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The entropy rate quantifies the amount of uncertainty or disorder pro-
duced by any dynamical system. In a spiking neuron, this uncertainty
translates into the amount of information potentially encoded and thus
the subject of intense theoretical and experimental investigation. Estimat-
ing this quantity in observed, experimental data is difficult and requires
a judicious selection of probabilistic models, balancing between two op-
posing biases. We use a model weighting principle originally developed
for lossless data compression, following the minimum description length
principle. This weighting yields a direct estimator of the entropy rate,
which, compared to existing methods, exhibits significantly less bias and
converges faster in simulation. With Monte Carlo techinques, we estimate
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a Bayesian confidence interval for the entropy rate. In related work, we ap-
ply these ideas to estimate the information rates between sensory stimuli
and neural responses in experimental data (Shlens, Kennel, Abarbanel,
& Chichilnisky, 2004).

1 Introduction

What do neural signals from sensory systems transmit to the brain? An un-
derstanding of how neural systems make sense of the natural environment
requires characterizing the language neurons use to communicate (Borst &
Theunissen, 1999; Perkel & Bullock, 1968; Rieke, Warland, de Ruyter van
Steveninck, & Bialek, 1997). As a step in this process, Shannon’s informa-
tion theory (Cover and Thomas, 1991; Shannon, 1948) provides a means
of quantifying the amount of information represented without specific as-
sumptions about what information is important to the animal or how it is
represented.

Neural systems operate in a time-dependent, fluctuating sensory envi-
ronment, full of spatial and temporal correlations (Field, 1987; Ruderman
& Bialek, 1994; Simonicelli & Olhausen, 2001). Given these correlations, we
ask how much novel information per second the neural response provides
about the sensory world. This is the average mutual information rate, or the
largest amount of new information per second that the brain could use to
update its knowledge about the sensory world. Information rates of neural
spike trains bound the performance of any candidate model of sensory rep-
resentation (Bialek, Rieke, de Ruyter van Steveninck, & Warland, 1991; Borst
& Theunissen, 1999; Buracas, Zador, DeWeese, & Albright, 1998; Strong,
Koberle, de Ruyter van Steveninck, & Bialek, 1998; Warland, Reinagel, &
Meister, 1997), without regard to how that information is encoded.

Most methods for estimating the information rate from experimental
data proceed by estimating entropy rate as an intermediate step (but see
Kraskov, Stogbauer, & Grassberger, 2004; Victor, 2002). The entropy rate of
a dynamical or stochastic system is the rate that new uncertainty is revealed
per unit of time (Lind & Marcus, 1996) and plays a central role in the the-
ory of information transmission (Shannon, 1948). Shannon’s theory showed
that any transmission channel must have a capacity above this quantity in
order to reproduce a signal without error. The entropy rate also gives the
best possible compressed transmission rate for any lossless encoding of
typical signals. In dynamical systems theory, the entropy rate (in particular,
Kolmolgorov-Sinai entropy) is the principal quantification of the existence
and amount of chaos (Gilmore & Lefranc, 2002; Hilborn, 2000; Ott, 2002).

Estimating the entropy rate from observed data like spike trains can be
surprisingly difficult in practice. The classical definitions of entropy rate do
not lead easily to a reliable and accurate estimator, given only an observed
data set of finite size. Entropy rate estimators nearly always assume some
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underlying probabilistic model for the observed data, although this aspect is
often not explicitly recognized. A reliable rate estimator requires addressing
two issues:

� Accurately estimating entropies from observed data
� Selecting the appropriate model for time-correlated dynamics

Although the first issue has been vigorously investigated, the second has
not. Even with sophisticated methods for entropy estimation (Costa & Hero,
2004; Miller & Madow, 1954; Nemenman, Shafee, & Bialek, 2002; Paninski,
2003; Roulston, 1999; Strong et al., 1998; Treves & Panzeri, 1995; Victor, 2000,
2002; Victor & Purpura, 1997), the final estimate of the rate (as opposed to
estimating block entropies) can be dominated by a human-derived choice
of some underlying modeling parameter (Schurmann & Grassberger, 1996;
Strong et al., 1998). These heuristics are subjective and make constructing a
confidence interval for the rate difficult.

By explicitly addressing the model selection problem, we have designed
an estimator for entropy rate that requires no heuristic decisions, contains
no important free parameters, and uniquely provides a Bayesian confidence
interval about its estimate. We follow a statistical principle inspired by
data compression (Rissanen, 1989) to weight a mixture of models appro-
priate for a finite time series (Kennel & Mees, 2002; London, Schreibman,
Hausser, Larkum, & Segev, 2002; Willems, Shtarkov, & Tjalkens, 1995). These
“context-tree” models may be used to estimate many quantities, but here
we concentrate on Bayesian estimators of entropy (Nemenman et al., 2002;
Wolpert & Wolf, 1995), which are combined to yield a direct estimator of
entropy rate. We demonstrate through simulation that these estimates are
consistent, exhibit comparatively low bias on finite data sets, outperform
common alternative procedures, and provide confidence intervals on the
estimated quantities. We calculate confidence intervals about the estimate
using a numerical Monte Carlo method (Gamerman, 1997).

Although motivated by problems in neural coding, the algorithm pre-
sented here is a general estimator of entropy rate for any observed sequence
of discrete data. In a related work, we extend these techniques to estimate the
mutual information rate from experimentally observed neural spike trains
(Shlens, Kennel, Abarbanel, & Chichilnisky, 2004).

This letter proceeds by reviewing the classical and Bayesian estimators
of entropy as well as the common issues in extracting entropy rate from
entropies. Motivation for the context tree modeling method for a time series
and its justification follows. Next, we show the application of the model to
entropy rate estimation and empirical results. Finally we discuss potential
extensions and limitations for this method of estimating entropy rates, as
well as current applications in neural data analysis.
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2 Entropy and Entropy Rate

2.1 Classical and Bayesian Estimators of Entropy. We begin by out-
lining a Bayesian procedure for estimating the entropy and its associated
confidence interval. The Shannon entropy of a discrete probability distribu-
tion P = {pi }, i ∈ [1, A],

H(P) = H({pi }) = −
A∑

i=1

pi log pi , (2.1)

quantifies the uncertainty represented by P , or the average number of yes-
no questions needed to determine the identity i of a random draw from P
(Cover & Thomas, 1991; MacKay, 2003; Shannon, 1948).1 Although equa-
tion 2.1 provides a definition of entropy, estimating this quantity (and P)
well from finite data sets of observations presents significant statistical and
conceptual challenges, which are far greater when estimating the entropy
rate.

Assume that one observes N independent draws of a discrete random
variable from some unknown underlying distribution with alphabet A. The
count vector c = [c1, . . . , c A] accumulates the observed occurrences of each
symbol. The naive entropy estimator assigns the observed frequencies for
the probabilities p j = c j/N,

Ĥnaive(c) =
A∑

j=1

− c j

N
log2

c j

N
. (2.2)

This estimator yields the correct answer as N/A → ∞, but in many practical
cases, this estimator is significantly biased. The first-order correction (Miller
& Madow, 1954; Roulston, 1999; Victor, 2000),

ĤMM(c) =
A∑

j=1

− c j

N
log2

c j

N
+ A− 1

2N
log2 e, (2.3)

still retains significant bias when N ≈ A or N � A (Paninski, 2003).
An alternative approach is a Bayesian estimator of entropy (Wolpert &

Wolf, 1995). Consider a hypothetical probability distribution θ, which is a
candidate for P . Each component θ j is a guess for the true probability pa-
rameter p j and, accordingly, must be

∑A
j=1 θ j = 1. Consider the probability

1All information-theoretic quantities in this letter use base 2 logarithms to provide
units of bits.
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of drawing one symbol j assuming the underlying distribution is θ. By def-
inition, this is θ j . The likelihood of drawing the particular set of empirically
observed counts c is the standard multinomial,

P(c|θ) = 1
Z

A∏
j=1

(θ j )c j , (2.4)

where Z is a normalization.
A Bayesian entropy estimate averages the Shannon entropy of θ, H(θ) =

− ∑
j θ j log θ j , over the relative likelihood that θ might actually represent

the truth given the observed counts P(θ|c):

ĤBayes(c) =
∫

H(θ)P(θ|c)dθ. (2.5)

By Bayes’ rule, we take P(θ|c) ∝ P(c|θ)P(θ) and recast the estimation as

ĤBayes(c) =
∫

H(θ)P(c|θ)P(θ)dθ.

=
∫∫

H δ [H − H(θ)] P(c|θ)P(θ)dθ d H

=
∫

H P(H|c) d H. (2.6)

A disadvantage of a Bayesian approach is that one needs a somewhat
arbitrary prior distribution, P(θ), on the parameters of the distribution θ.
We discuss the common choice in appendix A. Nemenman et al. (2002)
investigated the properties of ĤBayes in the modest to small N/A limit. In
this regime ĤBayes is dominated by the particular prior P(θ) chosen, not the
observations, meaning that the estimate does not reflect properties derived
from actual data. They suggest an interesting meta-prior as a correction. In
our application, this is not a concern because N/A is typically large when
we estimate ĤBayes, and hence we do not apply this correction.

There is a conceptual point to consider here. Which estimate should be
used if all observations occur in a single bin? An argument can be made
that in this circumstance, all of these estimators (ĤBayes, ĤMM) should be
bypassed in favor of an estimate of zero, for example, define Ĥzero = 0 for
deterministic data, Ĥzero = ĤBayes or ĤMM otherwise. The idea is that if the
underlying physics reliably produces the same value, then there is proba-
bly some underlying mechanistic principle preventing anything else. For
instance, in neural data absent of spikes (or completely silent), a better es-
timate might be to use Ĥzero rather than the small but positive values that
ĤMM or ĤBayes would yield. An alternative perspective is that although all
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observations have been the same value, the future and underlying truth
is not necessarily so; thus, ĤBayes or ĤMM would be appropriate. Choos-
ing which estimator is appropriate is an externally directed prior on the
expected structure of observations. In empirical testing, using Ĥzero im-
proves bias on some physical systems we have considered. For the results
we present later, the effect is very small.

