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ABSTRACT OF THE DISSERTATION

Query Processing of Sorted Lists on Modern Hardware

by

Jianguo Wang

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor Yannis Papakonstantinou, Chair
Professor Steven Swanson, Co-Chair

A sorted list is a collection of 〈ID, value〉 pairs sorted either by ID (called an ID-sorted

list) or value (called a value-sorted list). Although simple, it is surprisingly the fundamental

structure in a wide range of data management systems, e.g., databases, search engines, graph

systems, and high-dimensional similarity search systems. Existing query processing over sorted

lists were mainly optimized for past hardware, e.g., slow CPUs, small DRAM, and slow disks.

However, with the emergence of new hardware, e.g., fast multi-core CPUs, big DRAM, fast SSDs,

we find that many of existing design decisions become obsolete.

Motivated by this, in this dissertation, we investigate how to best leverage the character-
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istics of emerging hardware to accelerate query processing over sorted lists. First, we studied

the impact of big memory and modern CPUs to ID-sorted list compression. We designed a new

compression called MILC, which is SIMD-aware, cache-aware, and most importantly can answer

queries directly over compressed lists. Second, we studied the impact of fast SSDs to ID-sorted

list intersection. We developed and evaluated SSD-aware intersection algorithms that can skip

unnecessary data pages to leverage SSDs fast random accesses. Finally, we folded the proposed

hardware-specific techniques into a real-world modern application – mass spectrometry search –

that involves query processing on both ID-sorted lists and value-sorted lists. We also developed

domain-specific and data-specific optimizations besides hardware-specific optimizations. Putting

them together, our new mass spectrometry search system is significantly faster than state-of-the-art

systems.
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Chapter 1

Introduction

Recent years have witnessed the rapid development of hardware architecture ranging from

compute, memory, and storage. In the compute side, CPU frequency has reached the physical

limit and the trend is shifted towards designing CPUs with more cores, wider SIMD, more caches,

and heterogenous processors (e.g., GPU). In the memory side, DRAM capacity has increased

significantly such that many systems (including big data systems exemplified by Apache Spark1)

become memory-resident. For example, Intel Xeon E7 v2 servers can support 6TB of DRAM.2

In the storage side, SSDs (solid-state drives) have become the mainframe in the storage market.

More importantly, the development of recent NVRAM (non-volatile memory) [XS16], e.g.,

Intel 3D XPoint,3 is expected to dramatically change the landscape of memory and storage by

providing near-DRAM performance and disk-like persistence.

As a result, software systems have to fully leverage the underlying hardware to improve

performance, because different hardware may have completely different characteristics. As an

example of HDD (hard disk drive) vs. SSD (solid-state drive), HDDs are known to be extremely

slow in random accesses, thus HDD-oriented systems are designed to minimize random accesses

1https://spark.apache.org/
2https://www.alphr.com/news/enterprise/387196/intel-xeon-e7-v2-servers-support-6tb-of-ram
3https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
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Figure 1.1: An example of ID-sorted list and value-sorted list

(with more sequential accesses). However, SSDs have very fast random accesses and thus

SSD-based systems should minimize both random and sequential I/Os. Besides performance

improvement, monetary cost will be reduced as well, especially in the age of cloud computing

where users pay for computing resources [AFG+10].

In this thesis, we investigate a particular type of data structure – sorted lists – to understand

how modern hardware changes the design spaces. A sorted list is a collection of 〈ID, value〉 pairs

sorted either by ID (called an ID-sorted list) or value (called a value-sorted list), see Figure 1.1.

Although simple, it is surprisingly the fundamental structure in a wide range of data management

systems, e.g., databases, search engines, graph systems, and high-dimensional similarity search

systems. Existing query processing over sorted lists were mainly optimized for past hardware,

e.g., slow CPUs, small DRAM, and slow disks. However, with the emergence of new hardware,

e.g., fast multi-core CPUs, big DRAM, fast SSDs, we find that many of existing design decisions

become obsolete.

Motivated by this, in this thesis, we investigate how to best leverage the characteristics of

emerging hardware to accelerate query processing over sorted lists.

First, we studied the impact of big memory and modern CPUs to ID-sorted list (a.k.a

inverted list) compression (Chapter 2). Traditional compression algorithms were optimized for

slow disks where the goal was to minimize space overhead to reduce expensive disk I/O time in
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disk-oriented systems. But the recent trend is shifted towards reducing query processing time

because the underlying systems tend to be memory-resident. Although there are many highly

optimized compression approaches in main memory, there is still a considerable performance

gap between query processing over compressed lists and uncompressed lists. We aim to bridge

this performance gap for the first time by proposing a new compression scheme, namely, MILC

(memory inverted list compression). MILC relies on a series of techniques including offset-oriented

fixed-bit encoding, dynamic partitioning, in-block compression, cache-aware optimization, and

SIMD acceleration. We conduct experiments on three real-world datasets in information retrieval,

databases, and graph analytics to demonstrate the high performance and low space overhead of

MILC. We compare MILC with 12 recent compression algorithms and experimentally show that

MILC improves the query performance by up to 13.2× and reduces the space overhead by up to

4.7×.

Second, we studied the impact of fast SSDs to ID-sorted list intersection (Chapter 3).

Traditional disk-based intersection algorithms were optimized for hard disk drives (HDDs)

since HDDs have dominated the storage market for decades. In particular, those HDD-centric

algorithms read every relevant list entirely to memory to minimize expensive random reads by

performing sequential reads, although many entries in the list may be useless. Such a tradeoff

makes perfect sense on HDDs because random reads are one to two orders of magnitude slower

than sequential reads. However, fast solid state drives (SSDs) have changed this landscape by

improving random I/O performance dramatically. More importantly, SSDs are manufactured with

multiple flash channels to support parallel I/Os. As a result, the performance gap between random

and sequential reads becomes very small (1× ∼ 2×) on SSDs. This means that HDD-optimized

intersection algorithms might not be suitable for SSDs because the total amount of data accessed

is unnecessarily high. To understand the impact of SSDs to list intersection, we tune five existing

in-memory intersection algorithms to be SSD-aware with the idea of parallel I/O skipping, and

experimentally evaluate them on synthetic datasets and real datasets. We investigate the effect of
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skip pointers, bloom filters, parallelism, cache, compression, list size, list size ratio, intersection

ratio, and the number of lists to the performance. Based on the results, we provide insights and

lessons on how to design efficient SSD-optimized intersection algorithms.

Finally, we folded the proposed hardware-specific techniques into a real-world modern

application – mass spectrometry search – that involves query processing on both ID-sorted lists

and value-sorted lists (Chapter 4). A spectrum is essentially modeled as a multi-dimensional

vector (implemented as a value-sorted list) and the problem is to return all database vectors

having cosine similarity to a query vector exceeding a given threshold θ. These queries arise

naturally in many applications, such as information retrieval, recommender systems, and mass

spectrometry. Fagin’s Threshold Algorithm (TA) provides an appropriate baseline index and

algorithm for answering cosine threshold queries: an inverted index (i.e., a collection of ID-sorted

lists) is built from the normalized database vectors during pre-processing; at query time, the

algorithm traverses the index partially to gather a set of candidate vectors to be later verified

for θ-similarity. We show optimizations, over the TA-inspired baseline, which minimize the

number of database and index accesses. In particular, we provide a tight stopping condition to

terminate early the index traversal by taking into account the normalized vector condition and

devise an incremental maintenance algorithm for its fast computation. Then we show a traversal

strategy exploiting a common data skewness condition which is shown to hold in real mass

spectrometry datasets. Under the skewness assumption, the proposed traversal strategy has a

strong, near-optimal performance guarantee. The proposed techniques are quite general since

they can be applied to a large class of similarity functions beyond cosine. All the algorithms are

optimized for modern CPUs, memory, and SSD storage to ensure fast performance. As a result,

our new mass spectrometry search system is significantly faster than state-of-the-art systems.
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Chapter 2

MILC: Inverted List Compression in

Memory

2.1 Introduction

An inverted list is a sorted list of integers. Although simple, it is the standard struc-

ture in a wide range of applications. For instance, search engines usually rely on inverted

lists to find relevant documents. Databases also heavily need inverted lists to accelerate SQL

processing [BGGT09].

Inverted list compression is a topic that has been studied for 50 years due to its benefits

in disk-oriented systems as well as recent memory-oriented systems. In disk-centric systems,

compression can reduce expensive I/O time by shortening lists’ sizes. Thus, list compression

algorithms designed for disks (e.g., VB [TH72], Rice [RP71], Elias gamma [Eli75]) mainly focus

on reducing space overhead. The CPU decompression overhead is negligible compared to the

saved I/O time due to the giant performance gap between disk and CPU. In recent memory-

oriented systems, compression is also beneficial because it makes the system accommodate much

more data than the physical memory capacity. For example, 100GB’s raw data can be pushed to a
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Figure 2.1: Executing queries over compressed and uncompressed lists

server with 32GB DRAM. This reduces the total cost of ownership (TCO) since main memory is

still an expensive resource. As a result, many compression algorithms have been developed for

in-memory inverted lists, e.g., PforDelta [ZHNB06], SIMDPforDelta [LB15b], and PEF [OV14].

Motivation. We observe that there is still a considerable performance gap for query pro-

cessing over compressed lists (with state-of-the-art compression algorithms) versus uncompressed

lists in memory. For example, Figure 2.1 shows the (average) execution time of running 1000

real-world search engine queries over 300GB data.1 It shows that the performance gap is 2.1× to

6.4×.

This raises an interesting question: Is it possible to bridge this performance gap when

operating on compressed data while still keeping low space overhead? This work gives a positive

answer to this question by proposing a new compression algorithm, namely, MILC (memory

inverted list compression). Compared with uncompressed lists, MILC achieves a compression

ratio up to 4.7× and executes queries nearly as fast as that on uncompressed lists according to

our experiments. Before diving into the technical descriptions, we define the problem first.

Problem statement. Given a sorted list L of n positive integers, the problem of inverted

list compression is to compress L with as few as possible bits (smaller than the original list)

while supporting query processing on compressed data as fast as possible. We mainly focus on

1We use the Web data described in Section 2.9.
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supporting efficient membership testing – checking whether an element appears in a compressed

list – because it is the core of many operations, e.g., intersection, union, difference, selection,

join, successor finding, and top-k query processing.

Limitations of existing compression solutions. Existing compression algorithms for

inverted lists, e.g., VB [TH72], Simple8b [AM10], GroupVB [Dea09], and PforDelta [ZHNB06],

usually follow a golden rule that is to compute the differences (called d-gaps) between two

consecutive integers (since all integers are sorted), and only encode the small d-gaps using fewer

bits to save space. For example, let L = {8, 15, 20, 25, 35, 40, 52, 60, 65, 78, 90}, then existing

solutions usually convert L to L′ = {8, 7, 5, 5, 10, 5, 12, 8, 5, 13, 12}, where L′[0] = L[0]

and L′[i] = L[i]−L[i− 1] (i ≥ 1). But this is exactly why existing approaches cannot support

membership testing efficiently: They have to decompress the entire list. Even with skip pointers

as suggested in [MZ96], still, they need to decompress at least one block of data on the fly.

Moreover, the decompression overhead is high because they need to traverse the data at least

twice in order to recover the original values: (1) decode each individual d-gap; (2) calculate prefix

sums. Some compression algorithms may need more rounds, e.g., PforDelta requires another

round of traversal to recover the exception values. Another important drawback of d-gap-based

compression algorithms is that they are unfriendly to SIMD (single instruction multiple data)

due to the inherent data dependencies in computing prefix sums [LB15b]. Those compression

algorithms that do not explicitly rely on d-gaps (such as EF [Eli74, Vig13], PEF [OV14]) also

have problems in dealing with membership testing efficiently as we explain more in related work.

Challenges. It is challenging to design a new compression approach to achieve similar

query performance as uncompressed lists while keeping low space overhead, considering the

problem has been studied for many years. This particularly holds today because the underlying

hardware (e.g., big memory, new processors with large CPU caches and wide SIMDs) has changed

significantly. The compression format should also be compliant with CPU cache lines and SIMD

instructions such that membership testing can be executed even more efficiently. To solve the
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problem, we need to break the traditional rule by abandoning d-gaps. This will increase the space

overhead naturally. Therefore, we need to design new techniques to reduce space overhead while

maintaining high query performance.

Technical overview. To address the above challenges, we develop a novel compression

scheme MILC (memory inverted list compression) that achieves similar membership testing

performance with uncompressed lists. The basic idea of MILC is that it partitions an input list into

different blocks, then it applies offset-based (instead of delta-based) encoding and uses the same

number of bits to encode all the elements within the block (Section 2.4). This is crucial to the

success of MILC because it enables MILC to support membership testing directly on compressed

data as we show in Section 2.4.

To further reduce space overhead and improve query performance, MILC employs four

optimizations: (1) Dynamic partitioning (Section 2.5). It partitions a list into variable-sized

blocks based on dynamic programming to minimize exception values in each block, i.e., elements

in a block have low variance. This effectively reduces the space overhead because exceptions

need more bits to represent, and all the other elements end up using the same high number of bits.

(2) In-block compression (Section 2.6). MILC further splits every block into sub-blocks by smartly

plugging in lightweight skip pointers to reduce the space overhead. (3) Cache-aware optimization

(Section 2.7). MILC reorganizes data in a way that considers CPU cache line alignment. It can

improve the performance of membership testing because CPU cache misses are reduced. (4)

SIMD acceleration (Section 2.8). MILC also leverages SIMD for fast query processing.

Contribution. The main contribution of this work is a new compression scheme MILC

that achieves similar membership testing performance with uncompressed lists while keeping low

space overhead. MILC is tailored for modern computing hardware including big memory, fast

CPU caches, and wide SIMD processing capabilities. To the best of our knowledge, this is the

first inverted list compression algorithm that has such high query performance with low space

overhead.
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Figure 2.2: Experiments overview of MILC

Experimental overview. We conduct experiments on datasets from information retrieval,

databases, and graph analytics to demonstrate the advantages of MILC with a spectrum of 12

compression algorithms in terms of query performance and space overhead. Figure 2.2 shows a

preview on 300GB Web data in answering 1000 user queries,2 and Section 2.9 describes more

details. It shows that MILC runs faster than existing compression approaches and consumes low

space also. Thus, MILC represents the best tradeoff for inverted list compression in main memory

in terms of time and space.

2.2 Applications

In this section, we provide motivating applications that rely on inverted lists for efficient

query processing. This means that a large range of applications can benefit from this work on

inverted list compression.

2We report the membership testing time to measure the effectiveness of MILC as described in Section 2.9.
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SELECT d_year, s_nation, p_category,

sum(lo_revenue - lo_supplycost) as profit

FROM date, customer, supplier, part, lineorder

WHERE lo_custkey = c_custkey

AND lo_suppkey = s_suppkey

AND lo_partkey = p_partkey

AND lo_orderdate = d_datekey

AND c_region = ’AMERICA’

AND s_region = ’AMERICA’

AND d_year = 1997

AND p_mfgr = ’MFGR#1’

SELECT d_year, s_nation, p_category,

sum(lo_revenue - lo_supplycost) as profit

FROM lineorderfull

WHERE c_region = ’AMERICA’

AND s_region = ’AMERICA’

AND d_year = 1997

AND p_mfgr = ’MFGR#1’

(a) star schema join

(b) intersection 

Figure 2.3: An example of star schema join and intersection
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Figure 2.4: A brief history of representative inverted list compression approaches
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2.2.1 Information retrieval

Information retrieval (IR) is a killer application of inverted lists to answer user queries

with multiple terms [MRS08]. IR systems store an inverted list for each term all the documents

that contain the term. Taking the intersection or union of the lists for a set of query terms identifies

those documents that contain all or at least one of the terms.

2.2.2 Database query processing

Inverted lists are also helpful in SQL databases, especially if there is logically one huge

table and the query involves many predicates, e.g., a conjunction of predicates as shown in

Figure 2.3b. In this case, most databases would precompute a list of matching row IDs for each

predicate to facilitate the conjunction (or intersection) query [RQH+07].

Besides that, many star schema joins can also be framed as conjunctive queries as

suggested in prior works [RQH+07, BGGT09]. For instance, the star schema join in Figure 2.3a

can be converted to the intersection query in Figure 2.3b where lineorderfull is a logical huge

table that is created offline as follows [RQH+07, BGGT09]: (1) lineorderfull = lineorder

on date on customer on supplier on part; (2) add an additional id column to lineorderfull.

Note that lineorderfull and lineorder have the same number of tuples due to many-to-one

mapping.3 Then the star schema join in Figure 2.3a can be reduced to the intersection query in

Figure 2.3b as L1∩L2∩L3∩L4 where:

L1 = πidσc region=′AMERICA′ (lineorderfull)

L2 = πidσs region=′AMERICA′ (lineorderfull)

L3 = πidσd year=1997 (lineorderfull)

L4 = πidσp m f gr=′MFGR#1′ (lineorderfull)

Since all the lists are precomputed and stored in an index structure such as B-tree, then the

query plan can be executed as follows: L1 and L2 are intersected first, then the results of L1∩L2

3The many-to-one mapping is from a foreign key in the fact table to the primary key in the dimension table.
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are intersected with L3, finally the results of L1∩L2∩L3 are intersected with L4.

2.2.3 Graph analytics

Graph databases represent another family of advocates of inverted lists. There are usually

two types of inverted lists in graph databases: adjacency lists and association lists. An adjacency

list is dedicated for a vertex to maintain all neighborhood vertices connected with it. An asso-

ciation list is dedicated for an object (e.g., a Facebook page) to keep all relevant associations

where an association is specified by a source object, destination object, and association type

(e.g., tagged-in, likers) [VAB+12]. Many queries over these graphs can be answered effi-

ciently using inverted lists. For example, finding “Restaurants in San Francisco liked by Mike’s

friends” reduces to finding the intersection of the adjacency list of “Mike” and the association

lists of “Restaurants” and “San Francisco”; discovering common friends among a group of people

transforms to computing the intersection of several adjacency lists.

2.2.4 More applications

In addition, there are many other applications that heavily use inverted lists for fast query

processing. For example, data integration systems build inverted lists for q-grams to find the most

similar strings [JLFL14]. Data mining systems deploy inverted lists for fast data cube operations

such as slicing, dicing, rolling up and drilling down [LKH+08, LHG04]. XML databases depend

on inverted lists to find twig patterns efficiently [BKS02]. Key-value stores also organize data

elements falling into the same bucket (hash collision) with a chained list, which is essentially an

inverted list [DSL11].
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2.3 Related Work

In this section, we take a retrospective look at the major inverted list compression algo-

rithms developed so far. Figure 2.4 shows a brief history.

As mentioned in Section 2.1, the common wisdom of a decent inverted list compression

algorithm is to compute the deltas (a.k.a d-gaps) between two consecutive integers first and only

encode the d-gaps to save space.4 To prevent from decompressing the entire list during query

processing, it organizes those d-gaps into blocks (of say 128 elements per block5) and builds a

skip pointer per block such that only a block of data needs to be decompressed. Today, most

excellent compression methods exactly follow this convention, including PforDelta [ZHNB06]

(and its descendants such as NewPforDelta [ZLS08] and OptPforDelta [YDS09]), VB [CP90],

GroupVB [Dea09], Simple9 [AM05], Simple16 [YDS09], and Simple8b [AM10].

Among them, PforDelta is a mature algorithm that is commonly used because it has a good

tradeoff between query execution time (or decompression speed) and space overhead [ZLS08,

YDS09]. The basic idea is that it compresses a block of 128 d-gaps by choosing the smallest b

in the block such that a majority of elements (say 90%) can be encoded in b bits (called regular

values). It then encodes the 128 values by allocating 128 b-bit slots, plus some extra space

at the end to store the values that cannot be represented in b bits (called exceptions). Each

exception takes 32 bits while each regular value takes b bits. In order to indicate which slots are

exceptions, it uses the unused b-bit slots from the preallocated 128 b-bit slots to construct a linked

list, such that the b-bit slot of one exception stores the offset to the next exception. In the case

where two exceptions are more than 2b slots apart, it adds additional forced exceptions between

the two slots. Besides PforDelta, there are many variations, e.g., NewPforDelta [ZLS08] and

OptPforDelta [ZLS08]. For example, OptPforDelta was designed to reduce the space overhead of

4Early compression algorithms (before 1990) do not follow this rule and encode each element of a list individually,
e.g., Rice [RP71] and Elias gamma [Eli75]. However, they are far worse than today’s compression algorithms, e.g.,
PforDelta, in terms of both query execution time and space overhead. Thus, we ignore them in this work.

5The block size represents a tradeoff between space and time and several existing works suggest 128 as the block
size [ZLS08, AM10].
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PforDelta but at the expense of more decompression overhead.

However, PforDelta (as well as its variations) still takes considerable time to decompress

a block of data, because it usually takes three phases for decompression: (1) It needs to copy

the 128 b-bit values from the slots into an integer array via bit manipulations; (2) It then walks

through the linked list of exceptions and copies their values into the corresponding array slots; (3)

It also goes through the integer array again to perform prefix sums to recover the original values.

Recently, there is a resurgence of EF encoding [Vig13] which is not directly based on

d-gaps. Actually, EF encoding was originally proposed in 1974 [Eli74], but it did not attract

too much attention until 2013 when Vigna discovered that EF encoding can be competitive with

PforDelta [Vig13]. It encodes a sequence of integers using a low-bit array and a high-bit array.

The low-bit array stores the lower b = log U
n bits of each element contiguously where U is the

maximum possible element and n is the number of elements in the list. The high-bit array then

stores the remaining higher bits of each element as a sequence of unary-coded d-gaps. Later

on, Giuseppe and Rossano improved it by leveraging the clustering property of a list, making

it outperform PforDelta for some intersection queries but not union queries [OV14]. We call it

PEF (Partitioned Elias Fano) in this work. The fundamental problem of EF encoding (and its

descendants including PEF) is that query processing is still not as efficient as it can be due to

two reasons: (1) It needs to sequentially go through every bit in the high-bit array until a match

is found, which requires many bit manipulations; (2) After that, it also needs to sequentially

examine 2b possible ties in the lower-bit array which can be slow if b is large.

In the literature, there were also proposals about reordering document IDs for better

compression ratio, e.g., [YDS09, ZTH+16]. This is orthogonal to this work and we do not

consider them in this work. Besides that, this work focuses on data compression for inverted lists,

which is also orthogonal to data compression in databases [LWP16].

Currently, there is also a trend of leveraging SIMD to accelerate the decompression

speed of existing compression methods, such as SIMDPforDelta [LB15b]. The main idea is
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to reorganize data elements in a way such that a single SIMD operation processes multiple

elements. However, for d-gap based compression approaches, computing prefix sums usually

cannot leverage SIMD efficiently because of the intrinsic data dependencies [LB15b].

Finally, we comment on the compression approaches used in Vertica [LFV+12] and

Brighthouse [SWES08] that are also relevant to this work. The main idea of both approaches is

to partition a list into blocks and maintain metadata for each block to support query processing.

However, MILC is significantly different from them in (1) how to compress the elements within

a block; (2) how to partition the list into different blocks; and (3) how to store the metadata

information.

2.4 Basic compression structure

In this section, we present the basic compression structure as a starting point of MILC.

Storage structure. MILC’s basic structure follows the PforDelta compression algorithm

in partitioning the list L into blocks but is different in compressing the data elements within a

block. It splits L into d n
m+1e partitions where (m+1) is the size of each partition except the last

partition if n is not divisible by (m+1). The choice of m will be discussed later on. The first

element (i.e., the minimal value) of each block serves as a skip pointer and all the skip pointers are

stored in a metadata block. Thus, each partition except the last one contains exactly m elements,

called a data block. The metadata block contains d n
m+1e elements (skip pointers); each element

points to a data block.

MILC stores a data block as follows. Suppose the block contains the following m elements:

{a0,a1...,am−1} and β is its skip pointer. MILC stores each element ai as the difference between

ai and the skip pointer, i.e., ai−β, instead of ai− ai−1 as in PforDelta [ZHNB06]. We call it

offset-based encoding instead of delta-based encoding. So the maximum difference is (am−1−β),

which can be encoded in b = dlog(am−1−β+1)e bits. Indeed, every element in the same data
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block is represented in b bits – unlike PforDelta, MILC does not use exceptions. Different blocks

may use different number of bits to represent their values. To save space, MILC fully utilizes the

32 bits of a word by packing as many values as possible and padding the residual bits of the word

(if any) with the next value if possible.

MILC stores the metadata block in the same format as PforDelta. Each entry in the

metadata block contains the metadata information of a data block including the start value (32

bits), offset (32 bits), and the number of bits b (8 bits) to encode the data block.

Example. As an example, Figure 2.5 depicts the structure and storage format of L = {120,

200, 270, 420, 820, 860, 1060, 1160, 1220, 1340, 1800, 1980, 2160, 2400} consisting of 14

elements and m = 4. It stores the list as follows: (1) It divides L into d 14
4+1e= 3 partitions where

each partition (except the last one) has 5 elements: {120, 200, 270, 420, 820}; {860, 1060, 1160,

1220, 1340}; {1800, 1980, 2160, 2400}. (2) It extracts the first element from each partition and

puts it to the metadata block: {120, 860, 1800}. As a result, the data blocks are: {200, 270, 420,

820} (the skip pointer is 120), {1060, 1160, 1220, 1340} (the skip pointer is 860), and {1980,

2160, 2400} (the skip pointer is 1800). (3) It subtracts the skip pointer from each data block. For

example, for the first data block (B0), since its skip pointer is 120, then it is stored a sequence of

values by subtracting 120, i.e., {80, 150, 300, 700}. (4) It determines the smallest b in each block

such that all the elements can be encoded in b bits, e.g., for block B0, the maximum number 700

can be encoded in 10 bits, thus, it uses 10 bits to represent every element in B0. (5) It serializes

each data block as compact as possible (Figure 2.5). For example, B0 has four 10-bit elements,

but only the first three elements can be entirely packed into a 32-bit word. The fourth 10-bit

element needs to span two words: the lower 2 bits are stored in the current word and the higher 8

bits are stored in a new word. Then B1 is stored immediately after B0 by sharing the last word in

B0 without wasting a single bit as is shown in Figure 2.5.

