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Exploring dynamical gluon mass generation in three dimensions

John M. Cornwall*

Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
(Received 14 October 2015; published 25 January 2016)

We reexamine the d ¼ 3 dynamical gluon mass problem in pure-glue non-Abelian SUðNÞ gauge
theories, paying particular attention to the observed (in Landau gauge) violation of positivity for the
spectral function of the gluon propagator. This is expressed as a large bulge in the propagator at small
momentum, due to the d ¼ 3 avatar of asymptotic freedom. Mass is defined through m−2 ¼ Δðp ¼ 0Þ,
where ΔðpÞ is the scalar function for the gluon propagator in some chosen gauge; it is not a pole mass and
is generally gauge dependent, except in the gauge-invariant pinch technique (PT). We truncate the PT
equations with a recently proposed method called the vertex paradigm that automatically satisfies the QED-
like Ward identity relating the three-gluon PT vertex function with the PT propagator. The mass is
determined by a homogeneous Bethe-Salpeter equation involving this vertex and propagator. This gap
equation also encapsulates the Bethe-Salpeter equation for the massless scalar excitations, essentially
Nambu-Goldstone fields, that necessarily accompany gauge-invariant gluon mass. The problem is to find a
good approximate value for m and at the same time explain the bulge, which by itself leads, in the gap
equation for the gluon mass, to excessively large values for the mass. Our point is not to give a high-
accuracy determination of m but to clarify the way in which the propagator bulge and a fairly accurate
estimate of m can coexist, and we use various approximations that illustrate the underlying mechanisms.
The most critical point is to satisfy the Ward identity. In the PT we estimate a gauge-invariant dynamical
gluon mass of m ≈ Ng2=ð2.48πÞ. We translate these results to the Landau gauge using a background-
quantum identity involving a dynamical quantity κ such that m ¼ κmL, where m−2

L ≡ ΔLðp ¼ 0Þ. Given
our estimates for m, κ, the relation is fortuitously well satisfied for SUð2Þ lattice data.

DOI: 10.1103/PhysRevD.93.025021

I. INTRODUCTION: THE d ¼ 3 AND d ¼ 4
GLUON MASS PROBLEMS

This paper considers dynamical gluon mass generation
in a pure-glue d ¼ 3 non-Abelian gauge theory (NAGT),
based on the pinch technique (PT). Recall that the PT
algorithm was introduced [1–6] to generate gauge-invariant
Green’s functions in non-Abelian gauge theories such as a
NAGT, and it was later extended in d ¼ 4 to an algorithm
for Green’s functions both gauge invariant and renormal-
ization-group invariant (RGI) [7–9]. Of course, the gluon
mass is not a pole mass, or we would see gluons in
experiments; it is more in the nature of a screening mass,
analogous to the polaron of condensed matter physics—an
electron or a hole made heavy by coupling to the ionic
background. In a NAGT the gluon couples to a background
of other virtual gluons. We give a precise definition to the
mass concept, defining a zero-momentum mass m by

m2 ≡ Δ̂−1ðp ¼ 0Þ: ð1Þ
(Throughout this paper, hatted quantities are PT quantities.)
We similarly define a Landau-gauge mass by

m2
L ≡ Δ−1

L ðp ¼ 0Þ: ð2Þ

Here, Δ̂ðpÞ is the scalar function for the PT gluon
propagator, and a similar situation for the Landau gauge.
The PT mass is the zero-momentum value of a running

mass mðpÞ that vanishes like 1=p2 at large momentum; see
Sec. V. For technical reasons, in d ¼ 3 it is much simpler to
ignore the running of the mass, which we do throughout this
paper. Clearly this definition of mass makes sense only if the
right-hand side of Eqs. (1) and (2) is finite and positive. As
we discuss at the end of this section, all lattice simulations in
the Landau gauge show that this is indeed true. In Sec. VII
we invoke a background-quantum identity showing that the
zero-momentum Landau-gauge propagator ΔLðp ¼ 0Þ is a
finite and positive multiple κ2L of Δ̂ðp ¼ 0Þ:

ΔLðp ¼ 0Þ ¼ κ2LΔ̂ðp ¼ 0Þ; ð3Þ

and so m ¼ κLmL. Since κL < 1, these two masses are
different. This is to be expected since the Landau-gauge
propagator is gauge dependent and unphysical; the PT mass
as defined in Eq. (1) is gauge invariant. By estimating κL and
using the estimate of m2 from the present work, we find a
fortuitously close agreement between our resulting approxi-
mate value of m2 and the Landau-gauge mass inferred from
simulations. Or, conversely, we may take the simulation
value mL and infer m, again with fortuitously good*cornwall@physics.ucla.edu
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agreement, considerably better than the 20%–25% error that
we are probably making in our approximate formulation.
One might think that d ¼ 3 mass generation should be an

easier problem than in d ¼ 4, where renormalization is
required. In contrast, a d ¼ 3 NAGT is superrenormalizable,
so that at infinite momentum the gluon coupling g2 does not
change from its value in the classical action. Nevertheless,
we can define a running coupling ḡ2ðpÞ without reference to
a renormalization group and this running has important
consequences for the gluon mass in d ¼ 3.
A number of theoretical works on the gluon mass in

d ¼ 3 date from the 1990s [1–5,10–16]. These gave
reasonable results for the gluon mass, but a closer analysis
[11] of the theoretical gluon propagators seemed to be
disappointing and unphysical for a reason that was not
really appreciated at the time: nonpositivity of the propa-
gator spectral function. This is manifested by a bulge in the
Euclidean propagator, clearly evident in Landau-gauge
lattice simulations. Nonpositivity is a consequence of d ¼
3 infrared slavery, inherited from the “wrong” sign of d ¼ 4
asymptotic freedom (AF).
Aside from the works referenced above, there is also a

