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Diagnosis of Parkinson’s disease on the basis of clinical and 
genetic classifi cation: a population-based modelling study
Mike A Nalls, Cory Y McLean, Jacqueline Rick, Shirley Eberly, Samantha J Hutten, Katrina Gwinn, Margaret Sutherland, Maria Martinez, 
Peter Heutink, Nigel M Williams, John Hardy, Thomas Gasser, Alexis Brice, T Ryan Price, Aude Nicolas, Margaux F Keller, Cliona Molony, 
J Raphael Gibbs, Alice Chen-Plotkin, Eunran Suh, Christopher Letson, Massimo S Fiandaca, Mark Mapstone, Howard J Federoff , Alastair J Noyce, 
Huw Morris, Vivianna M Van Deerlin, Daniel Weintraub, Cyrus Zabetian, Dena G Hernandez, Suzanne Lesage, Meghan Mullins, 
Emily Drabant Conley, Carrie A M Northover, Mark Frasier, Ken Marek, Aaron G Day-Williams, David J Stone, John P A Ioannidis, 
Andrew B Singleton, for the Parkinson’s Disease Biomarkers Program and Parkinson’s Progression Marker Initiative investigators*

Summary
Background Accurate diagnosis and early detection of complex diseases, such as Parkinson’s disease, has the 
potential to be of great benefi t for researchers and clinical practice. We aimed to create a non-invasive, accurate 
classifi cation model for the diagnosis of Parkinson’s disease, which could serve as a basis for future disease 
prediction studies in longitudinal cohorts.

Methods We developed a model for disease classifi cation using data from the Parkinson’s Progression Marker Initiative 
(PPMI) study for 367 patients with Parkinson’s disease and phenotypically typical imaging data and 165 controls 
without neurological disease. Olfactory function, genetic risk, family history of Parkinson’s disease, age, and gender 
were algorithmically selected by stepwise logistic regression as signifi cant contributors to our classifying model. We 
then tested the model with data from 825 patients with Parkinson’s disease and 261 controls from fi ve independent 
cohorts with varying recruitment strategies and designs: the Parkinson’s Disease Biomarkers Program (PDBP), the 
Parkinson’s Associated Risk Study (PARS), 23andMe, the Longitudinal and Biomarker Study in PD (LABS-PD), and 
the Morris K Udall Parkinson’s Disease Research Center of Excellence cohort (Penn-Udall). Additionally, we used our 
model to investigate patients who had imaging scans without evidence of dopaminergic defi cit (SWEDD).

Findings In the population from PPMI, our initial model correctly distinguished patients with Parkinson’s disease from 
controls at an area under the curve (AUC) of 0·923 (95% CI 0·900–0·946) with high sensitivity (0·834, 95% CI 
0·711–0·883) and specifi city (0·903, 95% CI 0·824–0·946) at its optimum AUC threshold (0·655). All Hosmer-Lemeshow 
simulations suggested that when parsed into random subgroups, the subgroup data matched that of the overall cohort. 
External validation showed good classifi cation of Parkinson’s disease, with AUCs of 0·894 (95% CI 0·867–0·921) in the 
PDBP cohort, 0·998 (0·992–1·000) in PARS, 0·955 (no 95% CI available) in 23andMe, 0·929 (0·896–0·962) in LABS-
PD, and 0·939 (0·891–0·986) in the Penn-Udall cohort. Four of 17 SWEDD participants who our model classifi ed as 
having Parkinson’s disease converted to Parkinson’s disease within 1 year, whereas only one of 38 SWEDD participants 
who were not classifi ed as having Parkinson’s disease underwent conversion (test of proportions, p=0·003).

Interpretation Our model provides a potential new approach to distinguish participants with Parkinson’s disease 
from controls. If the model can also identify individuals with prodromal or preclinical Parkinson’s disease in 
prospective cohorts, it could facilitate identifi cation of biomarkers and interventions. 

Funding National Institute on Aging, National Institute of Neurological Disorders and Stroke, and the Michael J Fox 
Foundation. 

