harmonic structure

during voiced phonemes. The overall shape of the spectrum is then formed by a

filter (the vocal tract). In non-tonal languages the filter shape alone determines

which phone component of a word is produced (see Figure 5.2). The source on the

other hand introduces fine structure in the frequency spectrum that in many cases

varies strongly among different utterances of the same phone.

This fact has traditionally inspired the use of smooth representations of the

speech spectrum, such as the Mel-frequency cepstral coefficients, in an attempt to

accurately estimate the filter component of speech in a way that is invariant to the

non-phonetic effects of the excitation[71].

There are two observations that motivate the consideration of high frequency

resolution modeling of speech for noise robust speech recognition and enhancement.

First is the observation that most noise sources do not have harmonic structure

similar to that of voiced speech. Hence, voiced speech sounds should be more easily

distinguishable from environmental noise in a high dimensional signal space1.

A second observation is that in voiced speech, the signal power is concentrated

in areas near the harmonics of the fundamental frequency, which show up as parallel

ridges in the spectrogram (see Figure 5.2). In a noisy environment, the local signal

to noise ratio along the ridge is greater than the average SNR.

Figure 5.1 shows the estimate of a clean speech vector, the noisy input vector

(car noise), and the true clean speech vector for comparison. The horizontal axis

shows frequency in Hertz, and the vertical axis shows log-energy of the amplitude of

1Even if the interfering signal is another speaker, the harmonic structure of the two signals
may differ at different times, and the long term pitch contour of the speakers may be exploited
to separate the two sources [39].
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Figure 5.1: Estimation Results: The noisy input vector (dot-dash line), the
corresponding clean vector (solid line) and the estimate of the clean speech (dotted
line), with shaded area indicating the uncertainty of the estimate (one standard
deviation). Notice that the uncertainty on the estimate is considerably larger in
the valleys between the harmonic peaks. This reflects the lower SNR in these
regions. The vector shown is frame 100 from Figure 5.2

each frequency. The regularly spaced peaks are the harmonics of the fundamental

frequency. Notice that at the low end of the frequency range, the true signal is

’submerged’ in the noise, whereas the harmonic peak at c.a. 670Hz and 900Hz

emerge from the noise. Notice also that the first standard deviation (shown as

a shaded area) of the estimate is large in the valleys, where the SNR is low and

smaller around the harmonic peaks, where the SNR is higher. The method for

producing the clean speech estimate is discussed in section 5.1.2.

Researchers have sought to exploit this localization of signal power, both in the

time domain and in the frequency domain. Methods for achieving this goal include
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Figure 5.2: Spectrogram of clean speech. The words ’TWO FIVE’ are being
spoken.

alignment and gating of the glottal impulses in the time domain[59], and tracking

the pitch as a pre-processing stage[81, 84]. Such approaches use highly constrained

voicing models that are incongruous to the modeling of other aspects of the speech

signal and employ modularized, multistage processing where aspects of the voicing

are processed separately[68]. These approaches have been vulnerable to noise

because of implicit independence assumptions or because the voicing estimation

does not take noise into account. In addition, there may be excitation patterns and

artifacts of the signal analysis that are poorly captured by such highly constrained

models for harmonic structure. In contrast, our approach is to use a single high

resolution log-spectrum model for both excitation and filter and train a model

capable of capturing the relevant structures.



102

Noisy Speech, 0dB

frames

H
z

20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

4000
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(b) Spectrogram of cleaned speech at 0 dB.

5.1.2 Model based signal enhancement

The core of the method involves calculating posteriors for the high frequency

resolution log-spectrum p(x|y), given the noisy speech. We employ the Algonquin

framework [29, 52] to calculate these posteriors.

The model for noisy speech in the time domain is (omitting the channel for

clarity)

y[t] = x[t] + n[t]. (5.1)

where x[t] denotes the clean signal, n[t] denotes the noise, and y[t] denotes the

noisy signal. In the Fourier domain, the relationship becomes

Y (f) = X(f) +N(f) (5.2)

where f designates the frequency component of the FFT. This can also be written

in terms of the magnitude and the phase of each component:

|Y (f)|∠Y (f) = |X(f)|∠X(f) + |N(f)|∠N(f) (5.3)

where |Y (f)| is the magnitude of Y (f) and ∠Y (f) is the phase.

We model only the magnitude components and do not explicitly model the

phase components. The relationship between the magnitudes is

|Y (f)|2 = |X(f)|2 + |N(f)|2 + 2|X(f)||N(f)|cos(θ) (5.4)
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where θ is the angle between X and N . For the purposes of modeling, we assume

the we can model the last term as a noise term, hence we approximate this

relationship between magnitudes as

|Y (f)|2 = |X(f)|2 + |N(f)|2 + e (5.5)

where the e is a random error [52]. Next we take the logarithm and arrive at the

relationship in the high resolution log-magnitude-spectrum domain

y = x+ ln(1 + exp(n− x)) + ε (5.6)

where ε is assumed to be Gaussian. Hence, we can also write this relationship in

terms of a distribution over the noisy speech features y as

p(y|x, n) = N(y;x+ ln(1 + exp(n− x)), ψ) (5.7)

where ψ is the variance of ε, and N(y|µ, ψ) denotes a normal density function in

y with mean µ and variance ψ.

The transformations that we have applied to the model above are the same

as the first steps in the calculation of the Mel frequency cepstrum features with

the exception that we did not perform the Mel-scale warping before applying the

log transform. For example, in the Aurora front end[41], the Mel-scale warping,

smooths out the harmonics and reduces the dimensionality of the feature vector

from 128 dimensions to 23 dimensions. The result of omitting the Mel-scale

warping is that we do not smooth out the speech harmonics.

For the purpose of signal reconstruction, we are interested in likely values of

clean speech, given the noisy speech. By recasting this relationship in terms of a

likelihood p(y|x, n), and using prior models for speech p(x) and noise p(n), we can

arrive at a posterior distribution for the clean speech vector p(x|y). This will be

described in the next section.

By inverting the procedure described above we can reconstruct an estimate of

the clean signal. To do this we find the MMSE estimate for clean speech x̂ and
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calculate the inverse Fourier transform

x̂[t] = IFFT (exp(x̂) · ∠Y ) (5.8)

where x̂ =
∫
xp(x|y)dx. In this reconstruction, we have used the original phases

from the noisy signal.

5.1.3 Inference

We now turn our attention to the procedure for estimating the posterior for the

clean speech log-magnitudes p(x|y). For this we employ the Algonquin method.

Extensive evaluations of this framework have been performed in the context

of robust speech recognition. In previous work, speech and noise models have

either been in the ”low-resolution” log-Mel-spectrum domain, or in the truncated

cepstrum domain. Here we briefly outline the Algonquin procedure. Detailed

discussions can be found in [29, 52].

At the heart of the Algonquin method is the approximation of the posterior

p(x|y) by a Gaussian.

The true posterior

p(x|y) = c

∫
p(y|x, n)p(n)p(x)dn (5.9)

is non-Gaussian, due to the non-linear relationship in Eqn. (5.6). In Eqn. (5.9) c

is a normalizing constant, p(n) is the noise model, and p(x) is the speech model,

and p(y|x, n) is the likelihood function discussed above.

We use a mixture of Gaussians to model both speech and noise. Hence

p(x) =
∑

s

p(s)p(x|s) =
∑

s

πsN(x|µs
s,Σ

x
s) (5.10)

and similarly for p(n). The construction of the speech model will be discussed

below.

Due to the non-linear relationship between x and n for a given y, the true

posterior p(x|y) is non-Gaussian. We wish to approximate this posterior with a

Gaussian posterior. The first step is to linearize the relationship between x and n.
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For notational convenience, we write the stacked vector z = [xTnT ] and we

introduce the function g(z) = x+ ln(1 + exp(n− x)).

If we linearize the relationship of Eqn. (5.6) using a first order Taylor series

expansion at the point z0, we can write the linearized version of the likelihood

pl(y|x, n) = pl(y|z) = N(y; g(z0) +G(z0)(z − z0),Ψ) (5.11)

where z0 is the linearization point and G(z0) is the derivative of g, evaluated at

z0. We can now write a Gaussian approximation to the posterior for a particular

speech and noise combination as

pl(x, n, y|sx, sn) = pl(y|x, n)p(x|sx)p(n|sn) (5.12)

It can be shown[52] that the p(x, n|y, sx, sn) is jointly Gaussian with mean

ηs = Φs

[
Σ−1

s µs +GT Ψ−1(y − g −Gz0)
]

(5.13)

and covariance matrix

Φs =
[
Σ−1

s +GT Ψ−1G
]−1

(5.14)

and the posterior mixture probability p(y|sx, sn) can be shown to be

γs = |Σs|−1/2|Ψ|−1/2|Φs|1/2 · exp

[
− 1

2
(µT

s Σ−1
s µs+

(yobs − g +Gz0)
T Ψ−1(yobs − g +Gz0)− ηT

s Φ−1
s ηs)

]
.

The choice of the linearization point is critical to the accuracy of the

approximation. Ideally, we would like to linearize at the mode of the true posterior.

