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Abstract

A successful theory of causal reasoning should be able to
account for inferences about counterfactual scenarios. Pearl
(2000) has developed a formal account of causal reasoning that
has been highly influential but that suffers from at least two
limitations as an account of counterfactual reasoning: it does
not distinguish between counterfactual observations and coun-
terfactual interventions, and it does not accommodate back-
tracking counterfactuals. We present an extension of Pearl’s
account that overcomes both limitations. Our model provides
a unified treatment of counterfactual interventions and back-
tracking counterfactuals, and we show that it accounts for data
collected by Sloman and Lagnado (2005) and Rips (2010).

In addition to reasoning about actual states of affairs, hu-
mans find it natural to reason about what might have been.
A doctor may ask “if Alice had not been treated with the
experimental drug, would she have survived?” and a parent
might tell a child that “if you had been paying attention, you
wouldn’t have gotten hurt.” Researchers from several disci-
plines have developed formal models of counterfactual rea-
soning, and recent empirical studies have evaluated the psy-
chological merits of some of these models (Rips, 2010; De-
hghani, Iliev, & Kaufmann, 2012). This paper describes a
new model of counterfactual reasoning and evaluates it using
data sets from the psychological literature.

The problems that we consider can be illustrated using a
causal chain over three variables (Figure 1a). For example,
suppose that A, B, and C are variables that indicate whether
three transponders are active. Transponder A is active about
half of the time, and whenever it is active it tends to activate
B, which in turn tends to activate C. Suppose that we observe
on a certain occasion that all three transponders are active.
We can now ask counterfactual questions such as “if B had
not been active, would C have been active?”

The formal approach that we present is inspired by the
work of Pearl (2000), who developed a model of counterfac-
tual reasoning that we refer to as the modifiable structural
model, or MSM for short. The MSM assumes that the causal
system in question is a functional causal model, where ex-
ogenous variables are introduced if necessary so that the vari-
ables of primary interest are deterministic functions of their
parents. For example, the system in Figure 1a may be repre-
sented more precisely by adding exogenous variables UA, UB
and UC such that UA determines whether or not node A is ac-
tive, and UB and UC capture factors such as atmospheric con-
ditions that determine whether the links in the chain operate
successfully. Suppose now that A, B and C are all observed
to be active, and that we want to know whether C would be
active if B were not active. The MSM addresses this ques-
tion by using the observations in the actual world to update
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Figure 1: (a) A causal chain in which A causes B, which
causes C. (b) A functional causal model that captures the
causal chain in (a). Exogenous variables Ua, Ub and Uc have
been added, and nodes with double edges are deterministic
functions of their parents. (c) A twin network where A′, B′

and C′ represent counterfactual values of A, B, C. (d) An aug-
mented twin network which allows for the possibility that the
exogenous variables take different values in the counterfac-
tual scenario.

prior beliefs about the status of the exogenous variables, then
modifying the resulting causal model to reflect a counterfac-
tual intervention where B is forced to be inactive. Inferences
about any other variables can be computed using the modi-
fied causal model—for example, if B were inactive, then C
would probably also be inactive. Several psychological stud-
ies of counterfactual reasoning have evaluated the predictions
of the MSM and have found that some counterfactual infer-
ences do appear to be treated as inferences about counterfac-
tual interventions (Sloman & Lagnado, 2005; Kemp, Shafto,
& Tenenbaum, 2012).

The approach we present builds on the key ideas behind
the MSM, and we refer to it as the doubly-modifiable struc-
tural model or DMSM for short. Like the MSM, the DMSM
works with causal systems that are represented using func-
tional causal models and allows these systems to be modified
via counterfactual interventions. In addition, however, the
DMSM permits a second kind of modification where exoge-
nous variables are altered not because of a counterfactual in-
tervention, but simply because the counterfactual world might
have turned out differently from the real world. An impor-
tant consequence of this difference is that the DMSM alone
accounts for backtracking counterfactuals. For example, sup-
pose again that all three transponders in A were observed to
be active, and we are asked to decide whether A would be ac-
tive if B were inactive. The DMSM allows for the possibility
that variables upstream of B might explain the counterfactual
premise that B is inactive, and thus predicts that A is likely
to be inactive. The MSM, however, can only reason about
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the downstream consequences of a counterfactual interven-
tion that renders B inactive.