decade-later work [17] using a special form of the PT and

oriented to later Landau-gauge lattice data. The general
approach is similar to what is used here, including the
addition of massless scalars to the three-gluon vertex [5].
The massless scalar fields are essentially Nambu-Goldstone
(NG) excitations, and they must exist as bound states if the
gluon mass is to be gauge invariant with no elementary
Higgs fields. Using free vertices and free massive input
propagators, the authors find important nonpositivity
in the output propagator. However, there are significant
differences from the present work in the treatment of
mixing the massless scalars with gluons and of determi-
nation of the gluon mass. Moreover, there is no discussion
of the effects of nonpositivity on the three-gluon vertex,
which we estimate to be considerable and in the direction of
canceling nonpositivity effects in the propagator when used
in the gluon mass gap equation. Reference [17] and other
later works benefited from good lattice data on the Landau-
gauge propagator [18–20] that we will recap in Sec. II. The
lattice evidence for dynamical generation of some sort of
gluon mass is unequivocal in d ¼ 3: The Landau-gauge
inverse propagator is not zero at zero momentum, but finite
and positive (see Fig. 1 in the next section). In d ¼ 4 there
is also an abundance of lattice work that confirms gluon
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FIG. 1. The d ¼ 3 Landau-gauge gluon propagator [DðpÞ, lower curve] as a function of momentum p for various lattice sizes. The
filled circles are at the largest lattice size of 18 fm3. (The gluon dressing function in the upper graph is p2 times the lower curve.)
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mass generation. See, for example, [21–48]. Moreover,
much is being done in continuum studies of the d ¼ 4
problem, mostly by Papavassiliou and collaborators (for a
discussion of work up to 2011, see [6]; later work can be
traced from, for example, [49]).
In the present paper we argue that in the homogeneous

Bethe-Salpeter (BS) equation governing the value of the
dynamical mass, this positivity problem is largely amelio-
rated by a compensating dip in the three-gluon vertex, so
that the predicted gluon mass value is much less affected by
nonpositivity than the propagator itself is. That there must
be a dip in the vertex that (partially) compensates the
propagator bulge follows from the QED-like Ward identity
(see Sec. III) relating them. Approximations not accounting
for both the propagator bulge and the vertex dip can give
gluons mass values far removed from reality. For this
reason, it is particularly important that the Ward identity be
satisfied, even in the face of approximations. The vertex
paradigm that we use here is based on constructing an
approximate vertex from which the propagator is extracted
using the Ward identity. Much of the present work is
devoted to the study of this complicated nonlinear problem.
We can find an explicit Feynman-parameter integral for the
approximate vertex at one-dressed loop, and it is easy to
find the corresponding propagator from the Ward identity.
Evaluating the many terms of this Feynman-parameter

integral to find the vertex itself is a daunting task, never
done even for the one-loop perturbative vertex. Even if it
were evaluated precisely, it is an approximation that is not
necessarily highly accurate. Consequently, we resort to
other approximations based on d ¼ 5, 6 scalar field
theories to capture the essence of how the Ward identity
relates a propagator bulge to a vertex dip [7–9]. These are
useful because ϕ3

6 is asymptotically free and its d ¼ 5

descendant behaves much like a d ¼ 3 NAGT; they are
reviewed in Appendix B 1. The models are tweaked so that
their one-dressed-loop Schwinger-Dyson equations (SDEs)
resemble those of a NAGT as much as possible, and to this
end some of the fields are endowed with an Abelian charge
and a corresponding vertex with its Ward identity. It is
uncomplicated to carry out the vertex-paradigm construc-
tion for these scalar field theories, and the results for the
propagator are surprisingly close to previous approxima-
tions to NAGTs [9].

A. The vertex paradigm

The vertex paradigm was previously used in d ¼ 4 for
truncating the PT Schwinger-Dyson equations [7–9]. It
begins with analytic tree-level approximations to the full
PT inverse propagator and three-gluon PT vertex (the
inputs) that are massive and therefore free of IR singular-
ities. If the masses do not run, these inputs exactly satisfy
the ghost-free QED-like Ward identity relating them. This
is a critical point in showing that a one-dressed-loop output
approximation to the three-gluon vertex using these input

Green’s functions satisfies the Ward identity. We then
simply apply the Ward identity to find the output gluon
propagator. There are a number of technical obstacles to
overcome, in particular the treatment of bound-state mass-
less scalar excitations, akin to NG fields, that are necessary
if the gluon has mass. We give a road map of the vertex
paradigm in the appendixes, and more details are found in
[9]. In principle, the output Green’s functions can be
recycled and used as input functions for another round,
but nothing is known about what happens in this sec-
ond stage.
In reality, the output gluon mass is a running mass,

depending on momentum [2,50] in both d ¼ 3 and d ¼ 4.
The author does not know how to guarantee the Ward
identity with a momentum-dependent input mass, but it is
much easier, although not trivial, if the mass does not run.
In d ¼ 4 using a constant mass prevents us from actually
finding a value for the mass, which must vanish at infinite
momentum for the gluon mass gap equation to be UV
finite. (If a truly constant bare mass led to an UV-finite
solution of the gap equation, then a NAGTwith a mass term
would be renormalizable in d ¼ 4.) But in d ¼ 3 we can
still solve the gap equation with a constant mass. The error
made in this approximation is small since the UV region
contributes little to the gap equation. Ultimately, this is
inconsistent because in d ¼ 3 a constant mass input to the
gap equation automatically leads to an output mass that
runs to zero as 1=p2 at large momentum. An identically
vanishing mass is not a solution to the gap equation, which
becomes IR singular in this limit.
Unless otherwise specified, we carry out the vertex

paradigm in Euclidean space with the usual Euclidean
metric. We reserve a study of the properties of the
dynamical mass in Minkowski space, where it is surely
not a pole mass, for the future.

B. Organization of the paper

Section II brings up the critical properties, related to
infrared confinement, that are the central themes of this
paper. In Sec. III we introduce the vertex paradigm and the
Ward identity, and we discuss the massless scalar poles
necessary for gauge-invariant gluon mass generation.
Section IV is a straightforward transcription of earlier
d ¼ 4 efforts in the vertex paradigm to construct the
d ¼ 3 pole-free vertex. Section V constructs the homo-
geneous BS equation whose solution is the running mass.
Section VI and Appendix B 1 introduce an approximation
to the output three-gluon vertex, based on IR confinement
analogs found in IR confining scalar theories in d ¼ 5, 6.
This section also proposes, for heuristic purposes, a d ¼ 3
running charge that is just another name for part of the
three-gluon vertex, similar to what has been done in d ¼ 4

[8,9]. Section VII estimates the function 1þ ĜðpÞ that
determines the ratio between the Landau-gauge lattice
propagator ΔL and the PT propagator Δ̂. Knowledge of
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1þ ĜðpÞ allows us to compare the lattice-gauge Landau
propagator to the PT propagator, and in particular the gluon
masses (defined from the inverse propagators at zero
momentum). The Landau-gauge mass mL need not, and
does not, agree with the PT mass m. Section VIII has a
summary and conclusions, and Appendixes A, B, and C
elaborate on the vertex-paradigm, scalar theories in d ¼ 5,
6, and a useful regulator for certain divergent integrals,
respectively.