In the Algonquin algorithm, we attempt to iteratively move the linearization points

towards the mode of the true posterior. In iteration i of the algorithm, the mode

of the approximate posterior in iteration i− 1, µi−1 is used as a linearization point

of the likelihood, i.e. zi = µi−1. The algorithm converges in 3-4 iterations.
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5.1.4 Speech Model

Speech modeling for enhancement and speech recognition usually involves

dimensionality reduction which removes the voice harmonics. This is either done

explicitly, such as by using the Mel-warping, or implicitly, such as by using a small

auto-regressive model. The filter and excitation components of the generative

speech model are relatively independent, since voiced speech sounds can be spoken

at any pitch. To model a particular speech sound in high resolution, one would

expect to need an instance of the voiced acoustic model at each possible pitch.

A first approximation is to model the filter and excitation components

independently. To construct such a model, one would lifter the 128 frequency

component speech vectors to produce 128 component filter (vocal tract) features

and 128 component excitation (vocal cords) features. This approach has the

advantage that the models are compact, and independent temporal dynamics

can be efficiently employed on each component, as in [39]. However, the model

over-generates speech by allowing combinations of unvoiced excitation and voiced

filters and vice versa, and the computations required for temporal dynamics may

be too costly in many cases.

An alternate strategy is to simply train a single non-factored high-resolution

speech model. In the experiments described below, we used non-factored Gaussian

mixture models (GMM). We trained two models: a speaker independent gender

independent model, and a speaker independent gender dependent model. The

speaker independent, gender independent model had 512 mixtures, and 128

frequency components, while the gender dependent model had 512 mixtures for

the male component and 512 mixtures for the female component. These models

were trained in the standard way[74], by initializing using vector quantization, and

then using Expectation Maximization to find the parameters of the GMMs.

Although this approach is not as efficient as the factored model, with respect

to the number of parameters required to represent combinations of voiced filters

at different pitches, it has the advantage that it does not over-generate speech.
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5.1.5 High-Resolution Signal Reconstruction

To reconstruct the signal, we first calculate high-resolution log-spectral features

of the noisy input signal as described in section 5.1.2. In the feature extraction

stage, we used hamming windows of length 25 ms, and the frame rate of

10 ms. A corresponding synthesis window is designed such that the analysis

window multiplied by the synthesis window, and overlapped with neighboring

analysis-synthesis windows at the frame rate, sums to unity at each time point.

We smooth the high-resolution log-spectrum features across frames by filtering

them temporally with a simple FIR filter with parameters [0.25 0.5 0.25]. Without

this smoothing step, the inference algorithm tends to produce spurious errors.

The Algonquin algorithm is then used to infer the posterior distributions over

the clean speech. In the results reported below, we used the MMSE estimate based

on p(x|y).This is then exponentiated and used as a point estimate for |X(f)|.
Alternately, we could use the MMSE estimate of ̂|X(f)|2 = E[exp(x)]. However,

the fact that the speech recognizer operates on the log spectrum domain motivates

the former rather than the latter estimate.

We then reconstruct each frame of the signal, by use of the inverse Fourier

transform, as in Eqn. (5.8), where the phase components are the phases of the

noisy signal. The frames are then overlapped and added together using the tapered

synthesis window described above.

5.1.6 Results

We tested the high-resolution signal enhancement for speech enhancement as

well as for robust speech recognition.

5.1.7 Speech Enhancement Results

In informal listening tests, the subjective quality of the enhanced speech was

reported to be exceptionally good. At very low SNR (-5 dB and 0 dB), the most
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-5 dB 0 dB 5 dB 10 dB 15 dB 20 dB

∆SNR 10.76 8.38 6.27 3.95 1.28 -1.94
∆SNRseg 6.82 6.58 6.12 5.35 4.29 2.87

Table 5.1: Gains in SNR for car noise at a range of SNRs. The two measures of
SNR are for standard SNR and Segmental SNR. For segmental SNR, we used a
window of 25 ms, a SNR floor of -10 dB and an SNR ceiling of 35 dB.

notable distortion in the enhanced speech is flutter due to the inference algorithm

assigning low energy fricatives to periods of silence, as well as silences in low energy

voiced portions. At higher decibel levels (15 dB and 20 dB) the enhanced speech

is almost indistinguishable from clean speech.

In Table 5.1 we give dB gains for the car noise condition of the Aurora data set.

The first row shows SNR computed over the whole waveform, while the second row

shows segmental SNR, computed using a floor of -10 dB and a ceiling of 35 dB.

5.1.8 Aurora Speech Recognition Results

To assess the performance of high-resolution signal reconstruction for speech

recognition, we ran experiments on the Aurora 2 data-set. The Aurora 2 data-set

contains spoken digits, artificially mixed with various noise types at Signal to noise

ratios of -5 dB to 20 dB, in addition to unaltered clean speech. There are 1001

test files in each condition, where each test file contains from 1 to 7 spoken digits.

In the experiments below, we report results for the Car noise condition. This

condition has relatively stationary noise which allows us to use a single Gaussian

noise model, estimated from the first 20 frames of each file. Other conditions such

as “Subway” require larger noise models to handle the non-stationary aspect. In

previous work, it has been shown [52] that using low-resolution Algonquin with

larger noise models, as well as adapting the noise model will produce considerable

gains in recognition accuracy, at the expense of higher computational complexity.

The standard low-resolution Algonquin method produces estimates of clean

parameters in the 23 dimensional log-Mel-spectrum domain. For the recognition
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experiments, these are converted to cepstrum parameters directly, by taking

the discrete cosine transform. For the high-resolution signal reconstruction

experiments, the time domain signal was reconstructed and the standard Aurora

front end was then used to produce cepstrum parameters from the time domain

signals.

The graph in Figure 5.3 shows the recognition accuracy for the Car noise

condition of Set A of the Aurora 2 data-set, using multi-condition training of the

acoustic models. We used the standard Aurora back-end, which is an HTK based

recognizer with 16 state, left-to-right word models with 3 mixture acoustic models

in each state. Figure 5.5 shows the change in absolute Word accuracy over the

baseline, and Figure 5.4 shows the change in word error rate due to high-resolution

processing.

The baseline of 86.52% is shown as the bottom line in Figure 5.3. The result

for “low-resolution” log-Mel-spectrum is the middle line in Figure 5.3. The speech

model used was a Gaussian mixture model with 256 components, of 23 dimensions

each. The low-resolution Algonquin algorithm achieves an average recognition

accuracy of 90.12% for the Car noise condition, which is a relative reduction error

rate of 13.26%.

The results for high-resolution signal reconstruction with a speaker

independent, gender dependent model is the top line in Figure 5.3. The average

accuracy is 91.14%, which is a relative reduction in average word error rate

of 15.62% over the baseline. Using gender independent high-resolution models

achieves a slightly lower average accuracy of 91.04%.

It is more interesting to compare the recognition rates for low-resolution

Algonquin and high-resolution Algonquin. Interestingly, the gains are mostly

achieved at -5 dB and 0 dB. The increases in word accuracy are 5.28% and

13.48% absolute (16.95% and 19.02% reduction in WER respectively), while at

higher SNRs the recognition rates are almost identical. This indicates that the

advantages of using voicing information are mostly at very low signal-to-noise
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Figure 5.3: Word accuracy of High-Resolution Signal Reconstruction using
gender-dependent models, Low-Resolution Algonquin and Aurora Multi-condition
Baseline for the Car noise condition

ratios. It also supports the assumption that voicing information is not helpful for

speaker-independent recognition of clean speech in non-tonal languages.

5.1.9 Discussion and Conclusions

Our findings support the hypothesis that high-resolution spectral information

is quite useful for enhancing noisy speech and substantially helps recognition in

very noisy conditions. At the same time, our findings are consistent with the

widely held assumption that low-resolution spectral components are sufficient for

speaker-independent recognition of clean speech.

The traditional approach for exploiting harmonic structure is to employ

parametric models with a small number of parameters for the excitation component

of the signal. This can lead to heterogeneous models and make it difficult to

jointly estimate parameters related to excitation and filter in noisy conditions.

The model presented in this section avoids such pitfalls by employing a combined

excitation-filter speech model. The size of model required is surprisingly small. Our

model presents an advantage over models that factorize the excitation and filter
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Figure 5.4: Word error rate of High-Resolution method as compared to Baseline,
and Low-Resolution Algonquin.

components in that we can model statistical dependencies between the excitation

and filter components of a signal.

We have incorporated this information into a probabilistic model in a principled

way that is compatible with the current paradigm in speech processing.

5.2 Single Microphone Source Separation using

High-Resolution Signal Reconstruction

Abstract

We present a method for separating two speakers from a single microphone

channel. The method exploits the fine structure of male and female speech and

relies on a strong high frequency resolution model for the source signals.

The algorithm is able to identify the correct combination of male and female

speech that best explains an observation and is able to reconstruct the component

signals, relying on prior knowledge to ‘fill in’ regions that are masked by the other

speaker.
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Figure 5.5: Change in absolute Word Accuracy of High-Resolution Signal
Reconstruction using Gender Dependent models and Low-Resolution Algonquin
compared to the Aurora Multi-condition Baseline for the Car noise condition.