2.2 Bayesian Confidence Intervals for ĤBayes. To make inferences from
real data, we need a range of results that appear compatible with the data
rather than a single-point estimate of the entropy. Because all estimates are
subject to statistical fluctuation, comparisons between any two quantities
require comparing any difference to reasonable statistical fluctuations. We
need an “error bar” on our estimate, but from experiment, we have only a
single data set.

Again, we choose the Bayesian perspective and ask what the likelihood
is of an estimated entropy given the observed data, P(H|c). A variety of
underlying distributions could have been sampled to generate the observed
data. Each such distribution has a greater or lesser compatibility with the
data (relative likelihood), and we weight their entropies accordingly. The
width of the posterior distribution P(H|c), around its mean, ĤBayes, is a
Bayesian measure of the uncertainty of the estimate. Wolpert and Wolf (1995)
computed ĤBayes and the variance of P(ĤBayes|c) analytically using the same
prior as ours.

We want to go beyond variance and find confidence intervals. We call
the central portion of P(H|c) the Bayesian confidence interval of our es-
timate. The Bayesian form is sometimes called a credible interval, distin-
guishing it from frequentist confidence intervals, which have a different
definition. Specifically, we find quantiles of P(H|c)—those locations where
the cumulative distribution achieves some value 0 < α < 1. With C(H) =∫ H
−∞ P(H′|c) d H′, a quantile Hα is defined as the value where C(Hα) = α.

Then, for example, a 90% confidence interval is [H0.05, H0.95]. Roughly, we
might say the observed data have been produced by a distribution whose
entropy falls within the interval with 90% likelihood.2

Unlike variance, the quantiles for entropy are not known analytically,
but they can be estimated using a Markov chain Monte Carlo (MCMC)
technique (Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, &
Teller, 1953). The MCMC algorithm produces a succession of vectors θk, k =
1, . . . , NMC, which sample P(θ|c). By taking the entropy function of each
θk , we obtain NMC individual samples, Hk = H(θk), from the distribution
P(H|c). We calculate ĤBayes to be the mean of this empirical distribution
approximating equation 2.6 and the Bayesian confidence interval to be the

2Note that ĤBayes is the mean, distinct from the median, H0.5, and the mode, the
maximum likelihood estimate.
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Table 1: Examples of Entropy Estimates (Bits) ± Estimate of Standard Deviation.

(5,5) (50,50) (1,9) (1,99)

Ĥnaive 1.000 ± 0.000 1.000 ± 0.000 0.47 ± 0.27 0.081 ± 0.065
ĤMM 1.070 ± 0.000 1.007 ± 0.000 0.54 ± 0.27 0.088 ± 0.065
ĤBayes 0.937 ± 0.082 0.993 ± 0.010 0.51 ± 0.24 0.105 ± 0.068

Note: The top row shows count vectors c = [# of heads, # of tails] for a
binary alphabet.

quantiles [H0.05, H0.95] of the empirical distribution. The number of samples,
NMC, is a user-controlled, free parameter chosen solely to balance Monte
Carlo fluctuation against computation time. We typically use NMC = 199 so
that the the 5% and 95% confidence interval values can be read off directly as
the 10th and 190th smallest values in a sorted list of Hk . We outline the spe-
cific prior, the analytical formula for ĤBayes, and concrete implementation
of the MCMC algorithm in appendix A.

2.3 Comparing Ĥnaive, ĤMM, and ĤBayes. We demonstrate the behavior
of Ĥnaive, ĤMM, and ĤBayes on varying hypothetical count frequencies to
show the properties of the estimators. Suppose we count the probability of
flipping a tail in a biased coin. Table 1 shows results. If equal counts are
observed, say, (5, 5) and (50, 50), the naive estimator gives entropy of ex-
actly one. The classical bias-corrected version ĤMM gives value larger than
one, which is impossible for the entropy of any binary distribution. This is
because the bias correction is calculated in a “frequentist” philosophy. This
means that one considers the observed frequencies to reflect a distribution
approximately close to truth, and one then pretends one can simulate new
finite sets of observations from these probabilities. It is well known that
simulating finite data from a distribution gives on average a spikier empiri-
cal distribution than truth, leading to lower entropy with a naive estimator.
Thus, the naive estimator is deemed to be biased down, and the upward
correction is applied to give ĤMM. The same philosophy can be applied
to estimate a standard deviation (Roulston, 1999). Unfortunately, for equal
counts, this estimate is identically zero, which is nonsensical as well.

ĤBayes does not show these pathologies. The posterior distribution of
likely values has support only in the valid region, and the width of the
distribution is always sensible. For nonequal counts (e.g., (1, 9) and (1, 99))
the estimators behave more similarly. Table 1 demonstrates how ĤBayes may
be both larger and smaller than ĤMM in various circumstances. (See Wolpert
& Wolf, 1995, for more demonstrations of properties of ĤBayes.)

2.4 Entropy Rate. The entropy rate, as opposed to entropy, characterizes
the uncertainty in a dynamical system. It is a particular asymptotic limit of
the entropy of a time series. Unfortunately, as we see below, there exist
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major empirical quantitative problems in trying to successfully estimate
the entropy rate from observed time series. Resolving these problems is the
subject of our investigation.

We proceed from discrete distributions to time series of discrete sym-
bols. This stream of integers might be a spike train, with the integer being
the number of spikes in a small time interval (MacKay & McCulloch, 1952;
Strong et al., 1998); a discretized interspike interval (Rapp, Vining, Cohen,
Albano, & Jimenez-Montano, 1994); an arbitrary symbolic dynamical sys-
tem (Lind & Marcus, 1996); or even a computer file on a hard drive (Cover
& Thomas, 1991). The resulting time series of integers, R = {r1, r2, r3, . . .},
where the subscript indexes time, is termed a symbol stream with alphabet
size A. The underlying process that created the time series is called a symbol
source.3 In a symbolic dynamical system, a characteristic of the underlying
symbol source is the uncertainty of the next symbol (Cover & Thomas, 1991;
Lind & Marcus, 1996). In other words, the uncertainty of the next symbol is
an intensive property of a dynamical system. We briefly explore the signif-
icance of this property in a symbolic system.

With an independent and identically distributed (i.i.d.) symbol source,
the uncertainty of the next symbol in R is simply the entropy of the dis-
crete distribution, H({ri }). In contrast to the i.i.d. case, many real dynamical
systems exhibit serial correlations due to internal state variables and time
dependence. Consider the refractory dynamics of a spiking neuron, or in-
ertia in a mechanical system. Knowledge of recently observed symbols or
states alters the estimate of the next observation.

To capture these dynamics, consider the distribution of words, length-D
blocks of successive symbols from the source, defining the block entropy

HD ≡ H({ri+1, . . . , ri+D}),

which quantifies the average uncertainty in observing any pattern of D
consecutive symbols. Block entropy is normally extensive in the thermo-
dynamic sense, increasing linearly with D for sufficiently large D (e.g., the
heat capacity of a solid increases with the amount of matter in question).4

The quantity that characterizes the underlying source is, however, the new
uncertainty per additional symbol. Dividing HD by D gives an intensive
quantity, which reflects a characteristic of the underlying system (e.g., the
specific heat is a property of the substance). HD/D will approach the asymp-
totic limit from above, as increasingly long words reveal more potential
interactions.

3By assumption, the symbol stream and underlying source are stationary and ergodic.
4The statistical mechanics community is showing increasing interest in complex sys-

tems, often defined as having a substantial subextensive term (Bialek et al., 2001), often at
the critical point between complete order and conventional chaos.
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The entropy rate is defined by three equivalent asymptotic limits (Cover
& Thomas, 1991),

h ≡ lim
D→∞

HD/D (2.7)

≡ lim
D→∞

HD+1 − HD (2.8)

≡ lim
D→∞

H(ri+1|ri , ri−1, . . . , ri−D), (2.9)

where h has units of bits per symbol or possibly bits per second. The limit
D → ∞ ensures that we account for all possible temporal correlations or
historical dependence.

In the following section we highlight existing methods on entropy rate
estimation that have focused on definitions 2.7 and 2.8. Subsequently, we
return to definition 2.9 to derive a new estimator of entropy rate.

2.5 Estimating Entropy Rates with Block Entropy. Even with a sophis-
ticated estimator of entropy, it is not trivial to calculate an entropy rate.
Definitions 2.7 and 2.8 suggest strategies for estimating the entropy rate by
first making an estimate Ĥ D (Schurmann & Grassberger, 1996) for a range of
D. The difficulty with these approaches is that two competing biases make
the final estimation step of the rate a qualitative judgment with minimal
rejection criteria (Treves & Panzeri, 1995), which forgoes any attempt at cal-
culating confidence intervals on the estimated quantities. One result of this
situation is that bias can significantly contaminate the estimate, and vari-
ances are underestimated (Miller & Madow, 1954; Nemenman et al., 2002;
Paninski, 2003; Roulston, 1999; Treves & Panzeri, 1995).

We illustrate this situation in simulation. Consider estimating the entropy
rate by calculating ĤD at varying depths D. Estimating the entropy rate
amounts to selecting a particular word length D∗ and calculating ĥblock =
ĤD∗/D∗. Given infinite data, selecting the appropriate word length is trivial
as the asymptotic behavior limD→∞ HD/D guarantees an accurate estimate
of ĥ for large D, where all temporal dependencies in the symbol stream have
been accounted for.5

However, for finite data, selecting an appropriate D∗, that value where
ĤD∗/D∗ is deemed to be the best estimate of the rate, is not trivial because
a second but (typically) opposing bias complicates the procedure. Discrete
estimators of entropy are often dominated by negative bias at large enough
D due to undersampling. Thus, the observed distribution is spikier and
appears to have lower entropy than truth. Estimating ĥ by selecting a word
length must contend with these two competing biases in finite data sets:

5The same qualitative picture arises by plotting Ĥ D+1 − Ĥ D. Empirically, this estimate
converges faster to the entropy rate (in D) but is prone to large errors due to statistical
fluctuations (Schurmann & Grassberger, 1996).
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1. Negative bias: At large word lengths, undersampling naive proba-
bility estimators typically produces downward bias due to Jensen’s
inequality (Paninski, 2003; Treves & Panzeri, 1995).