II. CRITICAL PROPERTIES

Some properties that complicate the gluon mass problem
hold in both the PT Green’s functions and in the Landau-
gauge lattice gluon propagator, and in both d ¼ 3 and
d ¼ 4. The Green’s functions have the properties that
(1) The inverse propagator has zero-mass scalar poles,

akin to Nambu-Goldstone poles. These are required
by gauge invariance if the proper self-energy does
not vanish at zero momentum. This nonvanishing is
equivalent to a dynamical gluon mass, although not a
simple pole mass. These NG poles cannot appear in
physical quantities.

(2) The propagator, although it obeys a spectral repre-
sentation, does not have a strictly non-negative
spectral function. This is the positivity problem. It
is a d ¼ 3 avatar of AF.

(3) The PT three-gluon vertex has features related to the
PT propagator nonpositivity through the QED-like
Ward identity connecting them.

In an Rξ gauge the inverse of the PT propagator has the
form

Δ̂−1
ij ðpÞ ¼ PijðpÞΔ̂−1ðpÞ þ 1

ξ
pipj;

Δ̂−1ðpÞ ¼ p2 þ Π̂ðpÞ; ð4Þ
where the transverse projector is

PijðpÞ ¼ δij −
pipj

p2
: ð5Þ

The PT proper self-energy Π̂ðpÞ is independent of the
gauge-fixing parameter ξ, whose coefficient in the propa-
gator receives no physical corrections. We omit writing this
gauge-fixing term in the following equations.

A. First critical property: A gluon mass

From Eq. (4) one sees that the first critical property, the
NG-like poles, arises as long as Π̂ðp ¼ 0Þ ≠ 0. This is
equivalent to dynamical mass generation, which is signaled
by an inverse propagator that is finite and positive at zero
momentum. Through the QED-like Ward identity relating
the three-gluon PT vertex to the inverse PT propagator,
these NG-like poles have to be in the vertex, but these poles
get projected out in Landau-gauge lattice studies. The

second critical property shows up in the lattice data cited
above, most of it in Landau gauge, with clear evidence of
nonpositivity in the propagator spectral function.
The first property, a gluon mass, is evident for the

Landau gauge in Fig. 1, showing the d ¼ 3 gluon propa-
gator in the Landau gauge [20].

B. Second critical property: Nonpositivity

The second critical property is that the spectral function
is negative in some regions. The scalar function Δ̂ has the
spectral representation

Δ̂ðpÞ ¼ 1

π

Z
∞

σ0

dσ
ρðσÞ
p2 þ σ

: ð6Þ

The same basic representation holds in, for example, the
Landau gauge, but unlike the spectral representation for
conventional gauge-dependent propagators, in the PT case
there are no unphysical and gauge-dependent thresholds,
such as would apply to ghosts, and σ0 is strictly positive. If
the spectral function is nowhere negative, it is apparent that
the derivative with respect to p of the propagator can
nowhere be positive, and equally apparent that this con-
dition is violated in Fig. 1. The filled circles, data for the
largest lattice, as well as data for smaller lattices, clearly
show that the gluon propagator has a positive slope at zero
momentum, which equally clearly shows that positivity is
violated.
The positivity violation in d ¼ 4 is not obvious just from

a casual glance at the propagator. A little closer look shows
that there is indeed nonpositivity in d ¼ 4, but not as
pronounced as for d ¼ 3. See, for example, Fig. 1 of [19],
comparing the two cases. In both d ¼ 3 and d ¼ 4 the
cause of the bulge is wrong signs coming from IR
confinement.
Finding the spectral function itself from lattice data is not

straightforward, because only data in the Euclidean region
are available and it is difficult to reconstruct the spectral
function accurately just from knowledge of the propagator
in this regime. For a brief review of these issues with
references to original work, see [51].
The source of the bulge in d ¼ 3, 4 is the IR confinement

wrong sign. As has long been known [1,2,10], the d ¼ 3
SUðNÞ PT propagator in one-loop perturbation theory is

Δ̂−1ðpÞ ¼ p2 þ Π̂ðpÞ ¼ p2 − πbg2p; ð7Þ

where g2 is the d ¼ 3 gauge coupling and b is the gauge-
invariant number

b ¼ 15N
32π

: ð8Þ

The minus sign in (7) comes directly from d ¼ 4 AF. In
Landau gauge 15 is replaced by 11; this suggests the degree
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to which the Landau-gauge and the PT propagator differ,
although both have the same so-called wrong sign. It is this
sign in this inverse propagator that gives rise to an
unphysical tachyonic pole in the perturbative PT propaga-
tor at a Euclidean momentum p2 ¼ ðπbg2Þ2. This tachyon
will be killed by a mass term and by massive internal gluon
propagators, provided that the mass is large enough. But
removing the tachyon is not enough; it leaves its mark
behind in the propagator bulge of Fig. 1, which unambig-
uously reveals the nonpositivity problem. This means that
the output propagator does not resemble a free massive
propagator such as in Eq. (17) below, except in the extreme
IR and UV.

C. Third critical property: An inverse bulge
in the three-gluon vertex

There are no lattice data that are useful in understanding
the PT three-gluon vertex, but this vertex has critical
properties in the gluon gap equation. The Ward identity
of Eq. (10) below, relating the divergence of the three-gluon
Green’s function to the inverse PT propagator, suggests that
the positivity-violation bulge in the propagator is mitigated
in dressed-loop graphs by an offsetting dip in the vertex. In
the gap equation this can lead to substantial cancellation of
nonpositivity effects between vertex and propagator.
This is a difficult issue to explore, since the output three-

gluon vertex of the vertex paradigm is so complicated, and
has wrong-sign problems of its own that could lead to
unphysical tachyons. At the moment we can only address it
heuristically and approximately. One element is to exploit
AF in the scalar theory ϕ3

6, having strong analogs to d ¼ 4

NAGTs, and its avatar in ϕ3
5, analogous to a d ¼ 3 NAGT

[8,9]. In particular, the propagator bulge can be well
modeled, and it is related to a three-gluon vertex form
factor by a QED-like Ward identity, just as in a NAGT. This
suggests that our model for the form factor is also useful
since it is from this form factor and the Ward identity that
the propagator is derived.
In d ¼ 4, the three-gluon form factor of interest is

closely related to the usual running charge, which rises
from the UV and saturates in the IR. We hope to make
plausible here that in d ¼ 3 there is also a running charge
ḡðpÞ with the same properties, defined not through a
renormalization group but through the PT three-gluon
vertex of the NAGT and the Ward identity relating it to
the PT propagator. See Appendix C for a few details.
Because the renormalization group is not involved, this
charge is defined in d ¼ 3 as well as in d ¼ 4 (where it
agrees, through two loops, with the usual running charge in
the UV). We define the running charge by one of the three-
gluon vertex scalar form factors with one momentum set to
zero [8,9]; let us call this Gðp;−p; 0Þ. The running charge
ḡ2ðpÞ is related to the form factor by Eq. (C4), repeated
here for convenience:

ḡ2ðpÞ ¼ g2

Gðp;−p; 0Þ : ð9Þ

In the tweaked analog models we identify this form factor
with the primary form factor of the Abelian current
introduced above.
In the IR it is not possible to define a running charge

uniquely, in d ¼ 3 or in d ¼ 4. But our definition is
physically plausible and has useful properties. For example,
we will take it that the squared running charge is, as its
name suggests, positive. Moreover, our definition in d ¼ 3
yields a running charge largest at zero momentum and
monotonically decreasing toward the UV, where it
approaches the fixed Lagrangian coupling g2 at infinite
momentum. The consequent properties for Gðp;−p; 0Þ
imply a vertex-function dip that tends to offset the non-
positivity bulge in the gluon propagator. The final result is
coexistence of the nonpositivity bulge in the PT (or
Landau-gauge) propagator with a gluon mass that is
consistent both with the gap equation and with Landau-
gauge lattice data.

III. THE VERTEX PARADIGM, THE WARD
IDENTITY, AND MASSLESS SCALAR
POLES IN THE PT PROPAGATOR

We give here only an outline of the technically tedious
steps in the one-loop vertex paradigm. Appendix A gives a
very brief summary, and details are in [9].
The main point of the vertex paradigm, a truncation of

the PT SDEs, is to construct successive approximations to
the PT gluon proper self-energy and to the PT three-gluon
vertex, following PT principles for constructing gauge-
invariant Green’s functions, that
(1) Satisfy the QED-like (ghost-free) Ward identities of

the PT.
(2) Incorporate dynamical gluon mass in the IR.
(3) Yield the correct perturbative results in the UV.

The potential advantage of the vertex paradigm, compared
to other truncations the author knows about, is that, in
principle at least, it yields a plausible semiquantitative
candidate not only for the PT propagator but also for the PT
three-gluon vertex. There is a strong connection between
these Green’s functions from the Ward identity relating
them.
There are several obstacles to implementing the vertex

paradigm:
(1) Not every approximation to a three vertex will

satisfy the Ward identity [see Eq. (10) below]
structurally, that is, have a divergence that actually
is the difference of two identical functions with
different momenta as arguments.

(2) A gluon mass requires poles in the inverse propa-
gator and so, by the Ward identity of Eq. (10), also
in the three vertex. But no such poles occur in a
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one-loop vertex constructed with simple input
propagators and vertices.

(3) The method of successive approximations may show
signs of nonconvergence.

The vertex paradigm [8,9] can handle the first two
problems. We devote much of this paper to formulating
a semiquantitative solution to the last problem, which arises
because of nonpositivity. The trouble is that in d ¼ 3 the
one-loop output propagator does not at all resemble the
input propagator.
In the PT, Ward identities are QED-like, with no ghost

contributions. For example, the Ward identity relating the
PT three-gluon vertex Γ̂ijk to the PT inverse propagator is

p1iΓ̂ijkðp1; p2; p3Þ ¼ Δ̂−1ðp2ÞPjkðp2Þ − Δ̂−1ðp3ÞPjkðp3Þ:
ð10Þ

Although this is a ghost-free and gauge-independent
relation, the right-hand side is not a difference of inverse
propagators (except in a ghost-free gauge). If Δ̂−1ðp ¼ 0Þ
is not zero, there are poles in the right-hand side, and
therefore such poles also exist in the vertex.
In the vertex paradigm, the vertex in the Ward identity is

a sum of two pieces. The first vertex part is a simple
Feynman integral and it does not have the poles required by
the Ward identity to yield the poles of the massive inverse
propagator in Eq. (4). So we add (see Sec. III A) a second
vertex part [5], called Vijk, which is the product of regular
factors times terms with massless longitudinally coupled
NG-like scalar excitations. It satisfies its own Ward identity
that gives precisely the pole parts of the inverse propagator.
We emphasize that these NG-like excitations do not imply
symmetry breaking in dynamical gluon mass generation for
a NAGT.
If we knew the vertex we could find the inverse

propagator from the Ward identity. This seems like a
circular statement since one needs the propagator to find
the vertex. We try to avoid this circularity by using
successive approximations, starting with a reasonable
tree-level form for input propagators and vertices in one-
dressed-loop graphs. The approximate output vertex is just
the integral over the input propagator and vertices. Then the
Ward identity gives the output inverse propagator. The hope
is that this process of successive approximations will
eventually converge.
An earlier truncation method, called the gauge technique

and explained in [6], attempts the inverse problem: Given
the propagator, find the vertex. This is a much easier
problem with an algebraic solution (see [6] and Sec. III A),
but it is not very accurate. It leads to SDEs written entirely
in terms of the propagator. The gauge technique is based on
the construction of Sec. III A below.
As is by now well known, the PT algorithm is equivalent

to working in the background-field method Feynman gauge
[6]. The first vertex piece, called Gijk, is based on the PT

or background-field method (BFM)-Feynman approach
[52–54] to the one-loop three-gluon vertex in perturbation
theory, with massless gluons and ghosts. This one-loop
vertex is quite complex and has never been evaluated fully,
even in perturbation theory. Fortunately, its graphical con-
structionmakes it straightforward to verify theWard identity
from themomentum-space integrand of the one-loop vertex,
without actually doing any integrals, and it is then easy to
evaluate the vertex-paradigm PT proper self-energy.
In order to use the mass gap equation we need a

semiquantitative approximation to this complicated output
vertex. The vertex has some properties that are general
consequences of IR confinement and a QED-Ward identity,
so we will model these properties in one-loop graphs of ϕ3

5

(see Appendix B 1). This can be at best semiquantitatively
correct, but it serves to make the point about how non-
positivity is subdued by cancellations between the product
of propagator and vertex occurring in the mass gap
equation.