The two speaker single microphone source separation problem is one of the

most challenging source separation scenarios and few quantitative results have

been reported in the literature. We provide a test set based on the Aurora 2 data

set and report performance numbers on a portion of this set. We achieve results of

5.51 dB average increase in SNR for male speakers and 6.59 dB for female speakers.

5.2.1 Introduction

Source separation involves recovering two or more signals that have been mixed.

When multiple microphones are available the phase between the different signals

can be exploited to recover the composite signals. A large body of work revolves

around exploiting phase information for source separation[75]. Source separation

via Independent Component Analysis (ICA)[9, 3] relies on multiple signals as well.

The most challenging case for source separation is when only one signal is

available. In this case, one has to rely exclusively on the prior knowledge of the

signals to be separated.

Previous work in the area of single microphone source separation has used less
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accurate approximations to the mixing process[39] or sub-band representation of

speech[78] which remove important correlations in the speech signal.

The core inference method used in this work has been extensively studied in

the context of robust speech recognition[52], using low dimensional representations

of speech. Recently we have shown [54] that the harmonic structure of speech is

of substantial value for separating speech from noise, in very noisy conditions.

In this section, we extend the method for the cross-speaker condition, where the

competing signal is a second speaker.

Figures 5.2.1(a)-5.2.1(c) shows the result of running the algorithm on a single

frame of the input (frame 100 from Figure 5.2.4(a)). Only frequencies 1200 Hz

-2600 Hz are shown for clarity. Figure 5.2.1(a) shows the input to the algorithm

(black heavy line), the female component feature vector(red dotted line) and male

component feature vector(blue dashed line).

Intuitively, the algorithm has identified the best combination of male and female

speech, that explains the observation. Notice that the amplitude of the male

speaker is stronger in the lower half of the frequency range shown and the female

speaker is stronger in the upper half of the frequency range. In the middle of the

frequency range, the amplitudes are in a similar range. Notice that due to the log

scale the mixed signal is effectively equal to the maximum of the two signals if one

signal is considerably stronger than the other signal as happens on both ends of

the frequency range. Notice also that when the values are in a similar range (e.g.

at 1900 Hz) the mixed signal is not effectively equal to them maximum2.

Figure 5.2.1(b) shows the posterior estimate for the female signal. As can be

seen in Figure 5.2.1(a), the female signal is effectively masked by the male speaker

in the lowest part of the frequency range and vice versa. The algorithm is able

to reconstruct the signal in the area where the female signal masked based on the

prior knowledge of female speech encoded in the speech model. Notice that the

algorithm finds a remarkably good estimate.

2in this case, the max approximation is sub-optimal[78].
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Figure 5.6: Speech separation spectra: (a) Mixed signal input feature vector (solid
black line), the posterior mode for for speaker 1 (red dotted line) and the mode
of the estimate for speaker 2 (blue dashed line). (b) The posterior estimate for
speaker 1 (female). Notice that signal is effectively masked in the lower portion of
the frequency range. The algorithm is able to reconstruct these values due to the
strong prior model. The shaded area represents the uncertainty of the estimate and
is the first standard deviation. Notice that the uncertainty is larger for ’submerged’
estimates. (c) Posterior estimate for speaker 2 (male).
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In the areas where the female signal is ’submerged’ in the male signal, the

uncertainty of the estimate is much larger than where the signal dominates. The

uncertainty is quantified by the variance of the posterior and is represented by the

shaded area in the figure.

Figure 5.2.1(c) shows the posterior estimate for the male signal. Similarly we

see that the signal has been reconstructed where it is effectively masked, and the

uncertainty is larger in these areas.

5.2.2 High-Resolution Source Separation

The core of the method involves calculating posteriors for the high frequency

resolution log-spectrums p(x1|y) and p(x2|y) of the two speakers, given the

mixed signals. We employ the Algonquin framework [29, 52] to calculate these

posteriors. The derivation given here is exactly equivalent to the derivation when

the interfering signal is noise.

The model for mixed speech in the time domain is

y[t] = x1[t] + x2[t]. (5.15)

where x1[t] denotes the first speaker, x2[t] denotes the second speaker, and y[t]

denotes the mixed signal. In the Fourier domain, the relationship becomes

Y (f) = X1(f) +X2(f) (5.16)

where f designates the frequency component of the FFT. This can also be written

in terms of the magnitude and the phase of each component:

|Y (f)|∠Y (f) = |X1(f)|∠X1(f) + |X2(f)|∠X2(f) (5.17)

where |Y (f)| is the magnitude of Y (f) and ∠Y (f) is the phase.

We model only the magnitude components and do not explicitly model the

phase components. The relationship between the magnitudes is

|Y (f)|2 = |X1(f)|2 + |X2(f)|2 + 2|X1(f)||X2(f)|cos(θ) (5.18)
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Figure 5.7: Speech separation spectrograms: (a) The spectrogram of the mixed
signal. (b) The reconstructed spectrogram for signal 1 (female). (c) The
reconstructed spectrogram for signal 2 (male).



117

where θ is the angle between X1 and X2. For the purposes of modeling, we

assume the we can model the last term as a noise term, hence we approximate

this relationship between magnitudes as

|Y (f)|2 = |X1(f)|2 + |X2(f)|2 + e (5.19)

where the e is a random error [52]. Next we take the logarithm and arrive at the

relationship in the high resolution log-magnitude-spectrum domain

y = x1 + ln(1 + exp(x2 − x1)) + ε (5.20)

where y = log(|Y (f)|2), x1 and x2 are similarly defined and ε is assumed to be

Gaussian. Hence, we can also write this relationship in terms of a distribution over

the mixed speech features y as

p(y|x1, x2) = N(y;x1 + ln(1 + exp(x2 − x1)), ψ) (5.21)

where ψ is the variance of ε, and N(y|µ, ψ) denotes a normal density function in

y with mean µ and variance ψ.

The transformations that we have applied to the model above are the same as

the first steps in the calculation of the Mel frequency cepstrum features with the

exception that we did not perform the Mel-scale warping before applying the log

transform.

For the purpose of signal reconstruction, we are interested in likely values of

the two composite signals, given the noisy speech. By recasting this relationship

in terms of a likelihood p(y|x1, x2), and using prior models for the two signals

p(x1) and p(x2), we can arrive at a posterior distribution for the joint distribution

p(x1, x2|y) from which we can easily get the posterior distributions for the

component signals p(x1|y) and p(x1|y). This will be described in the next section.

By inverting the procedure described above we can reconstruct an estimate of

each signal. To do this we find the MMSE estimate for the signal x̂1 and calculate

the inverse Fourier transform

x̂1[t] = IFFT (exp(x̂1) · ∠Y ) (5.22)
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where x̂1 =
∫
x1p(x1|y)dx1. The same is done for x̂2. In this reconstruction, we

have used the original phases from the mixed signal.

5.2.3 Inference

We now turn our attention to the procedure for estimating the posterior for the

clean speech log-magnitudes p(x1|y). For this we employ the Algonquin method.

Extensive evaluations of this framework have been performed in the context

of robust speech recognition. In previous work, speech and noise models have

either been in the ”low-resolution” log-Mel-spectrum domain, or in the truncated

cepstrum domain. Here we briefly outline the Algonquin procedure. Detailed

discussions can be found in [29, 52].

At the heart of the Algonquin method is the approximation of the posterior

p(x1, x2|y) by a Gaussian.

The true posterior

p(x1, x2|y) ∝ p(y|x1, x2)p(x2)p(x1) (5.23)

is non-Gaussian, due to the non-linear relationship in Eqn. (5.20). In Eqn. (5.23)

p(x1) is the model for the first speaker, p(x2) is the model for the second speaker,

and p(y|x1, x2) is the likelihood function discussed above.

We use a mixture of Gaussians to model both speech signals. Hence

p(x1) =
∑
s1

p(s1)p(x1|s1) =
∑
s1

πs1N(x1|µx1
s1
,Σx1

s1
) (5.24)

and similarly for p(x2). The construction of the speech models will be discussed

below.

Due to the non-linear relationship between x1 and x2 for a given y, the true

posteriors p(x1, x2|y) is non-Gaussian. We wish to approximate this posterior with

a Gaussian posterior. The first step is to linearize the relationship between x1 and

x2.
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For notational convenience, we write the stacked vector z = [xT
1 x

T
2 ]T and we

introduce the function g(z) = x1 + ln(1 + exp(x2 − x1)).

If we linearize the relationship of Eqn. (5.20) using a first order Taylor series

expansion at the point z0, we can write the linearized version of the likelihood

pl(y|x1, x2) = pl(y|z) = N(y; g(z0) +G(z0)(z − z0),Ψ) (5.25)

where z0 is the linearization point and G(z0) is the derivative of g, evaluated at

z0. We can now write a Gaussian approximation to the posterior for a particular

speech and noise combination as

pl(x1, x2, y|sx1 , sx2) = pl(y|x1, x2)p(x1|sx1)p(x2|sx2) (5.26)

It can be shown[52] that the p(x1, x2|y, sx1 , sx2) is jointly Gaussian with mean

ηs = Φs

[
Σ−1

s µs +GT Ψ−1(y − g −Gz0)
]

(5.27)

and covariance matrix

Φs =
[
Σ−1

s +GT Ψ−1G
]−1

(5.28)

and the posterior mixture likelihood p(y|sx1 , sx2) can be shown to be

γs = |Σs|−1/2|Ψ|−1/2|Φs|1/2 · exp

[
− 1

2
(µT

s Σ−1
s µs+

(yobs − g +Gz0)
T Ψ−1(yobs − g +Gz0)− ηT

s Φ−1
s ηs)

]
.