The inability of the MSM to deal with backtracking coun-
terfactuals is widely acknowledged, and Hiddleston (2005)
has developed a minimal networks model that overcomes this
limitation. Rips (2010) has recently evaluated the psycholog-
ical merits of Hiddleston’s account, and reports that Hiddle-
ston’s model can account for human inferences about back-
tracking counterfactuals when supplemented with additional
psychological assumptions. Although this variant of Hiddle-
ston’s approach accounts relatively well for the data collected
by Rips, the minimal networks model is not well suited for
reasoning about counterfactual interventions, and does not
account for empirical data suggesting that counterfactual in-
ferences are sometimes treated as inferences about counter-
factual interventions.

At present, then, the psychological literature on counter-
factual reasoning is fragmented. The MSM provides an ele-
gant account of reasoning about counterfactual interventions
but does not account for inferences about backtracking coun-
terfactuals. The minimal networks model can handle back-
tracking counterfactuals, but does not give a clear account
of inferences about counterfactual interventions. In contrast,
the DMSM accommodates both counterfactual interventions
and backtracking counterfactuals, and we will show that it
accounts for previously-published experiments that explore
both kinds of inferences. As we discuss towards the end of
the paper, the DMSM is not a complete account of counter-
factual reasoning, but we believe that it comes closer to this
goal than any previous model.

The Modifiable Structural Model (MSM)
The MSM was introduced informally above, and we now de-
scribe how the predictions of this model can be computed by
constructing and manipulating a twin network (Pearl, 2000).
The first step is to specify a functional causal model such as
the example in Figure 1b that captures the causal system un-
der consideration. Functional causal models are described in
detail by Pearl (2000), but for our purposes, their most im-
portant feature is that they represent noise or randomness us-
ing unobserved exogenous variables, rather than inherently
stochastic relationships. This functional model is converted
into the twin network in Figure 1c by adding nodes A′, B′

and C′ that represent counterfactual versions of A, B, and C.
The counterfactual nodes A′, B′ and C′ and the original nodes
A, B, and C have the same exogenous variables as parents,
which captures the idea that the causal mechanisms in the
counterfactual world are identical to the causal mechanisms
in the actual world. Given the twin network, a counterfac-
tual premise can be captured using an intervention that fixes
the value of one of the counterfactual variables. For exam-
ple, suppose again that A, B and C are all active and we are
asked about a scenario where B is inactive. The counterfac-
tual premise is captured using graph manipulation to modify
the twin network. In other words, we set B′ to 0, and remove
all arrows between B′ and its parents to reflect the fact that B′

was fixed by an intervention instead of being brought about
by Ub and A′. We can now use the manipulated twin network
to compute predictions about the other counterfactual vari-
ables. Because A must have been caused by UA and UA also
causes A′, the MSM infers that A′ is active. Because B′ is
inactive, the MSM infers that C′ is also inactive.

Two aspects of the MSM are worth emphasizing for com-
parison with the DMSM described in the next section. First,
the MSM handles all counterfactual queries by reasoning
about counterfactual interventions. The model therefore does
not distinguish between counterfactual interventions (“imag-
ine that someone had disabled transponder B”) and counter-
factual observations (“imagine that you had observed that B
was inactive”). Second, the MSM cannot make inferences
about backtracking counterfactuals. If asked to imagine that
B were inactive, the MSM fixes the status of B′ by means of
an intervention and therefore cannot reason about upstream
variables such as A′ which may explain the inactivity of B′.