2. Positive bias: At small word lengths, finite D in HD/D produces
upward bias due to insufficiently modeled temporal dependen-
cies (Cover & Thomas, 1991).

Given this situation, the common assumption is that there exists an inter-
mediate region in D, between the realms of the two biases, to provide a
plateau effect. The plateau suggests a converged region in which one can
select a word length to successfully estimate ĥblock. Unfortunately, as seen
in Figure 1, the distinctiveness, or even existence, of a plateau depends
highly on the number of data and the temporal complexity of the underly-
ing symbol source. In experimental data from an unknown symbol source,
the location of the plateau, if any, is unknown. In this approach, the rate
estimate is dominated by the selection of the region of word length used,
which is determined by a qualitative judgment of the slopes of Figure 1.

Another similar criterion for selecting an appropriate intermediate range
of word lengths is to follow the direct method (de Ruyter van Steveninck,
Lewen, Strong, Koberle, & Bialek, 1997; Reinagel & Reid, 2000; Strong et al.,
1998). The convergence of block entropies to the entropy can be decomposed
into extensive and subextensive terms,

h = HD

D
+ f (D)

D
,

where f (D) is defined as a monotonic function of word length that grows
at less than a linear rate. For large enough D, the leading subextensive term
is assumed to be constant. In practice, the data analyst plots HD/D versus
1/D and assumes there is some region of the plot with a linear slope such
that :

1. D is large enough so that f (D) ≈ k.

2. D is small enough so that Ĥ D is not contaminated by sampling bias.

Strong et al. (1998) give some weak bounds based on coincidence counting
to help with the second criterion, but they are often not tight enough to
be empirically effective. As before, this entropy rate estimate requires a
choice based on a subjective assessment of the slope of block entropy plots.
Rather than rely on human-directed estimation, we offer an approach that,
in effect, automatically selects the word lengths appropriate for finite data
sets. We place this problem in a larger framework, akin to probabilistic
model selection.
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Figure 1: Estimating the entropy rate using ĥ(D) = ĤD/D or ĤD+1 − ĤD for a
simple two-symbol Markov process and a symbolized logistic map. The hori-
zontal dashed line is the true entropy rate calculated analytically (see section 5).
ĤD is calculated using ĤMM with O(106) and O(105) symbols in the top and bot-
tom rows, respectively. Estimating h with ĥ(D) becomes difficult as the plateau
disappears with fewer symbols and greater temporal complexity (e.g., logistic
map) in the underlying information source.

2.6 Model Selection in Entropy Rate Estimation. Selecting a plateau
in the block entropies amounts to selecting a word length D∗ at which we
believe we have accounted for all temporal dependencies in the underlying
dynamics. Implicit is a probabilistic model with AD∗

parameters for the
distribution of words that accounts for the temporal dependencies. In other
words, successive (nonoverlapping) words of length D∗ are assumed to
be statistically independent. Block entropies of order D∗ model the spike
train as independent draws from a distribution of alphabet size AD∗

. This
relationship suggests an equivalent topology for retaining frequency counts
for all words—a suffix tree, as diagrammed in Figure 2. This data structure is
often used in practice for accumulating frequency distributions to estimate
block entropies. Each node in the suffix tree retains the counts for a particular
word, and all the nodes at a depth D retain P̂(ri+1, . . . , ri+D). Selecting a
plateau prunes a suffix tree at a single depth D∗, selecting the structure
necessary to model the data (Johnson, Gruner, Baggerly, & Seshagiri, 2001).
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Figure 2: A suffix tree of maximum depth 3 modeling a binary symbol stream.
Each node retains counts of the number of observations of the word correspond-
ing to the node. The root node λ counts the number of symbols observed in the
stream. Children of a node prepend one additional symbol earlier in time. The
counts at all nodes for D = 3, when normalized, provide P̂(ri+1, . . . , ri+3).

Given a fixed amount of data, can we select a tree topology with a more
principled, less qualitative criterion? In the following sections, we make this
probabilistic model more explicit for entropy rate estimation using defini-
tion 2.9. We show techniques to select an appropriate tree topology for a
finite data set.

3 Modeling Discrete Time Series

3.1 Markovian Modeling. Our approach to estimating the entropy
rate directly is to focus on the conditional entropy formulation h ≡
limD→∞ H(ri+1|ri , . . . , ri−D). This is a time-series model-building approach,
as we make explicit estimates for the distribution of the next symbol. A
classical example in the continuous case is an autoregressive model whose
future is a function of previous values of fixed order. We confine our work,
though, to discrete processes.

Consider a first-order Markov chain with states σ ∈ �, each of which has
some transition probability distribution P(r|σ ) for emitting some symbol
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r ∈ A and a deterministic transition to a new state σ ′. This Markov chain is
a stationary symbol source, and its entropy rate is

h =
∑

σ

H [P(r|σ )] µ(σ ), (3.1)

with H[·] denoting the Shannon entropy (see equation 2.1) and µ(σ ) the
stationary probability of state σ .6 This formula is exact for a Markov
chain (Cover & Thomas, 1991). In our problem, we must estimate the set of
states and transition probabilities from data.

A Markov model–based entropy rate estimator applies a deterministic
projection from the semi-infinite, conditioned past into a finite set of states
�. We can equate the set of finite states � ≡ RD, where RD ≡ {ri , . . . , ri−D} is
the finite conditioning depth D. If a finite history of recent symbols uniquely
determines the next symbol, then this is a Markov model, and we take
equation 3.1 as the entropy rate h for the system. To estimate the entropy,
we need to first select the right set of states � and then estimate the transition
and stationary distributions. We may then calculate the entropy rate directly
from this model estimated from the observation.7

This is a model of finite-time conditional dependence, which is distinct
from the timescale of absolute correlation. To understand the difference,
imagine a first-order Markov chain, which has a large probability at staying
in the same state. Equivalently, consider a classical autoregressive gaussian
process with a single lag. The autocorrelation in the resulting time series of
these processes could be quite high at significant time delays, but the con-
ditional correlation—how much history is necessary to make probabilistic
predictions—remains just one time step.

3.2 Context Trees. The Markov formulation does not by itself make the
problem of the selection of word length go away. In a naive view, there
are still up to AD conditioning states with D-order conditional dependence.
One could imagine using a statistical model selection criterion to select
some intermediate optimal D∗, balancing statistics and model generality.
We adopt a more flexible model, however. Instead of just a single depth
D∗, giving all states with histories of length D∗, we adopt a variable-depth
tree. At any time, the history of recent symbols can be projected down to
the longest matching suffix in the tree, called a terminal node. Our model
is an elaboration of a suffix tree, called a context tree, where each node also

6Technically, this assumes the Markov chain is sufficiently mixing, with one strongly
connected component. Mixing means that the influence of dynamics long in the past has
dissipated. Strongly connected means that eventually all states, even in a multistable system,
are visited.

7Directly means that that no block entropies Ĥ D need be calculated as an intermediate
step. Rather, we calculate ĥ in one step using equation 3.1.
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Figure 3: A context tree for a binary symbol stream. Each terminal node retains a
distribution of future symbols that occurred after the word corresponding to the
node. This distribution is an explicit representation of emitting the additional
symbol, which, along with a buffer of recently emitted symbols, determines the
transition to a new state.

stores probability distributions for emitting one future symbol.8 Figure 3
diagrams how these terminal nodes are akin to the Markov conditioning
states. The root node λ corresponds to the empty string, and children of any
node correspond to strings with one additional symbol prepended as an
earlier symbol in time. The stochastic process underlying a context tree is
called a tree machine, and its entropy rate can also be given by equation 3.1
(see Kennel and Mees, 2002).

In summary, the conditional definition of entropy rate 2.9 implies a
Markov model, where the conditioning word length is the order of the
Markov process. The generalization of a Markov model to a context tree
provides a more flexible framework, where the conditioning word length
need not be a single value (e.g., D∗) but is variable, specific to each con-
ditioning state. The complexity of the model is specified not by the word
length but rather by the tree topology. Compared to a fixed-order Markov
model, a context tree can better adapt to the dependencies of an under-
lying source while maintaining statistical precision. There now exist two
remaining questions to address.

� How do we select the appropriate tree topology (addressed in sec-
tions 3.3 through 3.6)?

� How do we estimate the quantities in equation 3.1 (addressed in
section 4)?

8Kennel and Mees (2002) detail specific computational issues and optimizations in
implementing a context tree.
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3.3 Modeling with the Minimum Description Length Principle. Se-
lecting an appropriate tree topology is a statistical inference problem (Duda,
Hart, & Stork, 2000). If we allow greater depths and longer conditioning se-
quences, we can represent more complex dynamics, but in return we must
estimate more free parameters. This model complexity trade-off is the same
phenomenon previously seen as opposing biases in the conventional esti-
mation via block entropies.

We resolve this problem by following the minimum description length
(MDL) principle. We detour briefly to discuss how MDL addresses model
selection through data compression ideas. We return to symbol streams to
calculate a modified log likelihood, or code length, for any observed data. We
use these code lengths to select not just a single tree topology but a weighting
over all possible tree topologies, which balances these model complexity
issues according to Bayesian theory. We may weight any statistic computable
over nodes, or trees, derived from the underlying data. In section 4, we apply
this weighting to estimate the entropy rate.

We briefly review Rissanen’s MDL theory (Rissanen, 1989) as a model se-
lection principle (also see Balasubramanian, 1997). Model selection is treated
as a data compression problem and can be viewed as a particular form of
Bayesian estimation. Given a transmitter (encoder), a lossless communica-
tion channel, and a receiver (decoder) that know only the overall model
class (but not any specific model), what is the smallest number of bits that
we need to losslessly code and decode the observed data? The MDL princi-
ple asserts that the model that requires the smallest number of bits, termed
the description length, is the most desirable one. The description length for
expressing any data set is the sum of the code lengths to encode the model
L(model) and the residuals L(data|model). Larger numbers of model pa-
rameters or decreased predictive performance increase the respective code
lengths. Models that minimize the sum L(data|model) + L(model) appro-
priately balance the predictive performance L(data|model) with the com-
plexity L(model).