Introduction
Accurate diagnosis or prediction of risk by use of simple, 
non-invasive measures is a rarely realised goal for many 
complex diseases. For complex progressive diseases such 
as Parkinson’s disease, preclinical diagnosis and low 
error rates in diagnosis are crucial in clinical trials and 
the study of disease-altering therapeutic approaches.

Imaging is often deemed the gold standard for 
identifi cation of typical Parkinson’s disease pre-mortem, 
however, high cost and restricted portability limit the use 
of this approach. We aimed to develop a portable method 
to identify patients with Parkinson’s disease who show 
aetiologically typical disease presentation (confi rmed by 

dopamine transporter [DAT] imaging data). We used a 
combination of factors that vary over the life of an 
individual, factors that are constant and do not change 
with time, general indicators of neurodegeneration, and 
Parkinson’s disease-specifi c measures to create our 
classifi cation algorithm.

Methods
Study design and participants
Figure 1 shows a summary of our workfl ow. Table 1 
describes the cohorts we used and further details are 
available in the appendix: the Parkinson’s Progression 
Marker Initiative (PPMI), the Parkinson’s Disease 
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Pennsylvania, Philadelphia, PA, 
USA (D Weintraub); Department 
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Morris K Udall Parkinson’s Disease Research Center of 
Excellence cohort (Penn-Udall). PPMI and PDBP are 
case-control studies that use a shared set of common 
data elements and publicly available data to help to 
identify biomarkers for Parkinson’s disease. PARS is a 
study of incident Parkinson’s disease cases, at risk 
participants, and population controls, which focuses on 
screening by smell tests and other risk factors, and it 
served as a planned positive control in our study. The 
23andMe cohort in our analysis is part of a small study of 
LRRK2 mutation carriers that enrolled cases and controls 
who had LRRK2 risk variants, additional participants 
with idiopathic Parkinson’s disease, and healthy controls 
not carrying LRRK2 disease risk variants. LABS-PD is a 
case-only study derived from clinical trial participants 
and is focused on biomarker development. Penn-Udall is 
a longitudinal cohort of patients with Parkinson’s 
disease, which aimed to develop biomarkers for disease 
progression. Each contributing study abided by the ethics 
guidelines set out by their institutional review boards 
and all participants gave informed consent for inclusion 
in both their initial cohorts and subsequent studies.

Procedures and statistical analysis
The appendix includes further details of the statistical 
methods, beginning with model development by 
stepwise logistic regression in the PPMI dataset, which 
we used to train the initial model. Before beginning our 

primary analyses, our collaborators identifi ed more 
than 100 common risk factors or potential biomarkers 
for Parkinson’s disease that were available in PPMI 
(with genetic data available either by genome-wide 
association studies [GWAS] or NeuroX-derived 
genotyping) through manually auditing these datasets. 
Factors that did not survive the stepwise logistic 
regression modelling for use in the integrative  model 
because of low independent information contribution 
(assessed with the Akaike information criterion) 
included handedness, self-report of constipation, self-
report of sleep disturbances, caff eine intake, and 
smoking status.

The resulting model retained fi ve factors—testing of 
sense of smell, self-reported family history of 
Parkinson’s disease (fi rst or second degree relative with 
Parkinson’s disease), age, sex, and a Parkinson’s 
disease-specifi c genetic risk score (GRS)—to develop 
an integrative predictive model to discriminate patients 
with typical Parkinson’s disease (clinical diagnosis with 
evidence of dopaminergic dysfunction) from 
neurolo gically normal controls.1–6 All smell testing used 
in this analysis was done with the University of 
Pennsylvania Smell Identifi cation Test (UPSIT). This 
test is a so-called scratch and sniff  exam for scent 
identifi cation, which scores individuals from 0 to 40, 
and is considered to be an objective and well validated 
measurement of olfactory function. The use of this test 
to quantify olfactory function as an indicator of 
neurodegeneration has been suggested previously.7,8 
The appendix includes further details about the 

Research in context

Evidence before this study
We searched PubMed for articles up to Jan 1, 2015, containing 
possible combinations of the terms “Parkinson’s disease”, 
“neurodegeneration”, “biomarker”, and “risk prediction”. 
Previous studies have tried to identify accurate biomarkers of 
Parkinson’s disease to enable risk quantifi cation and 
classifi cation outside or before entering a clinic for traditional 
symptomatic diagnosis. To build our model, we used clinically 
derived data from several sources within the Parkinson’s 
Progression Marker Initiative (PPMI), such as olfactory function, 
imaging, genetic risk estimates, and demographics. 