A. The PT Ward identity and Nambu-Goldstone poles

The problem of finding Vijk was solved in principle long
ago [5]. The full vertex is the sum of these two parts:

Γ̂ijkðq; k1; k2Þ ¼ Gijkðq; k1; k2Þ þ Vijkðq; k1; k2Þ: ð11Þ

The vertex Vijk has the form, in d ¼ 3:

Vijkðp1; p2; p3Þ ¼
−p1ip2j

2p2
1p

2
2

ðp1 − p2ÞaΠm
akðp3Þ

−
p3k

p2
3

½Paiðp1ÞΠm
ajðp2Þ

− Pajðp2ÞΠm
aiðp1Þ� þ c:p: ð12Þ

We have expressed this vertex in terms of a special
transverse self-energy Πm

ij that is purely nonperturbative,
and we define its scalar part by

Πm
ijðpÞ ¼ PijðpÞΠmðpÞ≡ PijðpÞm2ðpÞ; ð13Þ

where mðpÞ is the running mass. (In the earliest PT papers,
this self-energy was assumed to be the full self-energy,
yielding the gauge-technique truncation of the SDE.) In the
constant-mass approximation we define m ¼ mðp ¼ 0Þ.
Note that every term in V has not one, but two, massless
scalar poles, but its Ward identity has only a single pole:

p1iVijkðp1; p2; p3Þ ¼ Πmðp2Þ
p2jp2k

p2
2

− Πmðp3Þ
p3jp3k

p2
3

:

ð14Þ
Observe that the Ward identity for the V vertex exactly

satisfies the Ward identity necessary to accommodate the
poles of the full inverse propagator. It follows that Gijk
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must also obey that Ward identity, but with an inverse
propagator Δ−1 that has no poles. The full inverse propa-
gator is the sum of this pole-free part plus the pole terms
in Eq. (14).

B. The pole-free part of the Ward identity

We now come to the hard part [9]: To find an approxi-
mate and fairly simple form of the pole-free vertex and
inverse propagator that exactly satisfies the same QED-like
Ward identity,

p1iGijkðp1; p2; p3Þ ¼ Δ−1ðp2ÞPjkðp2Þ − Δ−1ðp3ÞPjkðp3Þ;
ð15Þ

but with no poles either in the vertex or in the inverse
propagator. Here, the inverse propagator Δ−1 is not the full
inverse PT propagator Δ̂−1, but only that part of it vanishing
at zero momentum, thus yielding no poles. Similarly, Gijk

is not the full PT vertex, but its sum with Vijk is the full
vertex, as in Eq. (11), and the full inverse propagator is the
sum of Δ−1 and the pole terms as in Eq. (16) below. In
d ¼ 4 an approximate one-loop pole-free three-gluon
vertex that exactly satisfies the Ward identity is given in
[9], with a construction based on a reasonably straightfor-
ward, if complicated in detail, extension of the one-loop
perturbative three-gluon PT vertex [52]. IR singularities are
removed with free massive propagators as in Eq. (17)
below. Even in perturbation theory it would be a formidable
job to do the integrals for the output three-gluon vertex
explicitly [52–54], but in order to get the output PT
propagator we need only use the QED-like Ward identity
of Eq. (15) and the unintegrated vertex. Now we can add
Gijk to the pole vertex Vijk, and similarly the pole part of
the self-energy Πm to the self-energy Π and form an
approximation to the full PT inverse propagator:

Δ̂−1ðpÞ≡ p2 þ Π̂ðp2Þ ¼ p2 þ Πðp2Þ þ Πmðp2Þ: ð16Þ
The vertex sum of Eq. (11) obeys the full PT Ward identity.

IV. THE d ¼ 3 VERTEX PARADIGM—STEP 1: THE
POLE-FREE VERTEX

A. Inputs

The inputs for constructing the pole-free output Green’s
functions are essentially free massive propagators for
gluons and ghosts:

Δ̂0
ijðpÞ ¼

δij
p2 þm2

; Δ̂gh ¼
1

p2 þm2
; ð17Þ

plus free vertices. Their motivation (in particular, why the
input ghost has the same mass as the gluon) and use in the
PT are discussed a little further in Appendix A. These
inputs yield outputs which (besides enforcing both gauge

invariance and RGI) are one-loop exact in the UV, are IR
finite, and exactly satisfy the necessary Ward identity, as
long as the mass is constant. Unfortunately, these outputs
(with the pole terms added, as described in Sec. III A) do
not much resemble the inputs because the output propa-
gator has a distinct bulge and the input propagator does not.

B. Pole-free outputs

We will not give the tedious algebra [9] needed to find
the pole-free three-vertex and inverse propagator. They
follow from a straightforward adaptation of the d ¼ 4
vertex-paradigm results [9] to d ¼ 3. The result for the full
inverse PT propagator including the pole terms is

Δ̂−1
ij ðpÞ≡ Δ−1

ij ðpÞ þ PijðpÞΠmðpÞ ¼ PijðpÞp2

−
Ng2

ð2πÞ3
Z

d3k
ðk2 þm2Þ½ðpþ kÞ2 þm2�

×

�
PijðpÞð4p2 þm2Þ þ 1

2
ð2kþ pÞið2kþ pÞj

�

þ Ng2

2ð2πÞ3 δij
Z

d3k
k2 þm2

þ PijðpÞΠmðpÞ; ð18Þ

where we have omitted irrelevant gauge-fixing terms and
PijðpÞ is the transverse projector. This is the sum, as in
Eq. (16), of a pole-free termΔ−1 and the new term withΠm.
Only this new term contributes to the pole parts of the
vertex and inverse propagator.
In the next section we will deal with the determination of

the mass function ΠmðpÞ multiplying the massless scalar
poles [see Eq. (12)] that are necessary for generating a
gluon mass in NAGTs. This term is the analog, in a NAGT,
of the gluonic self-energy part that couples to the massless
scalar excitations in a simple Abelian model of dynamical
gluon mass generation given long ago [55]. The massless
pole in the Πm term comes from the pipj=p2 term in the
transverse projector. By gauge invarianceΠm also occurs in
the nonpole terms, to complete the transverse projector.
For the first evaluation of the vertex-paradigm output

propagator we use a constant mass m everywhere,
including in the seagull term. It turns out that for constant
m the explicit seagull and the term with numerator
∼ð2kþ pÞið2kþ pÞj in Eq. (18) add up to a term that is
transverse and vanishes at zero momentum, although each
separately is nontransverse and nonvanishing at zero
momentum. The reason that a p-independent seagull
restores transversality to a p-dependent integral is that
the divergence of the integral only depends on the value of
the integral at p ¼ 0, as one easily checks by taking
the divergence of the term with this numerator. The
calculations require the regulator formula of Eq. (D1) in
Appendix D. Applied to the usual seagull integral—with a
constant mass—the regulator yields
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1

ð2πÞ3
Z

d3k
k2 þm2

→ −
2

ð2πÞ3
Z

d3km2

ðk2 þm2Þ2 ¼ −
m
4π

:

ð19Þ
The regulator replaces an integral with a single propagator
by an integral with two propagators, which is why the
seagull can cancel out the (zero-momentum part of) another
term that has two propagators. In d ¼ 4 the regulated
integral still diverges (logarithmically) for constant mass,
and there is no useful regulation. The logarithmic diver-
gence can only be removed if the dynamical gluon mass
vanishes at infinite momentum in d ¼ 4. But this is not
required in d ¼ 3, and the same techniques that in d ¼ 3
allow us to estimate quantitatively the gluon mass only lead
to lower bounds in d ¼ 4 [9].
Again, all of these considerations would be much more

complicated with a running mass.