Statistical estimation in MDL selects a single best model and examines
functionals on this model. Instead of estimating by selecting a model, we
may also estimate by weighting (Solomonoff, 1964). Rather than selecting
that one model with the lowest code length (the MDL principle), we may
average over models, weighting good models more than bad ones. This is
very similar to Bayesian averaging, weighting by the “posterior distribu-
tion.” Given code lengths L estimated from our models and data, we weight
any quantity Q by P(model|data) ∝ 2−L(data|model) to get an estimator for Q,

Q̂w(data) =
∫

Q(model)2−L(data|model)∫
2−L(data|model)

. (3.2)

This can often provide superior performance compared to choosing a single
model, especially when no single model is clearly better than the others.
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When one model dominates, the weighted estimator is very quickly also
dominated by the single best model and gives nearly identical results to the
MDL principle.

3.4 Calculating Code Lengths of Symbol Streams. The first step in ap-
plying the MDL formalism to judge the appropriate model complexity (i.e.,
tree topology) is to calculate the code length or the number of bits neces-
sary to transmit losslessly a symbol stream. We assume, temporarily, that
we have a sequence of symbols {r1, . . . , rN} that have no additional tempo-
ral structure. That is, these symbols are drawn independently, from a fixed
probability distribution θ over A bins. Section 2.5 described conventional
estimators of entropy for this problem. Now, our task is to estimate a fair
minimal code length for these data: How many bits would it take to transmit
these N symbols down a channel and reconstruct them exactly at a hypo-
thetical receiver? If θ were known, then it would take NH(θ) bits (also the
negative log likelihood). However, θ is unknown, and the extra parametric
complexity must be accounted for properly. Generally, it is not permissible
to substitute an arbitrary entropy estimator Ĥ and call NĤ a code length.

Rissanen (1989) proposed stochastic complexity L = − log
∫

P(c|θ )
P(θ )dθ as an extended log likelihood (or code length) to properly account
for this model complexity. The difference of two such stochastic complexi-
ties, Rissanen’s test statistic for choosing the better model, is precisely the
logarithm of the Bayes factor used in Bayesian hypothesis testing and model
selection (Lehmann & Casella, 1998). Frequently these integrals cannot be
done analytically without making large N approximations. For small N,
these approximations may result in pathological behavior such as non-
monotonicity or negative code lengths. In our application, such problems
would be fatal, as smooth behavior is required down to even N = 1. A sim-
ple and effective prescription to obtain a fair code length and avoid such
pathologies is to adapt predictive techniques used in sequential data com-
pression (Cover & Thomas, 1991). At time step k + 1, make a probability
estimate θ̂(sk+1) conditioned only on previously observed data, s1, . . . , sk .
The total code length of an entire symbol stream, is

∑
j − log2 θ̂(s j ). The

complexity cost for coding the parameters is included implicitly because
the early data are coded with poorer estimates than the later data.

One caveat to sequential prediction is that we must provide a small but
finite probability for potential symbols not yet observed. Thus, we cannot
predict probability zero for any symbol value, because if it should occur, it
would give an infinite code length. We use the Krischevsky-Trofimov (KT)
estimator (Krichevsky & Trofimov, 1981), which adds to all possible sym-
bols a small “ballast” of weight β > 0. Given count vector c, this estimator
predicts a probability for symbol j ∈ [1, A],

θ̂KT, j (c) = c j + β∑
k(ck + β)

. (3.3)
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The free parameter β > 0 prevents estimating θ̂ = 0, which would give an
infinite code length should that symbol actually occur.9

We apply the KT estimator sequentially, using the counts of symbols,
ci , which were seen through time i , that is, ci

j = ∑i
l=1 δ(rl = j). We may

sequentially code the stream with a net predictive code length,

LKT(c, β) =
N∑

i=1

− log2 θ̂KT(ri |ci−1), (3.4)

having seen all symbols c = cN. It is critical that the estimator for symbol ri

uses ci−1 and not ci , so that a hypothetical receiver could causally reconstruct
the identical θ̂ before seeing ri and, given the compressed bits, decode the
actual ri . For this particular estimator 3.3, we may conveniently compute the
code length equation 3.14 using only the final counts and not the sequence:

LKT(c, β) = log2

[
�(N + Aβ)

�(Aβ)

]
−

A∑
j=1

log2

[
�(c j + β)

�(β)

]
. (3.5)

It is a particularly convenient that for the KT estimator, the sequential pre-
dictive formula can be collapsed so that the actual sequence order is unim-
portant. It turns out that the stochastic complexity integral of the multino-
mial 2.4 with the Dirichlet prior can be evaluated exactly (Wolpert & Wolf,
1995), and, moreover, the answer is identical to equation 3.5. This three-way
coincidence is specific to KT and not generically true for other estimators.
In general, we favor sequential predictive computation as the least risky
option over analytical approximation to stochastic complexity or Bayesian
integrals.

For the KT estimator, selecting a priori β = 1/A tends to perform well
empirically (Nemenman et al., 2002; Schurmann & Grassberger, 1996). The
distribution of Shannon entropy of the Dirichlet prior happens to be widest
with β = 1/A as well. In the final section, we outline an optimization ap-
proach for β to eliminate this free parameter if desired.

3.5 Context Tree Weighting. Of course, real symbolic sequences are not
independent and identically distributed. Our larger model class is that of a

9We intentionally use the same β as in equation A.1, because the KT estimate is also
the Bayesian estimate of θ with the same Dirichlet prior, θ̂KT = ∫

θP(c|θ)PDir(θ)dθ. Note
that ĤBayes, is not the same as the estimator plugging in θ̂KT into the Shannon entropy
formula. As θ̂KT always smooths the empirical distribution toward being more uniform,
plugging it in would result in a larger value for entropy than the naive estimator, just like
ĤMM. The Bayesian estimate ĤBayes may be larger than, smaller than, or equal to Ĥnaive
or ĤMM, depending on the observations.
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context tree, as previously discussed. The issue now is which nodes of the
tree (i.e., its topology) one should choose as the best, balancing statistics
versus modeling ability. We choose the optimal topology using equation 3.5
as a subcomponent in the calculation.

Consider for a moment the simplest model selection problem: compare
coding using no history (i.e., the root node only) versus conditioning on one
past binary symbol (i.e., descending one level of the tree). Which is a better
model: P(ri ), or P(ri |ri−1)? We calculate the code length L(n) to code the
conditional observations for each node. The MDL model selection criterion
is to compare L(parent) to

∑
c L(c), the sum of the children’s code length.

If the first is smaller, then P(ri ) is the better; otherwise, the more complex
model is better. Imagine that the process actually were independent. The
distribution of c(parent) would look similar to c(c). Usually L(parent) would
be smaller than

∑
c L(c) because only one parameter (implicitly) needs to be

encoded instead of two. If, however, the distributions at the children were
significantly distinguishable from the parent, then the smaller code length
would go to the more complex model and the children preferred. Instead
of a hard choice, we may weight our relative trust in the two models as
proportional to 2−L (Solomonoff, 1964), and form a weighted code length
at the node that captures this weighting.

This process is continued recursively: at each node we consider the
weighting between the model that stops “here” versus the composite of
all models that descend from this subtree. This is the key insight of con-
text tree weighting (CTW) (Willems et al., 1995). Considering binary trees
to maximum depth D, CTW is like Bayesian weighting over 22D

possible
topologies, but is efficiently implementable in time linear in the size of the
input data. The original invention of CTW was as a universal sequential
source coding (data compression) algorithm, whose performance may be
easily bounded by analytical proof. Here, we are interested in statistical
estimation, and explicit sequentiality is not required. We now outline the
steps in a batch estimation of the weighted context tree and its code length:

1. Form a context tree for the entire data set, retaining at each node n the
conditional future counts, c(n).

2. Compute and store, for every n, its local code length estimate, Le =
LKT(c(n), β), with equation 3.5.

3. Compute recursively the weighted code length at each node. With
the coding probability distributions defined Pe = 2−Le , Pw = 2−Lw and
child nodes of n denoted as c, the fundamental formula of context tree
weighting is (Willems et al., 1995)

Pw = 1
2

Pe + 1
2

∏
c

Pw(c). (3.6)
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Defining, for clarity, Lc to be the sum of Lw over extant children c,
Lc = ∑

c Lw(c), we have

Lw(n) = − log2
2−Le + 2−Lc

2
(3.7)

= 1 + min(Le , Lc) − log2(1 + 2−|Le −Lc |).

In practice, this involves a depth-first descent of the context tree, com-
puting Lw for all children before doing so for the present node. If there
are no children, or the number of observations at n is but one (i.e.,∑

a ca (n) = 1), then instead define Lw = Le and stop recursion. (With
only one observation, any child would have an identical code length.)

4. At the root node λ, Lw(λ) is the CTW code length for the sequence.

For statistical modeling applications, representing local code lengths Le , Lw

with standard finite-precision floating point is sufficient, contrary to com-
ments in London et al. (2002) indicating a need to use arbitrary precision
arithmetic to store coding distributions. Note that even for A > 2, the factors
of 1/2 in equation 3.6 remain as is, reflecting the assumed prior distribution
on context trees: that a tree terminating at a given node has an equal prior
probability as all subtrees that descend from that node. As discussed briefly
in Willems et al. (1995), one could also choose to weight the current node
and descendants by factors γ and 1 − γ for 0 < γ < 1.

3.6 Weighting General Statistics. The model selection principle behind
CTW may be adapted for more general statistical estimation tasks than
source coding. In particular, if we are able to evaluate some statistic Q(n)
as a local function of the particular context and the counts observed there,
we can find the weighted estimator Qw that weights the local Q values with
the same weighting as used in CTW. To compute Qw :

1. Produce the context tree from the observed sequence and compute
the per node code lengths as described in section 3.5.

2. For every node, compute the local weighting factor W(n). W(n) is the
relative weight of the current node versus the subtree of possible child
nodes:

W(n) = 2−Le

2−Le + 2−Lc
. (3.8)

If there are no children or the current node has only one observation,
W(n) = 1.
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3. Evaluate the local statistic Q(n) for each node from the counts. Com-
pute the weighted statistic Qw ,

Qw(n) = W(n)Q(n) + (1 − W(n))

(∑
c

Qw(c)

)
. (3.9)

Like Lw this requires a recursive depth first search.