The Doubly-Modifiable Structural Model (DMSM)
Just as the MSM can be characterized in terms of computa-
tions over a twin network, the DMSM can be characterized in
terms of computations over an augmented twin network. The
augmented twin network for the three element chain is shown
in Figure 1d. Note that the network includes nodes for coun-
terfactual versions of the exogenous variables UA, UB and UC
in addition to nodes for counterfactual versions of A, B and
C. The value of each counterfactual exogenous variable is ei-
ther copied across from the corresponding real-world variable
or generated from the same distribution as the corresponding
real-world variable. More precisely, if Pi(·) is the prior dis-
tribution on exogenous variable Ui, the value of U ′i is drawn
from the distribution

P(U ′i |Ui) = sδ(Ui)+(1− s)Pi(Ui)

where δ(Ui) is a delta distribution that takes value 0 at ev-
ery point except U ′i =Ui and s is a stability parameter where
0≤ s≤ 1. If s = 1, then the exogenous variables are perfectly
stable, which means that U ′i =Ui for all i and that the DMSM
is equivalent to the MSM1. If s = 0, then the exogenous vari-
ables are maximally unstable, and the values of U ′i and Ui are
independently drawn from the distribution Pi(·). We will re-
fer to this special case as the USM, or “unattached structural
model” because setting s = 0 decouples the counterfactual
nodes from the actual nodes, meaning that the model effec-
tively discards all observations of the actual world.

We propose that people are sensitive to both the true state
of the world and base rate information, and therefore hypoth-
esize that the judgments of most individuals reflect stability
values between 0 and 1. A second hypothesis is that some
individuals always use s = 0 and others always use s = 1. A
third hypothesis is that each individual uses s = 0 in some

1A stability of 1 for counterfactual observations can lead to mu-
tually incompatible or impossible states, so we assume that all coun-
terfactual premises are treated as interventions when s = 1.
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Figure 2: Human judgments and predictions of the DMSM, MSM and USM models for Sloman and Lagnado’s Experiments
2 and 6. The four bars in each plot show inferences about backtracking (B) or forward (F) counterfactuals that were either
interventional (I) or observational (O).

contexts and s = 1 in other contexts. We return to these hy-
potheses later and describe some preliminary evidence that
supports the first hypothesis. Different individuals may use
different settings of s, but for all analyses we set s = 0.77
which is the value that maximizes model performance across
the entire set of studies reported by Rips (2010).

The augmented twin network can be used to address two
kinds of counterfactual queries. Queries about counterfactual
interventions are addressed by manipulating the network in
the standard way—for example, counterfactual interventions
on B are captured by fixing the value of B′ and removing
all arrows between B′ and its parents. Queries about coun-
terfactual observations are carried out by reasoning over the
unmanipulated network. For example, if A, B and C are ob-
served to be active and we want to reason about a case where
B is observed to be inactive, we set A = B = C = 1 and
B′ = 0 and can subsequently compute the posterior distribu-
tion induced on any other node. For instance, if the stabil-
ity parameter is less than one then the posterior distribution
P(A′|A = B =C = 1,B′ = 0) will indicate that A′ is relatively
likely to take value 0.

Counterfactual interventions vs. observations
A key conceptual difference between the MSM and the
DMSM is that the DMSM allows for counterfactual observa-
tions and counterfactual interventions, but the MSM treats all
counterfactual queries in terms of interventions. To the best
of our knowledge, two experiments reported by Sloman and
Lagnado (2005) are the only psychological studies that con-
trast counterfactual observations and counterfactual interven-
tions. This section compares the predictions of the DMSM
with the results of these experiments.