Added value of this study
Our model uses an algorithm based on data that are cheap to 
collect and can be remotely administered. This algorithm is also 
accurate for classifi cation of cases based on datapoints outside 
of both study recruitment and Parkinson’s disease diagnostic 
criteria (area under the curve >0·89 in all independent datasets, 
except in one study used as a positive control). Additionally, 
this study has suggested that participants classed as having 
scans without evidence of dopaminergic defi cit (SWEDD) who 
would later be diagnosed with Parkinson’s disease might be 

distinguished from those who would not develop Parkinson’s 
disease. If these fi ndings are confi rmed in independent cohorts, 
they might be useful to researchers in the clinical trial setting, 
especially when combined with imaging data. Our model was 
able to discriminate patients without evidence of dopaminergic 
defi cit typical of Parkinson’s disease from those patients with 
aetiologically typical disease.

Implications of all available evidence
The development and primary validation of this classifi cation 
algorithm using publicly available data shows the usefulness of 
public datasets such as PPMI and the Parkinson’s Disease 
Biomarkers Program (PDBP). Within these two large case-
control cohorts, our model signifi cantly outperforms any single 
classifi er. As the pace of Parkinson’s disease genomics advances 
with added precision from sequencing studies, the genetic 
contribution to risk prediction is expected to grow rapidly, and 
we hope this study can serve as a foundation. We show some 
success in predicting which of the patients who present with 
SWEDD will progress to typical Parkinson’s disease with 
evidence for dopaminergic defi cit. Easy identifi cation of this 
group will probably be important in clinical trials. 
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generation and analysis of genetic data and the creation 
of the GRS from 30 genetic risk factors implicated and 
replicated in one or more studies, in addition to 
information about the other model parameters that we 
used.9–16 None of the factors in our model is part of the 
general diagnostic criteria for Parkinson’s disease or 
recruitment into PPMI, the dataset used for training 
and development of the model.

We assessed model calibration by resampling and used 
the Hosmer-Lemeshow test17 to assess goodness of fi t. 
We then applied our integrative model, attempting 
external validation in the fi ve independent cohorts. We 
also attempted to extend our model to atypical Parkinson’s 
disease by evaluating the performance of the model in 
subsets of patients who were screened as potentially 
having Parkinson’s disease but who had dopamine 
transporter imaging scans without evidence of 
dopaminergic defi cit (SWEDD), suggesting possible 
aetiological diff erences.

Our study used the high-performance computational 
capabilities of the Biowulf Linux cluster at the National 
Institutes of Health (Bethesda, MD, USA) and DNA 
panels, samples and clinical data from the National 
Institute of Neurological Disorders and Stroke Human 
Genetics Resource Center DNA and Cell Line Repository, 
human subjects protocol 2003-077. 

Role of the funding source
The funders of the study had no role in the study design, 
data collection, data analysis, data interpretation, or 
writing of the report. All authors could access all data and 
statistical programming code used in this project for the 
analyses and results generation, except for the small 
amount of data contributed by 23andMe. Data from 
23andMe could be accessed only by their employees 
(CYM, MM, EDC, and CAMN) as part of their unique 
consent process, so only summary statistics and area 
under the curve (AUC) data could be provided for this 
report. MN takes fi nal responsibility for the decision to 
submit the paper for publication.

Results
To accompany this report, and to help with replication 
and extension of our work, the code and training data for 
this predictive model and some validation data have been 
made publicly available online. 