Next, we discuss the choice of m. If m is large, then it needs more bits to encode the data

blocks because each data block spans a wide range, thus the overall space tends to be high. On
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Figure 2.5: An example of storage format

the other hand, if m is small, then there will be more elements in the metadata block, which incurs

high space overhead. Following the convention of PforDelta, we set m to 128 but other values are

also possible. Later on in Section 2.5, we discuss the choice of m dynamically to minimize the

overall space.

Supporting membership testing. MILC’s storage structure supports membership testing

over a compressed list directly without decompressing a whole block, because MILC uses fixed-bit

encoding to represent each element in the block using the same number of bits while preserving

the order. Let e be a search key, then it performs binary search in the metadata block and jumps

to the potential data block and runs another binary search but using a new key (e−β) where β is

the skip pointer of the data block.

Next, we explain how to implement binary search within a data block (as it is trivial to

perform binary search in the metadata block as it is uncompressed). The problem requires bit

manipulations because each element takes b bits, which are not necessarily 8 bits – byte type, 16

bits – short type, or 32 bits – int type that are natively accessible by a programming language.

Observe that the core of binary search is obtaining the k-th value because binary search needs to

consistently compare the search key with the middle value within a search range. Conventionally

on the integer array, it is A[k] to access the k-th value of an array A. But on the bit array, it

requires a few bit manipulations to convert a b-bit value to a 32-bit value. For example in Figure

2.5, assume b = 10 and A be the compressed data blocks, then the first four values are:
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1st: (A[0] & 0X03FF)

2nd: (A[0] >> 10) & 0X03FF

3rd: (A[0] >> 20) & 0X03FF

4th: (A[0] >> 30) | ((A[1] & 0X00FF) << 2)

Space overhead analysis. It is evident that the space overhead of the storage format is

high compared with PforDelta. Let us roughly analyze how high it is by assuming the elements

in a list are equally apart to facilitate the analysis. Let θ be the gap between two consecutive

elements in a block, m be the block size (e.g., m = 128), p be the exception ratio (e.g., p = 10%

[YDS09]), then PforDelta requires the following b bits to represent an element:

b = dlog(θ+1)e+32× p≈ logθ+3.2

Then for the basic compression structure, the gap now becomes m×θ. Thus, it requires

the following b′ bits to represent an element in the block:

b′ = dlog(m×θ+1)e ≈ log(128×θ) = logθ+7

That means the basic compression incurs 7−3.2 = 3.8 more bits per element compared

to PforDelta (but with much higher performance). Thus, in next sections, we present techniques

to reduce the space overhead while keeping fast query performance.

Remark. It is worth noting that the basic structure of MILC presented in this section is

based on PforDelta but with two important modifications. (1) Instead of computing deltas, MILC

stores the offset values. (2) Instead of setting b such that a majority of elements are within 2b,

MILC determines b such that all elements are within 2b, i.e., fixed-bit encoding. We also note that

the basic structure of MILC is different from FOR [GRS98], which also applies fixed-bit encoding.

FOR was designed for storing a page of non-sorted elements. Thus, it needs to decompress the

entire page during query processing. However, MILC can support membership testing directly
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over compressed data without even decompressing a whole block.

2.5 Dynamic partitioning

In this section, we present a technique of dynamic partitioning to reduce the space

overhead while keeping high query performance.

Why dynamic partitioning? The reason why the basic compression structure in Sec-

tion 2.4 consumes much space is that it evenly partitions an input list into blocks (we call it static

partitioning). So, if there are some exceptions6 in the block, then all the elements within the

block have to use the same high number of bits to represent. In other words, static partitioning is

vulnerable to data skew. As an example, if a data block is {3, 8, 10, 15, 150}, then it requires 8

bits just because of 150 (an exception) while the other values actually only need 4 bits to represent.

Thus, it could save a lot of space if we can dynamically split a list in a way that similar (or close)

elements are stored together to minimize exceptions.7

Thus, the problem is: Given a sorted list L of integers, how to split L into blocks such that

the overall space overhead is minimized? The representation of each individual block still follows

the fixed-bit encoding (Section 2.4) in order to support membership testing efficiently.

Dynamic partitioning. We propose a partitioning scheme by converting the problem

to a dynamic programming problem for minimizing the overall space overhead. Dynamic

programming can model the space overhead of partitioning a list at different positions such that

it picks up a partitioning strategy with the lowest space overhead. Let Ei be the space overhead

of representing L[0 : i], then it splits L[0 : i] at the j-th ( j < i) position: L[0 : j] and L[ j+1 : i].

Therefore, the space overhead of L[0 : i] is the summation of the space overhead of L[0 : j] and

L[ j+1 : i]. Let c( j, i) ( j ≤ i) be the space overhead of representing L[ j : i] and ` be the maximal

6A value is called an exception value if it is obviously larger than most other values in the block.
7Note that PforDelta does not have this issue because it uses different number of bits to represent regular elements

and exceptions, but PforDelta cannot support membership testing directly on compressed data.
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size of a block, then,

Ei =
i−1
min

j=max{0,i−`}
(E j + c( j+1, i)) (2.1)

Next, we analyze c( j, i) used in Equation 2.1. Since the first element of the partition (i.e.,

L[ j]) is stored in the metadata block as a skip pointer and the remaining values L[ j+1 : i] are

stored in a data block, then we compute the overhead of the two parts separately.

First of all, we analyze the space overhead of the skipping information (metadata block),

which requires the following information per data block: (1) start value (32 bits), i.e., L[ j]; (2)

offset (32 bits) indicating where the data block starts from; (3) number of elements in the block

(8 bits); (4) number of bits to encode the block (8 bits). Thus, the skipping information per data

block needs 32+32+8+8 = 80 bits.

Second, we consider the space overhead of the data block L[ j+1 : i]. Recall that each

element in the block is stored as the difference between it and L[ j]. Among them, the maximal

gap is L[i]−L[ j], which requires dlog(Li−L j +1)e bits. And there are (i− j) elements in the

block, thus, it requires dlog(Li−L j +1)e×(i− j) bits in total. Therefore, c( j, i) can be computed

as follows:

c( j, i) = dlog(Li−L j +1)e× (i− j)+80 (2.2)

Example. Figure 2.6 shows an example where L contains 256 elements and L={4, · · · ,

120, 500, · · · , 600, 605, · · · , 900}. Using the fixed-length partitioning (or static partitioning)

with the block size being 128 (Figure 2.6a), then L is partitioned into two blocks and the last

element in the first block is 600. For the first block, each element takes dlog(600−4+1)e= 10

bits. While the dynamic partitioning (Figure 2.6b) can determine that the first 108 elements are

similar and thus group them together. As a result, each element in the first block requires only

dlog(120−4+1)e= 7 bits. For each element in the second block, it takes 9 bits for both static

and dynamic partitioning. As a result, static partitioning takes 10×128+9×128 = 2432 bits

while dynamic partitioning takes 7×108+9×148 = 2088 bits.
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Figure 2.6: An example of dynamic partitioning
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Figure 2.7: An example of illustrating the maximal size of a data block

Determining the maximal block size `. The maximal group size ` is very important in

MILC’s dynamic partitioning scheme: if it is too small (say `= 1), then the optimal partitioning

can be missed; if it is too large (say `= |L|), it takes too much time to find the optimal partitioning.

In Theorem 1, we show that the maximal block size after dynamic partitioning is less than 2λ,

where λ is the number of bits to maintain the skipping information per block (i.e., λ = 80). As a

result, we set `= 160 in Equation 2.1. Note that Theorem 1 is also very useful in Section 2.6, in

determining lightweight skip pointers.

Theorem 1 A data block has at most 2λ elements after dynamic partitioning, where λ is the

number of bits needed to store the skipping information per block.
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Proof 1 We show that after partitioning, if a block still has more than 2λ elements, then we can

always find a lower space cost by splitting the block into two parts, which contradicts with the

optimality property achieved by dynamic programming. Without loss of generality, suppose a

block contains m elements (Figure 2.7): a0,a1, ...,am−1 and β is the skip pointer of the block. We

assume m≥ 2λ, next, we show that there always exists a lower cost by splitting the block into

two.

Before partitioning, the total number of bits X required is (Figure 2.7a):

X = dlog(am−1−β+1)e×m

Then we split the block into two parts by picking up the middle value a[s] (where s = bm
2 c)

as a skip pointer. Therefore the partitions are [0 : s−1] and [s+1 : m−1]. Then the total number

of bits X ′ is (Figure 2.7b):

X ′ = dlog(as−1−β+1)e× s︸ ︷︷ ︸
1st block

+ dlog(am−1−as +1)e× (m−1− s)︸ ︷︷ ︸
2nd block

+ λ︸︷︷︸
skip pointer as

Next we show X ′ ≤ X if m≥ 2λ by introducing an intermediate variable Y :

Y = dlog(as−1−β+1)e× m
2
+ dlog(am−1−as +1)e× m

2
+λ

Since X ′ <Y no matter whether m is even or odd. Next, we show Y ≤ X if m≥ 2λ. Y ≤ X

is equivalent to:

m× (2dlog(am−1−β+1)e−dlog(am−1−as +1)e

−dlog(as−1−β+1)e)≥ 2λ

So, the remaining proof is to show f = 2dlog(am−1−β+1)e−dlog(am−1−as +1)e−
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dlog(as−1−β+1)e ≥ 1 since m≥ 2λ. We prove it by contradiction. Thus, we assume that f = 0

(as f ≥ 0 and f is an integer).

dlog(am−1−β+1)e−dlog(am−1−as +1)e= 0

dlog(am−1−β+1)e−dlog(as−1−β+1)e= 0

In order to hold:

log(am−1−β+1)− log(am−1−as +1)< 1 = log2

log(am−1−β+1)− log(as−1−β+1)< 1 = log2

That is,

log
am−1−β+1
am−1−as +1

< log2

log
am−1−β+1
as−1−β+1

< log2

That is,

am−1−β+1 < 2(am−1−as +1)

am−1−β+1 < 2(as−1−β+1)

Summing up the left sides gives 2(am−1−β+1)< 2(am−1−as +1+as−1−β+1), i.e.,

as−as−1 < 1, which is a contradiction since any two consecutive numbers differ at least 1.

Time complexity. Let n be the list size, then the time complexity of finding the optimal

partitioning is O(`n), which can be regarded as O(n) since ` is a small constant (` ≤ 160), as

shown by Theorem 1.

Supporting membership testing. With dynamic partitioning, the structure supports

membership testing efficiently in the same way as presented in Section 2.4, because a data block

is still represented using fixed-bit encoding.

Remark. MILC is different from VSEncoding [SV10] because VSEncoding applies
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dynamic partitioning for PforDelta, i.e., it applies dynamic partitioning to a list of delta values.

However, as we have shown in Section 2.4, this is exactly why membership testing is not supported

efficiently due to the inevitable high decompression overhead. Besides that, VSEncoding chooses

the maximal block size ` arbitrarily, which can either miss the optimal result or incur more

preprocessing time. However, MILC solves the problem in an elegant way by proving in Theorem 1

that the maximal block will not exceed 2λ (which is 160).

2.6 In-block compression

In this section, we further reduce the space overhead of the compression from another

angle while keeping fast query performance.

Why in-block compression? The dynamic partitioning groups similar elements to the

same data block. However, all the elements in the same block have to use the number of bits

based on the maximal element (i.e., the rightmost element) in the block in order to support fast

search. But this on the other hand wastes some space for smaller elements. As an example in

Figure 2.6b, after dynamic partitioning, the first block needs 7 bits to encode every element

because the maximal value is 120. However, many smaller elements such as 10 and 20 do not

necessarily need 7 bits. Therefore, in-block compression aims to use fewer bits to encode each

element within a block to reduce the overall space overhead.

In-block compression structure. The main idea of in-block compression is to treat

the elements in a data block as a micro inverted list and compress them using the approaches

described in previous sections (with modifications) by splitting a block into sub-blocks. Before

presenting the partitioning details, we answer the following question first: If partitioning a

block into sub-blocks can reduce the overall space overhead, why previous dynamic partitioning

(Section 2.5) – supposed to return a partitioning scheme with the lowest space cost – fails to

capture such partitioning? That is because the overhead of maintaining a skip pointer within the
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Figure 2.8: Split a data block into sub-blocks

block is much smaller than that outside the block. For example, it needs 80 bits to maintain a skip

pointer outside the block as described in Section 2.5, but it only needs b (say 10) bits to maintain

a skip pointer within the block (called a mini or lightweight skip pointer) as we explain below.

In particular, in-block compression applies the static partitioning method presented in

Section 2.4 to evenly (except the last sub-block) split the elements into sub-blocks. Note that MILC

does not apply the dynamic partitioning approach (Section 2.5) for in-block compression because

that will incur more space as we explain later in the discussion part at the end of this section.

Formally, suppose a block contains m elements (Figure 2.8): {a0, a1, · · · , am−1}, and let k be the

number of sub-blocks, then the in-block compression partitions the block into the following k sub-

blocks: {a0,a1, ...,as−1}, {as,as+1, ...,a2s−1}, ..., {a(k−2)s, a(k−2)s+1, ..., a(k−1)s−1}, {a(k−1)s,

a(k−1)s+1, ..., am−1}, where s = bm
k c. The first element of each sub-block serves as a mini skip

pointer and all the mini skip pointers are stored together. Then, for every mini skip pointer in the

block, it uses dlog(am−1−β+1)e bits where β is the skip pointer of the block. For every other

element in the block, it uses the following number of bits b to encode:

b = max{dlog(as−1−a0 +1)e, · · · ,dlog(am−1−a(k−1)s +1)e} (2.3)

Note that without in-block compression, each element originally takes b′ = dlog(am−1−

β+1)e bits and b′ ≥ b.

Besides that, in-block compression needs to maintain an extra 16-bit global information for
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all the sub-blocks: number of bits for encoding the sub-blocks (8 bits) and number of sub-blocks

k (8 bits).

Example. Figure 2.9 illustrates an example of a list L with two data blocks B0 and B1.

Thus there are two skip pointers (stored in the format explained in Section 2.4) in the metadata

block. Within each data block, it is further partitioned into sub-blocks. For example, the block

B0 consists of two sub-blocks and the block B1 contains three sub-blocks. For all the sub-blocks

within B0, it uses the same b0 bits to encode each element, which it originally requires b′0 bits

(b′0 ≥ b0). For all the sub-blocks within B1, it instead uses b1 bits to represent each element.

Figure 2.9 also highlights the 16-bit global information for each block B0 and B1.

Determining the optimal number of skip pointers. The next question is: How many

mini skip pointers to add for a data block? We solve the problem by analyzing the relationship of

the overall space overhead Tk with k in order to find the optimal k.

Tk = max{dlog(as−1−a0 +1)e,dlog(a2s−1−as +1)e, · · · ,

dlog(am−1−a(k−1)s +1)e}× (m− k)︸ ︷︷ ︸
sub-blocks

+ dlog(am−1−β+1)e× k︸ ︷︷ ︸
mini skip pointers

+ 16︸︷︷︸
global information

(2.4)

To find the optimal number k∗, we can enumerate all possible solutions to find which

value leads to the minimal space overhead. Since we do not want a sub-block contain too few

elements, say it should contain at least 4 elements. Then, we can search k from 2 to m/4. Thus,

k∗ =
m/4

arg min
k=2

Tk (2.5)

Time complexity. The time complexity of finding the optimal partitioning (off-line) is

∑
m/4
k=2 k = O(m2

32 ) = O(800) = O(1) since m≤ 160 from Theorem 1.
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Figure 2.9: In-block compression

Supporting membership testing. It is a three-level structure where each level supports

membership testing by using a revised key within a data block or a sub-block.

Discussion. We close this section by discussing two more questions: (1) Why not using

dynamic partitioning to partition a block? (2) Can we further reduce the space overhead by

partitioning a sub-block into sub-sub-blocks?

For the first question, it needs to maintain more skipping information to dynamically

partition a data block into sub-blocks. The skipping information should at least contain: start

value (dlog(am−1 −β+ 1)e bits where β is the skip pointer of the block), number of elements

(8 bits), offset (16 bits), and number of bits used to encode a sub-block (8 bits). Thus, a skip

pointer needs (dlog(am−1−β+1)e+32) bits, which is much higher since the current solution

only needs dlog(am−1−β+1)e bits. On the other hand, it may not save too much space overhead

in the sub-blocks because all data elements in a data block are very similar.

For the second question, it may not reduce the overall space anymore. That is because

there is an extra space overhead associated with each split, i.e., 16 bits as highlighted in Figure 2.9.

However, when there are few elements and each element uses very few bits, it is extremely

difficult to save 16 bits anymore with further partitioning because in-block compression works if
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and only if (m− k)(b′−b)≥ 16. For example, suppose a block contains 8 elements: {10, 20, 30,

40, 50, 60, 70, 80}. Without partitioning, it takes 7×8 = 56 bits. With two partitions, i.e., 10

and 50 are promoted as mini skip pointers (taking 7×2 = 14 bits). The two sub-blocks become

(after subtracting the skip pointer): {10, 20, 30} and {10, 20, 30}. They take 3×5+3×5 = 30

bits. Together with the mini skip pointers, the overall space overhead is 30+14 = 44 bits, saving

56−44 = 12 bits, which is less than 16 bits. Thus, we do not recommend further partitioning

anymore.

2.7 Cache-conscious compression

In this section, we further improve the layout of MILC such that it is more friendly to CPU

cache lines for minimizing cache misses during membership testing.

What is cache-aware and why? Modern CPUs dedicate several layers of very fast caches

(L1/L2/L3 cache) to alleviate the growing disparity between CPU clock speed and memory latency

(a.k.a memory wall). Whenever a CPU instruction encounters a memory access, it first checks

whether the accessed data resides in the caches. If yes, it accesses the data from the caches

directly. Otherwise, a cache line (typically 64 bytes) of data is loaded from main memory to

the caches. This will potentially evict other cache lines that are in the caches. Thus, the goal of

the cache-conscious design is to reduce cache misses by ensuring that a cache line brought from

memory is fully utilized before it is being evicted.

Cache-aware design. We explain how to turn the compression structure presented in the

previous section (Section 2.6) into a cache-aware structure. We classify the membership testing

into two categories: within a metadata block (storing uncompressed skip pointers) and within a

data block (storing compressed data).

For the membership testing within a metadata block, it is essentially the conventional

binary search over an array. Previous studies have investigated it [RR99, KCS+10]. The main
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idea is to organize the elements into a B-tree structure with the node size being a CPU cache

line (64 bytes). Note that the B-tree is materialized as an array using a level-order traversal

manner without explicit storing any tree pointers, for saving space overhead. Thus, search can

be efficiently executed by traversing the B-tree. However, there are two unique challenges in

incorporating them into a fully functional compression structure: (1) The number of elements (i.e.,

skip pointers) may not form a perfect tree8 but most previous studies made such an assumption to

save space overhead by not explicitly storing the tree pointers. We observe that only a collection

of 17h− 1 elements can be converted to a h-level perfect tree. That is because a cache line

contains 64/4 = 16 elements (i.e., 17 children), then the total number of elements in a h-level

perfect tree is:

16︸︷︷︸
level 1

+16×17︸ ︷︷ ︸
level 2

+16×172︸ ︷︷ ︸
level 3

+ · · ·+16×17h−1︸ ︷︷ ︸
level h

= 17h−1

However, there are many inverted lists and each inverted list has a different number of skip

pointers that may not be 17h−1. (2) Another unique challenge is how to find the corresponding

data block after a skip pointer is located in the metadata block. This was not an issue for the

non-cache-aware structure because the skip pointers and data blocks are stored in the same order.

That is, a skip pointer and its data block have the same index number. However, if the skip

pointers are stored in a cache-aware manner, the index numbers become completely different.

To solve the first challenge, we convert an array of sorted elements (i.e., skip pointers,

non-cache-aware) to a complete tree instead of a perfect tree. A h-level complete tree [CLRS09]

ensures that (1) only the last level is not full and all the elements in the last level are stored

from left to right; (2) if the last level is removed, then it becomes a (h− 1)-level perfect tree.

We are not aware of any previous cache-aware designs having solved the problem, probably

because they simply assumed the number of elements can form a perfect tree. But Schlegel et

al. presented a solution in the SIMD area [SGL09] that can be extended to cache-aware designs.

8A perfect tree (i.e., balanced and full) has three requirements [CLRS09]: (1) every node has precisely k entries
where k is the fanout; (2) every intermediate node has exactly k+1 children nodes; (3) every leaf node has the same
depth.
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Figure 2.10: Cache-aware layout

The main idea is to determine for any element from the old non-cache-aware array the position in

the new cache-aware array by developing a one-to-one mapping. Formally, let n be the number

of elements (skip pointers), k be the number of elements that a cache line can accommodate

(k = 16), H be the number of levels (H = dlogk(n+ 1)e), i be the element position in the old

non-cache-aware array, and gn(i) be the position in the new cache-aware array. Then,

gn(i) =

 fH(i) if i≤ f ∗H(n)

fH−1(i−o∗H(n)−1) otherwise
(2.6)

We omit the explanations and proofs of these equations due to space constraints and refer

interested readers to [SGL09].

Next, we discuss how to tackle the second challenge. A simple solution is to compute

a reverse mapping from the (new) position in the cache-aware array to the (old) position in the

non-cache-aware array. However, that will take considerable time as the mapping has to be

computed on the fly. MILC’s solution is to change the storage of the data blocks such that they

have the same order with their corresponding skip pointers. Figure 2.10 illustrates the design.

The data blocks (as well as the skip pointers) are stored in the order of g(0), g(1), g(2) and so on.

Next, we comment on the second type of membership testing that happens within a

data block. It turns out that the existing design presented in the previous section is actually

cache-aware. That is because each data block is organized as a two-level tree structure with the
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mini skip pointers being stored as the root node while the sub-blocks being stored as children

nodes.

Supporting membership testing. The membership testing is executed efficiently by

traversing an array of cache-aware skip pointers in the metadata block. Then it goes to the right

data block to continue membership testing by using a revised key.

2.8 SIMD acceleration

In this section, we discuss how to further improve the performance of MILC by leveraging

the SIMD instructions.

What is SIMD-aware and why? A SIMD instruction operates on a s-bit register where

s depends on different processors. Typically, s is 128, but more recent processors also support

256-bit or 512-bit SIMD operations. In this work, we use 128-bit SIMD instructions for a fair

comparison with existing works [LB15b]. The benefit of using SIMD instructions is to improve

performance by processing multiple elements at a time.

Note that although compilers can automatically optimize some simple code with SIMD

instructions, the optimizations are very limited, e.g., only for simple loops [Int12]. Thus, to

fully exploit the SIMD instructions, we need to explicitly design a new storage structure that are

amenable to SIMD.

SIMD-aware design. Recall in the previous discussions, the framework of MILC has two

categories of blocks: metadata block and data blocks. The data elements in the metadata block

are uncompressed while the data elements in the data blocks are compressed. Next, we discuss

how to organize the data elements in both types of blocks into a SIMD-efficient structure.

For the elements (skip pointers) in the metadata block, they are stored as a contiguous

sequence of cache lines. We store the data elements within the same cache line following the

k-ary approach [SGL09]. In this way, a SIMD operation can be applied to quickly find out which
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child node to visit [SGL09].

For the elements in the data blocks, MILC basically follows the design in the previous

section to support efficient membership testing while keeping a low space overhead. That is

because a SIMD operation interacts with a s-bit SIMD register as a vector of banks, where a bank

is a continuous section of b bits. For example, in SSE (Streaming SIMD Extensions) and AVX

(Advanced Vector Extensions), b is 8 (byte type), 16 (short type), or 32 (int type). However,

for inverted list compression, each element can be encoded in arbitrary number of bits b (not

necessarily 8, 16, or 32 bits). Note that, there are other options if the space overhead is not a

problem, e.g., by rounding up b to 8, 16, and 32.

Supporting membership testing. Given a search key, the first level of uncompressed

data (skip pointers) will be accessed in a SIMD-aware manner following [SGL09] to find out

which block that potentially contains the key; then perform membership testing within the block.

2.9 Experiments

In this section, we experimentally compare MILC against state-of-the-art inverted list

compression schemes in terms of membership testing time and space overhead.

2.9.1 Experimental setting

Experimental platform. We conduct experiments on a commodity machine (Intel i7-

4770 quad-core 3.40 GHz CPU, 64GB DRAM) with Ubuntu 14.04 installed. The CPU’s L1, L2,

and L3 cache sizes are 32KB, 256KB, and 8MB. The CPU is based on Haswell microarchitecture

which supports AVX2 instruction set. We use mavx2 optimization flag for the SIMD optimization.

We implement MILC in C++ and compile the code using GCC 4.4.7 with O3 enabled.

Datasets. In this work, we use the datasets from information retrieval, databases, and

graph analytics.
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(1) Web data. It is a collection of 41 million Web documents (around 300GB) crawled

in 2012.9 It is a standard benchmark in the information retrieval community. We parse the

documents and build inverted lists for each term. The query log contains 1000 real queries

randomly selected from the TREC10 2005 and 2006 (efficiency track).

(2) DB data. It is a star schema benchmark (SSB),11 which includes one fact table

(LINEORDER) and four dimension tables (CUSTOMER, SUPPLIER, PART, and DATE). We set

the scale factor as 10 so the number of rows in the fact table is around 60 million. We use the

query described in Section 2.2.2 for evaluation. Each list is allocated for a predicate on a logical

huge table as described in Section 2.2.2. The list sizes are 11916634, 12028431, 9098421, and

11997098. Note that MILC is also applicable to other SSB queries. We use one single query for

evaluation due to space limitation.