4. The final weighted statistic for the whole tree is Qw(λ), the value at
the root node.

The weighting can also be understood conceptually as an average over all
possible nodes in all possible trees:

Qw =
∑

n
W(n)Q(n), (3.10)

with W(n) the net product of all (1 − W(n)) and W(n) weighting factors
descending from the root node to n. The operation of standard CTW is the
special case, Q = θ̂KTδ(n = history), of this general statistical weighting.

4 Estimating the Entropy Rate with Context Tree Weighting

We now present an algorithm for estimating the entropy rate following the
Markov formulation (see equation 3.1) and using the weighting over all
tree topologies. We diagram and outline all of these results in parallel in
appendix D. As an aside, we could estimate the entropy rate using the code
length directly ĥCTW =Lw(λ)/N; however, this estimator is always biased
from above, because it obeys the redundancy inherent in any compression
scheme (Kennel & Mees, 2002; London et al., 2002). Instead, we emphasize
that we use the code lengths (and compression technique) only to define
the appropriate weighting over Markov models. This is similar in spirit
to string-matching entropy estimators (Amigo, Szczepanski, Wajnryb, &
Sanchez-Vives, 2004; Kontoyiannis, Algoet, Suhov, & Wyner, 1998; Lempel
& Ziv, 1976; Wyner, Ziv, & Wyner, 1998), which use the same key inter-
nal quantities as the Lempel-Ziv class of compression algorithms (Ziv &
Lempel, 1977), but without the additional overhead necessary to produce a
literal compressed representation.

4.1 Estimating ĥ with the Weighted Context Tree. We first fill an un-
bounded context tree with all observed symbols R, and find the code lengths
as in section 3.5. Recall that at each node, we accumulate the counts of all
future symbols c = [c1, . . . , c A] (where we have suppressed n for notational
convenience), which occurred after the string corresponding to the node.
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Every node corresponds to a potential Markov conditioning state σ , with

P̂(r|n) = cr∑A
i=1 ci

(4.1)

µ̂(n) = N(n)
N

=
∑A

i=1 ci

N
(4.2)

as the estimated transition and stationary probabilities, and N is the total
number of symbols. The estimated transition probability P̂(r|n) has an al-
phabet of size A and an occupancy ratio N(n)/A 
 1 for heavily weighted
nodes. This is in stark contrast to the explosion of words AD in block en-
tropies. Treating each node as a Markov state via equation 3.1, we estimate
the entropy rate by using the local function

Q(n) = Ĥ[c|n]µ̂(n), (4.3)

where Ĥ is any estimator of the entropy from observed counts. Follow-
ing section 2, we select Q(n) = ĤBayes(c|n)µ̂(n) and substitute it in into the
general weighting procedure of section 3.6, yielding our direct rate estimate
ĥBayes as the value of Qw at the root. We could also use ĤMM instead of ĤBayes

to get a rate estimate ĥMM, which also performs well. This does not lead as
easily to a confidence interval, however, as we now discuss for ĥBayes.

4.2 Bayesian Confidence Intervals for ĥBayes. The previous section
shows how to get a point estimate of the entropy rate. Now we want to
find the distribution of entropy rates that seem likely from the data. For
clarity, this algorithm is also summarized in appendix D.

We simulate tree topologies according to their posterior likelihood, and at
each of their nodes, simulate one possible ĤBayes as in section 2.2. Symboli-
cally we perform a Monte Carlo simulation of the integrand of the abstractly
represented

ĥBayes =
∫

h(
, µ)P(
|T, C)P(T) d
 dT, (4.4)

where T represents the topology of a particular tree, 
 the union of param-
eter vectors at all terminal nodes of that tree, C the observed future counts
at those nodes, and h(
, µ) the Shannon entropy rate operator on 
 and the
occupation probability for those nodes. The result will be samples from the
integrand of equation 4.4. Its expectation value is an estimate of the entropy
rate ĥBayes and the error bars—estimated width of reasonable rates given
sampling variation—from the quantiles of the empirical distribution.

We randomly draw tree topologies with relative probability equal to the
implicit CTW weighting over tree topologies. Consider recursive descent
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down from the root node λ. At each node n, draw a random variate ξ ∈ [0, 1).
If ξ is less than the local weighting factor W(n), then stop here: this is a
terminal node for the model. Otherwise, recurse down all extant branches
until all paths have terminated. This yields a topology (set of terminal nodes)
of a good model, drawn with probability proportional to its weighting as
implied by the CTW formulas.

At each terminal node of this subtree, draw a single sample of P(H|c),
using the MCMC procedure and the counts for that particular node. Call
it H∗(n). Combine these draws to calculate one estimated sample of the
entropy rate:

h∗
i =

∑
n

H∗(n)µ̂(n). (4.5)

The sum here is over only those terminal nodes selected stochastically for
this single estimate. We repeat this procedure NMC times, every time draw-
ing a new topology and set of H∗(n) values, and using equation 4.5 to calcu-
late h∗

i for each such draw. This gives samples drawn from the underlying
P(h|data). Their mean is the final rate estimate,

ĥBayes = 1
NMC

NMC∑
i=1

h∗
i . (4.6)

The distribution of the samples provides a confidence interval for the esti-
mate accounting for natural statistical variation. For instance, to estimate a
90% confidence interval, sort 199 samples of h∗

i ; the 10th and 190th elements
in the sorted set approximate the true confidence interval. For computa-
tional simplicity, we use µ̂(n) = Nn/N, although a more correct µ is fully
determined by the node probabilities. Appendix B discusses this issue in
detail.

4.3 Asymptotic Consistency of ĥBayes. As a data compression method,
the arbitrary depth CTW method has been proven to achieve entropy for
stationary and ergodic sources, meaning that limN→∞ ĥCTW → h for all but
infinitesimally improbable strings of length N (Willems, 1998). In statistical
terms, this means that ĥCTW is an asymptotically consistent estimator of the
entropy rate. We here give an argument suggesting the same is true of ĥBayes.
Both ĥCTW and ĥBayes can be expressed as a global sum of the form 3.10, so
we may write

∣∣ĥCTW − ĥBayes
∣∣ =

∑
n

Wn µ(n)
∣∣∣∣ LKT(n)

Nn
− ĤBayes(n)

∣∣∣∣ .
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Using the results in Wolpert and Wolf (1995) and equation. 3.5, we computed
the large N asymptotic expansions of the difference of the local entropy
estimators:

lim
N→∞

(LKT/Nn − ĤBayes) = C1
log Nn

Nn
+ C2(θ, A, β)

1
Nn

+ . . .

with C1 = β(A− 2) + 1
2 and C2(θ, A, β) a complicated formula depending

only on the local θn and parameters. As µ(n) = Nn/N ≤ 1, this gives

∣∣ĥCTW − ĥBayes
∣∣ ≤ ∑

n
Wn

(
C1

log N
N

+ |C2|
N

+ . . .

)

≤ C1
log N

N
+ O

(
1
N

)
, (4.7)

since
∑

n Wn = 1. As ĥCTW is asymptotically consistent and ĥBayes → ĥCTW,
then ĥBayes is asymptotically consistent. In practice, it appears that ĥCTW has
more bias. Rissanen’s theory (Rissanen, 1989) shows that because ĥCTW is
an actual compressed code length per symbol, and unlike ĥBayes, it cannot
converge to truth any faster than ĥCTW → h + O( log N

N ).

5 Results

We compare the performance of our estimator ĥBayes to several other estima-
tors of entropy rate: the direct method ĥdirect (Strong et al., 1998), two string-
matching based estimators ĥLZ, ĥSM, and a strict context tree weighting-
based estimator ĥCTW (Kennel & Mees, 2002; London et al., 2002). ĥCTW and
ĥdirect have been discussed previously. ĥLZ is the Lempel-Ziv complexity
measure based on a parsing of the input string with respect to an adaptive
dictionary (Amigo et al., 2004; Lempel & Ziv, 1976). ĥSM averages the length
of longest matching strings in a previous fixed-size buffer (Kontoyiannis
et al., 1998). See appendix C for a complete description of these algorithms.

5.1 Testing Convergence and Bias. The first example is a source that is
a simple three-state hidden Markov model. Its transition matrix is

M =




0 1/3 2/3

1/5 4/5 0

1/10 0 9/10


 , (5.1)

emitting a 0 if the first nonzero transition on each line is taken and a 1 if the
second is taken. The entropy rate can be calculated analytically employing
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Figure 4: Convergence of several entropy rate estimates, ĥBayes, ĥLZ, ĥCTW, ĥSM,
on a simple, binary Markov process. The horizontal dashed line is the true
entropy rate. ĥBayes converges quickest with the smallest overall bias and com-
petitive variance. Data shown are ensembles over draws from the source, with
error bars giving sample standard deviations.

(10), h ≈ 0.5623. Figure 4 shows impressive performance of ĥBayes, over the
straight code length estimator ĥCTW and string matching methods.

The next example is from more complex logistic map dynamics. The con-
tinuous space dynamical system is xn+1 = 1 − ax2

n. For a = 1.7, the system is
in a generic chaotic regime giving dynamics in x ∈ [−1, 1]. The cutoff x = 0
yields

rn =
{

1, xn ≥ 0

0, xn < 0,

a generating partition, and thus a binary symbolization, preserving all the
dynamical information from the continuous time series in the symbol stream
with a known entropy rate (Kennel & Buhl, 2003). Although the continuous
equation of motion is simple, the symbolic dynamics are not, with significant
serial dependence among the binary symbols. In fact, it is not a Markov chain
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Figure 5: Convergence of several entropy estimates, ĥBayes, ĥLZ, ĥCTW, ĥSM, on
a symbolized logistic map. The horizontal dashed line is the true entropy rate.
Again, ĥBayes converges quickest with the smallest overall bias and competitive
variance. Data shown are ensembles over draws from the source, with error bars
giving sample standard deviations.

of any finite order and shows deep dependence, making this a challenging
problem. Figure 5 shows results. Once again ĥBayes provides a consistently
more accurate estimate. One thing to notice is that whereas in the previous
Markov chain example, ĥLZ was rather good and ĥSM rather poor, here their
performances are reversed. In our experience, this is frequently the case. In
various examples when we already knew the exact value, one of ĥLZ and
ĥSM came close to the truth, and the other was quite erroneous—-but we
could never predict ahead of time which one would be better, making them
difficult to use for analyzing experimental data where truth is unknown.
Finally, Figure 6 shows a comparison of ĥBayes to the direct method ĥdirect

for the two sources. The plateau disappears for small N or more complex
dynamics making estimation of ĥdirect unreliable.