Experiment 2 of Sloman and Lagnado (2005) considers a
three node chain where A causes B and B causes C. The ex-
periment included three different cover stories—one scenario
involved a rocket ship, and a second involved a causal chain
where smoking causes cancer which causes hospitalization.
The third involved abstract events A, B, and C and partici-
pants were told that “when A happens, it causes B most of the
time” and “when B happens, it causes C most of the time.” In
all cases, participants were told that A and C happened and
were asked to make counterfactual inferences about a situ-
ation where B did not happen. The counterfactual questions

asked about both counterfactual interventions and counterfac-
tual observations. In the abstract scenario, the backwards in-
tervention (BI) question stated that “someone intervened di-
rectly on B, preventing it from happening,” and asked partici-
pants to rate the probability that A would have happened. The
forward intervention (FI) question was similar except that it
asked participants to rate the probability that C would have
happened. The backwards and forwards observation ques-
tions (BO and FO) asked participants to rate the probability
that A and C “would have happened if we observed that B did
not happen.”

Average human responses are shown in Figure 2a. Re-
sponses were originally provided on a 1 to 5 scale, but we
map them to probabilities for comparison with model predic-
tions. Following Sloman and Lagnado (2005), responses are
collapsed across the three different cover stories. Both the
intervention and observation questions produce the forward
inference that C is unlikely to occur. The two kinds of ques-
tions, however, lead to different backward inferences about A.
Participants tend to infer that A would still have occurred if
a counterfactual intervention had prevented B, but find it less
likely that A would have occurred if B had been observed not
to occur.

Experiment 6 of Sloman and Lagnado (2005) is similar in
structure but involves a two node chain rather than a three
node chain. The cover story described a rocket ship with
two components where “movement of component A causes
component B to move.” Participants were informed that both
components are moving and asked to reason about counter-
factual cases where either A or B was not moving. The coun-
terfactual intervention questions were of the form “suppose
component A were prevented from moving, would compo-
nent B still be moving?” The counterfactual observation
questions were of the form “suppose component A were ob-
served to be not moving, would component B still be mov-
ing?”

The proportion of participants who responded “yes” to
each question is shown in Figure 2b. As for Experiment 2,
forward inferences about B given A are similar regardless of
whether A is prevented from moving or simply observed not
to move. Backward inferences about A given B again reveal a
difference between counterfactual observations and counter-
factual interventions. As for Experiment 2, participants tend
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to infer that A would still be moving if B were prevented from
moving, but are less likely to infer that A would be moving if
B were observed not to move.

We generated model predictions for the two experiments
by making the simplest possible assumptions about the pa-
rameters in each causal structure. The base rate for node
A was set to 0.5, and the strength of each causal link was
set to 0.8 to capture the fact that causes produce their ef-
fects “most of the time.” To keep the analysis simple we as-
sumed that nodes B and C had no background causes. Given
these assumptions, predictions of the DMSM and the MSM
are shown in Figures 2c and 2d. The DMSM accounts for the
result that counterfactual interventions and counterfactual ob-
servations are treated differently. The MSM accounts for hu-
man responses to the intervention questions, but makes iden-
tical predictions about responses to the observation questions.

Although the DMSM performs better than the MSM, the
quantitative predictions of the DMSM depart from human in-
ferences in some cases. For example, humans give non-zero
responses to the forward questions in Experiment 6, but the
DMSM infers that component B is definitely not moving if
component A is not moving. Including a background cause
of B would allow the DMSM to match the human responses
to the forward questions more closely.

The MSM can be viewed as a special case of the DMSM
where the stability parameter s is equal to 1, and the USM
model in Figure 2e is the special case where s = 0. The USM
distinguishes between counterfactual observations and inter-
ventions, but its inferences in the BI case are not shaped by
the observation that event A occurred in the real world. As a
result, the model falls back on the baseline probability that A
occurs, and does not account for the human inference that A
probably occurred in the counterfactual scenario. Note, how-
ever, that these data do not permit us to distinguish between
the DMSM and a mixture of MSM and USM strategies. The
analysis in the next section will partially address this issue.