(3) Graph data. It is the twitter dataset crawled in 2009, which consists of 52,579,682

vertices and 1,963,263,821 edges. The data is widely used in graph analytics. Each list is an

adjacency list of a vertex. We follow the methodology in [CBB+13] to evaluate the following

query: “find out the common friends between a group of people”. Note that other queries could

also be applied. The list sizes are 423640, 507777, 526292, and 779957, respectively.

Competitors. We compare MILC with a wide range of recent compression approaches:

Uncompressed, VB [TH72], PforDelta [ZHNB06], OptPforDelta [ZLS08], NewPforDelta [ZLS08],

Simple8b [AM10], Simple9 [AM05], Simple16 [YDS09], GroupVB (a.k.a VarintGB) [Dea09],

SIMDBP128 [LB15b], SIMDPforDelta [LB15b], PEF [OV14]. We implement PEF from scratch

and implement the other above-mentioned compression algorithms based on the source codes

provided from [LB15b]. For the uncompressed lists, we use conventional binary search. Note

that we do not compare with some obviously low-performance encodings, such as Golomb, Rice,

and Elias gamma. We also ignore those general purpose encoding schemes such as Snappy, LZ,

9http://www.lemurproject.org/clueweb12.php
10http://trec.nist.gov/
11http://www.cs.umb.edu/ poneil/StarSchemaB.PDF
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LZ4, LZO, or gzip, because they are much slower than PforDelta [LB15b].

Evaluation methodology. In this work, we mainly use the following measurements for

evaluation.

(1) Execution time. For each compression algorithm, we measure how fast it supports membership

testing. In particular, we report the intersection time of each query since list intersection is

essentially a series of membership testing operations to consistently find whether an element

appears in a list. We use an SvS [CM10a] that has been widely used in practice including

Lucene. Assuming there are k lists L1, L2, · · · , Lk (|L1| ≤ |L2| ≤ · · · |Lk|) that are compressed.

SvS decompresses the shortest list L1 first. Then for each element e ∈ L1, SvS checks whether e

appears in L2 (i.e., membership testing). Note that SvS does not need to decompress the entire L2

due to skip pointers and it only needs to decompress a block of data that potentially contains e for

membership testing. Then the results of L1 and L2 will be intersected with L3 and the process

continues until Lk.

(2) Space overhead. We also measure the space overhead that a compression algorithm takes.

2.9.2 Experimental results

In this experiment, we compare MILC with existing compression approaches on the two

datasets. Note that MILC incorporates all the optimizations presented in Section 2.4, Section 2.5,

Section 2.6, Section 2.7, and Section 2.8.

Figure 2.11 compares the average execution time and space overhead of on Web data. The

execution time is measured by the average time (ms) of running those queries. Figure 2.11 shows

that, (1) Compared with uncompressed lists, MILC achieves almost the same query performance

but with a 3.7× lower space overhead. The high performance is because MILC relies on fixed-bit

encoding (instead of d-gaps as in most other compression algorithms) to support membership

testing directly over compressed lists without decompressing even a whole block. MILC also

relies on efficient architectural-aware data organizations such as cache-aware and SIMD-aware
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Figure 2.11: Comparing against existing compression approaches on Web data
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optimizations to achieve high query performance. The small space overhead is that MILC applies

dynamic partitioning to store similar elements together. MILC also leverages the novel in-block

compression technique to further reduce the space overhead. Figure 2.11 shows that, query

processing on compressed lists can be (sometimes) executed as fast as that on uncompressed

lists while keeping a low space overhead at the same time. (2) Compared with PforDelta, MILC

is 5.75× faster in execution time and 7.8% less in space overhead. The execution time saving

is because PforDelta needs to decompress a whole block of data during membership testing

because it is based on d-gaps but MILC does not need to do so. The space overhead saving is

because PforDelta partitions a list statically while MILC partitions a list dynamically. And also,

MILC applies in-block compression to further reduce the space overhead. (3) Compared with the

variants of PforDelta, e.g., OptPforDelta and NewPforDelta, MILC has many advantages too. For

example, MILC is 13.2× faster (in execution time) than OptPforDelta while only incurring 44%

more space. MILC is 9.1× faster than NewPforDelta while only taking 13.8% more space. (4)

Compared with Simple9 [AM05], Simple16 [YDS09], and Simple8b [AM10], MILC is 7.9×,

9.0×, and 4.3× faster but only consumes 24.4%, 30.4%, and 16.3% more space. (5) Compared

with PEF [OV14], MILC is 1.9× faster in execution time, while only consuming 13.8% more

space. (5) Compared with the other compression algorithms, e.g., VB, GroupVB, SIMDBP128,

and SIMDPforDelta, MILC runs 1.4× to 4.6× faster in query processing and takes 6.5% to 56.1%

less space also.

Figure 2.12 shows the results of evaluating MILC on DB data. It shows that, (1) Compared

with uncompressed lists, MILC needs similar execution time but only requires 3.7× lower space

overhead. (2) Compared with PforDelta, MILC is 5.65× faster in execution time but MILC takes

less space overhead. (3) Compared with OptPforDelta, MILC is 10.3× faster in execution time

but OptPforDelta only takes 38% less space overhead. (4) Compared with NewPforDelta, MILC

is 8.2× faster in execution time but NewPforDelta only incurs 16% less space overhead. (5)

Compared with Simple9 [AM05], Simple16 [YDS09], and Simple8b [AM10], MILC is 6.7×,
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8.1×, and 3.9× faster but only consumes 17.1%, 14.6%, and 14.3% more space. (6) Compared

with PEF [OV14], MILC is 1.7× faster in execution time, while only consuming 22.7% more

space. (7) Compared with the other compression algorithms, e.g., VB, GroupVB, SIMDBP128,

and SIMDPforDelta, MILC is 1.22× to 3.5× faster in query processing and takes 2.6% to 68.5%

less space also.

Figure 2.13 shows the results of evaluating MILC on Graph data. We omit the descriptions

of the results since they are largely similar to Figure 2.11 and Figure 2.12.

Overall, MILC represents the best tradeoff for inverted list compression especially in main

memory databases compared among a spectrum of 12 existing compression algorithms.

2.10 Chapter summary

In this chapter, we proposed a new compression approach MILC for encoding inverted lists

in main memory. MILC is the first compression scheme that achieves similar query performance

compared with uncompressed lists. Also, MILC is significantly faster than existing compression

algorithms while keeping low space overhead.

Chapter 2 contains material from “MILC: Inverted List Compression in Memory” by

Jianguo Wang, Chunbin Lin, Ruining He, Moojin Chae, Yannis Papakonstantinou, and Steven

Swanson, which appeared in Proceedings of Very Large Data Bases Conference (VLDB), pages

853–864, 2017. The dissertation author was the primary investigator of the paper.
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Figure 2.12: Comparing against existing compression approaches on DB data
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Figure 2.13: Comparing against existing compression approaches on Graph data
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Chapter 3

Evaluating List Intersection on SSDs for

Parallel I/O Skipping

3.1 Introduction

List intersection is very important because it is heavily used in many applications such

as information retrieval and database querying. For instance, finding documents that contain all

the query terms needs the intersection of several inverted lists; evaluating conjunctive predicates

of analytical queries in databases requires the intersection of several columns. In this work, we

focus on disk-resident systems where all the lists cannot fit in main memory and therefore, at

least partially, need to be stored on secondary storage. Since HDDs (hard disk drives) have

been dominating the storage market for decades, existing disk-based intersection algorithms

were mainly optimized for HDDs [DLOM00, BYSC05, CM10b, DK11]. Those algorithms aim

to minimize the number of expensive random reads. They generally carry out list intersection

using a two-phase process. (1) Read each list from disk to memory in its entirety, so that each

list requires only one random read. This stage usually requires a single thread to access disk

because an HDD has only one magnetic disk head to serve one I/O request simultaneously, thus,
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using multiple threads to read a list does not improve performance [GBN14]. We refer to it as

“list-at-a-time single-threaded” I/O access pattern. (2) Perform the intersection in memory, which

can use multiple threads to exploit multi-core CPUs. The two-phase paradigm is a perfect fit for

HDDs, because random reads on HDDs are one to two orders of magnitude more expensive than

sequential reads [THS+09, AS10], due to the extremely slow disk seeks.

Today, solid state drives (SSDs) have become an alternative secondary storage solution

to HDDs in the storage market. Compared to HDDs, SSDs have many advantages such as low

I/O latency, high I/O throughput, and low energy consumption [GCC+09]. As a result, SSDs are

deployed in many large-scale systems, e.g., Oracle’s 11g database, Amazon’s Redshift database

and Google’s and Baidu’s search engines [Ma10]. In particular, Baidu, the largest search engine

in China, has changed HDDs to SSDs completely in its storage system [Ma10, WLY+13].

The landscape shifting from HDDs to SSDs has raised an interesting research question:

What is the impact of SSDs to list intersection algorithms? There are two notable properties of

SSDs when compared to HDDs that can change the algorithmic design decisions. (1) The first

one is that random reads are fast enough to be comparable with sequential reads. On modern

SSDs, random reads are only 1×∼ 2× slower than sequential reads [THS+09]. For instance, for

the Samsung SSD1 used in the experiments, the reported theoretical sequential read bandwidth is

550MB/s while the random read bandwidth is 400MB/s; thus, the gap is 1.375×. Moreover, the

gap is even smaller if the I/O access pattern is not purely random because of the internal cache

inside the SSD. (2) The second interesting property is that an SSD supports parallel I/O because

it is manufactured to incorporate multiple flash channels [RPK+11]. Thus, it can serve multiple

I/O requests simultaneously. In contrast, an HDD has only one disk head such that it can only

serve a single I/O request at the same time.

With the two new properties mentioned above, we speculate existing HDD-centric list

intersection algorithms might not work well on SSDs and we rethink SSD-aware intersection

1http://www.samsung.com/semiconductor/minisite/ssd/product/consumer/850pro.html
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algorithms by explicitly leveraging the unique characteristics. A decent SSD-optimized intersec-

tion algorithm shall follow “page-at-a-time multi-threaded” I/O access pattern (instead of the

HDD’s “list-at-a-time single-threaded” access pattern):

(1) Page-at-a-time: access a list page by page for reducing unnecessary pages that do not contain

intersection results to leverage the SSD’s fast random reads. In this way, the optimization

goal should be minimizing the number of pages accessed by skipping as many as possible of

the pages that do not contain the intersection results. For example, all the white-color pages

in Figure 3.1 can be skipped. Note that, skipping does not work well on HDDs because it

introduces many expensive random reads that do not pay off (as we show later in experiments)

since HDDs are slow in random reads.

(2) Multi-threaded: issue multiple page-sized I/O requests at the same time via multiple threads.

We observe that using a single thread, the page-at-a-time I/O access pattern underutilizes the

SSD’s bandwidth seriously because there is only one page read at a time such that only one

flash channel is active.2 Meaning that even if the total amount of data accessed is reduced,

the actual execution time may not be reduced as expected. Fortunately, modern SSDs support

concurrent I/O requests with multiple flash channels. Thus, we shall explicitly use multiple

threads in order to saturate the SSD’s bandwidth if the underlying lists are accessed page-

by-page. Note that it does not make sense to issue multiple threads to read a list on an HDD

because it has only one disk head. Table 3.1 shows a summary of whether the disk bandwidth

can be saturated using different I/O access patterns.

Following “page-at-a-time multi-threaded” I/O access pattern, then how to design efficient

intersection algorithms for SSDs? There are many algorithmic design choices in terms of how

to skip unnecessary pages efficiently and issue I/Os in a parallel way. In this work, we tune five

2Note that, the list-at-a-time I/O pattern (even single thread) on the SSD can saturate the I/O bandwidth because a
list usually has many pages that can be stripped over multiple flash channels of the SSD (a.k.a internal parallelism),
but it cannot skip unnecessary pages.
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L1 50 150 200 960

L2 10 20 30 40 50 200 960 980

L3 10 25 50 60 80 100 120 150 160 180 200 300 400 500 800 980

Figure 3.1: An example of list intersection on an SSD

existing in-memory intersection algorithms to be SSD-conscious based on parallel I/O skipping

(via skip pointers and bloom filters), and experimentally evaluate them on both real data and

synthetic data.

In particular, this work aims to answer the following questions experimentally for SSD-

aware list intersection:

• What is the impact of skip pointers and how to use skip pointers efficiently?

• What is the impact of bloom filters and how to use bloom filters efficiently?

• What is the impact of parallelism?

• What is the impact of cache?

• What is the impact of compression?

• What is the impact of other important parameters including list size, list size ratio, intersec-

tion ratio, and the number of lists?

Contribution. In this work, we first extend five in-memory intersection algorithms to

be SSD-aware with the idea of parallel I/O skipping, and then experimentally evaluate them

on synthetic datasets and real datasets. We study the impact of skip pointers, bloom filters,

parallelism, cache, compression, list size, list size ratio, intersection ratio, and the number of lists

to the performance. The experimental results shed lights on how to design efficient SSD-centric

list intersection algorithms.
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Table 3.1: Saturating bandwidth with different I/O patterns on HDD and SSD

Single-thread Multi-thread
Page-at-a-time no no
List-at-a-time yes yes

(a) on HDD
Single-thread Multi-thread

Page-at-a-time no yes
List-at-a-time yes yes

(b) on SSD

3.2 Applications

In this section, we elaborate more on the applications of list intersection.

3.2.1 Information retrieval

Information retrieval (IR) is a killer application of list intersection to answer user queries

with multiple terms [MRS08]. IR systems store an inverted list for each term all the documents

that contain the term. Taking the intersection of the lists for a set of query terms identifies those

documents that contains all the terms.

3.2.2 Database querying

List intersection is also useful in evaluating not only plain conjunction queries but also

joins. For instance, in the star schema benchmark, one can issue the following query to compute

the profits for each city in 1998 for products consumed by customers from “UNITED STATES”

with brand “MFGR#2221” and suppliers of “AMERICA”:

SELECT S.city, SUM(O.revenue-O.supplycost) as profit

FROM lineorder O, customer C, supplier S, date D, part P

WHERE O.custkey = C.custkey AND O.orderdate = D.date

AND O.partkey = P.partkey
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AND O.suppkey = S.suppkey

AND C.nation = ‘UNITED STATES’

AND S.region = ‘AMERICA’

AND P.brand1 = ‘MFGR#2221’

AND D.year = 1998

GROUP BY S.city

In order to answer queries efficiently, most databases precompute a list of matching row

IDs for each predicate [RQH+07], e.g., L1 = {O.rid | P.brand1 = ‘MFGR#2221’} and L2

= {O.rid | D.year = 1998}. Then, a query can be executed efficiently by intersecting the

precomputed lists of row IDs for all predicates involved in the query.

3.3 Related work

In this section, we describe the previous work: (1) list intersection on HDDs (Sec-

tion 3.3.1); (2) list intersection in main memory (Section 3.3.2); (3) SSD-optimized design in IR

and database querying (Section 3.3.3).

3.3.1 List Intersection on HDDs

To reduce the I/O cost for list intersection on HDDs, earlier work tried to avoid reading all

the lists in their entirety [ZM06]. A solution mentioned in [ZM06] is to load the shortest list first,

and intersect all the other lists in ascending order of their sizes. The algorithm terminates once the

current intersection results are empty. In this way, the longer lists can be skipped. However, the

algorithm ends up reading all the lists if the intersection results are not empty. Actually, for any

list L, the algorithm either reads L entirely or does not read L at all. It does not skip any blocks

in a single list (the goal of this work). That is because skipping introduces many random reads

which are very expensive on HDDs.
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Thus, if the lists are stored on HDDs, the best solution is to load the lists to memory in

their entirety and carry out list intersection in main memory.

3.3.2 List intersection in memory

There is rich literature on the in-memory list intersection problem [CM10b, DLOM01,

DLOM00, BK02, DK11], partially because all the lists of a query have to be loaded to memory

first if they are stored on HDDs (as explained in Section 3.3.1), and partially because the entire

inverted index is small enough to fit in memory for some applications.

We classify the existing algorithms into four categories: comparison-based (Section 3.3.2),

hash-based (Section 3.3.2), partition-based (Section 3.3.2), and bitmap-based (Section 3.3.2).

Table 3.2 provides an overview. We describe the existing algorithms using k sorted lists L1, L2,

· · · , Lk (|L1| ≤ |L2| ≤ · · · ≤ |Lk|).

Comparison-based intersection algorithms

The first comparison-based intersection algorithm is the sort-merge algorithm [HL72],

which would access the entire lists if extended to SSDs.

To skip unnecessary comparisons, the SL (short-long) algorithm [CM10b] was proposed.

For each element e ∈ L1, SL checks whether e appears in all the other lists. If yes, e is a result.

The presence of e on Li can be obtained by invoking Member(Li,e), which returns true if Li

contains e. In SL, Member(Li,e) can be implemented using binary search, skip lists [Pug90] or

treaps [BRM98]. We extend SL to SSDs, so that it skips pages.

The SvS algorithm [DLOM01] is a comparison-based algorithm, which is a variant of

SL. SvS starts from the shortest list and intersects the other lists in ascending order of their sizes.

In other words, L1 and L2 are intersected first, then the results of L1∩L2 are intersected with L3.

The process continues until Lk. SvS also relies on Member(L,e) to test whether e is in L. Thus,

basically, SvS and SL are the same except that SvS needs to maintain a result buffer if the number
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Table 3.2: A list of in-memory list intersection algorithms and the extensions to SSDs

Categories In-memory intersection Extensions to SSDs

Comparison-based

Sort-merge [HL72] Load the entire lists
SL [CM10b] Can skip pages

SvS [CM10b, DLOM01] Can skip pages
Zig-Zag [DLOM00, BK02] Can skip pages

Hash-based
Simple hash [Knu73] Can skip pages

BPP [BPP07] Load the entire lists

Partition-based
Divide & conquer [BYSC05] Load the entire lists

Group [DK11] Load the entire lists
Bitmap-based Bitmap [CM10b] Load the entire bitmaps

of lists intersected exceeds two.

Another algorithm, called Zig-Zag (ZZ, a.k.a Adaptive), uses Successor(L,e) for skip-

ping [DLOM00, BK02]. Successor(L,e) returns the smallest element in L that is greater than or

equal to e. Every time an eliminator e is selected (initially e is the first element of L1), then e is

probed against the other lists in a round-robin fashion. For the current list Li, ZZ checks whether

e is the same as Successor(Li,e). If yes, the occurrence counter of e is increased (e is a result if

the counter reaches k). Otherwise, it updates e to Successor(L,e). ZZ terminates once e is invalid.

If L is compressed (e.g., using PforDelta [ZHNB06]), neither Member(L,e) nor Succes-

sor(L,e) can be implemented efficiently. To allow skipping, a general technique is to build an

auxiliary data structure (e.g., skip list) over L [MZ96, ST07]. The original list L is then split

into segments. The auxiliary data structure maintains for each segment the minimum/maximum

element (uncompressed). Thus, Member(L,e) and Successor(L,e) can be implemented by routing

to the desired segment and decompressing it individually.

Hash-based intersection algorithms

The naive hash-based intersection algorithm [Knu73] builds a hash table to implement

Member(L,e). If extended to SSDs, we could build an external-memory hash table to support

skipping. However, the hash table takes too much space. Moreover, it resembles SL [CM10b]
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when extended to SSDs because both of them route a search element to a page that potentially

contains the element. Bille et al. suggested another way of using hash [BPP07]. Unfortunately, if

extended to SSDs, it would not skip pages because all the elements have to be accessed at least

once in the worst case.

Partition-based intersection algorithms

Baeza-Yates et al. proposed an algorithm for intersection based on the divide-and-conquer

framework [BYSC05]. If extended to SSDs, it would load the entire lists to memory because

every element has to be accessed at least once.

Ding and König proposed another partition-based algorithm [DK11], which splits a list

into partitions based on the universal hash. Unfortunately, if extended to SSDs, it would also

access the entire lists (see Theorem 3.3 of [DK11]).

Bitmap-based intersection algorithms

Up to this point, we have represented a list as a sorted array. The list can also be

represented as a bitmap: set the i-th bit to 1 if and only if i is in the list. Then the intersection is

computed using bitwise operations [CM10b]. If extended to SSDs, the entire bitmap of a list has

to be loaded to memory.

3.3.3 SSD-optimized design in IR and DB

Several prior works have studied the impact of SSDs to IR systems. Huang and Xia dis-

cussed allocating the inverted index on SSDs and HDDs [HX11] to maximize query performance

while minimizing operational cost. A similar issue was also discussed in [LLX+12]. The impact

of SSDs on cache management was studied in [WLY+13, TWL13, WLY+14]. They found that

existing cache policies optimized for HDDs do not work well on SSDs. The issue of inverted

index maintenance on SSDs was studied in [LCL+12, JRSP14] by leveraging the fast random
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accesses of SSDs. However, all these works still used existing HDD-centric list intersection

algorithms. This work, in contrast, focuses on experimenting SSD-aware intersection algorithms.

There are also a number of studies exploring the impact of SSDs to database join

[SHWG08, DP09] since list intersection is a special case of join. But those studies focus on

mitigating the slow random writes of SSDs, because join algorithms usually need to write data

back to SSDs if the buffer is insufficient. However, the focus of this work is to leverage the

performance of sequential reads and random reads (read-only).

3.4 Algorithms

Although there is no prior SSD-oriented intersection algorithm, a number of in-memory

skipping-based intersection algorithms can be naturally extended to SSDs to skip unnecessary

pages, as discussed in Section 4.10. In this section, we present the extended algorithms that will

be experimented later on. Before that, we describe the problem and list structure first.

Problem statement. Consider k (k ≥ 2) lists L1, L2, ..., Lk (|L1| ≤ |L2| · · · ≤ |Lk|) stored

on an SSD. Each list is stored in pages of a typical size, e.g., 4KB [THS+09, WLY+13]. The

problem is to find the intersection of these lists, i.e.,
⋂k

i=1 Li, while minimizing the total amount

of data accessed in order to reduce the actual execution time.

We first focus on the intersection where all the lists are stored on the SSD initially in order

to obtain clean results. Then, we evaluate the impact of cache where popular lists are cached in

main memory.

List structure. We follow a typical setting in IR systems to represent and compress

a list [MZ96, ZM06]. Each entry is a document ID di of 4 bytes before compression.3 All

document IDs in every list are sorted in ascending order. Depending on different systems,

the lists can be compressed using a compression algorithm, e.g., PforDelta [ZHNB06] and

3All the evaluated algorithms are applicable to entries that contain other auxiliary information, e.g., document
frequencies and positions.
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SIMDPforDelta [WLPS17]. We also evaluate the impact of different compression schemes to the

performance. If a list is compressed, we follow prior work [MZ96, ST07] to build skip pointers

such that intersection only needs to examine those promising pages.

3.4.1 BL (Baseline)

We denote BL as the baseline algorithm that directly runs the existing HDD-centric

algorithm on the SSD. This serves as a baseline when one uses SSDs to replace HDDs in their

systems. In particular, BL reads each of the k lists in its entirety in a single thread and then runs

multiple threads for in-memory intersection. Actually, it does not matter whether the whole list is

accessed by using a single thread or multiple threads because both can saturate the I/O bandwidth

as described in Table 3.1 as long as the whole list is accessed at a time.4 Once the lists are loaded

to memory, BL uses SL for the in-memory intersection to save memory accesses because it has

high performance and widely used in practice [CM10b].

The advantage of BL is that it is simple and there is no need to change existing algorithms

when replacing HDDs with SSDs. But the disadvantage is that BL can be slow because it reads

many unnecessary pages.

3.4.2 SL (Short-Long)

As mentioned in Section 3.3.2, an important operation used in SL is Member(L,e), which

checks whether element e is in list L as illustrated in Section 3.3.2. In main memory, it is

usually implemented using binary search or skip lists. On SSDs, we implement Member(L,e) by

pre-computing skip pointers [MZ96]: we store for each page the minimum5 uncompressed ID

(called a skip pointer). The skip pointers are small enough to be stored in memory since there is

only one skip pointer per page. As an example consider the list L3 in Figure 3.1, and assume each

4Note that parallelism makes a difference when the underlying list is accessed page by page.
5This can also be the maximum ID.
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Algorithm 1: Short-long (SL) algorithm [CM07, CM10b]
Input: k lists L1, L2, ..., Lk on an SSD (|L1| ≤ · · · ≤ |Lk|)
Output: L1∩L2∩·· ·∩Lk

1 result set R←∅;
2 for each element e in each page of L1 do
3 f lag← true;
4 for i← 2 to k do
5 if Member(Li,e) is true then
6 continue;

7 else
8 f lag← false;
9 break;

10 if f lag is true then
11 put e to R;

12 return R;

page contains four elements. Figure 3.2 depicts the skip pointers: 10, 80, 160, and 400.

10 80 160 400

List

(on disk)

Skip pointers

(in memory)

10 25 50 60 80 100 120 150 160 180 200 300 400 500 800 980

Figure 3.2: An example of the skip pointers of L3 in Figure 3.1

Member(L,e) can be implemented efficiently by using skip pointers. A page that po-

tentially contains e can be identified efficiently. Then, SL reads the page to verify whether e

is actually in L. In this way, many unnecessary pages can be skipped. Algorithm 1 shows the

extended SL algorithm. It reads the shortest list to memory (page by page) and skips over the

longer lists via Member(L,e). Note that SL only requires a page of L1 instead of the whole list

L1 to fit in memory if L1 is very long. In this way, SL reduces memory footprint significantly

compared to BL.