5.2 Testing Error Bars. We now examine the quality of the confidence
intervals in the estimation of ĥBayes, that is, the quantiles of the h∗ distri-
bution, equation 4.5. The test procedure is as follows: we produce NS time
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Figure 6: Comparison of ĥBayes (circle, solid line) to ĥdirect (dash-dot line) for
(A) a simple Markov process and (B) a symbolized logistic map. The horizontal
dashed line is the true entropy rate. We implemented a simple extrapolation al-
gorithm for calculating ĥdirect; however, a human-directed approach could yield
a more accurate estimate. (C) Block entropy for Markov process, and (D) for lo-
gistic map N = O(106). The plateau effect in the block entropies ĤD disappears
for the more complex logistic dynamics or decreased N (number of symbols),
making the estimate of ĥdirect less reliable.

series from the source and find ĥBayes(i) for each of them, i = 1, . . . , NS.
We find the central 90% quantile of this distribution and take it as the real
“error bar”—the dispersion of the statistic under repeated samplings from
the source. For each time series, there is an individual confidence interval
estimated by the central 90% quantile of the distribution of h∗. Ideally, the
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Figure 7: Testing the Bayesian confidence interval on 99 data sets of length N =
5000 from a pseudo-logistic source (gray circles). Average of ĥBayes and average of
individually estimated confidence intervals (left-most triangle, black). Average
of ĥBayes and 90% percentile on actual ensemble (left-most square, gray). The
horizontal dashed line is the true entropy rate. The confidence interval is well
calibrated: the ensemble average of estimators is very close to the exact value,
and the average size of their confidence intervals (each estimated from a single
data set) is also nearly equal to the variation in ĥBayes under new time series from
the source.

ensemble-average size of the individual confidence intervals should be the
same size as the size of the variation of the statistic under actual new samples
from the source.

Our two sources with known entropy rates are the logistic map (as pre-
viously discussed) and a pseudo-logistic map, that is, a Markov chain that
was estimated from a sample of logistic map symbols from a single tree
model found from the method in Kennel and Mees (2002). Comparing these
similar sources is instructive. Figure 7 shows results on the logistic-like
Markov chain. Here, at N = 5000, as for most N, the estimator performs
exceptionally well with almost no bias in ensemble, and estimating sam-
pling variation accurately. Across the wide range of N, truth lies within the
90% intervals for about 90% of the samples from the source, implying the
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Figure 8: Testing the Bayesian confidence interval on 99 data sets of length
N = 5000 from a true, symbolized logistic source. This figure follows Figure 7.
Here, the confidence interval is not well calibrated, and the actual variation
under sampling from the source is larger than the size estimated by Bayesian
posterior. Note that these data are for a value of N that shows a peculiarly large
relative discrepancy in Figure 10.

error bars are calibrated well. The general weighted tree model appears to
estimate this Markov chain quite well.

Figure 8 shows the equivalent result for the challenging case of small N
in the real logistic map. Here, the ensemble average is slightly higher than
truth, but the variation in actual samples from the ensemble is larger than
the size of the variation estimated by the Bayesian posterior. In other words,
for a small number of samples from this more complex source, the error bar
is not well calibrated and engulfs truth for roughly 60% of the samples from
the source. Our estimator performs well in an absolute sense despite this
mismatch. This is also evident in Figures 9 and 10, which show the similar
summaries of true variation and estimated variation across a range of N.
Paninski (2003) examined variance estimators for block entropy but found
they could severely underestimate the true variance in the undersampled
limit. By contrast, we get empirically more accurate error bars for rate, stay-
ing in a good regime by dint of estimating entropy rate directly with the
model selection criteria.
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Figure 9: Convergence of the Bayesian confidence interval on the pseudo-
logistic source: 90% percentile of ĥBayes distribution under sampling from source
(gray squares) and average from posterior estimation (black triangles). The hor-
izontal dashed line is the true entropy rate. For all N, the average confidence
interval engulfs the exact value, and with increasing N, the estimated error bar
size matches the actual size accurately.

Controlling for the discrepancy seen in Figure 10 is necessary in exper-
imental data in which truth is unknown. What we think to be happening
here is that for some samples from the source, the tree weighting detects
statistically significant deep contexts, but for other data sets (more similar to
the Markov approximation), the typical depth is comparatively lower. As a
result, a finite bias remains, and the variation in the entropy rate on sampling
from the true source is larger than expected under the weighted mixture of
Markov models. We feel that no model-based statistical estimation proce-
dure can ever be immune to this effect. As a philosophical principle, it is
impossible for an estimator to guess outside its model assumptions about
what might happen in other, unseen data. Whatever it can use to guess—a
model class, estimated parameters, and one observed data set—is already
accounted for in its Bayesian posterior distribution. This mismatch can be
greater with small amounts of data and complex information sources. We
thus ask how we can discern from single trials whether we are within this
regime. We suspect the result shown here may represent a rather difficult
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Figure 10: Convergence of the Bayesian confidence interval on the true symbol-
ized logistic map. Symbols are the same as in Figure 9. The estimated confidence
interval size is smaller than the true size until N is large.

case: we believe that symbolic dynamics of a zero-noise deterministic chaotic
system are harder to estimate (on account of more deep, significant con-
texts) than what would typically occur in neural data. Furthermore, we
highlighted a specific value of N where the mismatch is particularly large.

5.3 Diagnostics. If structural mismatch is sometimes unavoidable, are
there signs when it is lurking? If it is, then the statistical user might imagine
that there remains some positive bias and that truth might be in the unlikely
tails of the posterior (outside the Bayesian confidence interval) more often
than nominal. Imagine the situation when the underlying source has a com-
plex structure but the length of data is limited. For arbitrarily short data sets,
the method will not choose models with a large number of parameters (i.e.,
a large word length) because that usually leads to overfitting. As more data
are seen, more complex models will be justifiable, which typically exhibit a
lower entropy rate. If adding still more data does not seem to increase the
effective complexity further, then one could think that the estimated tree at
that point is a good, convergent model. If we were estimating only a sin-
gle tree topology, it would be easy to judge convergence of complexity and
topology: the number of terminal nodes times A− 1.
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Figure 11: Convergence of diagnostics over number of symbols (N) for the
pseudo-logistic source (squares) and the true symbolized logistic map (circles).
(Top) 〈D̃〉, expectation of average effective depth over samples from the source.
(Bottom) 〈k̃〉, expectation of estimated number of parameters (following the
Rissanen ansatz) over samples from the source.

For the weighted trees, we offer two statistics that quantify the effective
depth and the complexity. We define the effective depth, D̃, using the general
formula 3.9 with Q(n) = D(n)µ̂(n), where D(n) is the depth of node n. D̃ is
the effective, average conditioning depth or word length used for prediction.

Rissanen’s theory (Rissanen, 1989) provides an alternate, more interest-
ing complexity measure. Asymptotically in N, the description length scales
as

L = − log P(
̂) + k
2

log N + O(k), (5.2)

where P is the likelihood at the maximum likelihood solution and k is the
effective number of free parameters. We identify L with the overall net CTW
code length Lw(λ), and − log P(
̂) ≈ Nh. Since h is unknown, we substitute
one of our low-bias estimators (e.g., ĥBayes) and invert to solve for k̃:

k̃ = 2(Lw(λ) − Nĥ)/ log N. (5.3)

Figure 11 shows ensemble averages of D̃ and k̃ for the two sources. For
smaller N, they track very well, but for middle ranges of N, the statistics for
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the pseudo-logistic source have converged, but the ones for true logistic data
continue to increase, especially k̃, as expected. For the logistic-like Markov
source, k̃ asymptotes at about 10, precisely the number of terminal nodes in
the Markov model used as a source. Given but a single data set, one would
not observe as smooth a rise, of course, but even still, the lack of convergence
in D̃ or k̃ with N is suggestive of structural mismatch. The prescription from
the diagnostics is to collect more data, and if that is not possible, consider
the possibility that the estimated confidence intervals might not engulf the
truth because of modeling-induced bias.

6 Discussion

6.1 Extensions. There remain several opportunities for improvement
and future investigations. Of course, estimating mutual information rates
of driven input-output systems is a key problem in neuroscience. We address
this in a subsequent work by conditioning on the stimulus similar to Strong
et al. (1998), although conditioning on the stimulus can be done any way
that is feasible. If the stimulus history were on a small, discrete set, then it
could be included in the context tree history as well as past observations.
Another large issue revolves around selecting the appropriate embedding
or representation for a dynamical system (Kennel & Buhl, 2003)—in par-
ticular, for a spike train (MacKay & McCulloch, 1952; Rapp et al., 1994;
Victor, 2002). There is no reason to suppose a priori that a fixed-width spike
count discretization, though commonly used, is the best, as compared to,
for example, some kind of discretized interspike interval representation.

After selecting the appropriate embedding, the issue of the proper choice
for alphabet size A and the Dirichlet parameter β remains. In this work, we
assumed that A represented the nominal alphabet size—that is, the total
cardinality of all possible symbols of the space in question. In simple cases,
this is known by construction. For example, the total cardinality is known a
priori in a spike train discretized so that no more than A spikes can ever occur
in a bin. In this case, outside physical knowledge constrains the alphabet
to size A. There are cases, however, where the true A is excessively large
or potentially unknown. The cardinality of observed symbols m might be
substantially less than A (Nemenman et al., 2002; Paninski, 2003). A concrete
example would be with a large multichannel recording of k distinct neurons.
With only a spiking or nonspiking representation, the Adefined in a general
outer product sense would be 2k , but far fewer combinations might ever be
observed in practice. We believe that more sophisticated representations
and approaches are likely to be necessary in this case, with the code-length-
based ideas proving useful for weighting among representations as well as
histories.