Backtracking counterfactuals
The previous section suggested that the DMSM improves on
the MSM by distinguishing between counterfactual interven-
tions and counterfactual observations. One important conse-
quence of this distinction is that the DMSM alone is able to
handle backtracking counterfactuals, or queries where a rea-
soner must think about causes that might be responsible for
a counterfactual premise. Rips (2010) has carried out an ex-
tensive psychological study of backtracking counterfactuals,
and this section argues that the DMSM accounts for Rips’
data about as well as the minimal network model that he ad-
vocates. Dehghani et al. (2012) have also developed a theory
that handles backtracking counterfactuals, and have presented
some data in support of their theory. They do not describe a
fully-specified computational model, but we were able to im-
plement a model that we believe is consistent with their core
assumptions. This model, however, did not account for Rips’
data as well as the minimal network model, and we there-

fore focus here on comparing the DMSM with the minimal
network model.

Experiment 3 in Rips (2010) asked participants to reason
about four causal systems shown at the top of Figure 3. Each
system includes components L and H which cause compo-
nent C to operate. The systems in Figure 3a include two
cases where the operation of C is jointly caused: arcs between
edges in Figure 3a indicate that L and H operate together to
cause C to operate. The remaining systems are cases where
the operation of C can be separately caused by either L or
H. Two of the systems include probabilistic causal relation-
ships shown as dashed arrows. For example, the probabilistic
jointly caused system was described as a system where com-
ponent L’s operating and component H’s operating together
usually cause component C to operate. The remaining two
systems include deterministic causal relationships. For each
of the four systems, base rates for causes L and H were pro-
vided. Participants were told that L operates 5% of the time,
and that H operates 95% of the time.

In each case participants were told that components L, H,
and C “are all operating.” They then responded to the ques-
tion “if component C were not operating, would component
L be operating?” and answered a similar question with re-
spect to component H. The red points in Figure 3b show the
proportion of participants who said yes to each question. For
the deterministic separately caused system, most participants
inferred that neither L nor H would be operating in the coun-
terfactual scenario. For all remaining systems, participants
tended to infer that the cause with higher base rate would be
operating.

Predictions for four models are shown in Figure 3 using
black lines. To generate these predictions, we again assumed
that the probabilistic causal relationships had a strength of
0.8. The experimental materials did not explicitly specify
whether each counterfactual scenario involved an interven-
tion or an observation, and the predictions for the DMSM and
the USM are based on counterfactual observations.

The DMSM predicts that average responses for the de-
terministic separately caused system should be low, and ac-
counts for the base rate effects observed for all other systems.
In contrast, the MSM predicts that the answer to all eight
questions should be yes. Since the counterfactual premise
is treated as an intervention, the model infers that L and
H are operating in each counterfactual scenario. The USM
makes predictions that are fairly close to the predictions of
the DMSM, but inferences about the deterministic separately
caused system reveal one important difference. Because the
rare cause L was observed to operate in the actual world, the
DMSM assigns non-negligible probability to the conclusion
that L is operating in the counterfactual scenario. The USM
ignores all information about the actual world, and therefore
generates a much lower probability. Of these two models,
only the DMSM successfully predicts that the probability of
L’s operating is higher for the probabilistic separately caused
system than for any other system.
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Figure 3: Model predictions and human responses for the experiments of Rips (2010). (a) Causal systems used in Rips’s
Experiment 3. Dotted lines represent probabilistic relationships and solid lines represent deterministic relationships. The edges
linked by arcs represent AND relationships, where both causes must be active for the effect to occur, while un-linked edges
represent OR relationships. Base rates differed between variables, with H or “High” variables occurring with probability
.95 and L or “low” variables occurring with probability 0.05. (b) Results for counterfactual queries about the systems in (a).
Proportions of “yes” judgments (human data) and probabilities (model predictions) are grouped according to the causal systems
in (a). (c) Model predictions versus human judgments for all conditions across all four experiments in Rips (2010).
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Because the MSM makes constant predictions across all
of the different cases, an account in which individuals adopt
either an MSM or USM strategy yields the same correlation
with the data as the USM. Consequently, the DMSM fits the
data better than accounts where some individuals always use
s = 0 and others always use s = 1, or where each individual
tosses a coin to set s = 0 or s = 1 on a question-by-question
basis. Even so, our data do not decisively show that most
individuals are characterized by intermediate values of s, and
future empirical work is needed to address this question.