C. First step in evaluating the vertex-paradigm
output propagator

From now on we take the pole mass function Πmðp2Þ to
have the constant value m2 ≡ Πmðp ¼ 0Þ. Then the basic
scalar integral has the value

1

ð2πÞ3
Z

d3k
ðk2 þm2Þ½ðpþ kÞ2 þm2� ¼

1

4πp
arctan

�
p
2m

�
:

ð20Þ
The remaining steps in the vertex paradigm lead to a self-
consistent value for m2.
With these remarks, we write the output inverse propa-

gator as

Δ̂−1ðpÞ ¼ p2 − 2bg2p arctan

�
p
2m

�
þ 8bg2m2

15p
arctan

�
p
2m

�

−
4bg2m
15

þm2: ð21Þ

If one drops the final m2 [that is, the Πmðp ¼ 0Þ term], the
remainder of this inverse propagator vanishes at zero
momentum. In these equations, b is the parameter of Eq. (8).
The next step is to find the dynamical BS equation that

governs both the value of the mass, in terms of g2, and
the existence of the NG-like massless scalars. The self-
consistency requirement of the vertex paradigm is that the
output mass in Eq. (21) equals the input mass, and the
consequences of this consistency condition come from
the BS equation.

V. THE d ¼ 3 VERTEX PARADIGM—STEP 2:
FINDING THE GAP EQUATION

For gauge-invariant gluon mass generation there must be
an adjoint multiplet of massless scalars, derivatively

coupled to the gluons. These are the NG-like particles
spoken of earlier. They furnish the poles in the vertex and
inverse propagator.

A. From the mixing amplitude to the gluon propagator

The effective action

Smix ¼
Z

d3xmTrðAi∂iϕÞ ð22Þ

describes the mixing. Here the coupling mass m is the
running dynamical gluon mass at zero momentum, and ϕ is
the composite NG field.
Self-consistency of the successive approximation

scheme requires that we define the zero-momentum value
of the inverse propagator to be the same as the input
squared mass m2:

Δ̂−1ðp ¼ 0Þ ¼ Πmðp ¼ 0Þ≡m2: ð23Þ

[One could then consider ΠmðpÞ − Πmð0Þ as part of the
pole-free self-energy, but we will keep ΠmðpÞ as a separate
entity.] This self-energy comes from a strictly nonpertur-
bative amplitude that mixes the longitudinal part of the
gluon with the NG-like particle.
How does the mixing amplitude enter into the gluon

propagator? It must generate the pole term in the inverse
propagator, of the form

Δ̂−1
ij ðpÞ ¼ −m2

pipj

p2
þ…: ð24Þ

A few minutes’ play with Feynman diagrams shows that if
two particles A and B have a linear mixing term such as the
action of Eq. (22) with strength λ, the AA inverse
propagator has the form

D−1
AAðpÞ ¼ p2 þ ΠA;1PI − λDBBλ; ð25Þ

whereΠA;1PI is the A proper self-energy that is one-particle
irreducible (1PI) with respect to A, and DBB is the B
propagator that is 1PI with respect to A. For dynamic gluon
mass generation, there is no term Smix in the original action
and λ should be replaced by a BS form with one or more
loops, as in Fig. 2 below. Take particle A to be the gluon
and B to be the NG boson; comparison of Eqs. (24)
and (25) then shows how the mixing amplitude enters.

B. The mixing amplitude

This amplitude obeys a homogeneous gap equation,
much like the equation for a quark constituent mass coming
from chiral symmetry breakdown (CSB), as shown in
Fig. 3. If there is a solution to this homogeneous equation,
then there is CSB and spontaneous fermion mass gener-
ation. But at the same time, the gap equation is the
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zero-momentum Bethe-Salpeter equation for a massless
triplet of pions, so the Nambu-Goldstone mechanism works
for composite NG bosons.
There are some critical differences for dynamical gluon

mass generation. First, there is no symmetry being broken,
and second, the gap equation refers to a mixing amplitude
between particles of very different character: the gluon and
the NG particle. However, although not usually thought of
as such, a dynamical mass for a chirally symmetric quark is
a mixing process between different particles, coupling left-
handed and right-handed quarks. In the case of NAGT
gluons, the mixing process adds the third longitudinal
polarization state needed for a massive gluon.
The steps to follow are familiar indeed in related

contexts, but technically more involved because of the
proliferation of spin indices on gluons and the fact (see [55]
and the references therein) that the scalar pole, just like a
NG particle, cannot occur in a physical amplitude. Since
the NG particle is in the adjoint representation, it has a
standard gauge coupling to the gauge boson, with strength
g. Elementary symmetry considerations show that there is
no coupling of one NG particle to two gluons. In conse-
quence, the one-loop BS equation describing the NG field
has the graphical representation of Fig. 2. There is also a
seagull graph that enforces gauge invariance, which we do
not show.
At first glance, this equation seems to violate, because of

the massless internal line in the figure, the well-known
principle that NG particles cannot occur in the S matrix or
other physical quantities, such as the running mass. But in
fact there is no pole for this line because of a cancellation
brought about in the numerator. In Fig. 2 let q be the
momentum of the internal NG line and pi be the external
momentum. Then the graph in the figure has a kinematic
factor of pi multiplying a scalar graph. The momentum
dependence of the numerator of the graph comes out to be

−2ðpip · q − qip2Þ − 2ðq2pi − qip · qÞ: ð26Þ
The first term is orthogonal to pi for all q, and hence
contributes zero, since the graph itself must be proportional

to pi. The second term is orthogonal to qi and vanishes for
the component of q along p. This suggests, and calculation
confirms, that the second term in this numerator can be
replaced by