The choice of the linearization point is critical to the accuracy of the

approximation. Ideally, we would like to linearize at the mode of the true posterior.

In the Algonquin algorithm, we attempt to iteratively move the linearization points

towards the mode of the true posterior. In iteration i of the algorithm, the mode

of the approximate posterior in iteration i− 1, µi−1 is used as a linearization point

of the likelihood, i.e. zi = µi−1. The algorithm converges in 3-4 iterations.
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Figure 5.8: Reconstruction errors: (a) The spectrogram for the original clean
female signal. (b) The restored spectrogram for speaker 1 (female). (c) The error
in absolute dB. The scale has been changed to make the errors clearer. Note that
the errors do not suggest that the male speaker is substantially present in the
spectrogram.
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5.2.4 Experiments

As mentioned above, we use Gaussian mixture models (GMM) to model the

speakers. We trained two speaker independent gender dependent models. Each

model had 512 mixtures of 128 dimensions. The training set was the clean training

set from the Aurora 2 robust speech recognition data set.

Exact inference of a single frame of speech requires the evaluation of every

combination of the female and male speaker models. As each models contains 512

mixtures the number of combinations that must be evaluated is 262144. Each

combination requires 3-5 iterations in 128 dimensions. Hence, exact inference

has complexity O(m · n · d · i) where m is the number of mixtures in speaker

model 1, n is the number of mixtures in speaker model 2, d is the number of

dimensions (frequency bins) and i is the number of iterations of the algorithm.

The computational complexity is therefore considerable.

The test set was constructed from the Aurora 2 test-set. This set contains files

with spoken digits, sampled at 8k Hz. Files from test Set A were mixed together at

equal signal powers (i.e. 0dB SNR). Log spectrum feature vectors were computed

using an analysis window of 25 ms and a shift of 10 ms.

We ran the algorithm on 17 files from this test set. No adaptation due to signal

gain was necessary for this task, as the training and test sets have similar signal

levels.

Figure 5.2.2(a) shows a spectrogram for a portion of a file from the test

set. Figure 5.2.2(b) shows the spectrogram for the separated female signal and

Figure 5.2.2(c) shows the spectrogram for the separated male signal. Notice that

the characteristics of the male and female spectrograms are different, where the

fundamental frequency of the female speaker is higher, and the harmonics are

spaced further apart. Notice that the harmonics of the male signal are not clearly

visible. This aliasing may be reduced by lengthening the analysis window.

Figure 5.2.4(a) shows the spectrogram for the original female component signal.

Compare this to the spectrogram for the recovered signal in Figure 5.2.4(b). The
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absolute dB errors are shown in Figure 5.2.4(c). The error plot shows that very

little of the male speaker remains in the female signal.

The average average gain in SNR was 6.59 dB for the separated female signal,

and 5.51dB for the separated male signal. The separation of the female signal is

better on average than the male signal. Interestingly, the model works best when

there is complete overlap. In low energy frames of the female signal the male signal

tends to leak into the separated female signal, but not vice versa.

The acoustic quality of the separated signals is impressive given the difficulty

of the task. The suppression of the unwanted speaker in the restored signal is

substantial, and leakage from the unwanted speaker is often barely audible. The

suppression of the unwanted speaker is better than the above numbers suggest, as

the algorithm also introduces some distortion 3.

5.2.5 Discussion and Future Work

The male-male and female-female cross-talking scenarios require that the two

speaker models be the same. As this is a symmetrical problem, the components

that generate an observation may be correctly identified, but without temporal

dependencies, we cannot associate the components through time. The complexity

of the inference problem is not substantially increased introducing time dynamics,

however the estimation of speaker models is more involved. We are currently

exploring ways to do this.

We are also pursuing approximate inference techniques that promise orders of

magnitude reduction in computational complexity without resorting to sub-optimal

factorizations or mixing approximations.

In this section we have proposed a new method for the cross-talker source

separation task, that relies on strong high frequency resolution models of speech.

We provide a test set based on the Aurora 2 test set and give quantitative results

3Please contact the author for audio samples.
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for a portion of this set. The acoustic quality of the results is impressive for this

new method.

5.3 Speech Separation with Factorial Hidden

Markov Models

Abstract

We propose a method to exploit audio and potentially visual cues to enable

speech separation under non-stationary noise and with a single microphone. We

revise and extend HMM-based speech enhancement techniques, in which signal

and noise models are factorially combined, to employ novel signal HMMs in

which the dynamics of narrow-band and wide band components are factorial.

We avoid the combinatorial explosion in the factorial model by using a simple

approximate inference technique to quickly estimate the clean signals in a mixture.

We also explore incorporating visual lip information. We present a preliminary

evaluation of this approach using a small-vocabulary audio-visual database,

showing promising improvements in machine intelligibility for speech enhanced

using audio information for mixtures of male and female speech. Video information

was found to be useful in cases where the speech is of the same gender. the speaker

5.3.1 Introduction

We often take for granted the ease with which we can carry on a conversation

in the proverbial cocktail party scenario: guests chatter, glasses clink, music plays

in the background: the room is filled with ambient sound. The vibrations from

different sources and their reverberations coalesce translucently yielding a single

time series at each ear, in which sounds largely overlap even in the frequency

domain. Remarkably the human auditory system delivers high-quality impressions

of sounds in conditions that perplex our best computational systems. A variety
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of strategies appear to be at work in this, including binaural spatial analysis, and

inference using prior knowledge of likely signals and their contexts. In speech

perception, vision often plays a crucial role, because we can follow in the lips

and face the very mechanisms that modulate the sound, even when the sound is

obscured by acoustic noise. We introduce a method of speech enhancement using

factorial hidden Markov models (fHMMs). We focus on speech enhancement rather

than speech recognition for two reasons: first, speech conveys useful paralinguistic

information, such as prosody, emotion, and speaker identity, and second, speech

contains useful cues for separation from noise, such as pitch. In automatic speech

recognition (ASR) systems, these cues are typically discarded in an effort to reduce

irrelevant variance among speakers and utterances within a phonetic class.

In speech recognition, HMMs are commonly used because of the advantages

of modeling signal dynamics. This suggests the following strategy: train an

audio-visual HMM on clean speech, infer the likelihoods of its state sequences,

and use the inferred state probabilities of the signal and noise to estimate a

sequence of filters to clean the data. In cases where background noise also has

regularity, such as the combination of two voices, another HMM can be used

to model the background noise. Ephraim [23] first proposed an approach to

factorially combining two HMMs in such an enhancement system. In [33] an

efficient variational learning rule for the factorial HMM is formulated, and in [77, 5]

fHMM speech enhancement was recently revived using some clever tricks to allow

more complex models.

The fHMM approach is amenable to audio-visual speech enhancement in many

different forms. In the simplest formulation, which we pursue here, the signal

observation model includes visual features. These visual inputs constrain the

signal HMM and produce more accurate filters. Below we present a prototype

architecture for such a system along with preliminary results.
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5.3.2 Factorial Speech Models

One of the challenges of using speech HMMs for enhancement is to model

speech in sufficient detail. Typically, speech models, following the practice in ASR,

ignore narrow-band, spectral details (corresponding to upper cepstral components)

which carry pitch information, because they tend to vary across speakers and

utterances for the same word or phoneme. Instead such systems focus on the

smooth, or wide-band, spectral characteristics (corresponding to lower cepstral

components) such as are produced by the articulation of the mouth. Such

wide-band spectral patterns loosely represent formant patterns, a well-known cue

for vowel discrimination. In cases where the pitch or other narrow-band properties,

of the background signals differ from the foreground speech, and have predictable

dynamics, such as with two simultaneous speech signals, these components may

be helpful in separating the two signals. Figure 5.9 illustrates the analysis of two

words into wide-band and narrow-band components.

Wide-band and narrow-band representations of speech are derived by filtering

the log power spectrum, or liftering the signals into two components. Low-pass

filtering the log spectrum yields a wide-band component and high-pass filtering

the log spectrum yields a narrow-band component. Using the fourier transform

of the log spectrum, the cepstrum, we define the wide-band component as the log

spectrum derived from lower cepstral coefficients, and the narrow-band component

as the log spectrum derived from upper cepstral coefficients. For a given state,

these are assumed to be gaussian random variables with diagonal covariances.

These components add linearly in the log spectral domain, to form a complete

representation of the signal. Thus these components represent signals that are

multiplied in the spectral domain, and convolved in the time domain. Hence, with

the right liftering cutoff point, they tend to relegate the excitation of the vocal

cords to the narrow-band component, and the resonances of the mouth to the

wide-band.