The final plot in Figure 3b shows predictions for the min-
imal network model described by Rips. Unlike the three
models considered thus far, the minimal networks approach
works with causal models such as Figure 1a instead of func-
tional models such as Figure 1b. Given observations of
the actual world (e.g. L = H = C = 1) and a counterfac-
tual premise (e.g. C = 0), the minimal networks approach as-
sumes that the counterfactual scenario contains a minimal set
of breaks, or cases where variables differ from their actual
values while their immediate causes do not.2 In Hiddleston’s
(2005) original version of minimal networks theory, counter-
factual queries receive affirmative answers only if they are
true in all minimal networks. This version of the theory ac-
counts poorly for the data in Figure 3, and the predictions
shown there are based on a variant of the original theory that
incorporates two additional assumptions suggested by Rips.
First, if multiple configurations are minimal then participants
are assumed to respond based on just one of these networks.
With probability θ1 participants sample one minimal network
at random, and with probability 1−θ1 minimal networks are
sampled according to their prior probabilities. Second, Rips
proposes that with probability θ2, a participant will ignore the
evidence that they see and pick an answer at random. We set
the parameters θ1 and θ2 to values that maximize the correla-
tion between model predictions and human data.

Figure 3b shows that the minimal networks model accounts
well for the data, and produces quantitative predictions that
are superior to the DMSM. Note, however, that the DMSM
has one free parameter and the minimal networks model has
two. The DMSM can be adjusted in the same way as the min-
imal network model to allow for the fact that some partici-
pants responded randomly, and making this modification will
bring the quantitative predictions of the DMSM into closer
correspondence with human judgments.

We have focused so far on Experiment 3 of Rips (2010),
but the scatterplots in Figure 3c summarize the performance
of the four models across all four of Rips’ experiments. The
two best performing models are the DMSM and the minimal
networks model. The DMSM therefore accounts for Rips’
data as well as his own model despite requiring fewer free pa-
rameters. The DMSM performs better than the USM and the
mixed-strategy account, but recall that the DMSM has one
free parameter and the USM has no free parameters. Addi-

2Minimality of breaks is determined by set inclusion rather than
counts—see Rips (2010) and Hiddleston (2005) for details.

tional studies are therefore needed to confirm that sensitivity
to observations about the actual world is critical when mod-
eling human inferences about backtracking counterfactuals.

Discussion
We presented a model of counterfactual reasoning that ac-
counts for inferences about both counterfactual interventions
and backtracking counterfactuals. Our approach is closely
related to the modifiable structural model developed by Pearl
and inherits the ability of this model to reason about counter-
factual interventions. Our model, however, differs from the
MSM in one critical respect: we allow for the fact that ex-
ogenous causal variables may take counterfactual values. We
showed that this difference between the models allows the
DMSM but not the MSM to account for Rips’ experimental
study of backtracking counterfactuals.

Although we believe that the DMSM is a step towards a
unified theory of counterfactual reasoning, there are impor-
tant theoretical and empirical questions that still need to be
addressed. The DMSM accommodates both counterfactual
observations and counterfactual interventions, but additional
work is needed to characterize the conditions under which a
generic counterfactual premise is interpreted as an observa-
tion or an intervention. A second direction for future work is
to draw a sharper contrast between the DMSM and accounts
that combine the predictions of the MSM and the USM us-
ing a weighted average, and to better understand individual
differences in counterfactual reasoning.
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