−
4

3
q2pi ð27Þ

since only two of three directions of q can contribute. Now
one sees that the q2 in the numerator cancels the NG pole,
and what remains is a one-loop self-energy graph for two
scalars of mass m, as a function of p. Note that there is
always a solution for a running mass mðpÞ in this equation
because g2 has the dimensions of mass. Of course, the
solution may or may not be reasonably accurate. We can
find the leading term in mðpÞ at large momentum by
evaluating this scalar self-energy with constant mass, and it
leads to m2ðpÞ ∼ 1=p2, as the operator product expansion
dictates [50].
As we said in the beginning, one of the virtues of d ¼ 3

is that it is possible to find a description of dynamical gluon
mass generation with a mass m that does not run, which is
the running mass mðpÞ evaluated at zero momentum. The
simplest equation for m comes from evaluating the BS
equation at p ¼ 0, using the input propagators of Eq. (17):

1 ¼ 4Ng2

3ð2πÞ3
Z

d3q
ðq2 þm2Þððpþ qÞ2 þm2Þ

����
p¼0

¼ Ng2

6πm
:

ð28Þ

Taken as it stands, this equation yields

m ¼ Ng2

6π
; ð29Þ

which is a factor of 2 or 3 less than in other works.
In fact, the actual mass ratiom=g2 could possibly be very

different because of nonpositivity effects in the three-gluon
vertex. In Sec. VI below we show that a simple approxi-
mation to the three-gluon vertex leads to a tachyonic pole in
the propagator unless the gluon mass is large enough, and
for the same wrong-sign reason leading to nonpositivity.
But in Sec. VI D we cure this pole through a dispersion
relation.

VI. THE d ¼ 3 VERTEX PARADIGM—STEP 3:
DRESSING THE GAP EQUATION

A. Dressed propagator

The next step in understanding the gap equation is to
dress the lines and vertices in Eq. (28). First, we evaluate
the integral in the gap equation with the output propagator
of Eq. (21) and bare vertices. Using a dressed propagator
with bare vertices is a common approximation in dealing
with gap equations.

FIG. 2. The dynamical gluon mass equation for the mixing
amplitude described by the action in Eq. (22) and indicated by the
black circles.

X = X

FIG. 3. A standard gap equation for the running mass of a quark
with CSB. The cross indicates the insertion of the running mass
into the propagator.
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Unfortunately, the dressed propagator in Eq. (21) is very
different from the input propagator. A comparison of the
input propagator and the output propagator, shown in
Fig. 4, is a measure of the potential discrepancy. This
figure makes the comparison for the specific mass value
m ¼ Ng2=ð2.48πÞ, which is, as we will see, the final
estimated value of the self-consistent mass. Clearly, the
output propagator does not resemble the input because of
the bulge in the output propagator. The bulge is evident not
only in the Landau-gauge propagator but also in the vertex-
paradigm output. It is also clear that the dressed output
propagator must give a much larger value to the gap-
equation integral than the input propagator will give. In
fact, the resulting integral with the dressed propagator is a
factor of 6.68 larger than quoted in Eq. (28) and the
estimated mass is larger than that given in Eq. (29) by the
same factor. Such wild swings would not encourage one to
believe that one is making progress on the d ¼ 3 gluon
mass problem by successive approximation methods. We
now show that dressing the three-gluon vertex substantially
mitigates the problem.

B. Approximate dressed vertex

Our task now is to estimate the effect of nonpositivity on
the gap equation both from the propagator and from the
vertex. One should not make the natural supposition that
finding the propagator from the Ward identity for the vertex
means that we know the vertex explicitly. Given the three-
gluon vertex as a momentum integral over tree-level
propagators, it is a much simpler problem to find the
results of a one-loop Ward identity than it is to evaluate that
integral [52]. In fact, that has never been done even in
one-loop perturbation theory. So for this exploratory study
of gluon mass with nonpositivity, we will ultimately come
to a heuristic and qualitative form for the three-gluon
vertex that someday must be supplanted by more accurate
calculations.

Even without full knowledge of the dressed vertex there
is a nonpositivity effect in the vertex that ameliorates the
effect from the dressed propagator and that can be quali-
tatively appreciated directly from the Ward identity of
Eq. (10): The bigger the propagator, the smaller the vertex.
The BS equation (28) effectively has the product of two
gluon propagators and two three-gluon vertices in it, and so
it is considerably less sensitive to nonpositivity effects than
either of the pieces is. We simplify this exploratory study by
omitting the massless pole parts of the vertex since they
cannot appear in a physical amplitude, and we approximate
the remaining pole-free part as described in Sec. VI D
below. Because we are using the approximation of a
nonrunning mass m≡mðp ¼ 0Þ, we remove the momen-
tum dependence from the BS equation by evaluating it at
zero momentum. Then each vertex is the scalar function
Gðq;−q; 0Þ, where G is (an approximation to) the appro-
priate scalar vertex function. For want of a better approxi-
mation, we take these functions from the model described
in Appendix B 1. It is based on an extension of previous
work [7–9] that models d ¼ 4 NAGT effects on the
asymptotically free scalar theory ϕ3

6, and that is described
briefly in Appendix B. The extension uses a tweaked
version of ϕ3

5. The approximate (scalar) BS equation
becomes

1 ¼ 4Ng2

3ð2πÞ3
Z

d3qG2ðq;−q; 0ÞΔ̂2ðqÞ: ð30Þ

In this equation the scalar function G is intended to model
the scalar form factor of the d ¼ 3 three-gluon vertex, also
called G and defined in Eq. (B5). As such, it appears in the
Ward identity (10).
Appendix B 1 gives a first approximate form for this

form factor:

Gðp1; p2; p3Þ ¼ 1 − 2bg2
Z ½dz�

ðDþm2Þ1=2 ; ð31Þ

where the factor ðDþm2Þ−1=2 is the denominator of the
d ¼ 5 equal-mass scalar triangle graph, as well as the
appropriate factor for d ¼ 3 NAGTs with massive input
propagators. The negative sign is inherent in ϕ3

5, but the
value 2bg2 is chosen so that the d ¼ 3Ward identity is valid
to Oðg2Þ in the massless (large-momentum) limit. That is,
the term of this order in G corresponds to the same term in
the output propagator of Eq. (7). The Ward identity tells us
that G behaves inversely to the propagator Δ̂, so the
propagator bulge ends up being a vertex dip. The minus
sign responsible for the vertex dip expresses the d ¼ 3
realization of IR confinement, just as it is responsible for
the propagator bulge; see Eq. (7).
The vertex G of Eq. (31) is not usable as it stands

because, for the self-consistent mass value, the vertex has a
zero in the Euclidean region. Appendix C gives a way

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 4. The lower (red) curve is the free massive propagator and
the upper curve is the vertex-paradigm output propagator, for the
mass given in the text.
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around this problem, using a dispersion relation for
G−1ðp;−p; 0Þ, and an argument first given [8] for the d ¼
4 three-gluon vertex that relates the inverse vertex to the
squared running charge ḡ2ðpÞ. The running charge is not
defined through a renormalization group or a beta function,
and the definition applies to d ¼ 3 as well as d ¼ 4. It is not
essential for subsequent calculations that the inverse of a
vertex function with one momentum zero is a running
charge squared because, in the end, everything is expressed
in terms of Gðp;−p; 0Þ. However, the idea that there is a
relation such as (32) below leads us to insist that
Gðp;−p; 0Þ be positive.