Note that SL is equivalent to SvS that intersects two lists at a time. Thus, we do not

consider SvS in this work.
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Algorithm 2: Zig-Zag (ZZ) [DLOM00, DLOM01]
Input: k lists L1, L2, ..., Lk on an SSD (|L1| ≤ · · · ≤ |Lk|)
Output: L1∩L2∩·· ·∩Lk

1 result set R←∅;
2 set e as the first element of L1;
3 i← 2;
4 while e is not invalid do
5 let Li be the current list to examine;
6 s← Successor(Li,e);
7 if s = e then
8 counter← counter+1;
9 if counter = k then

10 put e to R;
11 set e to the next unprocessed element in Li;

12 else
13 e← s;

14 i← (i+1) mod k;

15 return R;

3.4.3 ZZ (Zig-Zag)

The Zig-Zag (ZZ) intersection algorithm [DLOM00, BK02] adopts another way of using

skip pointers for intersection as described in Section 3.3.2. ZZ implements Successor(L,e) to find

the successor of e in L instead of implementing Member(L,e). When extended to SSDs, we can

implement Successor(L,e) using skip pointers (shown in Figure 3.2) and only read the promising

page to skip unnecessary pages, see Algorithm 2. The skip pointers are stored in memory.

3.4.4 SBF (Single-Bloom-Filter)

We observe that skip pointer based intersection algorithms, i.e., SL and ZZ still incur

unnecessary page accesses:

• CASE 1: The skip pointers can only route element e to the page whose range covers e.

However, e may still not exist in that page, in which case reading it is wasteful. As an
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Algorithm 3: SBF (Single-Bloom-Filter)
Input: k lists L1, L2, ..., Lk on an SSD (|L1| ≤ · · · ≤ |Lk|)
Output: L1∩L2∩·· ·∩Lk

1 result set R←∅;
2 for each element e in each page of L1 do
3 f lag← true;
4 for i← 2 to k do
5 find the page P of Li whose range covers e in skip pointers;
6 test whether e ∈ P using the bloom filter of P ;
7 if the bloom test returns false then
8 f lag← false;
9 break;

10 else
11 read the page P from the SSD to memory;
12 if e /∈ P then
13 f lag← false;
14 break;

15 if f lag is true then
16 put e to R;

17 return R;

Table 3.3: The storage of different types of data

Type Storage
skip pointers in main memory
bloom filters in main memory

lists on disk (SSD or HDD)

example, let e = 200, and a page contains four elements: {15, 100, 300, 500}. The page

will be identified by the skip pointers since e falls in the range. However, e is not in the

page.

• CASE 2: Even if e is in L1, ...,Li−1 (2 ≤ i ≤ k), it may not be in Li, making the previous

page accesses (containing e) from L1, · · · ,Li−1 wasteful. As an example, suppose e is in L1

and L2 but not in L3, then the pages in L1 and L2 that contain e are unnecessarily accessed,

since e is not a result.
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To solve the problem, a natural idea is to use bloom filters [Blo70]. In particular, we

build for each page a bloom filter to improve the SL algorithm. Note that ZZ cannot benefit from

bloom filters because ZZ relies on Successor(L,e) instead of Member(L,e) while bloom filters

can only be helpful for membership testing. We show two modifications of SL to leverage bloom

filters, namely, SBF (single-bloom-filter) and MBF (multi-bloom-filter), see Algorithm 3 and

Algorithm 4. For fast execution, we store all the bloom filters in main memory (as shown in

Figure 3.3).

In SBF, whenever a target page P (whose range contains e) is identified by the skip

pointers, instead of loading P immediately, SBF performs a bloom test between e and the bloom

filter of P . If e fails the bloom test (i.e., the bloom test returns false), there is no need to read

P since e is definitely not in P . Otherwise SBF reads it. SBF can skip the unnecessary pages

introduced by CASE 1, but not CASE 2.

We analyze the false positive rate of reading a non-promising page. Before that, we

introduce the concept of reference count.

Definition 1 (Reference count) The reference count of a page P (in a list L) is the number of

elements that are routed to P by the skip pointers of L.

The reference count of a page is actually the number of bloom tests that must be performed

against that page. Let s be the bloom filter size (in the number of bits per element), then the

false positive rate of accessing an element in the page is 0.6185s [Mit01]. Let c be the reference

count, then the false positive rate of accessing the page is 1− (1− 0.6185s)c because as long

as one of the c bloom tests produces a false positive, the page has to be unnecessarily accessed.

Thus, the effectiveness of SBF depends on the bloom filter size and the reference count. And the

reference count depends on many factors as well, e.g., the intersection size, and the number of

lists. Assuming all the elements in each list are distributed evenly, then the reference count ci of a

page in Li can be computed as ci =
|L1∩L2∩···∩Li−1|

|Li|/b where b is the number of elements that a page
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contains because every intersected result in the previous (i−1) lists has to be probed on the i-th

list.

Note that in SL, as long as the reference count c≥ 1, that page has to be accessed. But

SBF can alleviate the situation because the false positive rate can be low for larger c (e.g., 2 to 5)

as shown later in Figure 3.8 when s is high (e.g., s = 8 bits).

3.4.5 MBF (Multi-Bloom-Filter)

MBF (multi-bloom-filter) is another way of using bloom filters (stored in memory as

mentioned in Figure 3.3), see Algorithm 4. It is different from SBF when the number of lists

k ≥ 3. In other words, MBF and SBF are the same when the number of lists is two. It has a

filtering and a verification phase. (1) Filtering phase: if the bloom test of SBF returns true, instead

of reading the target page immediately, MBF performs the bloom tests between e and all the other

lists as well. In other words, in the filtering phase, MBF checks whether e (in L1) passes the

bloom tests of all the other lists L2, · · · ,Lk. If not, there is no need to read any page because e is

definitely not a result. If yes, MBF continues to the verification phase. (2) Verification phase: MBF

reads the (k−1) target pages from L2 to Lk that passed the filtering phase. The MBF algorithm

can skip the unnecessary pages introduced by both CASE 1 and CASE 2.

Remark. Skip pointers and bloom filters used in SL, ZZ, SBF, and MBF can reduce

data movement, but also increase random reads. The tradeoff makes sense on SSDs where

random reads are comparable to sequential reads. However, on HDDs, they cannot improve the

performance due to the expensive random reads.

3.4.6 Parallel intersection algorithms

By default, all the algorithms (BL, SL, ZZ, SBF, and MBF) in this work are evaluated in

multiple threads. We discuss in detail how to parallelize the algorithms. The key question is: how

55



Algorithm 4: MBF (Multi-Bloom-Filter)
Input: k lists L1, L2, ..., Lk on an SSD (|L1| ≤ · · · ≤ |Lk|)
Output: L1∩L2∩·· ·∩Lk

1 result set R←∅;
2 for each element e in each page of L1 do
3 f lag← true;

// phase 1: filtering
4 for i← 2 to k do
5 find the page P of Li whose range covers e in skip pointers;
6 test whether e ∈ P using the bloom filter of P ;
7 if the bloom test returns false then
8 f lag← false;
9 break;

// phase 2: verification
10 if f lag is true then
11 for i← 2 to k do
12 read the page P (of Li whose range covers e) from the SSD to memory;
13 if e /∈ P then
14 f lag← false;
15 break;

16 if f lag is true then
17 put e to R;

18 return R;

to partition the k lists for parallel intersection? We want to create many independent intersection

tasks such that each thread works on one task individually. We choose the state-of-the-art partition

strategy proposed in [TCJ11]. It works as follows. Assume there are N threads, then it partitions

L1 into N even sublists: L1
1, L2

1, · · · , LN
1 . For each sublist Li

1 (1 ≤ i ≤ N), it performs binary

search of Li
1[0] on L j ( j ≥ 2) to partition L j into N sublists. Thus, the N intersection tasks are:

(L1
1∩L1

2∩·· ·∩L1
k), (L

2
1∩L2

2∩·· ·∩L2
k), · · · , (LN

1 ∩LN
2 ∩·· ·∩LN

k ). Every intersection task will be

executed by the corresponding algorithm.

Remark. Parallel I/O is crucial to SSD-based list intersection, much more important than

ever before. It is precisely and particularly suitable for SSDs and skipping-based intersection: (i)
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if lists are accessed entirely without skipping, it is not necessary to apply parallel intersection

because sequentially loading a long list can already saturate the SSD’s I/O bandwidth. Just

because of skipping, parallelism becomes the only way to fully utilize the SSD’s I/O bandwidth;

(ii) if lists are stored on HDDs, parallelism cannot improve performance because HDDs only have

one disk moving head that can serve at most one disk I/O simultaneously.

3.5 Results on synthetic data

In this section, we present experimental results on synthetic datasets to understand the

impact of the key parameters to the performance.

Experimental settings. We conduct experiments on a commodity machine (Intel i7 3.10

GHz CPU, 4 physical cores, 8 hyper-threaded cores, 16GB DRAM) with Windows 8 installed.

The experimental platform also includes an SSD (Samsung 850 Pro SSD 256GB6) and an HDD

(Seagate HDD 2TB, 7200rpm7). All the algorithms are coded in C++. We use the Win32 native

thread APIs to implement parallelism. By default, all the algorithms run at 32 threads in parallel.

Although the CPU has 8 hyper-threaded cores, opening 32 threads can also improve performance

because of frequent I/O operations.8 Moreover, the page size is 4KB by default (in both HDD

and SSD).

Evaluation metrics. We measure the performance of an algorithm in two aspects: actual

execution time and the number of pages accessed. The execution time is averaged across three

runs for accuracy.

Synthetic datasets. To study the effect of crucial parameters to the overall performance,

we generate synthetic data by fixing all the other parameters when evaluating the effect of a

particular parameter. Unless otherwise stated, we use the default settings shown in Table 3.4.

6http://www.samsung.com/semiconductor/minisite/ssd/product/consumer/850pro.html
7https://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf
8We do not open more than 32 threads because the SSD’s I/O queue depth is 32, i.e., it accepts at most 32
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Table 3.4: Default parameters used in synthetic data

Parameters Default
number of threads 32

number of lists 2
list size |L1|= 104, |L2|= 107

list size ratio 1000
intersection ratio 1% of |L1|
bloom filter size 4 bits (per element)
data distribution uniform (from domain [0,232−1])

cache no
compression no

Table 3.5: Number of pages for Figure 3.3

BL ZZ SL SBF MBF
11177 6553 6553 1514 1514

3.5.1 Effect of number of threads

We first examine the effect of parallelism, which is very important to the performance.

We use the default settings (shown in Table 3.4) except we vary the number of threads from 1 to

32. Figure 3.3 shows the execution time of the five algorithms on both SSD and HDD. Table 3.5

shows the number of pages for each algorithm, which is irrelevant with the number of threads.

There are many interesting results of this experiment.

(1) For the baseline algorithm BL, Figure 3.3 demonstrates that multiple threads do not

help much in reducing the execution time on both SSD and HDD. That is because BL loads the

whole list from disk to memory using a single thread and executes intersection in memory where

the I/O cost is absolutely the performance bottleneck. Note that for list-at-a-time I/O access

pattern, using a single thread is able to saturate the disk bandwidth for both SSD and HDD.

(2) For SL, the results are very interesting. Let’s first look at the results of SL on the SSD.

Figure 3.3a shows that when the number of threads is 1, SL is even slower than BL although SL

outstanding I/O requests simultaneously.
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Figure 3.3: Effect of number of threads

reads less data than the baseline BL (see Table 3.5). That is because BL can fully utilize the SSD’s

I/O bandwidth by reading a whole list at a time but SL cannot because it reads a page at a time in

order to skip unnecessary pages. However, as the number of threads increases, the performance

of SL becomes better while BL does not increase much. At the point when the number of threads

is 8, SL runs 1.3X faster than BL. This confirms our conjecture that on SSDs, we should access

a list by using “page-at-a-time multi-threaded” I/O access pattern instead of the conventional

“list-at-a-time single-threaded” access pattern.

To make the results comprehensive, we also report the execution time on the HDD in

Figure 3.3b. It shows a completely different picture with the SSD in the sense that SL always runs

slower than the baseline BL no matter how many threads are used. More importantly, increasing

the number of threads (on the HDD) can even make the performance slower, e.g., SL runs slower

when the number of threads increases from 1 to 2. That is because of expensive random seeks
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introduced by multiple threads. Note that when the number of threads is 1, SL has similar

performance to BL because those random seeks are short under a single thread and short seeks

tend to have high performance as explained in [RW94]. However, for multiple threads, random

seeks tend to be long due to the context switch between different threads.9 This confirms that

HDD-optimized intersection algorithms should read the whole list to memory instead of skipping

pages.

This also explains that if we treat the SSD as a drop-off disk and apply an existing HDD-

centric algorithm BL, it becomes sub-optimal. For example, the intersection time (BL) on the

HDD is 474ms; if we only replace the HDD with the SSD without changing any algorithm, then

the execution time (BL on the SSD) drops to 199ms due to SSD’s fast I/O performance. However,

if we optimize the intersection algorithm by leveraging SSD’s unique properties, the execution

time (SL on the SSD) can drop to 125ms, which makes a better use of the SSD.

(3) For ZZ, it reads the same number of pages with SL when the number of lists is two.10

As a result, the execution time of ZZ is the same as SL on the SSD. But on the HDD, ZZ is slower

than SL because ZZ introduces more back-and-forth random accesses.

(4) For SBF and MBF, they are basically the same when the number of lists is two. Thus,

they have the same execution time and read the same amount of data. On the SSD, they can

improve the performance of SL a lot because the intersection size is small. But on the HDD, bloom

filters will not help because they introduce many random accesses by filtering out non-promising

pages.

3.5.2 Effect of list size

Figure 3.4 shows the effect of list size on the SSD. We use two lists L1 and L2 (|L1| ≤ |L2|).

We vary |L2| from 1 million to 100 million and set |L2|
|L1| = 1000, thus, |L1| also increases. The

9Note that the results on the HDD do not monotonically change with the number of threads. That is because of
the impact of disk I/O reordering if multiple I/O requests are issued, which highly depends on disk internals [RW94].

10But as we show later in Figure 3.7, ZZ reads more data than SL when the number of lists exceeds two.
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rest parameters follow the default values shown in Table 3.4. We omit ZZ and MBF because for

two-list intersection, ZZ is the same as SL and MBF is the same as SBF.
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Figure 3.4: Effect of list size

Figure 3.4 reveals that the execution time and the number of page accesses increase as

lists become longer. In particular, the execution time is roughly proportional to the number of

page accesses because random reads and sequential reads on the SSD are roughly similar. It also

shows that skipping-based intersection algorithms SL and SBF outperform BL.

3.5.3 Effect of list size ratio

We define the list size ratio w as |L2|
|L1| . We fix |L2|= 107, set the intersection size at 1% of

|L1|, and vary w from 1 to 104. Figure 3.5 shows the results. For all the algorithms, the execution

time and the number of pages decrease as w increases, because |L1| decreases.

Figure 3.5 demonstrates that when w is small (e.g., w ≤ 10), all the algorithms fail to

skip any pages, because many elements in L1 are routed to the same page of L2, making the

page’s reference count too high. Thus, many pages in L2 become relevant. When w≥ 100, the

skipping-based algorithms (e.g., SL and SBF) start to skip and their performance improves.
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Figure 3.5: Effect of list size ratio
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3.5.4 Effect of intersection ratio

The intersection ratio is also an important parameter. In this experiment, we fix |L2|= 107,

|L1|= |L2|
1000 , and vary the intersection ratio r from 0.01% (of |L1|) to 100% (of |L1|). Figure 3.6

shows the results. It shows that BL and SL do not change much as r varies. For BL, that is because

it experiences a bottleneck of reading all the lists, no matter what the intersection ratio is. For SL,

as long as a page range in L2 covers an element, that page has to be loaded regardless of whether

the page really contains the element. That is because SL only maintains the range information

via skip pointers. But the performance of SBF improves when r becomes smaller because bloom

filters can rule out unnecessary pages.
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Figure 3.7: Effect of number of lists

3.5.5 Effect of number of lists

In this set of experiments, we examine the effect of the number of lists k (ranging

from 2 to 5). We largely follow [DK11] to generate lists. In particular, we set |L1| = 104 and

|L2| = |L3| = |L4| = |L5| = 107 because in practice, short and long lists are usually mixed in a

query. Moreover, we set the intersection size between Li (i≥ 2) and L1 as 10% of |L1|. As a result,

|L1∩L2|= 1143, |L1∩L2∩L3|= 113, |L1∩L2∩L3∩L4|= 18, |L1∩L2∩L3∩L4∩L5|= 4.

Figure 3.7 plots the results. It reveals that the skipping-based algorithms scale well with k

due to efficient skipping. More importantly, the gap between BL and SL (or SBF, MBF) becomes

larger as k increases. That is because SL, SBF, and MBF perform list intersection from short

lists to long lists. Let Li be the current list, then the intersection size of the previous lists is

|L1∩L2∩ ...∩Li−1|. Thus, as i increases, the gap between |L1∩L2∩ ...∩Li−1| and |Li| increases

because the list size is increasing from L1 to Lk, while the intersection size is getting smaller with

more lists being intersected. According to Figure 3.5, the performance gap increases when the list

size ratio increases. Thus, it becomes even more relevant to develop SSD-optimized algorithms

when the intersection involves many lists.

Figure 3.7 also shows that MBF outperforms SBF because MBF can filter out more

unnecessary pages. Another interesting result is that the number of pages accessed by MBF can

even decrease when k increases. This is because the false positive rate of a page decreases when
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Figure 3.8: False positive rate in SBF

k becomes larger in MBF; thus, the bloom filters in MBF can in turn filter out many unnecessary

pages. Figure 3.7 also confirms that SL is better than ZZ when k ≥ 3. The intuition is that,

consider at some point, ZZ and SL access the same element a in L1. Then for ZZ, after it walks

through one iteration (accessing L1→ L2→ ···→ Lk→ L1) and returns to L1 again, it will access

the element that is in the same page of a with high probability if the lists are distributed uniformly.

However, if a is not a result, ZZ wastes many I/Os compared to SL because SL can switch back to

L1 much earlier since only the intersection of L1...Li−1 are intersected with Li.

3.5.6 Effect of bloom filter effectiveness

Next, we evaluate SBF to understand the effectiveness of bloom filters. The effectiveness

highly depends on the false positive rate, i.e., f = 1− (1−0.6185s)c where s is the bloom filter

size (in bits per element) and c is the reference count of the page. Thus, we first plot f with

varying s and c in Figure 3.8. It shows that f increases with both s and c. In particular, when s is

1, 2, or 4, f increases very quickly when c increases. Thus, bloom filters are effective only if the

reference count is low unless the bloom filter size is high, say, s = 16 bits.

Then we evaluate the actual performance of SBF in Figure 3.9 with varying bloom filter

size. We use three settings that have different list sizes and intersection sizes, i.e., they have

different reference counts of data pages. In Figure 3.9a, |L1|= 104, |L2|= 107, and |L1∩L2|=
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Figure 3.9: Effect of bloom filter size in SBF

100; In Figure 3.9b, |L1| = 105, |L2| = 107, and |L1 ∩L2| = 10000; In Figure 3.9c, it has the

same setting with Figure 3.9b unless the lists are compressed using SIMDPforDelta [LB15a],

which performs the best as we see in Section 3.5.8. As a reference, we also show the baseline BL.

Generally, Figure 3.9 shows that the performance improves when s increases. But the performance

improvement is different. In particular, Figure 3.9a shows the best improvement when s increases

while Figure 3.9c shows the worst improvement. That is because in Figure 3.9a, data pages’
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reference counts are much smaller than that in Figure 3.9c. Note that the reference count of a

page in L2 can be roughly estimated as the ratio between |L1| and the number of pages taken by

L2. Thus, they have a low false positive rate according to Figure 3.8.

3.5.7 Effect of zipf distribution

In the previous experiments, we assume lists are distributed uniformly. In the next

experiment, we assume lists are distributed following the zipf distribution. In particular, the value

i in a list is included with a probability of 1/i f

∑
d
j=1(1/i f )

where d is the domain size (232) and f is the

skewness factor. Note that when f = 0, the zipf distribution is the same as uniform distribution.

We use the default setting unless the lists are distributed differently.

Figure 3.10 shows the results. It shows that when f increases from 0 to 1, the performance

of BL is not affected because it reads the whole lists. However, SL and SBF read less data as the

lists become more skewed. That is because the intersection results tend to be concentrated on

fewer pages if data is more skewed, which provides a good opportunity for data skipping.

3.5.8 Effect of compression

Figure 3.11 compares BL, SL, and SBF when the lists are compressed using different

compression algorithms. We use the default settings unless the lists are compressed. We

evaluate the performance based on three best compression approaches, namely, SIMDPforDelta,

SIMDPforDelta*, and SIMDBP128*, as they have high performance and low space overhead as

reported in [WLPS17].

Figure 3.11 shows that all the algorithms become faster when compared to uncompressed

lists because the lists take less space after compression. We see that the gap between BL and

skipping-based algorithms (SL and SBF) becomes smaller on compressed data. That is because

after compression, a data page contains more elements and it becomes more difficult to skip a
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Figure 3.10: Effect of Zipf distribution

page unless the intersection size is very small. But still, SL and SBF perform better than BL.

3.5.9 Effect of cache

Finally, we evaluate the effect of caching popular lists in memory. We use five lists

generated in Section 3.5.5 and vary the number of lists cached, see Figure 3.12. Let i be the

number of lists cached, it means the first i lists are cached in memory.

Figure 3.12 shows that even with cached lists, it makes even more sense for skipping on-

disk lists. That is because the intersection size of the in-memory lists can be very small compared

to the sizes of the on-disk lists since |L1| ≤ ...≤ |Lk|. Then the skipping-based algorithms can

skip many unnecessary pages of the on-disk lists. Thus, as long as some lists are stored on the

SSD, it becomes interesting to apply skipping-based intersection algorithms instead of using the
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Figure 3.11: Effect of compression

conventional BL algorithm.

3.6 Results on real data

In this section, we present experimental results on two real datasets: IR data and DB data.

IR data. It is a standard benchmark in the information retrieval community. It includes

41 million Web pages crawled by CMU in 2012.11 The total data size is around 300GB. The

query log contains 131,654 real queries from the TREC 2005 and 2006 (efficiency track).12 We

parse the Web documents and build inverted lists for the terms. By default, we compress the lists

using SIMDPforDelta. The compressed index size is 12.5GB. During experiments, we run the

11http://www.lemurproject.org/clueweb12.php/
12http://trec.nist.gov/
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Figure 3.12: Effect of cache

queries over the corresponding dataset. In particular, for each query that contains k query terms,

we compute list intersection among those k inverted lists to report the average execution time

and the number of page accesses. Table 3.6 shows the detailed data statistics including list size,

intersection ratio, list size ratio, and the number of lists.

DB data. It is a star schema benchmark,13 which includes one fact table (LINEORDER)

and four dimension tables (CUSTOMER, SUPPLIER, PART, and DATE). We set the scale factor

as 10 and pick up four queries (i.e., Q1.1, Q2.3, Q3.4, and Q4.3). For each predicate of a query,

we precompute a list of rows that are valid for the predicate as described in Section 3.2. By

default, the lists are not compressed, and the impact of compression is studied in Table 3.9.

Unless otherwise stated, we run each algorithm in 32 threads and set the bloom filter size

as 4 bits per element in SBF and MBF.

13http://www.cs.umb.edu/ poneil/StarSchemaB.pdf
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Table 3.6: IR data characteristics

List size ≤ 103 103 ∼ 104 104 ∼ 105 105 ∼ 106 106 ∼ 107 > 107

Percentage 3.9% 4.0% 12.3% 33.9% 40.5% 5.4%
(a) The distribution of query-involved list sizes

Intersection ratio ≤ 0.01% 0.01%∼ 0.1% 0.1%∼ 1% 1%∼ 10% > 10%
Percentage 22.3% 1.9% 17.1% 37.3% 21.4%

(b) The distribution of intersection ratios (the intersection size over the size of the shortest list)
List size ratio ≤ 10 10∼ 102 102 ∼ 103 103 ∼ 104 > 104

Percentage 30.1% 37.9% 18.1% 6.3% 7.6%
(c) The distribution of list size ratios (max size / min size)

Number of lists 2 3 4 5 6 7 > 7
Percentage 26.6% 31.5% 22.9% 11.2% 4.5% 1.9% 1.4%

(d) The distribution of number of lists (query terms)

Table 3.7: DB data characteristics

Query Number of lists List sizes Intersection size

Q1.1 3
8573056

116875016367104
29998976

Q2.3 2
59648

12036
12000640

Q3.4 5

239360
0239872

240128
240512
713600

Q4.3 5

2398336
3582400128

8566528
8569984

11999360

3.6.1 Overall results

We first consider the setting where all the lists are stored on the disk initially without

caching any lists in memory. Table 3.8 shows the results on IR and DB of the five intersection

algorithms. (1) Generally, skipping-based algorithms (i.e., ZZ, SL, SBF, MBF) read less amount
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Table 3.8: Results on real data

BL ZZ SL SBF MBF
IR 27 25 18 17 16

DB (Q1.1) 1098 1166 1171 1174 1178
DB (Q2.3) 254 289 291 223 223
DB (Q3.4) 31 38 14 9 3
DB (Q4.3) 594 793 481 342 142

(a) time on SSD (ms)
BL ZZ SL SBF MBF

IR 100 314 245 241 237
DB (Q1.1) 2058 62806 63701 63910 63910
DB (Q2.3) 647 12256 11790 10572 10572
DB (Q3.4) 67 457 119 35 8
DB (Q4.3) 1405 48983 35316 22319 10354

(b) time on HDD (ms)
BL ZZ SL SBF MBF

IR 1600 1442 1102 1061 1040
DB (Q1.1) 61317 61317 61317 61317 61317
DB (Q2.3) 13461 13312 13312 10201 10201
DB (Q3.4) 1870 1870 800 638 370
DB (Q4.3) 37875 37874 24005 17815 8776

(c) number of pages

of data than the baseline BL,14 and therefore they also run faster than BL on the SSD as reported

in Table 3.8a. However, they run slower than BL on the HDD in Table 3.8b due to expensive

random reads introduced by skipping. It explains why existing list intersection algorithms for

HDDs prefer loading the entire list to memory to minimize the expensive random reads, i.e., “list-

at-a-time single-threaded” I/O access pattern. This also confirms our conjecture that HDD-centric

intersection algorithms become sub-optimal on SSDs. Thus, we shall deploy skipping-based

parallel algorithms (i.e., “page-at-a-time multi-threaded” I/O access pattern) for intersection in

SSD-resident systems. (2) On the SSD, ZZ performs worse than SL due to more accesses to

longer lists, especially when the number of lists exceeds two. Thus, we should favor SL towards

14Note that when running Q1.1 on the DB dataset, all the algorithms read the same number of pages because the
intersection size is too large that every data page contains a result.
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ZZ. (3) The efficiency of SBF and MBF varies because it depends on many parameters. For the

IR data, both SBF and MBF read the similar number of pages as SL. We investigate the reasons

next in Figure 3.13 and find that SBF and MBF are effective for some queries but not all. As a

result, the average performance becomes similar to SL. We explain more in the next experiment.