Each of fi ve factors that we included made signifi cant 
contributions to the information content of the 
integrative predictive model. In comparisons of the 
standardised beta coeffi  cients within the regression 
model, the UPSIT score was responsible for 63·1% of the 
explained variance, followed by the genetic risk score 
(13·6%), family history (11·4%), sex (6·0%), and age 
(5·9%). The appendix (p 10) shows additional information 
about parameter estimates for these factors.

For discrimination of participants with Parkinson’s 
disease from healthy controls in the PPMI cohort, the 

AUC of the integrative model was 0·923 (95% CI 
0·900–0·946; table 2, fi gure 2). Sensitivity was 0·834 
(95% CI 0·711–0·883) and specifi city was 0·903 (95% CI 
0·824–0·946) in PPMI at the best threshold for 
classifi cation, which was 0·655 in the receiver operating 
curve (ROC). However, the low prevalence of Parkinson’s 
disease—2% in populations older than 60 years—results 
in a positive predictive value (PPV) of 0·149 despite an 
AUC more than 0·9.18 Although the AUC of the UPSIT-
only model in PPMI was individually strong (AUC 0·901, 
95% CI 0·874–0·928), the integrative model was 
signifi cantly more informative based on DeLong’s test for 
correlated ROC curves19 (Z=3·027, p=0·002). When we 
used the integrative model to classify SWEDD participants 
and controls in PPMI, classifi cation accuracy decreased, 
with an AUC of 0·707 (95% CI 0·630–0·783; table 2).

For in-silico validation of the integrative model in the 
PPMI dataset, we used 10 000 randomly generated subsets 
of data to train integrative predictive models specifi c to 
the randomly generated subsets to evaluate the 
distribution of the AUC through resampling. We fi tted 
these models to matched, non-overlapping validation sets 
for each iteration. We noted a normal distribution of 
AUCs across all iterations, suggesting good model fi t 
(fi gure 3). The mean AUC estimate was 0·918 (SD 0·012, 
range 0·830–0·959).

CA, USA (Prof J P A Ioannidis MD); 
Department of Medicine, 
Stanford Prevention Research 
Center, Stanford, CA, USA 
(Prof J P A Ioannidis); 
Department of Health Research 
and Policy, Stanford University 
School of Medicine, Stanford, 
CA, USA (Prof J P A Ioannidis); 
and Department of Statistics, 
Stanford University School of 
Humanities and Sciences, 
Stanford, CA, USA 
(Prof J P A Ioannidis)

Correspondence to:
Dr Andrew B Singleton, 
Laboratory of Neurogenetics, 
National Institute on Aging, 
National Institutes of Health, 
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See Online for appendix

For details of the Biowulf Linux 
cluster see http://biowulf.nih.gov

For data and code from PPMI 
and PDBP see http://www.ppmi-
info.org/ and https://pdbp.ninds.
nih.gov/

Figure 1: Profi le of model development and validation
Pink boxes show steps of the workfl ow specifi c to the PPMI study and the blue box shows the validation phase. 
PPMI=Parkinson’s Progression Marker Initiative. PDBP=Parkinson’s Disease Biomarkers Program. PARS=Parkinson’s 
Associated Risk Study. LABS-PD=Longitudinal and Biomarker Study in PD. Penn-Udall=Morris K Udall Parkinson’s 
Disease Research Center of Excellence cohort. UPSIT=University of Pennsylvania Smell Identifi caiton Test. 
GRS=genetic risk score. SWEDD=scans without evidence of dopaminergic defi cit. AUC=area under the curve. 