However, the wide-band and narrow-band variations in speech are only loosely



126

“two”“one”

Fr
eq

ue
nc

y

Time

Full band:

Narrow band:

Wide band:

L
og

 A
m

pl
it

ud
e

Figure 5.9: Liftering decomposition of speech: full-band, narrow-band, and
wide-band log spectrograms of two words. The wide-band log spectrograms
(bottom) are derived by low-pass filtering the log spectra (across the frequency
domain), and the narrow-band log spectrograms (middle) derived by high pass
filtering the log spectra The full log spectrogram (top) is the sum of the two.

coupled. For instance, a given formant is likely to be uttered with many different

pitches and a given pitch may be used to utter any formant. Thus a model of

the full spectrum of speech would have to have enough states to represent every

combination of pitches and formants. Such a model requires a large amount of

training data and imposes serious computational burdens. For instance in [77]

a model with 8000 states is employed. When combined with a similarly complex

noise model, the composite model has 64 million states. This is expensive in terms

of computation as well as the number of data points required for inference. Even

if a more modest model with a few hundred states per voice is used, the modeling

and implementation of the state transition matrix can be daunting.

To parsimoniously model the complexity of speech, we employ a factorial

HMM for a single speech signal, in which wide and narrow-band components are

represented in sub-models with independent dynamics. We therefore train the two

submodels independently using Gaussian observation probability density functions

(p.d.f.) on the wide-band or narrow-band log spectra, with diagonal covariances
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for the sake of simplicity. Figure 5.10(a) depicts the graphical model for a single

wide or narrow-band component.

…
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Time
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(b) factorial speech HMM

Figure 5.10: Factorial HMM model of speech: single HMMs are trained separately
on wide-band and narrow-band speech signals (a) and then combined factorially
in (b) by adding the means and variances of their observation distributions

To combine the sub-models, we have to specify the observation p.d.f. for

a combination of a wide and a narrow-band state, over the log-spectrum of

speech prior to liftering. Because the observation densities of each component

are Gaussian, and the log-spectra of the wide and narrow-band components add

in the log spectrum, the composite state has a Gaussian observation p.d.f., whose

mean and variance is the sum of the component observation means and variances.

Although the states of the two sub-models are marginally independent they are

typically conditionally dependent given the observation sequence. In other words

we assume that the state dependencies between the sub-models for a given speech

signal can be explained entirely via the observations. Figure 5.10(b) depicts the
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combination of the wide and narrow-band models, where the observation p.d.f.’s

are a function of two state variables.

When combining the signal and noise models (or two different speech models)

in contrast, the signals add in the frequency domain, and hence in the log spectral

domain they longer simply add. In the spectral domain the amplitudes of the

two signals have log-normal distributions, and the relative phases are unknown.

There is no closed form distribution for the sum of two random variables with

log-normal amplitudes and a uniformly distributed phase difference. Disregarding

phase differences we apply a well-known approximation to the sum of two lognormal

random variables, in which we match the mean and variance of a lognormal

random variable to the sum of the means and variances of the two component

lognormal random variables [31]. Phase uncertainty can also be incorporated into

an approximation; however in practice the costs appear to outweigh the benefits.4

Figure 5.11(a) depicts the combination of two factorial speech models, where the

observation p.d.f.s are a function of two state variables.

Using the log-normal observation distribution of the composite model we can

estimate the likelihood of the speech and noise states for each frame using the

well known forward-backward recursion. For each frame of the test data we can

compute the expected value of the amplitude of each model in each frequency bin.

Taking the expected value of the signal in the numerator and the expected value

of the signal plus noise in the denominator yields a Wiener filter which is applied

to the original noisy signal enhancing the desired component. When we have two

speech signals one person’s noise is another’s signal and we can separate both by

the same method.

4The uncertainty of the phase differences can be incorporated by modeling the sum as
a mixture of lognormals that uniformly samples phase differences. Each mixture element is
approximated by taking as its mean the length of the sum of the mean amplitudes when added
in the complex plane according a particular phase difference, and as its variance the sum of the
two variances. This estimation is facilitated by the assumption of diagonal covariances in the log
spectral domain.



129

5.3.3 Incorporating vision

We incorporate vision after training the audio models in order to test the

improvement yielded by visual input while holding the audio model constant. A

video observation distribution is added to each state in the model by obtaining

the probability of each state in each frame of the audio training data using

the forward-backward procedure, then estimating the parameters of the video

observation distributions for each state, in the manner of the Baum-Welch

observation re-estimation formula. This procedure is iterated until it converges.

In this way we construct a system in which the visual observations are modular.

Figure 5.11(b) depicts the structure of the resulting speech model.

Such a method in which audio and visual features are integrated early in

processing is only one of several approaches. We envision other late integration

approaches in which audio and visual dynamics are more loosely coupled. What

method of audio-visual integration may be best for this task is an open question.

5.3.4 Efficient inference

In the models described above, in which we factorially combine two speech

models, each of which is itself factorial, the complexity of inference in the composite

model, using the forward-backward recursion, can easily become unmanageable. If

K is the number of states in each subcomponent, then K4 is the number of states

in the composite HMM. In our experiments K is on the order of 40 states, so

there are 2,560,000 states in the composite model. Naively each composite state

must be searched when computing the probabilities of state sequences necessary

for inference. Interesting approximation schemes for similar models are developed

in [77, 5]. We develop an approximation as follows.

Rather than computing the forward-backward procedure on the composite

HMM, we compute it sequentially on each sub-HMM to derive the probability

of each state in each frame. Of course, in order to evaluate the observation

probabilities of the current sub-HMMs for a given frame, we need to consider the
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state probabilities of the other three sub-HMMs, because their means and variances

are combined in the observation model. These state probabilities and their

associated observation probabilities comprise a mixture model for a given frame.

The composite mixture model still has K4 states, so to defray this complexity

during forward-backward analysis of the current sub-HMM, for each frame we

approximate the observation mixtures of each of the other three sub-HMMs with a

single Gaussian, whose mean and variance matches that of the mixture. Thus we

only have to consider the K states of the current model, and use the summarized

means and variances of the other three HMMs as auxiliary inputs to the observation

model. We initialize the state probabilities in each frame with the equilibrium

distribution for each sub-HMM. In our experiments, after a handful of iterations,

the composite state probabilities tend to converge. This method and can be also

be seen as an approximate belief propagation or sum-product algorithm [55].

5.3.5 Data

We used a small-vocabulary audio-visual speech database developed by Fu

Jie Huang at Carnegie Mellon University5 [42]. These data consist of audio and

video recordings of 10 subjects (7 males and 3 females) saying 78 isolated words

commonly used for numbers and time, such as,”one” ”Monday”, ”February”,

”night”, etc. The sequence of 78 words is repeated in 10 different takes. Half

of these takes were used for training, and one of the remaining takes was used as

the test set.

The data set included outer lip parameters extracted from video using an

automatic lip tracker, including height of the upper and lower lips relative to

the corners the width from corner to corner. We interpolated these lip parameters

to match the audio frame rate, and calculate time derivatives.

Audio consisted of 16-bit, 44.1 kHz recordings which we resample to 8000 kHz.

The audio was framed at 60 frames per second, with an overlap of 50%, yielding

5see http://amp.ece.cmu.edu/projects/AudioVisualSpeechProcessing/
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264 samples per frame.6 The frames were analyzed into cepstra: the wide-band log

spectrum is derived from the lower 20 cepstral components and the wide-band log

spectrum from the upper cepstra.

5.3.6 Results

Speaker dependent wide and narrow-band HMMs having 40 states each were

trained on data from two subjects (”Anne” and ”Chris”) selected from the

training set. A PCA basis was used to reduce the log spectrograms to a more

manageable size of 30 dimensions during training. This resulted in some non-zero

covariances near the diagonal in the learned observation covariance matrices, which

we discarded. An entropic prior and parameter extinction were used to sparsify

the transition matrices during training [13].

The narrow-band model learned states that represented different pitches

and had transition probabilities that were non-zero mainly between neighboring

pitches. The narrow-band model’s video observation probability distributions were

largely overlapping, reflecting the fact that video tells us little about pitch. The

wide-band model learned states that represented different formant structures. The

video observation distributions for several states in the wide-band model were

clearly separated, reflecting the information that video provides about the formant

structure.

Subjectively the enhanced signals sound well separated from each other for

the most part. Figure 5.12(a) (bottom) shows the estimated spectrograms for a

mixture of two different words spoken by the same speaker – an extremely difficult

task. To quantify these results we evaluate the system using speech recognizer,

on the slightly easier task of separating the speech of the two different speakers,

whose voices were in different but overlapping pitch ranges.

A test set was generated by mixing together 39 randomly chosen pairs of words,

6Sine windows were used in analysis and synthesis such that their product forms windows
that sum to unity when overlapped 50%. The windowed frames were analyzed using a 264-point
fast Fourier transform (FFT). The phases of the resulting spectra were discarded.
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one from each subject, such that no word was used twice. Each word pair was

mixed at five different signal to noise ratios (SNRs), with the SNR provided to

the system at test time.7 The total number of test mixtures for each subject

was thus 195. The separated test sounds were estimated by the system under two

conditions: with and without the use of video information.

We evaluated the estimates on the test set using a speech recognition system

developed by Bhiksha Raj, using the CMU Sphinx ASR engine.8 Existing speech

HMMs trained on 60 hours of broadcast news data were used for recognition.9

The models were adapted in an unsupervised manner to clean speech from each

speaker, by learning a single affine transformation of all the state means, using a

maximum likelihood linear regression procedure [56]. The recognizer adapted to

each speaker was tested with the enhanced speech produced by the speech model

for that speaker, as well as with no enhancement.