For Q1.1, SBF and MBF cannot reduce any page access because the intersection size is so large

that every page contains the intersection result. For Q2.3, SBF and MBF access slightly less data

than SL since the intersection size is pretty large. For Q3.4 and Q4.3, SBF and MBF outperform

SL significantly because the intersection size is small and also the number of lists is high. (4)

MBF outperforms SBF on Q3.4 and Q4.3 because the number of lists is high such that MBF has a

smaller false positive rate than SBF since MBF only accesses a page when all the lists passed the

bloom filtering tests.

3.6.2 Effect of bloom filters

Next, we investigate why bloom filter based approaches, i.e., SBF and MBF, cannot

improve much over SL on the SSD for the IR data. To understand why, we output for each query

the number of page accesses incurred by SBF and MBF. Then we sort the queries in Figure 3.13

according to the ratio r1 =
SL

SBF and r2 =
SBF
MBF on the IR dataset. If r1 > 1, it means SL reads more

pages than SBF, i.e., SBF is better than SL. Similarly, if r2 > 1, it means SBF reads more pages

than MBF, i.e., MBF is better than SBF. Figure 3.13a shows that the distribution of r1 is highly

skewed in the sense that most queries have r1 close to 1. For example, out of 131654 queries, only

1430 queries have r1 ≥ 2 and 3903 queries have 1.5≤ r1 < 2. That is because the performance of

SBF highly depends on the reference count of a page, i.e., how many elements routed to the page

via skip pointers. If the reference count is high (e.g., ≥ 5), then the false positive rate is very high

according to Figure 3.8. As for the relative performance between SBF and MBF, Figure 3.13b

shows that the distribution of r2 is also highly skewed, i.e., only a tiny portion of queries have

high r2. That is because MBF also works well when the reference count is low in order to achieve
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(a) SL / SBF

(b) SBF / MBF

(c) SL / OPT

Figure 3.13: Relative performance of SL/SBF, SBF/MBF, and SL/OPT on IR data

a low false positive rate.

As a reference, we also plot the optimal number of pages (denoted as OPT) required for

the intersection. It is surprising to see that SL works well on average; it is close to OPT. To see

why, we store for each query the ratio of SL
OPT and display in Figure 3.13c in a sorted order. It

shows that, except for a small number of queries, SL runs as fast as OPT. That is because on the

IR dataset, whenever a page is identified by SL, that page is very likely to have a true result on

the two datasets, i.e., the reference count of those pages is 1.
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Table 3.9: Effect of compression

BL ZZ SL SBF MBF
Uncompressed 6961 5575 3761 3514 3412

SIMDPforDelta 1600 1442 1102 1061 1040
SIMDPforDelta* 1653 1488 1135 1092 1070

SIMDBP128 2311 2042 1513 1447 1416
(a) IR

BL ZZ SL SBF MBF
Uncompressed 37875 37874 24005 17815 8776

SIMDPforDelta 7607 7067 6481 5391 3951
SIMDPforDelta* 7870 7870 6671 5521 4049

SIMDBP128 12924 12923 9989 7964 5100
(b) DB (Q4.3)

3.6.3 Effect of compression

Next, we show the impact of compression. Table 3.9 shows the number of page ac-

cesses on IR and DB (Q4.3) of the five intersection algorithms where the lists are stored using a

different compression scheme. We pick up three best compression approaches, namely, SIMDP-

forDelta, SIMDPforDelta*, and SIMDBP128*, because they have high performance and low

space overhead as reported in prior work [WLPS17].

The results show that compression plays an important role. The performance gap between

skipping-based algorithms and the baseline BL is high on uncompressed lists. But when the lists

are compressed, the gap becomes smaller. That is because if a list is compressed, then a page

contains more elements. Thus, it becomes more difficult to skip a page during intersection The

results also show an interesting result regarding different compression algorithms. As reported in

[WLPS17], SIMDBP128* is the fastest for in-memory intersection. However, on disks (both SSD

and HDD), SIMDBP128* is worse than SIMDPforDelta and SIMDPforDelta*. That is because

SIMDBP128* consumes too much space overhead, incurring high I/O cost.
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Table 3.10: Effect of cache

Index percentage BL ZZ SL SBF MBF
0% 1600 1442 1102 1061 1040

12.5% 815 740 586 564 554
25% 485 443 350 336 331
50% 209 193 153 147 146

(a) IR
#cached lists BL ZZ SL SBF MBF

0 37875 37874 24005 17815 8776
1 24482 24482 16000 9956 6975
2 21805 21805 13323 7279 4298
3 12240 12240 5052 3324 2537
4 2679 2679 2610 1239 1239

(b) DB (Q4.3)

3.6.4 Effect of cache

Next, we enable the cache to study the impact of caching in Table 3.10. For an intersection

that involves k lists, if some of the lists are cached in memory, we do intersection between those

in-memory lists first and then skip over on-disk lists by reading promising pages that contain

the intersection results. Table 3.10a shows the number of page accesses of varying cached index

in the IR data and Table 3.10b shows the number of page accesses of varying the number of

cached lists in the DB data (for Q4.3). It shows that as the cached data increases, the gap between

skipping-based intersection algorithms (i.e., ZZ, SL, SBF, MBF) and the baseline BL becomes

smaller. That is because less amount of data are stored on disk such that the filtered pages become

less. But we still see a clear performance improvement that skipping-based algorithms perform

better than the BL, which indicates that as long as the entire inverted index is not cached in

memory, it still makes sense to use skipping-based algorithms for SSD-based intersection.
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3.7 Chapter summary

In this section, we summarize this chapter, provide lessons on how to design SSD-

optimized intersection algorithms and then outline the future work.

3.7.1 Summary

In this chapter, we conducted a series of experiments to examine the impact of fast SSDs

to list intersection algorithms. We showed that SSD-optimized intersection algorithms shall

use “page-at-a-time multi-threaded” I/O access pattern instead of conventional “list-at-a-time

single-threaded” pattern. In terms of the algorithmic design choices, we presented the impact of

skip pointers, bloom filters, parallelism, cache, compression, list size, list size ratio, intersection

ratio, and the number of lists to the performance. We summarize the main findings as follows:

1. Skip pointers play a critical role and SL efficiently leverages skip pointers for fast intersec-

tion (faster than ZZ). In most cases, it outperforms the baseline BL significantly on SSDs,

especially when the list size skewness is high, the intersection size is small, and the number

of lists is high.

2. The effectiveness of bloom filters varies significantly on different queries and datasets.

From the high-level, it depends on the bloom filter size s and reference count c. For a

moderate value s (e.g., s is 4 or 8), bloom filters are effective when c is in the range of say

2 to 5 because if c = 1, then SL can also perform well (but with less memory footprint than

SBF and MBF); and if c is too large, then the false positive rate is high. The reference count

further depends on other factors such as intersection size and the number of lists: it tends to

be smaller for smaller intersection size and more lists.

3. Parallelism is very important to improve the performance of skipping-based intersection

algorithms because it can fully utilize SSD’s I/O bandwidth if the underlying I/O access
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pattern is page-by-page. That is, page-level skipping must be combined with parallelism

for high performance.

4. With cache, it still makes sense to skip unnecessary pages in a parallel manner unless all

the lists are cached in main memory.

5. With compression, it is also beneficial for page-level skipping although it becomes more

difficult when compared to skipping over uncompressed lists.

6. List size does not necessarily affect the effectiveness of skipping on SSDs.

7. List size ratio significantly affects the effectiveness of skipping on SSDs. The higher the

ratio is, the more efficient the skipping becomes.

8. Intersection ratio does not necessarily affect the performance of skip pointer based algo-

rithms such as SL and ZZ but it affects bloom filter based algorithms such as SBF and

MBF.

9. The number of lists k can also affect the performance of skipping because it makes the

list size ratio more skew as the intersection size shrinks quickly with top few lists being

intersected. The higher the k is, the more efficient the skipping becomes.

3.7.2 Recommendations

Although the actual performance of different algorithms depends on many factors, gener-

ally we recommend SL (with multiple threads) as an SSD-optimized intersection algorithm. It has

high performance, takes small memory footprint, and is also easy to be integrated into existing

systems. In most cases, it is faster than the baseline BL. Even in the worst case when SL cannot

skip any data pages, SL performs similar to BL.15 For SBF and MBF, we do not provide strong

15The disadvantage of SL is the extra space overhead for the skip pointers. But they are significantly smaller than
the original lists since each data page maintains only one skip pointer.
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recommendations for SSD-based intersection because (1) their performance can vary significantly

on different queries and datasets; (2) they may consume a high amount of memory to store bloom

filters.

3.7.3 Lessons

We provide the lessons that people can learn from this work.

1. Although simply replacing HDDs by SSDs and directly running existing HDD-optimized

intersection algorithms on the SSD can improve performance (since SSDs are faster than

HDDs), SSDs are highly underutilized, because the design decisions are still made for

HDDs. Thus, we strongly recommend practitioners to re-optimize their systems explicitly

for SSDs.

2. Parallel I/O skipping, which previously cannot improve list intersection in HDD-resident

systems, now becomes compelling in SSD-resident systems.

3. Do use parallelism on SSDs if data is accessed page-by-page, because that can significantly

reduce the execution time.

4. It is still worthwhile to consider skipping on SSDs for intersection even when the lists are

compressed or cached.

5. For HDD-based intersection, use BL and do not use skipping-based algorithms (e.g., SL,

ZZ, SBF, and MBF).

Chapter 3 contains material from “Evaluating List Intersection on SSDs for Parallel I/O

Skipping” by Jianguo Wang, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson, which

was submitted for publication. The dissertation author was the primary investigator of the paper.
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Chapter 4

Index-based High-dimensional Cosine

Threshold Querying with Optimality

Guarantees

4.1 Introduction

Given a database of vectors, a cosine threshold query asks for all database vectors with co-

sine similarity to a query vector above a given threshold. This problem arises in many applications

including document retrieval [BCH+03], image search [KG09], recommender systems [LCYM17]

and mass spectrometry. For example, in mass spectrometry, billions of spectra are generated

for the purpose of protein analysis [AM16, LDE+07, WB13]. Each spectrum is a collection of

key-value pairs where the key is the mass-to-charge ratio of an ion contained in the protein and the

value is the intensity of the ion. Essentially, each spectrum is a high-dimensional, non-negative

and sparse vector with ∼2000 dimensions where ∼100 coordinates are non-zero.

Cosine threshold queries play an important role in analyzing such spectra repositories.

Example questions include “is the given spectrum similar to any spectrum in the database?”,
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spectrum identification (when matching query spectra against reference spectra), or clustering

(when matching pairs of unidentified spectra) or metadata queries (when searching for public

datasets containing matching spectra, even if obtained from different types of samples). For such

applications with a large vector database, it is critically important to process cosine threshold

queries efficiently – this is the fundamental topic addressed in this work.

Definition 2 (Cosine Threshold Query) Let D be a collection of high-dimensional, non-negative,

unit vectors; q be a query vector; θ be a threshold 0 < θ≤ 1. Then the cosine threshold query

returns the vector set R = {s|s ∈D,cos(q,s)≥ θ}. A vector s is called θ-similar to the query q

if cos(q,s)≥ θ and the score of s is the value cos(q,s) when the query q is understood from the

context.

In the literature, cosine threshold querying is a case of the Cosine Similarity Search (CSS)

area [TG16, AK14, LCYM17], where other aspects like approximate answers, top-k queries

and similarity join are considered. Our work considers specifically CSS with exact, threshold

and single-vector queries, which is the case of interest to many applications including mass

spectrometry.

Because of the unit-vector assumption, the scoring function cos computes essentially

the dot product q · s. When the assumption is lifted, the problem is equivalent to inner product

threshold querying, which is of interest in its own right. Related work on cosine and inner product

similarity search is summarized in Section 4.10.

A TA-like baseline index and algorithm and its shortcomings. We show that the TA

algorithm, by Fagin et al. [FLN01], provides an appropriate starting point for optimizing the

processing of cosine threshold queries despite the following differences in the problem statement:

1. The TA’s problem asks for the vectors with the top-k scores according to a monotonic query

function F(s). In contrast, the cosine threshold queries use cos(q,s), which can be viewed
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as a particular family of functions F(s) = s ·q parameterized by q when |s|= 1. In addition,

they return all s whose score exceeds the threshold θ.

2. The TA’s problem poses no constraint on the data. In contrast, the cosine threshold queries

assume a database of unit vectors. Note, the unit vector assumption does not really restrict

the applicability of the proposed techniques, as we can indirectly produce unit vectors by

precomputing the weight of each vector.

A baseline index and algorithm inspired by TA can answer cosine threshold queries

exactly without a full scan of the vector database for each query. In addition, the baseline

algorithm enjoys the same instance optimality guarantee as the original TA. This baseline is

created as follows. First, identically to the TA, the baseline index consists of one sorted list for

each of the d dimensions. In particular, the i-th sorted list has pairs (ref(s),s[i]), where ref(s) is a

reference to the vector s and s[i] is its value on the i-th dimension. The list is sorted in descending

order of s[i].1

Next, the baseline, like the TA, proceeds into a gathering phase during which it collects

a complete set of references to candidate result vectors. The TA shows that gathering can be

achieved by reading the d sorted lists from top to bottom and terminating early when a stopping

condition is finally satisfied. The condition guarantees that any vector that has not been seen

yet has no chance of being in the query result. The baseline makes a straightforward change

to the TA’s stopping condition to adjust for the difference between the TA’s top-k requirement

and the threshold requirement of the cosine threshold queries. In particular, in each round the

baseline algorithm has read the first b entries of each index. (Initially it is b = 0.) If it is the case

that cos(q, [L1[b], . . . , Ld[b]])< θ then it is guaranteed that the algorithm has already read (the

references to) all the possible candidates and thus it is safe to terminate the gathering phase, see

Figure 4.1 for an example. Every vector s that appeared in the j-th entry, j < b, of a list is a

candidate.
1There is no need to include pairs with zero values in the list.
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Figure 4.1: An example of cosine threshold query with six 10-dimensional vectors

In the next phase, called the verification phase, the baseline algorithm (again like TA)

retrieves the candidate vectors from the database and checks which ones actually score above the

threshold.

For inner product queries, the baseline algorithm’s gathering phase benefits from the same

d ·OPT instance optimality guarantee as the TA. Namely, the gathering phase will access at most

d ·OPT entries, where OPT is the optimal number of entries accessed by any traversal algorithm

for the particular input instance.

There is an obvious optimization: Only the k dimensions that have non-zero values in the

query vector q should participate in query processing – this leads to a k ·OPT guarantee.2 But

even this guarantee loses its practical value when k is a large number. In the mass spectrometry

scenario k is ∼100. In document similarity and image similarity cases it is even higher.

For cosine threshold queries, the k ·OPT guarantee no longer holds. The baseline fails to

2This optimization is equally applicable to the TA’s problem: Scan only the lists that correspond to dimensions
that actually affect the function F .
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utilize the unit vector constraint to reach the stopping condition faster, resulting in an unbounded

gap from OPT because of the unnecessary accesses (see remark in Section 4.4.1). 3 Furthermore,

the baseline fails to utilize the skewing of the values in the vector’s coordinates (both of the

database’s vectors and of the query vector) and the linearity of the similarity function. Intuitively,

if the query’s weight is concentrated on a few coordinates, the query processing should overweight

the respective lists and may, thus, reach the stopping condition much faster than reading all relevant

lists in tandem.

We retain the baseline’s index and the gathering-verification structure which captures

the family of TA-like algorithms. The algorithmic framework, which we refer to as Gathering-

Verification, is reviewed and shown to be appropriate for cosine threshold queries in Section 4.2.

Within the framework, we reconsider

1. Traversal strategy optimization: A traversal strategy determines the order in which the

gathering phase proceeds in the lists. In particular, we allow the gathering phase to move

deeper in some lists and less deep in others. For example, the gathering phase may have

read at some point b1 = 106 entries from the first list, b2 = 523 entries from the second

list, etc. Multiple traversal strategies are possible and, generally, each traversal strategy

will reach the stopping condition with a different configuration of [b1,b2, . . . ,bn]. The

traversal strategy optimization problem asks that we efficiently identify a traversal path that

minimizes the access cost ∑
d
i=1 bi. To enable such optimization, we will allow lightweight

additions to the baseline index.

2. Stopping condition optimization: We reconsider the stopping condition so that it takes into

account (a) the specifics of the cos function and (b) the unit vector constraint. Moreover,

since the stopping condition is tested frequently during the gathering phase, it has to decide

very fast whether the traversal can stop. Notice that the stopping condition optimization

3Notice, the unit vector constraint enables inference about the collective weight of the yet unseen coordinates of a
vector.
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problem is independent of the traversal strategy and its optimal solution is not dependent

on skewness assumptions about the data.

Contributions and summary of results.

• We present a stopping condition for early termination of the index traversal (Section 4.4).

We show that the stopping condition is complete and tight, informally meaning that (1)

for any traversal strategy, the gathering phase will produce a candidate set containing all

the vectors θ-similar to the query, and (2) the gathering terminates as soon as no more

θ-similar vectors can be found (Theorem 4). In contrast, the stopping condition of the (TA-

inspired) baseline is complete but not tight (Theorem 3). The proposed stopping condition

takes into account that all database vectors are normalized and reduces the problem to

solving a special quadratic program (Equation 4.4) that guarantees both completeness and

tightness. While the new stopping condition prunes further the set of candidates, it can

also be efficiently computed in O(logd) time using incremental maintenance techniques

presented in Section 4.4.3.

• We introduce the hull-based traversal strategies that exploit the skewness of the data

(Section 4.5). In particular, skewness implies that each sorted list Li is “mostly convex”,

meaning that the shape of Li is approximately the lower convex hull constructed from the

set of points of Li. This technique is quite general, as it can be extended to the class of

decomposable functions which have the form

F(s) = f1(s[1])+ . . .+ fd(s[d])

where each fi is non-decreasing.4 Consequently, we provide the following optimality

guarantee for inner product threshold queries: The number of accesses executed by the

gathering phase (i.e., ∑
d
i=1 bi) is at most OPT+c (Theorem 6 and Corollary 1), where OPT

4The inner product threshold problem is the special case where fi(s[i]) = qi · s[i].
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Table 4.1: Summary of theoretical results

Stopping Condition Traversal Strategy
Baseline This work Baseline This work

Inner Product Tight d ·OPT OPT+ c
Cosine Not tight Tight NA OPT(θ− ε)+ c

is the number of accesses by the optimal strategy and c is the max distance between two

vertices in the lower convex hull. Experiments show that in the mass spectrometry case, c

is a very small fraction of the accesses.

• Despite the fact that cosine and its tight stopping condition are not decomposable, we show

that the hull-based strategy can be adapted to cosine threshold queries by approximating

the tight stopping condition with a carefully chosen decomposable function. We show

that when the approximation is at most ε-away from the actual value, the access cost is

at most OPT(θ− ε)+ c (Theorem 7) where OPT(θ− ε) is the optimal access cost on the

same query q with the threshold lowered by ε and c is a constant similar to the above

decomposable cases. Experiments show that the adjustment ε is very small in practice, e.g.,

0.1. We summarize these new results in Table 4.1.

4.2 Algorithmic framework

In this section, we present a Gathering-Verification algorithmic framework to facilitate

optimizations in different components of an algorithm with a TA-like structure. We start with

notations summarized in Table 4.2.

To support fast query processing, we build an index for the database vectors similar to

the original TA. The basic index structure consists of a set of 1-dimensional sorted lists (a.k.a

inverted lists in web search [BCH+03]) where each list corresponds to a vector dimension and

contains vectors having non-zero values on that dimension, as mentioned earlier in Section 4.1.
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Table 4.2: Notation

D the vector database
d the number of dimensions
s (bold font) a data vector
q (bold font) a query vector
s[i] or si the i-th dimensional value of s
|s| the L1 norm of s
‖s‖ the L2 norm of s
θ the similarity threshold
cos(p,q) the cosine of two vectors p and q
Li an inverted list built on the i-th dimension
b = (b1, . . . ,bd) a position vector
Li[bi] the bi-th value of Li
L[b] the vector (L1[b1], . . . ,Ld[bd])

Formally, for each dimension i, Li is a list of pairs {(ref(s),s[i]) | s ∈ D ∧ s[i] > 0} sorted in

descending order of s[i] where ref(s) is a reference to the vector s and s[i] is its value on the i-th

dimension. In the interest of brevity, we will often write (s,s[i]) instead of (ref(s),s[i]). As an

example in Figure 4.1, the list L1 is built for the first dimension and it includes 4 entries: (s1,0.8),

(s5,0.7), (s3,0.3), (s4,0.2) because s1, s5, s3 and s4 have non-zero values on the first dimension.

Next, we show the Gathering-Verification framework (Algorithm 5) that operates on the

index structure. The framework includes two phases: the gathering phase and the verification

phase.

Gathering phase (line 1 to line 5). The goal of the gathering phase is to collect a complete

set of candidate vectors while minimizing the number of accesses to the sorted lists. The algorithm

maintains a position vector b = (b1, . . . ,bd) where each bi indicates the current position in the

inverted list Li. Initially, the position vector b is (0, . . . ,0). Then it traverses the lists according to

a traversal strategy that determines the list (say Li) to be accessed next (line 3). Then it advances

the pointer bi by 1 (line 4) and adds the vector s referenced in the entry Li[bi] to a candidate pool

C (line 5). The traversal strategy is usually stateful, which means that its decision is made based

on information that has been observed up to position b and its past decisions. For example, a
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Algorithm 5: Gathering-Verification Framework
input :(D , {Li}1≤i≤d , q, θ)
output :R
/* Gathering phase */

1 Initialize b = (b1, . . . ,bd) = (0, . . . ,0);
// ϕ(·) is the stopping condition

2 while ϕ(b) = false do
// T (·) is the traversal strategy to determine which list to access

next
3 i← T (b);
4 bi← bi +1;
5 Put the vector s in Li[bi] to the candidate pool C ;

/* Verification phase */
6 R ←{s|s ∈ C ∧cos(q,s)≥ θ};
7 return R ;

strategy may decide that it will make the next 20 moves along dimension 6 and thus it needs state

in order to remember that it has already committed to 20 moves on dimension 6.

The gathering phase terminates once a stopping condition is met. Intuitively, based on the

information that has been observed in the index, the stopping condition checks if a complete set

of candidates has already been found.

Next, we formally define stopping conditions and traversal strategies. As mentioned

above, the input of the stopping condition and the traversal strategy is the information that has

been observed up to position b, which is formally defined as follows.

Definition 3 Let b be a position vector on the inverted index {Li}1≤i≤d of a database D. The

partial observation at b, denoted as L(b), is a collection of lists {L̂i}1≤i≤d where for every

1≤ i≤ d, L̂i = [Li[1], . . . ,Li[bi]].

Definition 4 Let L(b) be a partial observation and q be a query with similarity threshold θ.

A stopping condition is a boolean function ϕ(L(b),q,θ) and a traversal strategy is a function

T (L(b),q,θ) whose domain is [d]5. When clear from the context, we denote them simply by ϕ(b)

and T (b) respectively.
5[d] is the set {1, . . . ,d}
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Verification phase (line 6). The verification phase examines each candidate vector s

seen in the gathering phase to verify whether cos(q,s)≥ θ by accessing the database. Various

techniques [TG16, AK15, LCYM17] have been proposed to speed up this process. Essentially,

instead of accessing all the d dimensions of each s and q to compute exactly the cosine similarity,

these techniques decide θ-similarity by performing a partial scan of each candidate vector. We

review these techniques, which we refer to as partial verification, in Section 4.6. Additionally, as

a novel contribution, we show that in the presence of data skewness, partial verification can have

a near-constant performance guarantee (Theorem 8) for each candidate.

4.3 Remark on the suitability of TA-like algorithms

One may wonder whether algorithms that start the gathering phase NOT from the top of

the inverted lists may outperform the best TA-like algorithm. In particular, it appears tempting to

start the gathering phase from the closest to qi point in each inverted list and traverse towards the

two ends of each list. Next, we prove why this idea can lead to poor performance. In particular,

we prove that in a general setting, the computation of a tight and complete stopping condition

(formally defined in Definition 5 and 6) becomes NP-HARD since it needs to take into account

constraints from two pointers (forward and backward) for each inverted list. Furthermore, in

applications like mass spectrometry, the data skewing leads to small savings from pruning the top

area of each list, since the top area is sparsely populated - unlike the densely populated bottom

area of each list. Thus it is not justified to use an expensive gathering phase algorithm for small

savings.

As already reviewed in Section 4.1, the gathering phase stops when the cosine function

score at the current position b is below the input threshold θ. Formally, the baseline stopping

condition ϕBL is

ϕBL(b) =

(
d

∑
i=1

qi ·Li[bi]< θ

)
. (4.1)
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To determine the order of accessing the inverted lists, TA advances all the pointers at equal rate.

An obvious optimization is to move only the pointers whose dimension has non-zero values in q.