Candidate classifiers identified in
patients with Parkinson’s disease 
and controls in the PPMI dataset
• Audit of available datasets to 
   identify potential biomarkers 

Five parameter classifiers selected in PPMI to model 
typical Parkinson’s disease
• UPSIT
• GRA
• Demographics (family history, age, and sex)  

Evaluation of model in PPMI
• AUCs
• Compare performance in SWEDD
• In-silico validation
• Hosmer-Lemeshow calibration

Extract model parameters from PPMI
• Logistic regression
• Beta cofficients for parameters

Validate model performance in independent cohorts
• PDBP (Parkison’s disease and controls)
• PARS (Parkinson’s disease, controls, and at-risk)
• 23andMe (Parkinson’s disease and controls)
• LABS-PD (SWEDD and Parkinson’s disease)
• Penn-Udall (Parkinson’s disease)

Stepwise regression
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We did a subsequent resampling exercise, repeating the 
previous analysis but using backward stepwise pruning of 
the integrative model that was informed by the Akaike 
information criterion in the training subsets. We then 
applied this version of the integrative model to the 
additional randomly generated validation subsets. In 
10 000 iterations, the UPSIT score always remained after 
stepwise pruning, whereas the GRS remained in 98·6% 
of the iterations, family history in 89·6%, sex in 49·9%, 
and age in 49·4%. Of the iterations, 49·1% contained four 
factors, 29·6% contained three factors, 19·9% contained 
fi ve factors, 1·4% contained two factors, and only one 
iteration contained a single factor (the UPSIT score) based 
on resampling. Across the resampling iterations, the AUC 
was a mean of 0·915 (SD 0·013, range 0·826–0·960).

In our Hosmer-Lemeshow test to investigate model 
calibration in the PPMI dataset, we fi rst iterated across 
possibilities of fi ve, ten, 25, 50, and 100 random subsets 
within the dataset. Each grouping returned p values 
between 0·286 and 0·592 for the Hosmer-Lemeshow 
test, showing that no outlier subgroups were identifi ed 
and that calibration was good. We also repeated this 
analysis for all possible numbers of groupings ranging 
from fi ve to 100. All p values were greater than 0·05, 
showing that the integrative model does not suff er from 
any subset of the data disproportionately aff ecting the 
results (fi gure 3).

Our integrative model showed high accuracy (quantifi ed 
by AUC estimates) in discrimination of patients with 
Parkinson’s disease from healthy controls when applied to 
additional cross-sectional case-control studies (table 2, 
fi gure 4). In PDBP, the AUC of the UPSIT-only model was 
less than that of the integrative model (table 2): the 
integrative model was signifi cantly more powerful than 
the UPSIT-only model when used to discriminate patients 
with Parkinson’s disease from controls in PDBP (Z=2·154, 
p=0·0313). The AUC was slightly lower for the integrative 
model than for the UPSIT-only model in the 23andMe 
cohort, but this decrease was not statistically signifi cant in 
DeLong’s test (p=0·44) and might result from the 
increased recruitment of patients with LRRK2 risk 
variants in this study subset and its small sample size. We 
used PARS as a positive control because recruitment of 
patients and at-risk participants to this study included the 
UPSIT score, therefore biasing estimates and introducing 
some circularity, and making UPSIT scores more diff erent 
between patients and controls in this cohort than might 
otherwise have been the case.

To further validate this integrative model, we attempted 
to predict Parkinson’s disease case status in the Penn-
Udall and LABS-PD datasets. The integrative model was 
able to categorise 93% (222/239) of cases correctly in 
LABS-PD and was 94% (92/98) correct in the Penn-Udall 
dataset. Classifi cation accuracy in the Penn-Udall cohort 
was slightly lower for the integrative model than for the 
UPSIT-only model, possibly because of the small sample 
size (table 2).
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In the PPMI dataset, application of the integrative 
model to SWEDD participants and the same controls as 
used in the previous categorisation of patients with 
Parkinson’s disease did not generally result in the 
SWEDD participants being classifi ed as having 
Parkinson’s disease (table 2). Additionally, our model 
classifi ed only 69% (9/13) of the SWEDD participants in 
LABS-PD as having Parkinson’s disease, suggesting that 
many SWEDD participants are aetiologically distinct 
from Parkinson’s disease cases with respect to all factors 
included in our model, not just those related to functional 
imaging.