Results are shown in figure 5.12(b). Recognition was greatly facilitated by the

audio enhancement. Results with the use of vision were not significantly better

than with audio alone in the case of a male and female speaker. However in

informal experiments, when both voices were of the same gender, the video was

helpful in disambiguating which signal came from which person.

5.3.7 Discussion

We have presented promising techniques for audio-visual speech enhancement.

We introduced a factorial HMM to track both formant and pitch information, as

well as video, in a unified probabilistic model, and demonstrated its effectiveness

7Estimation of the SNR is necessary in practice; however this subject has been treated
elsewhere [23] and is beyond the scope of this thesis.

8see http://www.speech.cs.cmu.edu/sphinx/.
9These models represented every combination of three phones (triphones) using 6000 states

tied across triphone models, with a 16-element Gaussian mixture observation model for each state.
The data were processed at 8 kHz in 25ms windows overlapped by 15ms, with a frame rate of
100 frames per second, and analyzed into 31 Mel frequency components from which 13 cepstral
coefficients were derived. These coefficients with the mean vector removed, and supplemented
with their time differences, comprised the observed features
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in speech enhancement. The results are tentative given the small sample of voices

used; however they suggest that further study with a larger sample of voices is

warranted. It would be useful to compare the performance of a factorial speech

model to that of each factor in isolation, as well as to a full-spectrum model.

Measures of quality and intelligibility by human listeners in terms of speech and

emotion recognition, as well as speaker identity, will also be helpful in further

demonstrating the utility of these techniques.
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Chapter 6

Audio Visual Graphical Models

for Speech Processing

Abstract

Perceiving sounds in a noisy environment is a challenging problem. Visual

lip-reading can provide relevant information but is also challenging because lips are

moving and a tracker must deal with a variety of conditions. Typically audio-visual

systems have been assembled from individually engineered modules. We propose

to fuse audio and video in a probabilistic generative model that implements

cross-model self-supervised learning, enabling adaptation to audio-visual data. The

video model features a Gaussian mixture model embedded in a linear subspace of

a sprite which translates in the video. The system can learn to detect and enhance

speech in noise given only a short (30 second) sequence of audio-visual data. In

addition it can learns to track the lips as they move around in the video. We show

some results for speech detection and enhancement, and discuss extensions to the

model that are under investigation.

136
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6.1 Introduction

We often take for granted the ease with which we can carry on a conversation

in the midst of noise. Sounds from different sources coalesce and obscure each

other making it difficult to resolve what we hear into its constituent parts, and

identify its source and content. This auditory scene analysis problem confounds

current automatic speech recognition systems, which can fail to recognize speech

in the presence of very small amounts of interfering noise. It is well known that in

humans, vision often plays a crucial role, because we often have an unobstructed

view of the lips that modulate the sound. In fact lipreading can enhance speech

recognition in humans as much as removing 15 dB of noise [83]. This fact has

motivated efforts to use video information for tasks of audio-visual scene analysis,

such as speech recognition and speaker detection [67].

Such systems have typically been built using separate modules for tasks

such as tracking the lips, extracting features, and detecting speech components,

where each module is independently designed to be invariant to different speaker

characteristics, lighting conditions, and noise conditions. One problem with

systems designed for a variety of conditions is that there is typically a tradeoff

between average performance across conditions and performance on any one

condition. Thus a system that can adapt to one’s face under the current

lighting condition may perform better than one trained for a variety of conditions

without adaptation. Another pitfall of modular audio-visual systems is that the

modules may be integrated in an ad hoc way that neglects information about the

uncertainty within models, as well as neglecting statistical dependencies between

the modalities. The two problems are related in that unsupervised adaptation is

greatly facilitated by seeking agreement between modules in different modalities

[17].

We address the integration and the adaptation problems of audio-visual scene

analysis by using a probabilistic generative model to combine video tracking,

feature extraction, and tracking of the phonetic content of audio-visual speech.
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A generative model offers several advantages. It allows us to capture and exploit

dependencies between modalities. It gives us principled methods of inference and

learning across modalities that ensure the Bayes optimality of the system. It allows

us to extend the model, for instance by adding temporal dynamics, in a principled

way while maintaining optimality properties. It also allows us to use the same

model for a variety of inference tasks, such as enhancing speech by reading lips,

detecting whether a person is speaking, or predicting the lips using audio.

In previous work it has been shown that a generative model could capture

dependencies between time delays of the speech signal in two microphone signals

and motion in a camera of the image of the speaker [7]. In that system

the cross-modal calibration parameters were automatically discovered during

unsupervised learning, and the audio time delay signal was able to bootstrap

learning of the visual tracking, yielding much better tracking when the multi-modal

system was adapted jointly than when the models were adapted independently in

each modality. Audio-visual speech recognition has been explored in a variety of

papers [67]. Speaker localization has been handled in other systems such as [40].

Unsupervised learning of video tracking has been developed for example in [28].

Adaptation to noise conditions has been demonstrated in for example [4].

Here we develop a generative model that accomplishes aspects of all of these

works. It fuses audio and video by learning the dependencies between the noisy

speech signal from a single microphone and the fine-scale appearance and location

of the lips during speech. One possible scenario for this model is that of a human

computer interaction: a person’s audio and visual speech is captured by a camera

and microphone mounted on the computer, along with other interfering signals in

the room: machine noise, another speaker, and so on.

We construct the dependencies between elements in the model based on

knowledge of the relationships between variables that generate the data. For

instance knowing what the lips look like helps us infer the speech signal in the

presence of noise because they are causally related. The converse is also true: we

can use what is being said to help infer the appearance of the lips, along with
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Figure 6.1: Audio and Video Models

the camera image, and our belief about where the lips are in the image. In turn,

we need to know what the lips look like in order to find them in the image. We

parameterize these relationships in a tractable way to define our model.

In the rest of the section we present the inference and learning rules of the

model, and describe some experiments using it to detect and enhance speech in

the presence of noise, and while tracking the lips in video. Finally we suggest

possible extensions to the model.

6.2 Audio Model

The generative model for audio shown in 6.1(a) is as follows. A windowed short

segment or frame of the observed microphone signal is represented in the frequency

domain as wk ∈ C where k indexes the frequency band. This observed quantity

is described as the clean speech signal uk amplified by scalar h and corrupted

by Gaussian noise having precision (inverse variance) φk. The speech signal is

in turn modelled as a zero mean Gaussian mixture model with state variable s

and state-dependent precision σsk, which corresponds to the inverse power of the
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frequency band k for state s. Thus the audio model is

p(u | s) =
∏

k

N (uk | 0, σsk)

p(s) = πs

p(w | u) =
∏

k

N (wk | huk, φk) . (6.1)

where for the complex sub-band components uk a Gaussian distribution is defined

as N (u | ρ, σ) = σk

π
e−

σk
| uk−ρk|2 with mean ρk and precision σk. This is a joint

distribution over the real and imaginary parts of uk, hence the power of two

disparity from the usual Gaussian.

We model the audio using a zero mean Gaussian, rather than the traditional

cepstral coefficients used in speech recognition. One advantage of this approach is

that we can easily extend the model to use phase from inferred microphone delay

as in [7]. To use cepstral coefficients derived from the log power spectrum and

accommodate inferences about phase is a challenging problem. In addition, the

inference of the clean speech in noise is greatly simplified, both mathematically

and computationally. The use of nonlinear features such as cepstral components

requires either iterative optimization procedures ([29]) or approximations ([30])

to perform noise compensation. Furthermore, whereas cepstral components may

work well for speech recognition, high-resolution spectral components may work

well for speech enhancement in noisy conditions, because it can take advantage of

fine structure in either the signal or the interference [50].

6.3 Video Model

The video model describes an observed frame of pixels from the camera, y

as a noisy version of a hidden template v shifted in two dimensions by discrete

location parameter l. v in turn is described as a weighted sum of linear basis

functions, Aj ∈ RN×1 which make up the columns of A with weights given by

hidden variables r. Such a model constitutes a factor analysis model that helps
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Figure 6.2: Video Model as Embedded Subspace Model

explain the covariance among the pixels in the template v within a linear subspace

spanned by the columns of A. This arrangement uses far fewer parameters than

the full covariance matrix of v while capturing the most important variances and

provides a low-dimensional space of causes, r. In figure 6.2 r is projected into the

subspace of v spanned by the columns of A. It is the further structure within this

subspace that we hope to describe using audio.

The video model is parameterized as

p(l) = constant

p(v | r) =
∏

i

N (vi |
∑

j

Aijrj + µi, νi)

p(y | v, l) =
∏

i

N (yi | vξ(xi − xl), λ) . (6.2)

where νi is the conditional precision of each pixel, and µi captures part of the



142

s

u

w

r

v

y

l

Figure 6.3: Audio-Visual Model

mean that doesn’t depend on the factors. The mapping between two-dimensional

coordinates and vector indices is handled by the expression vξ(xi − xl) in which

xi ∈ R2×1 is the position of the ith pixel, xl ∈ R2×1 is the position represented

by discrete variable l, and ξ(x) is the index of v corresponding to two-dimensional

position x.