There are some very simple two-part coding approaches that may suf-
fice if the nominal A is not excessively large. Conceptually, the transmis-
sion sequence consists of sending the alphabet identity information at each
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node before the symbols are encoded in the reduced alphabet. Assuming
uniform prior on m, it takes log2 A bits to specify m and then log2

(A
m

)
to

specify which of them occur, so that the code length may be expressed as
log2 A+ log2

(A
m

) + LKT(m) with LKT(m) the KT code length over the m ac-
tually observed symbols (LKT(1) = 0). In the context tree, note that the A in
this expression is actually the value of m for each node’s parent, because the
identity of used symbols at a child is a subset of the parent. For the root, of
course, it is the true nominal A.

The text compression community has dealt with the unknown A issue
frequently and has devised numerous solutions. A typical approach is to
mix regular conditional estimators (over the nonzero alphabet) with some
extra “escape” probability to allow for the situation that a new symbol may
have occurred. The escape and ordinary probabilities are defined condi-
tionally for sequential estimation in a variety of ways. Shtarkov, Tjalkens,
and Willems (1995) demonstrated a zero-memory estimator whose leading
asymptotic term is proportional to m and not A. Nemenman (2002) and
Orlitsky, Santhanam, and Zhang (2004) described estimators for the poten-
tially unbounded alphabet case. All of these considerations would go into
the zero-memory local code length estimator, modifying equations 3.3, and
3.5. These options may require actual sequential computation for the local
code length and may not have a clean batch expression like equation 3.5.

For moderate A, another option is optimization of net code length over a
varying β. There needs to be a penalty for varying β, Lβ = − log2 P(β) over
some assumed prior on β (e.g., P(β) = A2βe−Aβ , an arbitrary choice that
has a maximum at β = 1/A). The total code length, LT (β) = LCTW(β) + Lβ

is computed over β, and following the MDL criterion, the minimizing β∗ is
located and ĥBayes evaluated there. The corresponding Bayesian weighting,
an alternative to minimizing, is (Solomonoff, 1964)

ĥ =
∫

ĥ(β)2−LT (β)dβ∫
2−LT (β)dβ

. (6.1)

This differs conceptually from the use of alphabet-adaptive zero-memory
estimators, because here there is but a single β chosen for all nodes, whereas
the other estimators would adapt to the actual alphabet observed at each
node of the tree, which will induce some additional overhead. Of course,
local optimization over β is possible on each node, though here, unlike the
global optimization case, careful attention to discretization issues for the free
parameter would be necessary (Rissanen, 1989). Figure 12 shows the effect
of varying β on the discretized logistic map (A = 2). ĥCTW = LCTW/N has
a modest minimum around β ≈ 0.5. The effect on ĥBayes is even smaller
still for a wide plateau; thus, for this data set with a small alphabet, this
extension has little benefit beyond the heuristic β = 1/A. See Nemenman
et al. (2002) and Nemenman, Bialek, and de Ruyter van Steveninck (2004)
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Figure 12: Truth (dashed line), ĥCTW (circles, upper curve), ĥBayes (diamonds,
medium curve), ĥBayes utilizing Ĥzero (squares, lower curve) over a range of β

on 5000 symbols from the logistic map as previously described. The fact that
the diamond curve comes closest to truth around β = 1/2 versus squares is
coincidence; for other samples from the source and for other data set sizes, the
situation is often reversed. The fact that ĥBayes depends less on β when utilizing
Ĥzero is a general phenomenon.

for a discussion in substantially larger A and an interesting estimator that
also averages over β in a different way from equation 6.1.

6.2 Limitations. It is important to recognize beforehand when the
method may give suboptimal results. Since we make explicit time-series
models of the observed data, we might encounter difficulties when the
model scheme cannot efficiently predict the data using the short-term con-
text tree history scheme. The method is based on universal compression,
so that eventually, with sufficient data, it will find conditional dependen-
cies, but the number of data necessary may be excessively large. The CTW
weighting prefers smaller and shallower trees (fewer parameters) over deep
ones. If the important dependencies are very deep, they may not contribute
effectively to a proper estimate. The result would be a positive bias because
the estimated tree is too shallow.
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Consider a spike train discretized with an extremely small bin size (e.g.,
1 ns), such that the number of symbols between individual spikes is large.
The CTW tree would put most model weighting near the root, in effect view-
ing the spike train as a nearly Poisson process. This would occur because the
context tree would not discern enough statistically significant dependence
to overcome the complexity penalty. One might diagnose this if, at coarser
bin sizes, the estimated entropy rate diverged from a Poisson assumption.

Another situation may be multiscale dynamics, where a slow variable
modulates the dynamics of a fast variable. Without additional hints, the
tree would be sensitive only to the fast dynamics. An approach would be
to define some discretized slow variable appropriately averaged over the
original data and allow it to occur at some level or levels in the tree as context.
If it induced a lower net code length, it would be deemed preferable by MDL
considerations.

More exotic dynamical systems with high complexity may present diffi-
culties to the present method as well as all other general-purpose entropy
rate estimation methods. For example symbol sources with a substantial
power law subextensive term f (D) would exhibit this pathology (Bialek,
Nemenman, & Tishby, 2001). In these cases, deep contexts may have sub-
stantial conditional influence on the future, and only a small subset of the un-
derlying state space may have been observed. This behavior may be nearly
indistinguishable in experimental practice from ordinary nonstationarity
in a time series. Such dynamics can have either zero or positive Shannon
or Kolmogorov-Sinai entropy rate, but the present estimator would likely
overestimate the rate for both circumstances.

A canonical example of this case is the symbolic dynamics of the logistic
map at the parameter boundary between periodicity and chaos, where the
true entropy rate is zero, but it may take a large data set to notice this.
Perturbing the output of that process by flipping a few bits (in our case,
with probability p = 0.02) gives a new process with the entropy of that
Poisson process, but far higher complexity than a point Poisson process.
Figure 13 shows results of our estimator and the direct method (Strong et al.,
1998) using a block entropy estimator of Grassberger (2003). For ordinary
extensive chaos with h > 0, one typically expects to find a region of linear
behavior in ĤD versus 1/D and extrapolate to 1/D → 0, but this does not
happen at the boundary of chaos. On both of these data sets, there are
two apparently good scaling regions, leading to different entropy estimates,
with the Ma bound not providing an objective way to choose one from
the other (though N/2H(D) does stay reasonably large as D → ∞ for the
no-noise logistic map and does not for the noisified set). Our estimator,
ĥBayes, automatically and correctly diagnoses the zero entropy case from the
positive entropy case. For the latter, there is a noticeable positive bias, as is
expected on this difficult process, which has a very long effective memory.

On the positive side, recent theoretical results have shown that a particu-
lar context tree compression scheme has an asymptotic rate of convergence
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Figure 13: (Upper) Logistic map at accumulation point, N = 100, 000. True h =
0. ĤD/D versus 1/D (circles), Ma lower bound (dotted line), ĥBayes (dash-dotted
line). The direct method shows two apparently good scaling regions—one for
larger D, which extrapolates to h ≈ 0.05, and the other to zero. (Lower) Logistic
map at accumulation point, perturbed by Poisson process with p = 0.02. True
h ≈ 0.1414 (solid line). ĤD/D (diamond), ĥBayes (dash-dotted line). Again, there
are apparently two good scaling regions: the upper leads to close to the true
entropy and the lower, extrapolating to zero. The Ma bounds (dotted lines) do
not help constrain the proper scaling region for the direct method. ĥBayes gets in
the right vicinity, though in the lower plot, there is a positive bias as expected.

in compression rate, which is as good as any other method for almost all
strings (Martin, Seroussi, & Weinberger, 2004). While the actual rate of con-
vergence depends on the character of the source, this result does suggest
that one cannot do any better than context trees for compression as a class.
J. Ziv (personal communication, 2004) conjectured the same would be found
for most practical context tree methods such as CTW. It is not clear whether
this result also applies to entropy rate estimation, but it gives confidence
that the modeling approach is likely to be generally successful. We note that
modeling, as in estimating probabilities of finite strings, is a distinct task
from entropy estimation, and as entropy is a nonlinear function of the
underlying distribution, different models might be good for dynamics es-
timation versus entropy estimation. Accurately modeling probabilities of
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words of variable length is a harder task. The present method does in fact
attempt to make models, but note that minimizing the average compression
rate (the implied loss function for choosing the tree weightings) is not as
difficult as bounding prediction error on specific strings, and as the target
of average compression rate in universal compression is bounded by en-
tropy rate, the conceptual difference may not be so large here. Recall that
in the classical case, the entropy estimate depends only on the histogram of
occupancies (Nemenman et al., 2004; Paninski, 2003), and the specific labels
attached to these may be shuffled without changing the entropy estimate.
In our method, once a tree is estimated, the specific labels attached to the
contexts designating their history may also be shuffled without changing
the entropy rate estimate.

6.3 Conclusions. We have discussed how to calculate the entropy rate
in any observed, symbolic dynamical system. We highlighted difficulties
with estimating entropy rates using traditional estimation techniques and
presented a new approach to estimating entropy rates, following the ratio-
nale of selecting a word length D more rigorously. Specifically, we examined
how to generate a more appropriate model for a symbol stream by using
a Markovian assumption and following the minimum description length
principle to select the appropriate model structure and complexity. This
probabilistic model provides a framework for sampling the Bayesian pos-
terior distribution, P(ĥBayes | data), estimating the range of possible models
and their entropy rates that could reasonably give rise to our data. We
thus can provide Bayesian confidence intervals on the entropy rate of a
discrete (symbolic) time series.10 In simulation, our estimator outperforms
other forms of entropy rate estimation, such as algorithms based on string
matching and strict CTW compression, showing much lower bias and com-
petitive variance. For well-converged situations, the Bayesian confidence
interval appears nearly exact, matching the true posterior distribution of
the potential entropy rates.