Our integrative model classifi ed the SWEDD 
participants in a bimodal distribution, suggesting that 
this group represents a heterogeneous mixture of 
typical cases of Parkinson’s disease and people without 
Parkinson’s disease, rather than a distinct disease entity 
(fi gure 4). In the PPMI cohort, a second round of 
longitudinal DAT scan to identify Parkinson’s disease is 
underway. So far, in the available DAT scanning data at 
1–2 years after enrolment, fi ve of 55 SWEDD participants 
have been identifi ed as showing evidence of 
dopaminergic dysfunction, and would therefore no 
longer be counted as SWEDD. At baseline the integrative 
model classifi ed 17 SWEDD participants as having 
Parkinson’s disease, including four of the fi ve 
participants who showed evidence of dopaminergic 
dysfunction (probabilities of having Parkinson’s disease: 
0·868, 0·907, 0·995, and 0·997), and the fi fth participant 
was close to being classifi ed as having Parkinson’s 
disease (probability 0·651, slightly lower than our 
threshold of 0·655). If we used a cutoff  of 0·651, a 
further 12 SWEDD participants from PPMI would fall 
above the Parkinson’s disease threshold, although none 
of these participants showed evidence of dopaminergic 
dysfunction after 1–2 years of follow-up. We used a χ² 

test of proportions to investigate the enrichment of 
latent dopaminergic defi cit—ie, the process by which 
detection of dopaminergic dysfunction in follow-up 
imaging causes SWEDD to be reclassifi ed as typical 
Parkinson’s. The test showed that the classifi cation of 
SWEDD participants as having Parkinson’s disease was 
unlikely to have been due to chance; we detected 
signifi cant diff erences in the prevalence of dopaminergic 
defi cit during follow-up in SWEDD participants whose 
probabilities of having Parkinson’s disease were above 
our classifi cation threshold of 0·655 (4/17) compared 
with those below the threshold (1/38; p=0·003). 

PPMI PDBP PARS 23andMe LABS-PD* Penn-Udall*

PD SWEDD PD PD At risk PD PD SWEDD PD

Demographic model 0·604
(0·555–0·653)

0·609
(0·514–0·705)

0·602
(0·552–0·652)

0·678
(0·521–0·834)

0·479
(0·402–0·556)

0·385 0·276
(0·219–0·333)

0·385
(0·109–0·660)

0·316
(0·224–0·409)

UPSIT model 0·901
(0·874–0·928)

0·624
(0·539–0·708)

0·881
(0·850–0·912)

0·994
(0·981–1·000)

0·976
(0·959–0·992)

0·962 0·925
(0·891–0·958)

0·538
(0·256–0·821)

0·959
(0·920–0·999)

GRS model 0·639
(0·589–0·688)

0·569
(0·481–0·656)

0·619
(0·568–0·670)

0·657
(0·529–0·786)

0·533
(0·454–0·612)

0·620 0·489
(0·426–0·553)

0·231
(0·000–0·469)

0·327
(0·252–0·442)

Integrative model 0·923
(0·900–0·946)

0·707
(0·630–0·783)

0·894
(0·867–0·921)

0·998
(0·992–1·000)

0·962
(0·941–0·984)

0·955 0·929
(0·896–0·962)

0·692
(0·431–0·953)

0·939
(0·891–0·986)

Data are AUC (95% CI), except where indicated otherwise. 95% CIs could not be reported for the 23andMe cohort because of their consent process for publishing data. The demographic model includes 
estimates for a logistic model containing parameters of female sex, family history, and age. The UPSIT model includes estimates for a logistic model containing only the total UPSIT parameter. The GRS 
model includes estimates for a logistic model only containing the GRS parameter. The integrative model includes all parameters from the previous three models into the estimate of classification 
accuracy between cases and controls. For PPMI, PDBP, PARS, and 23andMe, the AUC estimates were generated by comparing Parkinson’s disease cases with controls. In PPMI, participants designated as 
SWEDD were compared with the same controls as Parkinson’s disease patients. In PARS, participants designated at risk were compared with the same controls as Parkinson’s disease patients. 
PPMI=Parkinson’s Progression Marker Initiative. PDBP=Parkinson’s Disease Biomarkers Program. PARS=Parkinson’s Associated Risk Study. LABS-PD=Longitudinal and Biomarker Study in PD. Penn-
Udall=Morris K Udall Parkinson’s Disease Research Center of Excellence cohort. UPSIT=University of Pennsylvania Smell Identificaiton Test. GRS=genetic risk score. SWEDD=participants with scans 
without evidence of dopaminergic deficit. AUC=area under the curve. *These studies were case-only so instead of AUC the proportion of correctly predicted cases (95% CI) is reported as a measure of 
classification accuracy.