6.4 Audio-Visual Model

Each model by itself is fairly simple, but by exploiting cross-modal fusion we

can obtain a system that is more than just the sum of its parts. We fuse the two

models together by allowing the mean and precisions of the hidden video factors r

to depend on the states s as illustrated in Figure 6.3:

p(r | s) =
∏

j

N (rj | ηsj, ψsj) . (6.3)

The discrete variable s now controls the location and directions of covariance of

a video representation that is embedded in a linear subspace of the pixels. Thus

we can now represent a nonlinear manifold embedded in a linear subspace, as

illustrated in Figure 6.2.
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6.5 Inference

A variational expectation maximization (EM) algorithm that decouples l from

v can be derived to simplify the computation. The posterior p(u, s, r, v | y, w) has

the factorized form

p(u, s, r, v | y, w) = q(u | s)q(s)q(r | s)q(v | r, l)q(l) . (6.4)

For u we get

q(u | s) =
∏

k

N (uk | ρ̄sk, σ̄sk)

ρ̄sk =
1

σ̄sk

hφkwk

σ̄sk = h2φk + σsk . (6.5)

For v we get

q(v | r) =
∏

i

N (vi |
∑

j

Āijrj + µ̄i, ν̄i)

ν̄i = λElαi+l + νi

µ̄i =
1

ν̄i

(νiµi + λElαi+lyi+l)

Āij =
νi

ν̄i

Aij . (6.6)

For r we get

q(r | s) = N (r | η̄s, ψ̄s)

η̄s = ψ̄−1
s

[
ψsηs + AT diag(ν)(µ̄− µ)

]
ψ̄s = AT diag(ν − ν2

ν̄
)A+ ψs (6.7)

where diag(ν) is a diagonal matrix with the elements of ν along the diagonal
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For s we get

q(s) = π̄s

log π̄s = log πs +
∑

k

(
log

σsk

σ̄sk

− φk | wk − hρ̄k |2 −σsk | ρ̄sk |2
)

+ log | ψsψ̄
−1
s | −1

2

∑
j

ψsj(η̄sj − ηsj)
2

−1

2

∑
i

νi

[∑
j

(Āij − Aij)η̄sj + µ̄i − µi

]2

−λ
2

∑
i

[
Elαi+l(yi+l −

∑
j

Āij η̄sj − µ̄i)
2 + (Āψ̄−1

s ĀT )ii

]
(6.8)

For l we get

q(l) ∝ ef(l)p(l)

f(l) = −λ
2

∑
i

αi+l

(
yi+l −

∑
sj

Āijπ̄sη̄sj − µ̄i

)2

. (6.9)

All of the expectations with respect to the hidden location random variable l can

be shown to be equivalent to a convolution, and can be efficiently carried out using

a fast Fourier transform. To enhance the audio we infer expected value of the audio

using the posteriors of u and s calculated above: E(u|w, v) =
∑

s π̄sρ̄s. We then

invert the Fourier transform and overlap and add using a lapping synthesis window

matched to the analysis window.

6.6 Learning

In the M-step we compute the model parameters. The update rules use

sufficient statistics which involve two types of averages. We denote by E average

w.r.t. the posterior q at a given frame n, and we denote by 〈·〉 average over frames

n. The subscript n will be omitted.

For σ we get

1

σsk

= 〈|ρ̄sk|2 +
1

σ̄sk

〉 (6.10)
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For h, φ we get

h =
Re
∑

k φk〈wkEu
?
k〉∑

k φk〈E | uk |2〉
1

φk

= 〈| wk |2〉 − 2hRe〈wkEu
?
k〉+ 〈E | uk |2〉 (6.11)

where

Euk =
∑

s

π̄sρ̄sk

E | uk |2 =
∑

s

π̄s

(
| ρ̄sk |2 +

1

σ̄sk

)
(6.12)

For A, µ, ν we get

A = [〈EvrT 〉 − 〈Ev〉〈ErT 〉][〈ErrT 〉 − 〈Er〉〈ErT 〉]−1

µ = 〈Ev − AEr〉

ν−1 = diag−1〈EvvT − AErvT − µEvT 〉 (6.13)

where diag−1 in the last equation extracts the diagonal of the matrix as a vector.

For the averages we have

Er =
∑

s

π̄sη̄s

ErrT =
∑

s

π̄s

(
η̄sη̄

T
s + ψ̄−1

s

)
Ev =

∑
s

π̄s

(
Āη̄s + µ̄

)
EvrT =

∑
s

π̄s

[(
Āη̄s + µ̄

)
η̄T

s + Āψ̄−1
s

]
EvvT =

∑
s

π̄s

[(
Āη̄s + µ̄

) (
Āη̄s + µ̄

)T
+ Āψ̄−1

s ĀT + ν̄−1
]

(6.14)

Finally, for η, ψ we get

ηsj = 〈η̄sj〉
1

ψsj

= 〈(η̄sj − ηsj)
2 +

(
ψ̄−1

s

)
jj
〉 (6.15)
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Figure 6.4: Audio-Visual Enhancement Results: For inference, the ”video”
condition used video only, the ”audio” condition used the noisy audio only, the ”av”
condition weighed the audio and video equally, the ”avbest” condition selected the
best weights in terms of SNR, and the ”reference” condition used clean audio to
infer the state.
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6.7 Experiments

We conducted experiments to demonstrate the viability of the technique for the

tasks of speech enhancement and speech detection. The data consisted of video

from the Carnegie Mellon University Audio-Visual Speech Processing Database1.

We trained a speaker-dependent model having 32 states and 16 subspace basis

functions on a 30-second sequence of the face of subject ”Jon” cropped around the

lip area, with accompanying clean audio speech, then trained the noise model on

10 seconds of an interfering audio signal which in this case happened to be another

speaker. The model was then tested on a set of data not used during training,

consisting of three different 30-second sequences of the same speaker, mixed with

different segments of interfering audio signal.

In order to maximize performance it was necessary to vary the contribution of

the audio and video components to the state posterior. At test time we vary the

log likelihood of audio and video according to the scheme depicted in 6.5, where a

single parameter α controls the relative weights. This scheme ensures that when

at one extreme we have a valid audio only model, at the other we have a valid

video only model, and in between we have the unaltered audio-visual model. We

tested inference under five different settings of alpha: the video condition used

video only(α = 0) , the audio condition used the noisy audio only (α = 1), the av

condition weighed the audio and video log likelihoods equally (α = 0.5), the avbest

condition selected the weights on the log likelihoods to maximize signal-to-noise

ratio of the enhanced signal. In order to have an idea of how well we would do if

the video provided as much information about the state as the clean audio itself,

we used the reference condition, in which clean audio was used to infer the state,

prior to enhancing the noisy audio.

Signal-to-noise ratio (SNR) was calculated for the enhanced audio signal

relative to the clean signal in the time domain (i.e., SNR = −10 log10
1
n

∑
n(x[n]−

y[n])2 where x is the clean time domain signal, y is the estimated signal) . Results

1by Fu Jie Huang http://amp.ece.cmu.edu/projects/AudioVisualSpeechProcessing
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performance while tracking moving lips, ”avbest” is as before for stationary video

for each condition are shown in Figure 6.6. With noisier signals the video-only

condition provides better enhancement than audio input. When both audio and

video are used without re-weighing the relative importance of each modality,

performance is about the same as for audio-only. However, when the balance

between audio and video (α is adjusted to maximize performance, the combination

does at least as good as either modality alone, and at higher SNRs performance

is better than either modality alone. The α values that improved enhancement

tended to favor video, especially at lower SNRs.

One plausible explanation for strong video contribution at low SNRs is that

with an interfering speaker it is difficult for the audio side of the model to detect

when the target speaker is speaking, which is something that is may be easier

to determine from video. To test the speech detection performance we turned
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Figure 6.8: Extensions to the Model: (a) Adding a mixture model with state s′ and
noise observation u′. (b) Adding another microphone w′ and relating the hidden
time delay t between the microphones to the position l in the video.

the enhancement system into a speech detector by thresholding the power of the

enhanced signal in each frame and comparing the resulting classification to that

obtained by thresholding the clean signal in the same way. The results shown

in Figure 6.7 indicate that speech detection performance with the best setting

of α (the setting used for enhancement in the previous experiment) is about the

same as that of the video-only model. In contrast, performance under these two

conditions diverges in the enhancement experiment at greater SNRs, suggesting

that the contribution of video to speech enhancement via detecting the presence

of the target speech is further augmented by the contribution of audio to speech

enhancement.

In another experiment we used video from the same set, in which the lips are

artificially translated in random directions. Figure 6.7 shows that tracking is able

to almost completely compensate for lip motion.

6.8 Extensions

The systematic nature of the graphical model framework allows us to

integrate our generative audio-visual model with other submodules that we have
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investigated. In particular, the simplistic noise model we have used can be replaced

with a mixture model, as depicted in Figure 6.8(a), where state s′ and noise

observation u′ can better describe non-stationary interference. The addition of

another microphone would further improve both noise robustness and tracking.