Let nz= {i|i ∈ [d]∧qi > 0} be the list of all non-zero dimensions and let m = |nz|. The baseline

traversal strategy TBL is the following:

TBL(b) = nz[ |b| mod m ], (4.2)

so that each inverted list of a non-zero dimension is advanced at equal speed. By the classic result

of [FLN01],

Theorem 2 For inner product threshold queries (without the normalization constraint), the

access cost of the TA-inspired baseline is at most m ·OPT where m is the query’s number of

non-zero dimensions and OPT is the optimal access cost.

For cosine threshold queries, since the baseline condition ϕBL is not tight (Theorem 3), the same

instance optimality bound does not hold.

Section 4.10.1 reviews additional prior work ideas [TG16, TGM15] that avoid traversing

some top/bottom regions of the inverted index. Such ideas may provide additional optimizations

to TA-like algorithms in variations and/or restrictions of the problem (e.g., a restriction that

the threshold is very high) and thus they present future work opportunities in closely related

problems.

4.4 Stopping condition

In this section, we introduce a fine-tuned stopping condition that satisfies the tight and

complete requirements to early terminate the index traversal. These two requirements can be

described informally as follows.

First, the stopping condition has to guarantee completeness (Definition 5), i.e. when the
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stopping condition ϕ holds on a position b, the candidate set C must contain all the true results.

Note that since the input of ϕ is the partial observation at b, we must guarantee that for all possible

databases D consistent with the partial observation L(b), the candidate set C contains all vectors

in D that are θ-similar to the query q. This is equivalent to require that if a unit vector s is found

below position b (i.e. s does not appear above b), then s is NOT θ-similar to q. We formulate this

as follows.

Definition 5 (Completeness) Given a query q with threshold θ, a position vector b on index

{Li}1≤i≤d is complete iff for every unit vector s, s < L[b] implies s ·q < θ. A stopping condition

ϕ(·) is complete iff for every b, ϕ(b) = True implies that b is complete.

The second requirement of the stopping condition is tightness. It is desirable that the

algorithm terminates immediately once the candidate set C contains a complete set of candidates,

such that no additional unnecessary access is made. This can reduce not only the number of

index accesses but also the candidate set size, which in turn reduces the verification cost. This is

formally defined as follows.

Definition 6 (Tightness) A stopping condition ϕ(·) is tight iff for every complete position vector

b, ϕ(b) = True.

It is desirable that a stopping condition be both complete and tight. In Section 4.4.1, we

first show that the baseline stopping condition is complete but not tight. Then in Section 4.4.2,

we present a new stopping condition that is both complete and tight.

4.4.1 The baseline stopping condition is not tight

Theorem 3 The baseline stopping condition

ϕBL(b) =

(
d

∑
i=1

qi ·Li[bi]< θ

)
(4.3)
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Figure 4.2: A 2-d example of ϕBL’s non-tightness

is complete but not tight.

Proof 2 For every position vector b, ϕBL(b) = True implies q ·L[b]< θ. So for every s < L[b],

we also have q · s < θ so ϕBL is complete.

To show the non-tightness, it is sufficient to show that for some position vector b where b

is complete, ϕBL(b) is False so the traversal continues.

We illustrate a counterexample in Figure 4.2 with two dimensions (i.e., d = 2). Given

a query q, all possible θ-similar vectors form a hyper-surface defining the set ans= {s| ‖s‖=

1,∑d
i=1 qi ·si ≥ θ}. In Figure 4.2, ‖s‖= 1 is the circular surface and ∑

d
i=1 qi ·si ≥ θ is a half-plane

so the set of points ans is the arc ÂB.

By definition, a position vector b is complete if the set {s|s < L[b]} contains no point in

ans. A position vector b satisfies ϕBL iff the point L[b] is above the plane ∑
d
i=1 qi · si = θ. It is

clear from Figure 4.2 that if the point L[b] locates at the region BCD, then {s|s < L[b]} contains

no point in ÂB and is above the half-plane ∑
d
i=1 qi · si = θ. There exists a database of 2-d vectors

such that L[b] resides in the BCD region for some position b, so the stopping condition ϕBL is not

tight.

Remark. The baseline stopping condition ϕBL is not tight because it does not take into

account that all vectors in the database are unit vectors. In fact, one can show that ϕBL is tight

and complete for inner product queries where the unit vector assumption is lifted. In addition,

since ϕBL is not tight, any traversal strategy that works with ϕBL has no optimality guarantee in
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general since there can be a gap of arbitrary size between the stopping position by ϕBL and the

one that is tight (i.e. there can be arbitrarily many points in the region BCD).

4.4.2 A tight stopping condition

To guarantee tightness, one can check at every snapshot during the traversal whether the

current position vector b is complete and stop once the condition is true. However, directly testing

the completeness is impractical since it is equivalent to testing whether there exists a real vector

s = (s1, . . . ,sd) that satisfies the following following set of quadratic constraints:


∑

d
i=1 si ·qi ≥ θ

si ≤ Li[bi], ∀ i ∈ [d]

∑
d
i=1 s2

i = 1.

(4.4)

We denote by C(b) (or simply C) the set of Rd points defined by the above constraints. The set

C(b) is infeasible (i.e. there is no satisfying s) if and only if b is complete, but directly testing the

feasibility of C(b) requires an expensive call to a quadratic programming solver. Depending on

the implementation, the running time can be exponential or of high-degree polynomial [BV04].

We address this challenge by deriving an equivalently strong stopping condition that guarantees

tightness and is efficiently testable:

Theorem 4 Let τ be the solution of the equation

d

∑
i=1

min{qi · τ,Li[bi]}2 = 1. (4.5)

The following stopping condition is tight and complete:

ϕTC(b) =

(
d

∑
i=1

min{qi · τ,Li[bi]} ·qi < θ

)
. (4.6)
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Proof 3 The tight and complete stopping condition is obtained by applying the Karush-Kuhn-

Tucker (KKT) conditions [KT14] for solving nonlinear programs. We first formulate the set of

constraints in (4.4) as an optimization problem over s:

maximize
d

∑
i=1

si ·qi subject to
d

∑
i=1

s2
i = 1,

si ≤ Li[bi], i ∈ [d]

(4.7)

So checking whether C is feasible is equivalent to verifying whether the maximal ∑
d
i=1 si ·qi is

at least θ. So it is sufficient to show that ∑
d
i=1 si ·qi is maximized when si = min{qi · τ,Li[bi]} as

specified above.

The KKT conditions of the above maximization problem specify a set of necessary condi-

tions that the optimal s needs to satisfy. More precisely, let

L(s,µ,λ) =
d

∑
i=1

siqi−
d

∑
i=1

µi(Li[bi]− si)−λ

(
d

∑
i=1

s2
i −1

)

be the Lagrangian of (4.7) where λ ∈ R and µ ∈ Rd are the Lagrange multipliers. Then,

Lemma 1 (derived from KKT) The optimal s in (4.7) satisfies the following conditions:

∇sL(s,µ,λ) = 0 (Stationarity)

µi ≥ 0, ∀ i ∈ [d] (Dual feasibility)

µi(Li[bi]− si) = 0, ∀ i ∈ [d] (Complementary slackness)

in addition to the constraints in (4.7) (called the Primal feasibility conditions).

By the Complementary slackness condition, for every i, if µi 6= 0 then si = Li[bi]. If µi 6= 0,

then from the Stationarity condition, we know that for every i, qi + µi−λ · si = 0 so si = qi/λ.

Thus, the value of si is either Li[bi] or qi/λ.

If Li[bi]< qi/λ then since si≤ Li[bi], the only possible case is si = Li[bi]. For the remaining
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dimensions, the objective function ∑
d
i=1 si ·qi is maximized when each si is proportional to qi, so

si = qi/λ. Combining these two cases, we have

si = min{qi/λ,Li[bi]}.

Thus, for the λ that satisfies ∑
d
i=1 min{qi/λ,Li[bi]}2 = 1, the objective function ∑

d
i=1 si · qi is

maximized when si = min{qi/λ,

Li[bi]} for every i. The theorem is obtained by letting τ = 1/λ.

Interpretation of ϕTC. The tight stopping condition ϕTC essentially provides an efficient

way to compute the vector s below L(b) with the maximum cosine similarity with the query q.

Let

MS(L[b]) =
d

∑
i=1

min{qi · τ,Li[bi]} ·qi (4.8)

be the maximum similarity. At the beginning of the gathering phase, bi = 0 for every i so

MS(L[b]) = 1 as s is not constrained. The cosine score is maximized when s = q where τ = 1.

During the gathering phase, as bi increases, the upper bound Li[bi] of each si decreases. When

Li[bi] < qi for some i, si can no longer be qi. Instead, si equals Li[bi], the rest of s increases

proportional to q and τ increases. As illustrated in Figure 4.3, during the traversal, the value of τ

monotonically increases and the score s(L[b]) monotonically decreases. This is because the space

for s becomes more constrained by L(b) as the pointers move deeper in the inverted lists.

4.4.3 Efficient computation of ϕTC with incremental maintenance

Testing the tight and complete condition ϕTC requires solving τ in Equation (4.5), for

which a direct application of the bisection method takes O(d) time. Next, we provide a more

efficient algorithm based on incremental maintenance which takes only O(logd) time for each

test of ϕTC.

95



0 100 200 300 400 500
Steps

0.8

1.0

1.2

1.4

1.6

Va
lu

es MS(L[b])

Figure 4.3: The distribution of τ and MS(L[b])

According to the proof of Theorem 4,

si =


Li[bi], τ≥ Li[bi]

qi
;

qi · τ, otherwise.

(4.9)

Wlog, suppose L1[b1]
q1
≤ ·· · ≤ Ld [bd ]

qd
and τ is in the range [Lk[bk]

qk
,

Lk+1[bk+1]
qk+1

] for some k. We have si = Li[bi] for every 1≤ i≤ k and si = qi · τ for k < i≤ d. So if

we let eval(k,τ) be the function

eval(k,τ) =
d

∑
i=1

s2
i =

k

∑
i=1

Li[bi]
2 +

d

∑
i=k+1

q2
i · τ2, (4.10)

then for the largest k such that eval(k,Lk[bk]/qk)≤ 1, τ can be computed by solving

k

∑
i=1

Li[bi]
2 +

d

∑
i=k+1

q2
i · τ2 = 1

⇒ τ =

(
1−∑

k
i=1 Li[bi]

2

1−∑
k
i=1 q2

i

)1/2

.
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Then, MS(L[b]) can be computed as follows:

MS(L[b]) =
k

∑
i=1

Li[bi] ·qi +(1−
k

∑
i=1

q2
i ) · τ . (4.11)

Computing MS(L[b]) using the above approach directly requires that the Li[bi]’s are sorted in

each step by Li[bi]/qi, which requires O(d logd) time. However, this is still too expensive as

the stopping condition is checked in every step. Fortunately, we show that MS(L[b]) can be

incrementally maintained in O(logd) time as we describe below.

We use a binary search tree (BST) to maintain an order of the Li’s sorted by Li[bi]/qi. The

BST supports the following two operations:

• update(i): update Li[bi]→ Li[bi +1]

• compute(): return the value of MS(L[b])

The compute() operation essentially performs the binary search of finding the largest k mentioned

above. To ensure O(logd) running time, we observe that from Equation (4.11) and (4.11), for

any k, MS(L[b]) can be computed if ∑
k
i=1 Li[bi] ·qi, ∑

k
i=1 Li[bi]

2, and ∑
k
i=1 q2

i are available. Let T

be the BST and each node in T is denoted as an integer n, meaning that the node represents the

list Ln. We denote by subtree(n) the subtree of T rooted at node n, and maintain the following

information for each node n:

• n.key: Ln[bn]/qn,

• n.LQ: ∑i∈subtree(n)Li[bi] ·qi,

• n.Q2: ∑i∈subtree(n) q2
i and

• n.L2: ∑i∈subtree(n)Li[bi]
2 .

Thus, whenever there is a move on the list Li, the key of the node i (i.e., Li[bi]/qi) will

be updated. Then we can remove the node i from the tree and insert it again using the new key,

which takes O(logd) time (with all the associated values being updated as well). To compute
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Figure 4.4: An example of incremental maintenance

MS(L[b]), we need to handle two cases shown in Figure 4.4. In the first case, all the required

information for computing MS(L[b]) are stored in the current node and its left subtree, while in

the second case, the required information needs to be passed from the parent node to the current

node to compute MS(L[b]). See Algorithm 6 for details.

Algorithm 6: compute(T)

1 (LQ parent,Q2 parent,L2 parent)← (0,0,0);
2 MS(L[b])← 1 ; // MS(L[b]) = 1 if ∀i τ≤ Li[bi]/qi
3 n← root(T );
4 while n 6= null do
5 LQ← LQ parent+n.left.LQ+Ln[bn] ·qn;
6 Q2← Q2 parent+n.left.Q2+q2

n;
7 L2← L2 parent+n.left.L2+Ln[bn]2;
8 f(n)← LQ+(1−Q2) ·n.key;
9 if f(n)≤ 1 then

10 τ← ((1−L2)/(1−Q2))1/2;
11 MS(L[b])← LQ+(1−Q2) · τ;
12 n← n.left;

13 else
14 LQ parent← LQ parent+n.left.LQ+Ln[bn] ·qn;
15 Q2 parent← Q2 parent+n.left.Q2+q2

n;
16 L2 parent← L2 parent+n.left.L2+Ln[bn]2;
17 n← n.right;

18 return MS(L[b]);
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4.5 Near-optimal traversal strategy

Given the inverted lists index and a query, there can be many stopping positions that

are both complete and tight. To optimize the performance, we need a traversal strategy that

reaches one such position as fast as possible. Specifically, the goal is to design a traversal

strategy T that minimizes |b| = ∑
d
i=1 bi where b is the first position vector satisfying the tight

and complete stopping condition if T is followed. Minimizing |b| also reduces the number of

collected candidates, which in turn reduces the cost of the verification phase. We call |b| the

access cost of the strategy T . Formally,

Definition 7 (Access Cost) Given a traversal strategy T , we denote by {bi}i≥0 the sequence

of position vectors obtained by following T . The access cost of T , denoted by cost(T ), is the

minimal k such that ϕTC(bk) = True. Note that cost(T ) also equals |bk|.

Definition 8 (Instance Optimality) Given a database D with inverted lists {Li}1≤i≤d , a query

vector q and a threshold θ, the optimal access cost OPT(D,q,θ) is the minimum ∑
d
i=1 bi for

position vectors b such that ϕTC(b) = True. When it is clear from the context, we simply denote

OPT(D,q,θ) as OPT(θ) or OPT.

At a position b, a traversal strategy makes its decision locally based on what has been

observed in the inverted lists up to that point, so the capability of making globally optimal

decisions is limited. As a result, traversal strategies are often designed as simple heuristics, such

as the lockstep strategy in the baseline approach. The lockstep strategy has a d ·OPT near-optimal

bound which is loose in the high-dimensionality setting.

In this section, we present a traversal strategy for cosine threshold queries with tighter

near-optimal bound by taking into account that the index values are skewed in many realistic

scenarios, such as mass spectrometry. We approach the (near-)optimal traversal strategy in two

steps.
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First, we consider the simplified case with the unit-vector constraint ignored so that the

problem is reduced to inner product queries. We propose a general traversal strategy that relies on

convex hulls pre-computed from the inverted lists during indexing. During the gathering phase,

these convex hulls are accessed as auxiliary data during the traversal to provide information on

the increase/decrease rate towards the stopping condition. The hull-based traversal strategy not

only makes fast decisions (in O(logd) time) but is near-optimal (Corollary 1) under a reasonable

assumption. In particular, we show that if the distance between any two consecutive convex hull

vertices of the inverted lists is bounded by a constant c, the access cost of the strategy is at most

OPT+ c. Experiments on real data show that this constant is small in practice.

The hull-based traversal strategy is quite general, as it applies to a large class of functions

beyond inner product called the decomposable functions, which have the form ∑
d
i=1 fi(si) where

each fi is a non-decreasing real function of a single dimension si. Obviously, for a fixed query

q, the inner product q · s is a special case of decomposable functions, where each fi(si) = qi · si.

We show that the near-optimality result for inner product queries can be generalized to any

decomposable function (Theorem 6).

Next, in Section 4.5.5, we consider the cosine queries by taking the normalization con-

straint into account. Although the function MS(·) used in the tight stopping condition ϕTC is not

decomposable so the same technique cannot be directly applied, we show that the hull-based

strategy can be adapted by approximating MS(·) with a decomposable function. In addition,

we show that with a properly chosen approximation, the hull-based strategy is near-optimal

with a small adjustment to the input threshold θ, meaning that the access cost is bounded by

OPT(θ− ε)+ c for a small ε (Theorem 7). Under the same experimental setting, we verify that ε

is indeed small in practice.
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4.5.1 Decomposable functions

We start with defining the decomposable functions for which the hull-based traversal

strategies can be applied:

Definition 9 (Decomposable Function) A decomposable function F(s) is a d-dimensional real

function where

F(s) =
d

∑
i=1

fi(si)

and each fi is a non-decreasing real function.

Given a decomposable function F , the corresponding stopping condition is called a

decomposable condition, which we define next.

Definition 10 (Decomposable condition) A decomposable condition ϕF is a boolean function

ϕF(b) =
(
F(L[b])< θ

)
where F is a decomposable function and θ is a fixed threshold.

When the unit vector constraint is lifted, the decomposable condition is tight and complete

for any scoring function F and threshold θ. As a result, the goal of designing a traversal strategy

for F is to have the access cost as close as possible to OPT when the stopping condition is ϕF .

4.5.2 The max-reduction traversal strategy

To illustrate the high-level idea of the hull-based approach, we start with a simple greedy

traversal strategy called the Max-Reduction traversal strategy TMR(·). The strategy works as

follows: at each snapshot, move the pointer bi on the inverted list Li that results in the maximal

reduction on the score F(L[b]). Formally, we define

TMR(b) = argmax
1≤i≤d

(F(L[b])−F(L[b+1i]))

= argmax
1≤i≤d

( fi(Li[bi])− fi(Li[bi +1]))
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where 1i is the vector with 1 at dimension i and 0’s else where. Such a strategy is reasonable

since one would like F(L[b]) to drop as fast as possible, so that once it is below θ, the stopping

condition ϕF will be triggered and terminate the traversal.

It is obvious that there are instances where the max-reduction strategy can be far from

optimal, but is it possible that it is optimal under some assumption? The answer is positive: if for

every list Li, the values of fi(Li[bi]) are decreasing at decelerating rate, then we can prove that its

access cost is optimal. We state this ideal assumption next.

Assumption 1 (Ideal Convexity) For every inverted list Li, let ∆i[ j] = fi(Li[ j])− fi(Li[ j+ 1])

for 0≤ j < |Li|.6 The list Li is ideally convex if the sequence ∆i is non-increasing, i.e., ∆i[ j+1]≤

∆i[ j] for every j. Equivalently, the piecewise linear function passing through the set of points

{( j, fi(Li[ j]))}0≤ j≤|Li| is convex for each i. A database D is ideally convex if every list Li is

ideally convex.

An example of an inverted list satisfying the above assumption is shown in Figure 4.5(a).

The max-reduction strategy TMR is optimal under the ideal convexity assumption:

Theorem 5 (Ideal Optimality) Given a decomposable function F, for every ideally convex

database D and every threshold θ, the access cost of TMR is exactly OPT.

Proof 4 Let {bt}1≤t≤k be the sequence of position vectors produced by the strategy TMR.

Since each ∆i is non-increasing and the strategy TMR chooses the dimension i with the

maximal ∆i[bi], then at each step t, the multiset {∆i[ j]|1≤ i≤ d,0≤ j ≤ bt [i]} contains the first

t largest values of all the ∆i[ j]’s from the multiset {∆i[ j]|1≤ i≤ d,0≤ j < |Li|}. Since the score

F(L[bt ]) equals
d

∑
i=1

fi(Li[0])−
d

∑
i=1

bt [i]

∑
j=1

∆i[ j] ,

it follows that for each bt of TMR, the score F(L[bt ]) is the lowest score possible for any position

vector reachable in t steps. Thus, if the optimal access cost OPT is t with an optimal stopping
6Recall that Li[0] = 1.
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Figure 4.5: Convexity and near-convexity

position bOPT, then bt , the t-th position of TMR, satisfies that F(L[bt ]) ≤ F(L[bOPT]) < θ. So

TMR is optimal.

4.5.3 The hull-based traversal strategy

Theorem 5 provides a strong performance guarantee but the ideal convexity assumption

is usually not true on real datasets. Without the ideal convexity assumption, the strategy suffers

from the drawback of making locally optimal but globally suboptimal decisions. The pointer bi to

an inverted list Li might never be moved if choosing the current bi only results in a small decrease

in the score F(L[b]), but there is a much larger decrease several steps ahead. As a result, the TMR

strategy has no performance guarantee in general.

In most practical scenarios, we can bring the traversal strategy TMR to practicality by

considering a relaxed version of Assumption 1. Informally, instead of assuming that each list

fi(Li) forms a convex piecewise linear function, we assume that fi(Li) is “mostly” convex,

meaning that if we compute the lower convex hull [DBCVKO08] of fi(Li), the gap between any

two consecutive vertices on the convex hull is small.7 Intuitively, the relaxed assumption implies

that the values at each list are decreasing at “approximately” decelerating speed. It allows list

segments that do not follow the overall deceleration trend, as long as their lengths are bounded by

a constant. We verified this property in the mass spectrometry dataset, as illustrated in Figure 4.6.

We formally state the assumption next.

7We denote by fi(Li) the list [ fi(Li[0]), fi(Li[1]), . . . ] for every Li.
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Figure 4.6: The skewed inverted lists in mass spectrometry

Assumption 2 (Near-Convexity) For every inverted list Li, let Hi be the lower convex hull of the

set of 2-D points {( j, fi(Li[ j]))}0≤ j≤|Li| represented by a set of indices Hi = { j1, . . . , jn} where

for each 1 ≤ k ≤ n, ( jk, fi(Li[ jk])) is a vertex of the convex hull. The list Li is near-convex if

for every k, jk+1− jk is upper-bounded by some constant c. A database D is near-convex if

every inverted list Li is near-convex with the same constant c, which we refer to as the convexity

constant.

Example 1 Intuitively, the near-convexity assumption captures the case where each fi(Li) is

decreasing with approximately decelerating speed, so the number of points between two convex

hull vertices should be small. For example, when fi is a linear function, the list Li shown in Figure

4.5(b) is near-convex with convexity constant 2 since there is at most 1 point between each pair of

consecutive vertices of the convex hull (dotted line). In the ideal case shown in Figure 4.5(a), the

constant is 1 when the decrease between successive values is strictly decelerating.
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Imitating the max-reduction strategy, for every pair of consecutive indices jk, jk+1 in Hi

and for every index j ∈ [ jk, jk+1), let ∆̃i[ j] =
fi(Li[ jk])− fi(Li[ jk+1])

jk+1− jk
. Since the ( jk, fi(Li[ jk]))’s

are vertices of a lower convex hull, each sequence ∆̃i is non-decreasing. Then the hull-based

traversal strategy is simply defined as

THL(b) = argmax
1≤i≤d

(∆̃i[bi]). (4.12)

Remark on data structures. In a practical implementation, to answer queries with

scoring function F using the hull-based strategy, the lower convex hulls need to be ready before

the traversal starts. If F is a general function unknown a priori, the convex hulls need to be

computed online which is not practical. Fortunately, when F is the inner product F(s) = q · s

parameterized by the query q, each convex hull Hi is exactly the convex hull for the points

{( j,Li[ j])}0≤i≤|Li| from Li. So by using the standard convex hull algorithm [DBCVKO08], Hi

can be pre-computed in O(|Li|) time. Then the set of the convex hull vertices Hi can be stored as

inverted lists and accessed for computing the ∆̃i’s during query processing. In the ideal case, Hi

can be as large as |Li| but is much smaller in practice.

Moreover, during the traversal using the strategy THL, choosing the maximum ∆̃i[bi] at

each step can be done in O(logd) time using a max heap. This satisfies the requirement that the

traversal strategy is efficiently computable.

4.5.4 Near-optimality results

We next show that the hull-based strategy THL is near-optimal under the near-convexity

assumption.

Theorem 6 Given a decomposable function F, for every near-convex database D and every

threshold θ, the access cost of THL is strictly less than OPT+ c where c is the convexity constant.

When the assumption holds with a small convexity constant, this near-optimality result provides a
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much tighter bound compared to the d ·OPT bound in the TA-inspired baseline. This is achieved

under data assumption and by keeping the convex hulls as auxiliary data structure, so it does not

contradict the lower bound results on the approximation ratio [FLN01]. Next, we formally prove

the theorem.

Proof 5 Let B = {bi}i≥0 be the sequence of position vectors generated by THL. We call a position

vector b a boundary position if every bi is the index of a vertex of the convex hull Hi. Namely,

bi ∈ Hi for every i ∈ [d]. Notice that if we break ties consistently during the traversal of THL, then

in between every pair of consecutive boundary positions b and b′ in B , THL(b) will always be

the same index. We call the subsequence positions {bi}l≤i<r of B where bl = b and br = b′ a

segment with boundaries (bl,br).

We show the result using the following lemma.

Lemma 2 For every boundary position vector b generated by THL, we have F(L[b])≤ F(L[b∗])

for every position vector b∗ where |b∗|= |b|.

Intuitively, the above lemma says that if the traversal of THL reaches a boundary position

b, then the score F(L[b]) is the minimal possible score obtained by any traversal sequence of

at most |b| steps. Lemma 2 is sufficient for Theorem 6 because of the following. Suppose bstop

is the stopping position in B , which means that bstop is the first position in B that satisfies ϕF

and the access cost is |bstop|. Let {bi}l≤i<r be the segment that contains bstop. Given Lemma

2, Theorem 6 holds trivially if bstop = bl . It remains to consider the case bstop 6= bl . Since the

traversal does not stop at bl , we have F(L[bl])≥ θ. By Lemma 2, bl is the position with minimal

F(L[·]) obtained in |bl| steps so |bl| ≤ OPT. Since |bstop|− |bl|< |br|− |bl| ≤ c, we have that

|bstop|< OPT+ c. We illustrate this in Figure 4.7.