Table 2: Performance of classifi cation, by study and disease status within study
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AUC=0·923 (95% CI 0·900–0·946)

Optimal classification threshold=0·655
(specificity 0·903, sensitivity 0·834)

Figure 2: Receiver operating characteristic curves
The receiver operating characteristic curve for the integrative model as 
developed in PPMI cohort. Red shading shows the bootstrap estimated 95% CI 
with the AUC. Crosshair marks the optimum threshold for classifi cation. 
AUC=area under the curve. PPMI=Parkinson’s Progression Marker Initiative.
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Discussion
We have designed an accurate, non-invasive method to 
discriminate patients with Parkinson’s disease from 
controls. The studies that we assessed vary in their 
design, recruitment, and implementation; however, our 
results and validation suggest that the model might be 
useful in future. The model we developed includes 
hyposmia, which is often considered an indicator of 
neurodegeneration, in addition to genetic, clinical, and 
demographic data.1 This approach makes use of the 
growing wealth of data from diff erent aspects of genetic, 
clinical, and biomarker research.

The main strengths of this model are in its high 
classifi cation accuracy (AUC about 0·9 or higher) and ease 

of implementation. This model could be used to refi ne 
phenotypes in large research studies by identifi cation of 
SWEDD participants who overlap with Parkinson’s disease 
in the spectrum of predicted risk and might later show 
evidence of dopamine dysfunction. As additional DAT 
scan data become available from the follow-up of SWEDD 
patients, these data should test the ability of the integrative 
model to distinguish SWEDD patients who will go on to 
develop a dopaminergic defi cit from those who will not. 
Our data generally suggest that, within a study, patients 
incorrectly classifi ed as having Parkinson’s disease might 
need additional, more detailed follow-up than do correctly 
classifi ed patients, as they might not have aetiologically 
typical Parkinson’s disease and their inclusion might have 
a negative eff ect on the power of future biomarker or 
interventional studies One key element in the application 
of our integrative model to clinical studies and 
interventional trials could be the accurate identifi cation of 
groups of patients with homogeneous disease, such as to 
exclude SWEDD patients, who typically represent 15% of a 
clinically acquired cohort of patients with Parkinson’s 
disease. Unlike DAT scanning, our model is portable and 
can be administered remotely at a fraction of the cost: our 
model costs around US$100 per sample versus DAT 
scanning, which can cost thousands of dollars per patient 
and needs to be administered on site. Additionally, this 
model might be useful as part of a diagnostic path towards 
more accurate preclinical detection of Parkinson’s disease: 
our model could potentially be used for disease prediction 
within populations, although this would require follow-up 
studies in prospective cohorts.

We have validated this classifi cation model in three 
case-control studies (with PARS as a positive control) and 
two case-only studies of Parkinson’s disease. We hope to 
improve the accuracy of this model by identifying more 
disease-specifi c biomarkers and genetic risk loci, and by 
resequencing known loci to generate more accurate 
estimates of genetic risk. 93% (N=28/30) of the genetic 
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risk variants that we used to create our GRS are from 
GWAS and are therefore probably surrogates for true 
functional variants because of the inherent nature of 
these imputation-based studies. Identifi cation of the true 
functional variants within loci would improve our 
algorithmic classifi cation of Parkinson’s disease. 
Resequencing studies of genetic loci that are now 
underway might help to refi ne the genetic aspects of this 
model. We also hope to expand the model to increase 
accuracy as more data are being accumulated in our 
training and validation datasets, especially within PPMI 
and PD-BP. In this report we have shown that, in these 
two larger studies, our integrative model signifi cantly 
outperforms its components if they are assessed 
independently. In 23andMe and PARS, which had 
targeted recruitment, hyposmia alone had such a high 
AUC that the addition of other factors did not signifi cantly 
change the accuracy of the model.