The model with this extension is depicted in Figure6.8(b), where the second

microphone w′ is the hidden time delay t between the microphones to the position

l in the video, as in [7].

The model could also be extended with dynamics, making it a form of

hidden Markov model. This would also open up the possibility of exploring

time-asynchrony between audio and video streams which may help in interpreting

anticipatory motion of the lips. We also intend to explore other applications of the

current model, such as unsupervised speaker localization.

6.9 Conclusions

We have derived and implemented the inference and learning rules for a novel

audio-visual model. The model is capable of tracking a simple object in video

as it translates and changes shape within a low-dimensional linear subspace of

pixels. We have shown that the model can be applied to audio-visual speech

enhancement, and that useful relationship between audio and video can be learned

from small amounts of data. Thus it may be possible to adapt such a system to

the prevailing noise and lighting as well as individual differences among speakers

in a given situation. Although results are preliminary, we feel this is a promising

step toward a completely unsupervised system that can usefully combine the two

modalities in a principled way.
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Chapter 7

Conclusion

The research presented in this thesis illustrates how a generative model

approach offers some unique advantages toward an understanding of perception.

There are several interesting properties of generative probabilistic models which

serve to highlight different facets of the research presented in this dissertation.

The axiomatic approach helps us understand existing algorithms in terms of

assumptions made about the world. The explicit formulation of independence

assumptions in generative probabilistic models places strict limits on what

relationships can be encoded in the model and help our understanding of what

relationships are important in the data. Often we can perform useful perceptual

inference when we assume things are independent even when we know they are

not, and such independence assumptions often lead to computational savings. The

encoding of uncertainty in probabilistic models adds an important dimension to our

models, and helps us answer questions about where the information is in the data.

The phenomenon of explaining away results when different models have to compete

to explain the observed data, and underscores the importance of knowing when you

don’t know about what is observed. Generative models are particularly suited for

unsupervised adaptation which is a perceptual computation between inference and

learning in time-scale that can greatly simplify more complex inference problems.

154
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7.1 Contributions

Specific contributions, along with highlights of the corresponding models that

reflect some of these advantages are summarized here:

• Template matching and optic flow were integrated under the same

framework and conditions under which each approach is optimal

were thus explained.

The G-flow or generative flow model of Chapter 4 unifies two seemingly

different basic vision methods: optic flow and template matching, and

provides a principled method for weighing the relative contributions of each

in a tracking situation. This work demonstrates how graphical models can

help us understand existing algorithms.

To perform inference in this model, we developed principled learning of a

template in the context of structure-from-motion. A new form of particle

filtering was developed that took advantage of continuity in the observations,

allowing the particles to be sampled from a tight proposal distribution.

Thinking about this problem as a graphical model also forced us to worry

about the background. The pixels that were outside the object being

tracked have to be generated by something in this framework. Supplying

a background model gave us the opportunity to exploit explaining-away to

help locate the object.

• Convolutional hidden Markov models, were devised in which maps

of states have location-independent state transitions, leading to

efficient exact inference.

This model, presented in Chapter 3, illustrates the importance of uncertainty

and use of assumptions of dynamics. The tracking of uncertainty over time

allows a system to maintain multiple hypotheses about the world, rather
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than a single one. Modeling dynamics improves robustness in clutter, by

constraining hypotheses about the motion to realistic trajectories.

Figure 7.1 shows the color tracker following the face, when another large

face-colored object comes on screen. Under the face color model this new

object is more likely than the face itself, however the assumption of smooth

motion prevents the tracker from switching to the new object.

Figure 7.1: Evolution of priors, likelihoods, and posteriors: The two rows of images
represent hypotheses at two different scales. The left column represents the most
likely hypotheses. The center column represents the prior distribution based on the
previous image, the right column shows the posterior distribution of hypotheses.

The use of a background model illustrates explaining away. A particular

color might be prevalent in the face, but also present in the background.

Without a background model the system would be likely to think that the

background was the object of interest. However, with a background model

to explain away those areas, the object model was forced to concentrate on

other more distinguishing colors.

Adaptation is also demonstrated in this model. The color of a face is highly

dependent on the lighting in the environment. The lighting on the face

can change dramatically even for someone sitting at a desk: for instance,

when they turn one direction or another the intensity of illumination can

vary dramatically. Thus color trackers typically use a model of hue, which
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ignores variations in intensity and saturation. We adapted the color model

to the face and background, by periodically identifying its location using a

color-independent face finding system. With this adaptation, invariance to

illumination changes was not as important, and there was an advantage to

using a full RGB color model instead of just hue.

• Single-microphone sound separation was addressed using

high-resolution speech models, including a novel factorial model

that unifies pitch tracking and formant tracking.

Independent component analysis (ICA) takes advantage of independence

constraints to infer the signals emitted from each source given observations

of multiple different mixtures of the sounds, such as recordings form

microphones at different locations. For ICA, relatively little information need

be known about the source signals because several mixtures are available.

What is important is the independence assumption. However humans seem

to excel at hearing sounds in a single mixture of source signals, a condition

in which independent component analysis completely fails. To perform such

a feat some knowledge of the sounds appears to be necessary. The generative

model framework allows us to propose richer models of sounds along with

the same independence assumption, and thereby solve this more difficult

problem.

In the sound separation experiments of Chapter 5, two independent models

of sound generation competed to explain the observed spectrum. This

competition automatically solved the problem of determining which parts

of the sound were masked by the other signal, and effectively treated them

as missing variables. Thus each model could ”explain away” part of the

spectrum, leaving the rest to be explained by the other model. The inference

of the hidden sound spectrum, automatically reconstructed these hidden

components. Figure 7.1 shows the original mixture and clean signal log

spectra, and Figure 7.1 shows the reconstructed female speech sounds with
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error bars. Notice that the uncertainty of the reconstructed signals is much

smaller where it is observed than where it is masked.
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Figure 7.2: Speech spectra: Mixed signal input feature vector (solid black line),
speaker 1 feature vector (red dotted line) and speaker 2 feature vector (blue dashed
line)

Independence assumptions also can influence the model complexity, and

therefore control for over-fitting with limited data. In Chapter 5 two

different sound separation models are proposed, a Gaussian mixture model

(GMM) without dynamics and the hidden Markov model (HMM), with

dynamics. The GMM assumes independence between two speech signals

and independence over time. Because the full spectrum is modeled a large

number of states (512) are required to well represent the many different

possible speech spectra. Thus we cannot trivially add dynamics to obtain an

HMM model. Naively formulated, such a model would be intractable because

it generates very large 512×512-state transition matrices. However when the

problem is to separate very similar signals, such mixtures of speech produced
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Figure 7.3: Speech posterior spectra: The posterior estimate for speaker 1 (female).
Notice that signal is effectively masked in the lower portion of the frequency range.
The algorithm is able to reconstruct these values due to the strong prior model.
The shaded area represents the uncertainty of the estimate and is the first standard
deviation. Notice that the uncertainty is larger for ’submerged’ estimates.

by speakers of the same gender, constraints on dynamics are necessary. By

observing that the signal can be divided into quasi-independent subspaces

(representing the excitation and filter components of speech – see Chapter

5.3), it is possible to reduce the complexity of the dynamics by having fewer

states in each subspace. Exact inference is still difficult in this model but

approximate inference by iteratively updating sub-models makes the problem

easily tractable and yields good results.

• A novel cross-modal graphical model was developed that can

perform both speech enhancement and other inference tasks such

as video enhancement while tracking motion in the video.

Traditionally the study of perception has been divided like Aristotelian



160

faculties into separate modalities. However it is well known that there are

important cross-modal effects such as the McGurk effect of speech, in which

lipreading influences the interpretation of the phonemes that are heard.

Cross-modal learning has an important thread of research ([90, 17]) that

makes the case that the errors and noise in a task is different in different

modalities, hence their combination can be greater than the sum of the parts.

The work presented in Chapter 2 demonstrated that low-level audio-visual

synchrony could be a useful cue for audio-visual integration.

The beauty of using a generative model framework for multi-modal

perception is that inference can be performed on any of the hidden variables,

given any of the observed variables. In the audio-visual generative model

proposed in Chapter 6, it was possible to use the same model to infer either

the clean audio signal, or the uncorrupted video signal.

The generative video model itself was a novel appearance-based manifold

of prototypes in a low-dimensional linear subspace embedded in the

high-dimensional space of pixels. This provided a flexible object

representation and allowed unsupervised learning and inference to be

performed. In the model, the video was understood via its contingencies with

the audio, as measured by the contribution of video to speech enhancement.

An additional benefit of the probabilistic formulation used in this model, is

that it allows the model to know when one modality becomes less reliable [66].

We call this principle “knowing when you don’t know.” The trick is to allow

a noise model to adapt to current noise conditions in each modality. When

an unusual noise situation occurs in one modality, the noise adapts to explain

the additional variance, this causes the posterior for that modality to become

highly uncertain, and the model naturally relies on the clean modality.
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7.2 Summary

This thesis advocates an approach in which generative graphical models encode

high-level knowledge of perceptual problems. Advantages of generative models

were discussed, and original work was presented that exemplifies this approach.

These contributions represent a diverse body of work in which important principles

of perception were employed to constrain the models.
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