Now it remains to show Lemma 2. We construct a new collection of inverted lists {L̃i}1≤i≤d

from the original lists as follows. For every i and every pair of consecutive indices jk, jk+1 of Hi,
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Figure 4.7: Illustration of Theorem 6

we assign

L̃i[ j] = fi(Li[ jk])+( j− jk) · ∆̃i[ j] for every j ∈ [ jk, jk+1].

Intuitively, we construct each L̃i by projecting the set of 2D points {(i, fi(Li[ j]))} j∈[ jk, jk+1] onto

the line passing through the two boundary points with index jk and jk+1, which is essentially

projecting the set of points onto the piecewise linear function defined by the convex hull vertices

in Hi (See Figure 4.5(c) for an illustration). The new {L̃i}1≤i≤d satisfies the following properties.

(i) By the construction of each convex hull Hi, we have L̃i[ j]≤ fi(Li[ j]) for every i and j.

(ii) For every boundary position b, we have L̃[b] = F(L[b]) since for every index j on a convex

hull Hi, L̃[ j] = fi(Li[ j]).

(iii) The collection {L̃i}1≤i≤d is ideally convex8. In addition, the strategy THL produces exactly

the same sequence reduced by the max-reduction strategy TMR when {L̃i}1≤i≤d is given as

the input. By the same analysis for Theorem 5, for every position vector b generated by

THL, L̃[b] is minimal among all position vectors reached within |b| steps.

Combining (ii) and (iii), for every boundary position vector b generated by THL and every b∗

where |b∗|= b, we have F(L[b]) = L̃[b]≤ L̃[b∗]. Finally, by (i) and since F is non-decreasing,

we have L̃[b∗]≤ F(L[b∗]) so F(L[b])≤ F(L[b∗]) for every b∗.

8where each fi of the decomposable function F is the identity function
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Since the baseline stopping condition ϕBL is tight and complete for inner product queries,

one immediate implication of Theorem 6 is that

Corollary 1 (Informal) The hull-based strategy THL for inner product queries is near-optimal.

Verifying the assumption. We demonstrate the practical impact of the near-optimality

result in real mass spectrometry datasets. The near-convexity assumption requires that the gap

between any two consecutive convex hull vertices has bounded size, which is hard to achieve

in general. According to the proof of Theorem 6, for a given query, the difference from the

optimal access cost is at most the size of the gap between the two consecutive convex hull vertices

containing the last move of the strategy (the bl and br in Figure 4.2). The size of this gap can be

much smaller than the global convexity constant c, so the overall precision can be much better in

practice. We verify this by running a set of 1,000 real queries on the dataset9. The gap size is

163.04 in average, which takes only 1.3% of the overall access cost of traversing the indices. This

indicates that the near-optimality guarantee holds in the mass spectrometry dataset.

4.5.5 The traversal strategy for cosine

Next, we consider traversal strategies which take into account the unit vector constraint

posed by the cosine function, which means that the tight and complete stopping condition is ϕTC

introduced in Section 4.4. However, since the scoring function MS in ϕTC is not decomposable,

the hull-based technique cannot be directly applied. We adapt the technique by approximating

the original MS with a decomposable function F̃ . Without changing the stopping condition ϕTC,

the hull-based strategy can then be applied with the convex hull indices constructed with the

approximation F̃ . In the rest of this section, we first generalize the result in Theorem 6 to scoring

functions having decomposable approximations and show how the hull-based traversal strategy

can be adapted. Next, we show a natural choice of the approximation for MS with practically

9https://proteomics2.ucsd.edu/ProteoSAFe/index.jsp
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tight near-optimal bounds. Finally, we discuss data structures to support fast query processing

using the traversal strategy.

We start with some additional definitions.

Definition 11 A d-dimensional function F is decomposably approximable if there exists a decom-

posable function F̃, called the decomposable approximation of F, and two non-negative constants

ε1 and ε2 such that F̃(s)−F(s) ∈ [−ε1,ε2] for every vector s.

When applied to a decomposably approximable function F , the hull-based traversal

strategy THL is adapted by constructing the convex hull indices and the {∆̃i}1≤i≤d using the

approximation F̃ . The following can be obtained by generalizing Theorem 6:

Theorem 7 Given a function F approximable by a decomposable function F̃ with constants

(ε1,ε2), for every near-convex database D wrt F̃ and every threshold θ, the access cost of THL is

strictly less than OPT(θ− ε1− ε2)+ c where c is the convexity constant.

Proof 6 Recall that bl is the last boundary position generated by THL that does not satisfy the

tight stopping condition for F (which is ϕTC when F is MS) so F(L[bl])≥ θ. It is sufficient to

show that for every vector b∗ where |b∗|= |bl|, F(L[b∗])≥ θ− ε1− ε2 so no traversal can stop

within |bl| steps, implying that the final access cost is no more than |bl|+ c which is bounded by

OPT(θ− ε1− ε2)+ c.

By Lemma 2, we know that for every such b∗, F̃(L[b∗]) ≥ F̃(L[bl]). By definition of

the approximation F̃, we know that F(L[b∗]) ≥ F̃(L[b∗])− ε1 and F̃(L[bl]) ≥ F(L[bl])− ε2.

Combined together, for every b∗ where |b∗|= |bl|, we have

F(L[b∗])≥ F̃(L[b∗])− ε1 ≥ F̃(L[bl])− ε1

≥ F(L[bl])− ε1− ε2 ≥ θ− ε1− ε2.

This completes the proof of Theorem 7.
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Choosing the decomposable approximation. By Theorem 7, it is important to choose

an approximation F̃ of MS with small ε1 and ε2 for a tight near-optimality result. By inspecting

the formula (4.8) of MS, one reasonable choice of F̃ can be obtained by replacing the term τ with

a fixed constant τ̃. Formally, let

F̃(L[b]) =
d

∑
i=1

min{qi · τ̃,Li[bi]} ·qi (4.13)

be the decomposable approximation of MS where each component is a non-decreasing function

fi(x) = min{qi · τ̃,x} ·qi for i ∈ [d].

Ideally, the approximation is tight if the constant τ̃ is close to the final value of τ which is

unknown in advance. Next, we argue that when τ̃ is properly chosen, the approximation parameter

ε1 + ε2 is very small.

For ε1: A trivial upper bound of ε1 is τ̃−1 since the initial value of τ is 1 and the gap

F̃(L[b])−MS(L[b]) is maximized when b = 0. This upper bound can be improved as follows. We

notice that in the proof of Theorem 7, given |b∗|= |bl|, we need to have F(L[b∗])≥ θ−ε1−ε2 for

every such b∗, which is equivalent to requiring that this property holds for the b∗ that minimizes

F(L[b∗]) given |b∗| = |bl|. This b∗ satisfies that F(L[b∗]) ≤ F(L[bl]) and F(L[bl]) is known

when the query is executed. This upper bound of F(L[b∗]) implies a lower bound of τ at position

b∗, which also implies the following lower bound of MS(L[b∗])− F̃(L[b∗]):

(†) MS(L[b∗])− F̃(L[b∗])≥min{0,1/MS(L[bl])− τ̃}.

The complete proof of (†) is provided in Lemma 3. Thus, when the query is given, ε1 is at most

max{0, τ̃−1/MS(L[bl])}.

For ε2: In general, there is no upper bound for τ since it can be as large as Li[bi]/qi for

some i. The gap MS(L[b])− F̃(L[b]) can be close to 1. However, the proof of Theorem 7 only

requires ε2 to be at least the difference between MS and F̃ at position bl . So ε2 is upper-bounded
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by MS(L[bl])− F̃(L[bl]) for a given query.

Summarizing the above analysis, the approximation factor ε is determined by the following

two factors:

1. how much the approximation F̃ is smaller than the scoring function MS at bl , the starting

position of the last segment chosen during the traversal, and

2. how much F̃ is bigger than MS at the optimal position with exactly |bl| steps that minimizes

MS.

This yields the following upper bound of ε:

ε≤max{0, τ̃−1/MS(L[bl])}+MS(L[bl])− F̃(L[bl]). (4.14)

Lemma 3 Let b be an arbitrary position vector and let b∗ be the position vector such that

b∗ = arg min
b′:|b|=|b′|

{MS(L[b′])}.

Then

(†) MS(L[b∗])− F̃(L[b∗])≥min{0,1/MS(L[b])− τ̃}.

where F̃ is the decomposable function where each component is fi(x) = min{τ̃ · qi,x} · qi for

constant τ̃ and every 1≤ i≤ d.

Proof 7 Let τ∗ be the value of τ at L[b∗]. We consider two cases separately: τ∗ ≥ τ̃ and τ∗ < τ̃.

Case One: When τ∗ ≥ τ̃, since each fi increases as τ̃ increases, we have

fi(x) = min{τ̃ ·qi,x} ·qi ≤min{τ∗ ·qi,x} ·qi

thus MS(L[b∗])≥ F̃(L[b∗]).

Case Two: Suppose τ∗ < τ̃. We show the following Lemma.
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Lemma 4 For every position b and constant c, MS(L[b])< c implies that the τ at L[b] is at least

1/c.

Recall the notations LQ= ∑i:Li[bi]<τ·qi Li[bi] ·qi, Q2=

∑i:Li[bi]<τ·qi q2
i and L2= ∑i:Li[bi]<τ·qi Li[bi]

2. Then τ satisfies that

LQ+(1−Q2) · τ < c (4.15)

and

L2+(1−Q2) · τ2 = 1. (4.16)

By rewriting Equation (4.16), we have (1−Q2) = (1−L2)/τ2. Plug this into (4.15), we have

LQ+(1−L2)/τ < c. Since Li[bi]< τ ·qi, we have LQ> L2/τ so 1/τ < c which means τ > 1/c.

This completes the proof of Lemma 4.

We know that since b∗ minimizes MS(L[b′]) among all b′ with |b′| = |b|, we have

MS(L[b∗])≤MS(L[b]). By Lemma 4, we have τ∗ ≥ 1/MS(L[b]).

Now consider MS(L[b∗])− F̃(L[b∗]). Since τ∗ < τ̃, MS(L[b∗])− F̃(L[b∗]) can be written

as the sum of the following 3 terms:

• ∑i:Li[bi]/qi<τ∗(Li[bi] ·qi−Li[bi] ·qi), which is always 0,

• ∑i:τ∗≤Li[bi]/qi<τ̃(q2
i · τ∗−Li[bi] ·qi) and

• ∑i:τ̃≤Li[bi]/qi(q
2
i · τ∗−q2

i · τ̃).

In the second term, since each Li[bi] is at most qi · τ̃, so this term is greater than or equal to

∑i:τ∗≤Li[bi]/qi<τ̃(q2
i · τ∗− q2

i · τ̃). Adding them together, we have MS(L[b∗])− F̃(L[b∗]) is lower

bounded by

∑
i:τ∗≤Li[bi]/qi

q2
i · (τ∗− τ̃)
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Figure 4.8: The distribution of ε

which is greater than or equal to τ∗− τ̃. Since τ∗≥ 1/MS(L[b]), we have MS(L[b∗])− F̃(L[b∗])≥

1/MS(L[b])− τ̃. Finally, combining case one and two together completes the proof of Lemma 3.

Verifying the near-optimality. Next, we verify that the above upper bound of ε is small in

practice. We ran the same set of queries as in Section 4.5.4 and show the distribution of ε’s upper

bounds in Figure 4.8. We set τ̃ = 1/θ for all queries so the first term of (4.14) becomes zero. Note

that more aggressive pruning can yield better ε, but it is not done here for simplicity. Overall, the

fraction of queries with an upper bound <0.12 (the sum of the first 3 bars for all θ) is 82.5% and

the fraction of queries with ε > 0.16 is 0.5%. Similar to the case with inner product queries, the

average of the convexity constant c is 193.39, which is only 4.8% of the overall access cost.

Remark on data structures. Similar to the inner product case, it is necessary that the

convex hulls for THL can be efficiently obtained without a full computation when a query comes

in. For every i ∈ [d], we let H̃i be the convex hull for the i-th component fi of F̃ and Hi be the

convex hull constructed directly from the original inverted list Li. Next, we show that each H̃i can

be efficiently obtained from Hi during query time so we only need to pre-compute the Hi’s.

We observe that when Li[bi] ≥ qi · τ̃, fi(Li[bi]) equals a fixed value q2
i · τ̃ otherwise is

proportional to Li[bi]. As illustrated in Figure 4.9 (left), the list of values { fi(Li[ j])} j≥0 is

essentially obtained by replacing the Li[ j]’s greater than qi · τ̃ with qi · τ̃.

The following can be shown using properties of convex hulls:
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Figure 4.9: The construction of the convex hull H̃i

Lemma 5 For every i ∈ [d], the convex hull H̃i is a subset of Hi where an index jk of Hi is in H̃i

iff k = 1 or
qi · τ̃−Li[ jk]

jk
≥ Li[ jk]−Li[ jk+1]

jk+1− jk
. (4.17)

Lemma 5 provides an efficient way to obtain each convex hull H̃i from the pre-computed Hi’s.

When a query q is given, we perform a binary search on each Hi to find the first jk ∈ Hi that

satisfies (4.17). Then H̃i is the set of indices {0, jk, jk+1 . . .}. We illustrate the construction in

Figure 4.9 (right).

Suppose that the maximum size of all Hi is h. The computation of the H̃i’s adds an extra

O(d logh) of overhead to the query processing time, which is insignificant in practice since h is

likely to be much smaller than the size of the database.

4.6 The verification phase

Next, we discuss optimizations in the verification phase where each gathered candidate

is tested for θ-similarity with the query. The naive approach of verification is to fully access

all the non-zero entries of each candidate s to compute the exact similarity score cos(q,s)

and compare it against θ, which takes O(d) time. Various techniques have been proposed

[TG16, AK15, LCYM17] to decide θ-similarity by leveraging only partial information about the

candidate vector so the exact computation of cos(q,s) can be avoided. In this section, we revisit
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these existing techniques which we call partial verification. In addition, as a novel contribution,

we show that in the presence of data skewness, partial verification can have a near-constant

performance guarantee (Theorem 8).

Informally, while a vector s is scanned, based on what has been observed in s so far, it is

possible to infer that

(1) the similarity score cos(q,s) is certainly at least θ or

(2) the similarity score is certainly below θ.

In either case, we can stop without scanning the rest of s and return an accurate verification result.

The problem is formally defined as follows:

Problem 1 (Partial Verification) A partially observed vector s̃ is a d-dimensional vector in

(R≥0∪{⊥})d . Given a query q and a partially observed vector s̃, compute whether for every

vector s where s[i] = s̃[i] for every s̃[i] 6=⊥, it is cos(s,q)≥ θ.

Intuitively, a partially observed vector s̃ contains the entries of a candidate s either already

observed during the gathering phase, or accessed for the actual values during the verification

phase. The unobserved dimensions are replaced with a null value ⊥. We say that a vector s is

compatible with a partially observed one s̃ if s[i] = s̃[i] for every dimension i where s̃[i] 6=⊥.

The partial verification problem can be solved by computing an upper and a lower bound

of the cosine similarity between s and q when s̃ is observed. We denote by ub(s̃) and lb(s̃)

the upper bound and lower bound, so ub(s̃) = maxs{s ·q} and lb(s̃) = mins{s ·q} where the

maximum/minimum are taken over all s compatible with s̃. By [TG16, AK15, LCYM17], the

upper/lower bounds can be computed as follows:
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Lemma 6 Given a partially observed vector s̃ and a query vector q,

ub(s̃) = ∑
s̃[i]6=⊥

s̃[i] ·q[i]+
√

1− ∑
s̃[i]6=⊥

s̃[i]2 ·
√

1− ∑
s̃[i]6=⊥

q[i]2 ,

and

lb(s̃) = ∑
s̃[i]6=⊥

s̃[i] ·q[i]+
√

1− ∑
s̃[i]6=⊥

s̃[i]2 · min
s̃[i]=⊥

q[i] .

Example 2 Figure 4.10 shows an example of computing the lower/upper bounds of a partially

scanned vector s with a query q. Assume the first three dimensions have been scanned, then the

lower bound and upper bound are computed as follows:

lb = 0.8×0+0.4×0.7+0.3×0.5 = 0.43

ub = lb+
√

1−0.82−0.42−0.32 ·
√

1−0.72−0.52 = 0.6

If the threshold θ is 0.7, then it is certain that s is not θ-similar to q because 0.6 < 0.7. The

verification algorithm can stop and avoid the rest of the scan. Note that when q is sparse, most of

the time we have lb(s̃) = ∑s̃[i]6=⊥ s̃[i] ·q[i] due to the existence of 0’s.

1 2 3 4 5 6 7 8 9 10

s

q 0.50.7 0.5

0.8 0.3 0.20.30.4

Figure 4.10: An example of the lower and upper bounds

Performance Guarantee. Next, we show that when the data is skewed, partial verifi-

cation achieves a strong performance guarantee. We assume that each candidate s is stored in

the database such that s[1]≥ s[2]≥ ·· · ≥ s[d] and we scan s sequentially starting from s[1]. We

notice that partial verification saves data accesses when there is a gap between the true similarity
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score and the threshold θ. Intuitively, when this gap is close to 0, both the upper and lower bounds

converge to θ as we scan s so we might not stop until the last element. When the gap is large and

s is skewed, meaning that the first few values account for most of the candidate’s weight, then

the first few s[i] ·q[i] terms can provide large enough information for the lower/upper bounds to

decide θ-similarity. Formally,

Theorem 8 Suppose that a vector s is skewed: there exists an integer k ≤ d and constant value c

such that ∑
k
i=1 s[i]2 ≥ c. For every query (q,θ), if |cos(s,q)−θ| ≥

√
1− c, then the number of

accesses for verifying s is at most k.

Equivalently, Theorem 8 says that if the true similarity is at least δ off the threshold θ (i.e.

|cos(s,q)−θ| ≥ δ for δ > 0), then it is only necessary to access k entries of s with the smallest k

that satisfies ∑
k
i=1 s[i]2 ≥ 1−δ2. For example, if δ = 0.1 and the first 20 entries of a candidate s

account for ¿99% of ∑
d
i=1 s[i]2, then it takes at most 20 accesses for verifying s.

Proof 8 Case one: We first consider the case where cos(s,q)−θ ≥
√

1− c. In this case, we

need to show ∑
k
i=1 s[i] ·q[i]≥ θ. Since cos(s,q)−θ≥

√
1− c, which means

k

∑
i=1

s[i] ·q[i]+
d

∑
i=k+1

s[i] ·q[i]≥ θ+
√

1− c ,

it suffices to show that ∑
d
i=k+1 s[i] ·q[i]≤

√
1− c. This can be obtained by

d

∑
i=k+1

s[i] ·q[i]≤

√√√√ d

∑
i=k+1

s[i]2 ·

√√√√ d

∑
i=k+1

q[i]2

=

√√√√1−
k

∑
i=1

s[i]2 ·

√√√√1−
k

∑
i=1

q[i]2

≤
√

1− c .

Case two: We then consider the case where cos(s,q)−θ ≤ −
√

1− c. In this case, we
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Figure 4.11: The distribution of number of accesses and true similarities

need to show
k

∑
i=1

s[i] ·q[i]+

√√√√1−
k

∑
i=1

s[i]2 ·

√√√√1−
k

∑
i=1

q[i]2 ≤ θ .

The first term of the LHS is bounded by ∑
d
i=1 s[i] ·q[i]≤ θ−

√
1− c. The second term of the LHS

is bounded by
√

1−∑
k
i=1 s[i]2

≤
√

1− c. Adding together, the LHS is bounded by θ.

Example 3 Figure 4.11a shows the number of accesses for each candidate during the verification

phase of a real query with a vector having 100 non-zero valuesand θ = 0.6. The result shows

that for most candidates, the number of accesses is much smaller than 100. In particular, 55.9%

candidates need less than five accesses and 93.1% candidates need less than 30 accesses. This is

because as shown in Figure 4.11b, only 0.23% of candidates have true similarity within ±0.2

compared to θ (the range [0.4, 0.8]). The rest of the candidates, according to Theorem 8, can be

verified in a small number of steps.

4.7 System design and implementation

In this section, we present a mass spectrometry search system based on the techniques

mentioned in prior sections.
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Query processor

Index manager Storage manager

query results

Figure 4.12: Mass spectrometry search system architecture

4.7.1 System architecture

The goal of the system is to find similar spectra for given a query spectrum. Figure 4.12

shows the system architecture that takes as input a user query (or a collection of queries) and

returns the search results. There are three major components of the system:

• Query processor. It receives user queries and accesses the index manager and storage

manager to support efficient query processing following Algorithm 5.

• Index manager. It builds and stores index (i.e., a collection of value-sorted lists) to support

the gathering phase of the algorithm to return a collection of candidates.

• Storage manager. It stores and manages the actual spectrum. It supports the verification

phases of the algorithm to verify whether a candidate is a true result.

4.7.2 Index manager

The index structure consists of a collection of value-sorted lists where each list is built

for a dimension and is augmented with convex hull for fast query processing as illustrated in

Section 4.2 and Section 4.5. In the implementation, instead of building the index for the whole

dataset, we build it per bucket as explained next to significantly reduce the search space.
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Before diving into the buckets, we describe a bit more on mass spectrometry. A spectrum

s is associated with an extra attribute peptide mass sp that measures the molecular weight of the

spectrum. Observe that two spectra s and r are similar only if their peptide mass values are close

enough, i.e., |sp− rp| ≤ λ, where λ is a threshold parameter (e.g., 2).

As a result, we partition the whole spectrum dataset based on their peptide mass value and

each bucket stores the spectra that share the same peptide mass. Thus, we build index per bucket

and only search relevant buckets upon query processing. For example in Figure 4.13, assume the

query has peptide mass 504 and λ = 1, then it only needs to search bucket 503, 504, and 505,

which will dramatically reduce the search space.

6 / 50

mass 501 mass 502 mass 503 mass 504 mass 505

query spectrum

(mass 504)

Figure 4.13: Index partitioning

The index manager supports both in-memory and on-disk accesses. In general, it stores

the whole index in main memory. However, if the whole index cannot fit into memory, it stores

bucket indexes in memory such that queries can be executed in a bucket at a time.

Besides that, the in-memory version index is optimized for CPU caches. Recall in TA,

there is a randomly accessed list built on top of the sorted list to fetch the i-th dimensional value

of a spectrum s. However, that design incurs too many CPU cache misses because the list is

usually very long. Instead, we defer the access of s[i] to the verification phase and sequentially

scan all the peaks of the candidate s to reduce CPU cache misses.
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4.7.3 Storage manager

As mentioned above, we partition the whole spectrum dataset into buckets based on

peptide mass values. Thus, the storage manager maintains a collection of buckets where each

bucket can be stored as a single file or multiple buckets share the same file to avoid opening

too many files in the system.10 The storage manager also maintains metadata to keep track of

the routing information such that it can access the right buckets. Note that the design is very

suitable for parallelism where each processor can process a single file without any synchronization

overhead.

In terms of the storage within a bucket, we serialize each spectrum into bytes and store

them sequentially on the disk. Since each spectrum may have different size, we also store metadata

that remembers the files offset and size of the spectrum, see Figure 4.14. For a single spectrum,

all the peaks are sorted in descending order based on the intensity to allow fast verification as

explained in Section 4.6.
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Figure 4.14: Spectrum storage

To reduce the space overhead, we also compress the spectrum. Let si be the i-th intensity

and ŝi be its discretized value, i.e., ŝi =
round(2b·si)

2b , where b is the number of bits for compression

(e.g., b = 8). Then ŝi can be represented as an integer round(2b · si), which is stored in b bits.

Note that |si− ŝi| ≤ 1
2b · 1

2 for every i.

10Many operating systems have a limit of the number of maximal files opened, e.g., the default value of CentOS
(used in the experiments) is 1024.
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Given a query spectrum q (non-compressed) and a data spectrum s (compressed), then the

error bound of the similarity is,

|
d

∑
i=1

(qi · si)−
d

∑
i=1

(qi · ŝi)|=
d

∑
i=1

(qi · |si− ŝi|)

≤
d

∑
i=1

(qi ·
1

2b+1 )

=
1

2b+1

d

∑
i=1

qi

≤ 1
2b+1

√√√√d ·
d

∑
i=1

q2
i

=

√
d

2b+1

As an example, Table 4.3 shows the error bound assuming d is 100. It shows that the error

bound is very small.

Table 4.3: Error bound

b (bits) absolute error (d = 100)
8 0.019531
9 0.009766
10 0.004883
11 0.002441
12 0.001221
13 0.00061
14 0.000305
15 0.000153
16 0.000076

Next, we compute the score lower bound and upper bound for verification. Note that:

ŝi− ε≤ si ≤ ŝi + ε where ε =
1

2b+1
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lower bound =
k

∑
i=1

(qi · si)

≥
k

∑
i=1

(qi · (ŝi− ε))

=
k

∑
i=1

(qi · ŝi)− ε

k

∑
i=1

qi

upper bound =
k

∑
i=1

(qi · si)+

√√√√1−
d

∑
i=k+1

q2
i ·

√√√√1−
d

∑
i=k+1

s2
i

≤
k

∑
i=1

(qi · (ŝi + ε))+

√√√√1−
d

∑
i=k+1

q2
i ·

√√√√1−
d

∑
i=k+1

(ŝi− ε)2

4.7.4 Query processor

We implement the query processor within every bucket such that only relevant buckets are

investigated to reduce the search space. However, we also add another optimization of clustering

to make the lists within each cluster skew. We then develop a pruning condition such that a whole

cluster of spectra can be pruned directly.

𝒒

𝒙

sin
𝜃

2

Figure 4.15: Relationship between cosine distance and Euclidean distance

We first show that on normalized vectors, the Euclidean distance and cosine similarity are

equivalent. In particular, if the angle of two normalized vectors q(q1,q2, ...,qd) and x(x1,x2, ...,xd)

is θ (i.e., their cosine similarity is cosθ), then their Euclidean distance rθ = 2sin(θ/2). Figure 4.15
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q
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Figure 4.16: Illustration of clustering pruning

shows their relationship.