In the neural coding literature, substantial effort has focused on estimat-
ing block entropies well in the undersampled regime (Nemenman et al.,
2004, 2002; Paninski, 2003; Strong et al., 1998; Treves & Panzeri, 1995; Victor,
2002; Victor & Purpura, 1997); however, little work has approached rate es-
timation from the perspective of model selection. Although several papers
have applied ideas from compression to estimate the entropy rate (Amigo
et al., 2004; Kontoyiannis et al., 1998; Lempel & Ziv, 1976), these string-
matching estimators have followed the spirit of coincidence detection (Ma,
1981) and equipartition principles from coding theory, not explicit model

10Fortran 95 source code as well as a MATLAB interface for both Bayesian entropy
rate and information rate estimation is available online at http://www.snl.salk.edu/
∼shlens/info-theory.html.
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selection. One previous work (London et al., 2002) did employ the CTW’s
compression ratio itself, ĥCTW, as an estimator for analyzing neural data.

In related work, we extend these methods to estimate the information
rate, with a Bayesian confidence interval, in real neural data. By extracting a
probabilistic model for the spike train conditioned on stimuli, we can sample
the posterior distribution of average and specific mutual information rates
associated with a neuron (Butts, 2003; DeWeese & Meister, 1999). The relia-
bility of our estimator, coupled with Bayesian confidence intervals, increases
our confidence in the validity of estimates of information rates in neural data
and offers a method to compare these quantities across temporal resolu-
tions, stimulus distributions, and correlations in neural responses (Brenner,
Strong, Koberle, Bialek, & de Ruyter van Steveninck, 2000; Lewen, Bialek, &
de Ruyter van Steveninck, 2001; Liu, Tzonev, Rebrik, & Miller, 2001; Reinagel
& Reid, 2000; Rieke, Bodnar, & Bialek, 1995; Schneidman, Bialek, & Berry,
2003).

Appendix A: Markov Chain Monte Carlo for Bayesian Entropy
Estimation

In this appendix we outline a numerical method to obtain samples from the
integrand of equation 2.6. We select for P(θ) the Dirichlet prior,

PDir(θ) = 1
Z′ δ

(∑
j

θ j − 1

) ∏
j

(θ j )β−1, (A.1)

which smoothly parameterizes between the prior uniform on θ (β = 1) and
the maximum-likelihood situation (β = 0). Except for the limiting cases of
β, this prior does not have an intuitive motivation, but it does allow ana-
lytical computation of some integrals, explaining its historical use in classi-
cal Bayesian statistics as a “conjugate prior” for the multinomial distribu-
tion (see equation 2.4). Wolpert and Wolf (1995) analytically computed the
expectation in equation 2.6,

ĤBayes =
∑

i

ci + β

N + Aβ
[ψ(N + Aβ + 1) − ψ(ci + β + 1)] , (A.2)

with ψ(z) = d/dz log2 �(z). We are interested in the distribution of the inte-
grand, the posterior distribution of entropy, having observed a set of counts.

Markov chain Monte Carlo is a numerical algorithm to draw samples
from a probability distribution, particularly useful for estimating

〈F 〉 =
∫

F (θ)P(θ)dθ (A.3)
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for some function F and probability distribution P . We refer the reader to a
standard reference for MCMC (Gamerman, 1997) and focus on our specific
implementation. In our problem,

P(θ) = P(c|θ)PDir(θ)

F (θ) = H(θ) = −
∑

j

θ j log θ j ,

where we have avoided complicated normalizations. A key advantage is
that MCMC works even if P is not normalized. In many Bayesian prob-
lems, a numerator of P is easy to compute, but the normalization may be
analytically intractable.

The inputs are c and β, and the output is a succession of Hk , which
samples from the posterior distribution P(H | c). Define N = ∑

c j .

1. Set θ0 = c/N. Set i = 1. Set k = 1.

2. Randomly draw a candidate θ′. For j = 1, . . . , A− 1 and σ j =
1
N

(
min(c j , N − c j ) + 1

2

)1/2
, set

θ′
j = θi−1

j + σ jN (0, 1),

with N (0, 1) a gaussian random variate of zero mean and unit vari-
ance. Set θ ′

A = 1 − ∑A−1
j=1 θ ′

j .

3. If any element of θ′ is < 0 or >1, then reject it a priori.

4. Otherwise, draw a uniform random variate ξ ∈ [0, 1) and test the like-
lihood ratio R = P(θ′)/P(θi−1). If ξ ≤ min(R, 1), then accept θ′; oth-
erwise, reject it.

5. If θ′ is accepted, set θi = θ′; otherwise θi = θi−1.

6. If (i mod 100) = 0, then record Hk = H(θi ) and increment k.

7. Increment i by 1. Go to step 2 unless NMC values of Hk have been
recorded.

A key requirement for proper MCMC estimation is that the Markov chain
of successive θi be sufficiently well mixing such that a reasonable-length fi-
nite sample can serve to well approximate the true integral. The parameter
value of 100 (found to be good for A = 2 or A = 3) in the penultimate step
is arbitrary and should be increased if the mixing is insufficient. The central
freedom is defining the distribution of the candidate θ∗ perturbations in
step 2. For our problem, we have found empirically that this specific im-
plementation produces good results for evaluating integrals or estimating
quantiles in the Bayesian posterior distribution.
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Appendix B: Computing µ from Node Probabilities

Equation 4.5 is a rough, first-order approximation of a more accurate es-
timate. Suppose we have estimated a tree topology with given terminal
nodes, and at each node, we have the emission probabilities θ. Knowing the
active contexts and symbol emission probabilities provides the transition
probabilities as well. Theoretically, the stationary density µ is completely
determined from those two quantities by the Chapman-Kolmogorov equa-
tion of detailed balance (Gamerman, 1997). If the set of terminal nodes and
allowable transitions happen to define a first-order Markov chain, then the
stationary density can be computed as an eigenvector problem (Cover &
Thomas, 1991). This is not guaranteed. An arbitrary tree is not necessarily
a first-order Markov chain, and computing its stationary µ can be more
difficult.

One solution is to employ the algorithm of Kennel & Mees (2002) to
temporarily expand the tree topology until it is a first-order chain. At that
point, the stationary µ is computable by the eigenvector method.

Another solution is to iterate the detailed balance equations for the tree
machine. Starting with µ(n) = N(n)/N, the tree can evolve density to den-
sity until the µ converges numerically to a stationary distribution. When a
transition is not strictly first order, the relative probabilities of appropriate
past states are estimated using the previous iterate’s µ.

Both of these solutions make the computation of h∗
i significantly more

intricate. We have implemented these more accurate methods for finding µ,
but in our empirical investigation, the effect on the estimate, in the ensemble
average, appears to be minimal. Thus, for computational simplicity, we
usually use µ(n) = N(n)/N.

Appendix C: String Matching Entropy Estimation

This estimator is used in section 5. With time index i and integer n, define

n

i as the length of the shortest substring starting at si that does not appear
anywhere as a contiguous substring of the previous n symbols ri−n, . . . , ri−1.
Consider sequentially parsing a string from first to last. At some cursor
location i , compute 
i

i , which is the length of the “phrase”, advance the
cursor by that amount, and repeat until the entire string is parsed into
M phrases. An entropy rate estimate for stationary and ergodic sequences
is (Lempel & Ziv, 1976)

ĥLZ = M
N

log2 N,

measuring entropy in bits. Amigo et al. (2004) examined the performance of
this estimator and found it compared favorably to the method of Strong et al.
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(1998) for small data sets and was substantially superior to the better-known
data compression method in Ziv & Lempel (1978).

The string matching estimator of Kontoyiannis et al. (1998) is similar to
the Lempel-Ziv estimator, but averages string match length at every location
instead of skipping by the length of the found phrase:

ĥSM =
(

1
n

n∑
i=1


n
i

)−1

log2 n.

To implement C with N observed symbols, we first remove a small number
� of symbols off the end and then split the remaining into two halves. String
matching begins with the first element of the second half, (N − �)/2 + 1,
and examines the previous n = (N − �)/2 characters. The length � excess
padding is necessary to allow string matches from the end locations of the
match buffer. � is presumed to be a few times longer than the expected
match length, 〈
〉 ≈ log n/h.

Appendix D: Overview of Method

Figure 14 provides a block diagram of the entire procedure for estimating
the entropy rate of any discrete (symbolic) time series. The upper gray box
details how to estimate an appropriate weighting of probabilistic models,
while the lower gray box outlines how to estimate the range of likely entropy
rates from this model. The curved boxes represent calculations, and squared
boxes represent procedural aspects.

1. β is an arbitrary parameter for the Dirichlet prior. Selecting β = 1/A,
where A is the alphabet size, works well in practice, but see section 3.4
for a complete discussion.

2. Although section 3.2 discusses how to build a context tree, many
optimizations exist to ease their computational tractability (Kennel &
Mees, 2002).

3. Recursively descend the tree, and calculate equation 3.5 at each node.

4. Beginning at tree leaves, recursively ascend the tree and sum the code
lengths of all children c at each node Lc = ∑

c Lw(c).

5. Recursively descend the tree to calculate equation 3.8 at each node.

6. Draw a single sample ξ from a uniform probability distribution [0, 1].

7. Descend down the tree from the current node to the next level, and
select a single child to examine. All remaining nodes are placed on
the stack for future processing.
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Figure 14: Schematic block diagram for the entire procedure for estimating the
range of entropy rates associated in a discrete time series.
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8. The number of node observations is the sum of the counts of future
symbols N(n) = ∑A

i=1 ci (n).

9. The stationary probability distribution µ̂(n) follows equation 4.2 (but
see appendix B).

10. See section 4.2 as well as appendix A on how to generate a single
Markov chain Monte Carlo sample from P(θ|c).

11. Use equations 2.4 and 2.5 to estimate the corresponding entropy.

12. Following equation 4.5, the contribution of this node to the entropy
rate is Qw(n) = H∗(n)µ̂(n).

13. Sum up Qw from all nodes to estimate the entropy rate from the
weighted probabilistic model. The weighting W(n) is implicit in the
probabilistic arrival at node n.

14. The final output of this procedure is a single sample from the con-
tinuous distribution P(h|data) denoted by a small line in the graph.
We repeat the estimation procedure NMC times to generate multiple
samples from the underlying distribution.
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