Our model is specifi c to Parkinson’s disease, and 
incorporates the classifi cation power of the UPSIT score, 
a known proxy for generalised neurodegeneration, and 
the Parkinson’s disease-specifi c factors of family history 
and GRS. We have reported how this model is focused 
towards identifi cation of typical Parkinson’s disease, as 
shown by its bimodal classifi cation of SWEDD 
participants. If the SWEDD participants were typical, they 
would have been classifi ed as having Parkinson’s disease 
because the model was trained on aetiologically typical 
Parkinson’s disease confi rmed by DAT scan. We intend to 
expand our model to other neurodegenerative diseases, 
by incorporating multiple disease-specifi c genetic risk 
profi les and family histories. If suffi  cient genetics data 
become available, adapted versions of our model might 
be tested as a potential way to minimise misdiagnosis of 
conditions such as frontotemporal dementia, multiple 
system atrophy, and dementia with Lewy bodies. 

A shortcoming of this analysis is the fact that this study 
included only participants with genetically ascertained 
European ancestry, because some genetic heterogeneity 
might exist across diff erent continental ancestries with 
respect to risk factors for Parkinson’s disease. To address 
this limitation, we hope to build cohorts of adequate size 
to investigate Parkinson’s disease risk in more diverse 
populations. This next step should help to refi ne and 
improve our predictive models and make them more 
applicable worldwide. Another shortcoming is the use of 
age-dependent factors, especially hyposmia, which is 
common in old age and might aff ect model performance 
in populations older than those included in this study. 
The high proportion of patients with Parkinson’s disease 
in our study who reported a family history of the disorder 
might be a potential source of bias not seen in some 
population-based studies or the general population. 

Currently, this integrative model has restricted 
application as a general screening method for Parkinson’s 
disease. Even among populations older than 60 years, 
prevalence of Parkinson’s disease is low, at 2%—despite 

an AUC of 0·923, the integrative model would probably 
falsely identify six individuals as having Parkinson’s 
disease for every real case identifi ed.18 At this prevalence, 
PPV is also low, at 0·149. Application of Bayes’ theorem 
suggests that, if the prevalence were 10%, the model 
would falsely classify one individual for every true case of 
Parkinson’s disease detected (PPV 0·489). If prevalence 
in a population were 20%, one false classifi cation of 
Parkinson’s disease would be made for every two correct 
classifi cations (PPV 0·682). These data show that the 
integrative model might be most useful to identify 
Parkinson’s disease in high-risk populations—eg, in a 
sample of people with symptoms or other features that 
might suggest the onset of Parkinson’s disease, even 
though the disease criteria are not yet met. Conversely, 
the PPV would be low if the model were to be used as a 
screening test for the general public or by a medical 
practitioner in a routine clinical setting.

Future research should be directed towards the 
development of predictive and classifi cation models based 
on data from prospective studies. Such data will allow the 
assessment, modifi cation, and reassessment of these 
predictive models with temporally-developed information, 
rather than simulations based on retrospective statistics, 
which might depend on too many assumptions.20 We 
expect that models can be refi ned, evaluated, and tuned for 
varying rates of disease progression in established patients 
as datasets grow in size and depth of information content, 
then be evaluated and validated further in prospective 
cohort studies. We acknowledge that by basing this model 
on cross-sectional case-control data from PPMI, we might 
have caused the results to be slightly conservative, 
especially with respect to the predictive power of the age 
and sex parameters in such a well matched study. However, 
the strength of the imaging-confi rmed diagnoses probably 
contributed to the model’s classifi cation accuracy, helping 
to avoid misdiagnosis. Through future prospective studies 
in which participants are well characterised, we hope to 
refi ne and extend this work to identify a viable timeframe 
for accurate prediagnostic screening. Another clear area of 
interest is the application of this model to a broader range 
of neurodegenerative diseases. 
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