Thus, if ‖q,c‖− r > rθ where c is the center of a cluster, r is the radius of the cluster, and

rθ is the corresponding radius of the query threshold θ, then the whole cluster can be pruned

directly, see Figure 4.16.

Next, we show the optimizations of batch query processing where a collection of queries

are received. We first sort all the query spectra based on peptide mass values. In this way,

those query spectra that share the same peptide mass value will be routed to the same bucket for

searching. As a result, we only need to load the index and data of that bucket once to reduce disk

I/O significantly.

Besides that, our techniques can also be extended to handle dimension tolerance. Let

〈ki,vi〉 be the i-th peak of a spectrum where ki and vi are float numbers, δ be the peak granularity

(e.g., δ = 0.01), ε be the dimension tolerance (e.g., ε = 0.05), then the dimensions that ki matches

range from ki
δ
− ε

δ
to ki

δ
+ ε

δ
. During query processing, we need to match ki to all those relevant

lists as well. A naive implementation would be merging the relevant lists off-line in the index

building phase. However, it increases the space overhead. A space-efficient solution is to only

store the convex hull of the merged lists and access the “virtual” merged list on-line.
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4.8 Experiments

In this section, we present the experimental results.

4.8.1 Experimental setting

We conduct experiments on an Intel server (Xeon CPU E5-2667 v4 @ 3.20GHz, 12

physical cores, 250GB DRAM) with CentOS 6.6 installed. There is a 1TB SSD attached to the

server. We implement the system using C++.

The dataset consists of a collection of 13.3 million spectra. We randomly pick up 1000

queries and evaluate the overall query time.

4.8.2 Experimental results

In the first experiment, we show the space overhead, see Table 4.4. The index size is

slightly higher than the data size due to extra convex hull points built per list.

Table 4.4: Space overhead

number of spectra 13.3 million
data size 10GB
index size 12GB

Next, we compare our method with two other solutions: TA and WHOLE, where WHOLE

means to scan all the whole lists within a bucket without pruning. All the algorithms are performed

on a single bucket. We set the default query threshold θ as 0.6,11 which is a commonly accepted

parameter in the mass spectrometry domain. Figure 4.17 shows the results. It shows that our

algorithm is 7.2× faster than the WHOLE algorithm that scans the whole lists; it is 2.8× faster than

TA. The main reason is that our algorithm adopts an advanced stopping condition that terminates

much earlier and a better traversal strategy that minimizes the index accesses.

11Note that we will vary the parameter θ later on.
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Figure 4.17: Query execution time

Table 4.5 shows the detailed time breakdown (i.e., gathering time and verification time)

and statistics to understand our algorithm. The statistics include the number of index accesses,

candidate size, and result size. In which, the number of index accesses is defined as ∑i=1 bi

where bi is the stopping position of list Li. It shows that gathering phase is the performance

bottleneck for all the three algorithms. Our algorithm can reduce both index accesses and number

of candidates significantly when compared to other algorithms. Table 4.5 shows that the gathering

time is roughly propositional to the number of index accesses and verification time is roughly

propositional to the candidate set size. Besides that, it is also interesting to see from Table 4.5

that in our algorithm, the ratio of candidate set size and the final result set size is 427418 / 210310

= 2×, meaning that our algorithm incurs at most twice of the index accesses when compared to

the optimal algorithm that may not exist.

Next, we evaluate the algorithms with varying query threshold θ and report the query

execution time, number of index accesses and number of candidates in Figure 4.18. It shows

that for WHOLE, it is not sensitive to query threshold θ because it needs to access the whole lists
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Figure 4.18: Varying query threshold
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Table 4.5: Query execution statistics

WHOLE TA Our
Number of index accesses 22511856 13321642 884847
Candidate size 958836 857407 427418
Result size 210310 210310 210310
Gathering time (sec) 17.7 6.5 1.9
Verification time (sec) 1.3 1.2 0.6

regardless of the query threshold. However, for TA and our method, they become faster as the

query threshold goes higher because of early termination. Thus, the performance gap increases as

θ becomes bigger. For example, when θ = 0.95, our algorithm is 16× faster than WHOLE. And

in all cases, our algorithm is significantly faster than TA.

4.9 Discussion

4.9.1 Traversal starting from the middle

Next, we consider a variant of the Gathering-Verification algorithm starting the traversal

from the middle of the inverted lists instead of starting from the top like the classic TA. In the

most general setting, the starting position can be anywhere in the inverted lists, and two pointers

(upper and lower) are used to indicate the traversed range for each inverted list. At each iteration,

in addition to choosing the list to be traversed, the traversal strategy also decides whether the

upper or the lower pointer of the selected list needs to be moved. We can show that in this setting,

deciding a tight and complete stopping condition is NP-HARD thus intractable.

We start with some definitions. A configuration of the traversal is a pair of position vector

(a,b) where a and b are the upper and the lower position vector of the inverted lists {Li}i∈[d]

respectively. At each configuration, it is guaranteed that all vectors s satisfying Li[bi]≤ si ≤ Li[ai]

for some dimension i have been collected in the candidate set. So the tight stopping condition

needs to test whether all the remaining vector s can be θ-similar to the query q. For each
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dimension i, the condition that si needs to satisfy is

si ≥ Li[ai]∨ si ≤ Li[bi] ,

which can be written into an equivalent quadratic form

(si−Li[ai]) · (si−Li[bi])≥ 0

since Li[ai]≥ Li[bi].

Thus, the tight stopping condition is equivalent to the following quadratic program:

maximize
d

∑
i=1

si ·qi

subject to
d

∑
i=1

s2
i = 1,

(si−Li[ai]) · (si−Li[bi])≥ 0, for i ∈ [d].

(4.18)

Let

F(s,µ,λ) =
d

∑
i=1

siqi +
d

∑
i=1

µi(si−Li[ai]) · (si−Li[bi])−λ

(
d

∑
i=1

s2
i −1

)

be the Lagrangian of (4.18) where λ ∈ R and µ ∈ Rd are the Lagrange multipliers. Then, the

KKT conditions of (4.18) are

∇sF(s,µ,λ) = 0 (Stationarity)

µi ≥ 0, ∀ i ∈ [d] (Dual feasibility)

µi(si−Li[ai])(si−Li[bi]) = 0, ∀ i ∈ [d] (Complementary

slackness)

in addition to the Primal feasibility in (4.18).
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By the Complementary slackness condition, either µi = 0 or (si−Li[ai])(si−Li[bi]) = 0.

If µi = 0, from the Stationarity condition, we have

qi +µi(si/2−Li[ai]−Li[bi])−λsi = 0

so si = qi/λ.

If µi 6= 0, then (si− Li[ai])(si− Li[bi]) = 0 so si = Li[ai] or si = Li[bi]. Since s · q is

maximized when si is proportional to qi and si ≥ Li[ai]∨ si ≤ Li[bi], the value of si is determined

as follows:

• if qi/λ ∈ [Li[bi],Li[ai]], then si equals either the upper bound Li[ai] or the lower bound

Li[bi];

• otherwise, si = qi/λ.

Here, we can see that solving the quadratic program (4.18) is more difficult than the quadratic

program (4.7) in Section 4.4.2 where the traversal starts from the top of the lists. Intuitively, when

si 6= qi/λ, unlike the solution for (4.7), there are still two possible options: the upper bound Li[ai]

and the lower bound Li[bi], which lead to exponentially many combinations. One can easily show

that even when λ is fixed, computing the optimal s is NP-HARD by reduction from the subset sum

problem [Kar72]. This is because when λ is fixed, the si’s that equal to qi/λ are fixed. When

Li[bi] = 0 for all i, checking whether ∑
d
i=1 s2

i = 1 is essentially checking whether there exists a

subset of {Li[ai]
2}i∈[d] whose sum is some fixed constant depending on λ.

4.9.2 Applying the proposed techniques to top-k cosine queries

We show that the proposed stopping condition and traversal strategy can also be applied

to top-k cosine queries. In the top-k setting, each query is a pair (q,k) where q is a query vector

and k is an integer parameter. A query (q,k) asks for the top k database vectors with the highest

cosine similarity with the query vector q.
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The proposed techniques can be applied by adapting the classic structure of TA. The

algorithm traverses the 1-d inverted lists and keeps track of the k-th highest similarity score

among the gathered vectors. Note that to guarantee tightness, the exact similarity scores need to

be computed online, which results in additional computation cost since the exact computation can

be avoided for threshold queries using partial verification (Section 4.6). The stopping condition

can be adapted as follows.

Theorem 9 At a position vector b, let θk be the k-th highest score among vectors on or above b.

Then the following stopping condition is tight and complete:

ϕtop-k(b) =
(
MS(L[b])< θk

)
.

The score MS(L[b]) can be computed using the same O(logd) incremental maintenance algorithm

in Section 4.4.3. The lower bound θk needs to be updated when a new candidate is gathered.

Computing the similarity score takes O(d) time and updating θk can be done in O(logk) using a

binary heap.

The hull-based traversal strategy for inner product threshold queries can be directly

applied to top-k inner product queries. The following near-optimality result can be shown.

Theorem 10 For a top-k inner product query (q,k), the access cost of the hull-based traversal

strategy THL on a near-convex database D is at most OPT+ c where c is the convexity constant

of D .

The hull-based strategy can also be applied to top-k cosine queries. Recall that for cosine

threshold queries, the hull-based traversal strategy operates on the convex hulls of a decomposable

approximation F̃ of MS where F̃(L[b]) = ∑
d
i=1 min{qi · τ̃,Li[bi]} · qi. As discussed in Section

4.5.5, the choice of the constant τ̃ is ideally the value τ of the optimal traversal path, which

is dependent on the threshold θ. Therefore, for top-k cosine queries where the final threshold

θk is unknown in advance, a bad choice of τ̃ can lead to poor approximation. In a practical
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implementation, the constant τ̃ can be made query-dependent and more carefully tuned. We leave

these aspects for future work.

4.10 Related work

In this section, we present the related work.

4.10.1 Cosine similarity search

The cosine threshold querying studied in this work is a special case of the cosine similarity

search (CSS) problem [BMS07, AK14, AK15] mentioned in Section 4.1. Thus, we first survey

the techniques developed for CSS.

LSH. A widely used technique for cosine similarity search is locality-sensitive hash

(LSH) [RU11, AIL+15, HTY17, IM98, TYSK09]. The main idea of LSH is to partition the

whole database into buckets using a series of hash functions such that similar vectors have high

probability to be in the same bucket. However, LSH is designed for approximate query processing,

meaning that it is not guaranteed to return all the true results. In contrast, this work focuses on

exact query processing which returns all the results.

TA-family algorithms. Another technique for cosine similarity search is the family of

TA-like algorithms. Those algorithms were originally designed for processing top-k ranking

queries that find the top k objects ranked according to an aggregation function (see [IBS08]

for a survey). We have summarized the classic TA algorithm [FLN01], presented a baseline

algorithm inspired by it, and explained its shortcomings in Section 4.1. The Gathering-Verification

framework introduced in Section 4.2 captures the typical structure of the TA-family when applied

to our setting.

The variants of TA (e.g., [GBK00,BMS+06,DPK08,BGM02]) can have poor or no perfor-

mance guarantee for cosine threshold queries since they do not fully leverage the data skewness
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and the unit vector condition. For example, Güntzer et al. developed Quick-Combine [GBK00].

Instead of accessing all the lists in a lockstep strategy, it relies on a heuristic traversal strategy to

access the list with the highest rate of changes to the ranking function in a fixed number of steps

ahead. It was shown in [FLN03] that the algorithm is not instance optimal. Although the hull-

based traversal strategy proposed in this work roughly follows the same idea, the number of steps

to look ahead is variable and determined by the next convex hull vertex. Thus, for decomposable

functions, the hull-based strategy makes globally optimal decisions and is near-optimal under the

near-convexity assumption, while Quick-Combine has no performance guarantee because of the

fixed step size even when the data is near-convex.

Bast et al. studied top-k ranked query processing with a different goal of minimizing the

overall cost by scheduling the best sorted accesses and random accesses [BMS+06]. However,

when the number of dimensions is high, it requires a large amount of online computations to

frequently solve a Knapsack problem, which can be slow in practice. Note that, [BMS+06] only

evaluated the number of sorted and random accesses in the experiments instead of the wall-clock

time. Besides, it does not provide any theoretical guarantee, which is also applicable to [JP11].

Akbarinia et al. proposed BPA to improve TA, but the optimality ratio is the same as TA in the

worst case [APV07]. Deshpande et al. solved a special case of top-k problem by assuming that

the attributes are drawn from a small value space [DPK08]. Zhang et al. developed an algorithm

targeting for a large number of lists [ZSH16] by merging lists into groups and then apply TA.

However, it requires the ranking function to be distributive that does not hold for the cosine

similarity function. Yu et al. solved top-k query processing in subspaces [YAY14] that are not

applicable to general cosine threshold queries.

Some works considered non-monotonic ranking functions [ZHC+06, XHC07]. For exam-

ple, [ZHC+06] focused on the combination of a boolean condition with a regular ranking function

and [XHC07] assumed the ranking functions are lower-bounded. The cosine function has not

been considered in this line of work.
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COORD. Teflioudi et al. proposed the COORD algorithm based on inverted lists for

CSS [TGM15, TG16]. The main idea is to scan the whole lists but with an optimization to prune

irrelevant entries using upper/lower bounds of the cosine similarity with the query. Thus, instead

of traversing the whole lists starting from the top, it scans only those entries within a feasible

range. We can also apply such a pruning strategy to the Gathering-Verification framework by

starting the gathering phase at the top of the feasible range. However, there is no optimality

guarantee of the algorithm. Also the optimization only works for high thresholds (e.g., 0.95),

which are not always the requirement. For example, a common and well-accepted threshold in

mass spectrometry search is 0.6, which is a medium-sized threshold, making the effect of the

pruning negligible.

Partial verification. Anastasiu and Karypis proposed a technique for fast verification of

θ-similarity between two vectors [AK14] without a full scan of the two vectors. We can apply the

same optimization to the verification phase of the Gathering-Verification framework. Additionally,

we prove that it has a novel near-constant performance guarantee in the presence of data skewness.

See Section 4.6.

Other variants. There are several studies focusing on cosine similarity join to find out

all pairs of vectors from the database such that their similarity exceeds a given threshold [BMS07,

AK14,AK15]. However, this work is different since the focus is comparing to a given query vector

q rather than join. As a result, the techniques in [BMS07,AK14,AK15] are not directly applicable:

(1) The inverted index is built online instead of offline, meaning that at least one full scan of the

whole data is required, which is inefficient for search.12 (2) The index in [BMS07, AK14, AK15]

is built for a fixed query threshold, meaning that the index cannot be used for answering arbitrary

query thresholds as concerned in this work. The theoretical aspects of similarity join were

discussed recently in [APRS16, HTY17].

12The linear scan is feasible for join because the naive approach of join is quadratic.
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4.10.2 Euclidean distance threshold queries

The cosine threshold queries can also be answered by techniques for distance threshold

queries (the threshold variant of nearest neighbor search) in Euclidean space. This is because

there is a one-to-one mapping between the cosine similarity θ and the Euclidean distance r for

unit vectors, i.e., r = 2sin(arccos(θ)/2). Thus, finding vectors that are θ-similar to a query

vector is equivalent to finding the vectors whose Euclidean distance is within r. Next, we review

exact approaches for distance queries while leaving the discussion of approximate approaches

in Section 4.10.7. There are four main types of techniques for exact approaches: tree-based

indexing, pivot-based indexing, clustering, and dimensionality reduction.

Tree-based indexing. Several tree-based indexing techniques (such as R-tree, KD-tree,

Cover-tree [BKL06]) were developed for range queries (so they can also be applied to distance

queries), see [BBK01] for a survey. However, they are not scalable to high dimensions (say

thousands of dimensions as studied in this work) due to the well known dimensionality curse

issue [WSB98].

Pivot-based indexing. The main idea is to pre-compute the distances between data

vectors and a set of selected pivot vectors. Then during query processing, use triangle inequalities

to prune irrelevant vectors [CGZ+17, HKP01]. However, it does not scale in high-dimensional

space as shown in [CGZ+17] since it requires a large space to store the pre-computed distances.

Clustering-based (or partitioning-based) methods. The main idea of clustering is to

partition the database vectors into smaller clusters of vectors during indexing. Then during query

processing, irrelevant clusters are pruned via the triangle inequality [Sam05, RR11]. Clustering is

an optimization orthogonal to the proposed techniques, as they can be used to process vectors

within each cluster to speed up the overall performance.

Dimensionality reduction. Since many techniques are affected negatively by the large

number of dimensions, one potential solution is to apply dimensionality reduction (e.g. PCA,
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Johnson-Lindenstrauss) [LLW10, LC09, JLS86] before any search algorithm. However, this

does not help much if the dimensions are not correlated and there are no hidden latent variables

to be uncovered by dimensionality reduction. For example, in the mass spectrometry domain,

each dimension represents a chemical compound/element and there is no physics justifying a

correlation. We applied dimensionality reduction to the data vectors and turned out that only

4.3% of dimensions can be removed in order to preserve 99% of the distance.

4.10.3 Inner product search

The cosine threshold querying is also related to inner product search where vectors may

not be unit vectors, otherwise, inner product search is equivalent to cosine similarity search.

Teflioudi et al. proposed the LEMP framework [TGM15, TG16] to solve the inner product

search where each vector may not be normalized. The main idea is to partition the vectors into

buckets according to vector lengths and then apply an existing cosine similarity search (CSS)

algorithm to each bucket. This work provides an efficient way for CSS that can be integrated to

the LEMP framework.

Li et al. developed an algorithm FEXIPRO [LCYM17] for inner product search in recom-

mender systems where vectors might contain negative values. Since we focus on non-negative

values in this work, the proposed techniques (such as length-based filtering and monotonicity

reduction) are not directly applicable.

There are also tree-based indexing and techniques for inner product search [RG12,CGR13].

But they are not scalable to high dimensions [KSR17]. Another line of research is to leverage

machine learning to solve the problem [ME16, FPW16, SLZ+15]. However, they do not provide

accurate answers. Besides, they do not have any theoretical guarantee.
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4.10.4 CSS in hamming space

[ET16] and [QWX+18] studied cosine similarity search in the Hamming space where

each vector contains only binary values. They proposed to store the binary vectors efficiently

into multiple hash tables. However, the techniques proposed there cannot be applied since

transforming real-valued vectors to binary vectors loses information, and thus correctness is not

guaranteed.

4.10.5 Keyword search

This work is different from keyword search although the similarity function is (a variant

of) the cosine function and the main technique is inverted index [MRS08]. There are two main

differences: (1) keyword search generally involves a few query terms [WLH+17]; (2) keyword

search tends to return Web pages that contain all the query terms [MRS08]. As a result, search

engines (e.g., Apache Lucene) mainly sort the inverted lists by document IDs [BCH+03, DS11,

CCG11] to facilitate boolean intersection. Thus, those algorithms cannot be directly applied to

cosine threshold queries. Although there are cases where the inverted lists are sorted by document

frequency (or score in general) that are similar to this work, they usually follow TA [DS11]. This

work significantly improves TA for cosine threshold queries.

4.10.6 Mass spectrometry search

For mass spectrometry search, the state-of-the-art approach is to partition the spectrum

database into buckets based on the spectrum mass (i.e., molecular weight) and only search the

buckets that have the similar mass to the query [KLA+17]. Each bucket is scanned linearly

to obtain the results. The proposed techniques in this work can be applied to each bucket and

improve the performance dramatically.

Library search, wherein a spectrum is compared to a series of reference spectra to find
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the most similar match, providing a putative identification for the query spectrum [YMG+98].

Methods in library search often use cosine [LDE+07] or cosine-derived [WB13] functions

to compute spectrum similarity. Many of the state-of-the-art library search algorithms, e.g.,

SpectraST [LDE+07], Pepitome [DCM+12], X!Hunter [CCFB06], and [WCB16] find candidates

by doing a linear scan of peptides in the library that are within a given parent mass tolerance and

computes a distance function against relevant spectra. This is likely because the libraries that

are searched against have been small, but spectral libraries are getting larger, e.g., MassIVE-KB

now has more than 2.1 million precursors. This work fundamentally improves on these, as it

uses inverted lists with many optimizations to significantly reduce the candidate spectra from

comparison. M-SPLIT used both a prefiltering and branch and bound technique to reduce the

candidate set for each search [WPSK+10]. This work improves on both these by computing the

similar spectra directly, while still applying the filtering.

Database search [EMY94] is where the experimental spectrum is compared to a host of

theoretical spectra that are generated from a series of sequences. The theoretical spectra differ

from experimental spectra in that they do not have intensities for each peak and contain all peaks

which could be in the given peptide fragmentation. In other words, the values in the vectors are

not important and the similarity function evaluates the number of shared dimensions that are

irrelevant to the values. While the problem is different in practice than that described in this

work, it is still interesting to consider optimizations. Dutta and Chen proposed an LSH-based

technique which embeds both the experimental spectra and the theoretical spectra onto a higher

dimensional space [DC07]. While this method performs well at the expense of low recall rate, our

method is guaranteed to not lose any potential matches. There are also other methods optimizing

this problem by using preindexing [THS+05, KLA+17] but none do this kind of preindexing for

calculating matches between experimental spectra.
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4.10.7 Approximate approaches

Besides LSH, there are many other approximate approaches for high-dimensional similar-

ity search, e.g., graph-based methods [FWC17, DML11, WJZ14], product quantization [JDS11,

AKLS15, Lem12], randomized KD-trees [SAH08], priority search k-means tree [ML14], rank

cover tree [HN15], randomized algorithms [WSWR18], HD-index [ASKB18], and clustering-

based methods [LCGMW02, CZC10].

4.10.8 Others

This work is also different from [LDLL18] because that work focused on similarity

search based on set-oriented p-norm similarity, which is different from cosine similarity.

In the literature, there are skyline-based approaches [LCH12] to solve a special case

of top-k ranked query processing where no any ranking function is specified. However, those

approaches cannot be used to solve the mass spectrometry problem that only involves unit vectors

such that all the vectors belong to skyline points.

4.11 Chapter summary

In this chapter, we proposed optimizations to the index-based, TA-like algorithms for

answering the cosine threshold queries, which lies at the core of mass spectrometry. The novel

techniques include a complete and tight stopping condition computable in O(logd) time and a

family of convex hull-based traversal strategies with near-optimality guarantees for a larger class

of decomposable functions beyond cosine. With these techniques, we show near-optimality first

for inner-product threshold queries, then extend the result to the full cosine threshold queries

using approximation. All these results are significant improvements compared to a baseline

approach inspired by the classic TA algorithm. In addition, we have verified with experiments on

real data the assumptions required by the near-optimality results.
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Chapter 4 contains material from “Index-based, High-dimensional, Cosine Threshold

Querying with Optimality Guarantees” by Yuliang Li, Jianguo Wang, Benjamin Pullman, Nuno

Bandeira, and Yannis Papakonstantinou, which appeared in Proceedings of International Confer-

ence on Database Theory (ICDT), 2019. The dissertation author was the primary investigator of

the paper.
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Chapter 5

Conclusion and future work

5.1 Conclusion

The continued evolution of computing hardware and infrastructure imposes new chal-

lenges and opportunities to query engines. In this dissertation, we studied the impact of modern

hardware to query processing of sorted lists (both ID-sorted and value-sorted). In particular, we

investigated the how modern processors and big memory affect list compression (Chapter 2),

how SSDs affect list intersection (Chapter 3), and then showed how to apply the knowledge of

modern hardware to a real application – mass spectrometry search – that heavily relies on query

processing of sorted lists (Chapter 4).

We conclude that directly running the existing algorithms and systems on modern hard-

ware improves performance somewhat but misses important opportunities for further improve-

ment. Thus, we shall revisit existing designs and rethink new designs by explicitly using the

characteristics of emerging hardware.
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5.2 Future work

There could be many interesting follow-ups from this thesis. Below we name a few.

• Efficient inverted list update on SSDs. Traditionally on HDDs, each inverted list is stored

continuously to minimize the expensive random accesses [ZM06]. As a result, for the

update, it incurs a lot of data movement to guarantee the continuity [LMZ05]. However,

this work indicates that on SSDs, the inverted list is not required to be stored continuously

since the entire list is not required during query processing. Thus, it is interesting to explore

efficient update solutions with minimal data movement.

• Extension of list intersection to next-generation ultra-fast storage, e.g., Intel 3D XPoint

SSDs and non-volatile memories (NVRAM) [XS16]. With new storage devices, the idea of

skipping-on-disk is still relevant because they support fast random accesses and parallel I/O

access. But the interesting thing is that the I/O is fast enough to be blurred with memory.

For example, it is expected that the new generation NVRAM has similar performance with

DRAM [APD15]. As a result, it is interesting to investigate whether it is still worthy to

cache inverted list in memory or in general how to best utilize DRAM and NVRAM for

efficient query processing.

• Extension of list intersection to hybrid storage systems that include both SSDs and HDDs.

As we show in this work, SSDs and HDDs exhibit different properties such that they

demand different intersection algorithms. Thus, it is interesting to investigate how to design

algorithms that are applicable for heterogeneous storage devices.

• Extension of MILC. Currently, MILC is optimized for main memory. It can also be extended

to other storage devices including NVRAM, SSDs [WLY+13, WLY+14], and HDDs. An-

other direction is to tailor MILC for supporting in-storage computing [WPK+16, WPPS16].

Besides that, it is also interesting to extend MILC to support more operations and queries,

142



e.g., intersection, union, top-k query processing.

• Extension of techniques of threshold queries to support more types of queries in mass

spectrometry area, e.g., cosine similarity with shifted peaks or simply with the number of

common peaks [KLA+17]. The underlying index structure should be similar but need more

tweaks for high performance.
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