C. The running charge concept in d ¼ 3

The Ward identity (10) provides a path to a running
charge ḡ2ðpÞ that agrees with the PT running charge to two
loops at high momenta, is well defined and physically
reasonable at all momenta, and does not rely upon a
renormalization group or beta function for its definition.
The last feature makes it possible to use it in d ¼ 3.
According to the reasoning of Appendix C, this running
charge is

ḡ2ðpÞ ¼ g2

Gðp;−p; 0Þ : ð32Þ

The above definition equates G−1ðp;−p; 0Þ to an osten-
sibly positive quantity, the square of a running charge.
However, IR confinement interferes. Based on (31) the
corresponding approximation to Gðp;−p; 0Þ would be

Gðp;−p; 0Þ ≈ 1 −
2bg2

p
arctan

�
p
2m

�
; ð33Þ

clearly not positive in general, and, as said above, this
nonpositivity comes from IR confinement in d ¼ 3. If this
formula has a zero it completely spoils its interpretation as
an inverse running charge, which would not only have a
tachyonic pole but would also change sign from positive to
negative.
It could happen, but does not, that the self-consistent

mass m is so large that Gðp;−p; 0Þ is nevertheless
positive for all Euclidean momenta. Unfortunately, for
the self-consistent mass used in Fig. 4, the approximate
Gðp;−p; 0Þ does have a Euclidean zero, which the Ward
identity translates into an unwanted tachyonic propagator
pole. While this is not necessarily fatal since the pole need
not appear in the S matrix (because the vertex zero cancels
it), it is unnecessary; it also results in in the unphysical
result ḡ2ðpÞ < 0 for a finite range of momentum.
We proceed to a second step in modeling the vertex

dip that removes the zero of the approximate vertex
by postulating a dispersion relation for G−1ðp;−p; 0Þ
(or, equivalently, the running charge).

D. A dispersion relation for the vertex form factor

The type of dispersion relation we use here is sometimes
invoked under the name of analytic perturbation theory
[56], but our use of it has nothing to do with this subject.
The building block of the dispersion relation is the

simple formula

Z
∞

4m2

dσffiffiffi
σ

p ðσ þ p2Þ ¼
2

p
arctan

�
p
2m

�
; ð34Þ

with a manifestly positive spectral function. Now construct
a dispersion relation for ḡ2ðpÞ, based on the approximate
form of Eq. (33) and this building block:

ḡ2ðpÞ ¼ g2
�
1þ 1

π

Z
∞

4m2

dσ
σ þ p2

Imḡ2ðσÞ
�
; ð35Þ

with

Imḡ2ðσÞ ¼ πbg4

QðσÞ ffiffiffi
σ

p ð36Þ

and

QðσÞ ¼
�
1 − bg2P

Z
dσ0ffiffiffiffi

σ0
p

ðσ0 − σÞ

�
2

þ
�
πbg2ffiffiffi

σ
p

�
2

: ð37Þ

There is a subtraction at infinity, corresponding to the
appearance of 1 in Eq. (33) forG, and by hypothesis there is
no other subtraction that would yield a pole in the running
charge. Just as in d ¼ 4, this running charge is non-negative
and monotone decreasing with momentum from a finite
positive value at p ¼ 0. But in d ¼ 3 it approaches the
value g2 at infinity.
With this form for the running charge, we now use the

formula (32) forGðp;−p; 0Þ, inverse to ḡ2ðpÞ. It approaches
1 at infinity and is less than 1 for all finite momenta, but by
construction it has no zeros. Its spectral function is negative,
as it must be if it is inverse to a function with a positive
spectral function. The precise analytic expression of this
dispersion integral is complicated and unnecessary for our
purposes. As it happens, a simple modification of the
original approximate formula (33) is sufficiently accurate
as a stand-in for the dispersive integral:

g2

ḡ2ðpÞ ¼ Gðp;−p; 0Þ ¼ 1 −
0.95bg2

p
arctan

�
p
2m

�
; ð38Þ

in which the coefficient is 0.95bg2 instead of 2bg2. This
misstates the vertex in the deep UV, but this is not of concern
since mass generation is purely an IR issue and UV
contributions are not as important. For the self-consistent
mass there is no Euclidean zero, and it is numerically
reasonably close to the dispersive form. There is no reason
to suppose that the coefficient 0.95 is highly accurate;
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depending on how the stand-in vertex is fit to the numerical
vertex, this coefficient might change by �20%.
As advertised, the corrected vertex tends to offset

the propagator bulge. At the self-consistent mass m ¼
Ng2=ð2.48πÞ it has the zero-momentum value 0.5–0.6, a
reduction below the constant-vertex value of one. The zero-
momentum running charge is inverse to these numbers, that
is, between 1.66 and 2. Just as in a d ¼ 4 NAGT, the
running charge grows in the IR.

E. Final results

After numerical integration of the formulas of the last
section, the Bethe-Salpeter self-consistency relation that
replaces the original of Eq. (28) is

1 ¼ 1.9 × 2Ng2

3π2m
; ð39Þ

provided that these integrals are evaluated with the mass
value

m ¼ Ng2

2.48π
: ð40Þ

This is numerically consistent with Eq. (39). The BS
integral has been enhanced from the bare integral of
Eq. (28), but not nearly as much as if bare vertices and
the output propagator (shown in Fig. 4) were used in the BS
integral. The reduction comes from the decreasing value of
G as the momentum decreases.
As a result, the mass value coming from the bare

equation (29) of m ¼ Ng2=ð6πÞ is considerably changed.
We might compare it to other published mass values by
introducing a number ζ, with

m ¼ Ng2

ζπ
: ð41Þ

Our present value for ζ is 2.48. Various authors have given
mass values, but not necessarily the mass as defined
by us, as related to the propagator at zero momentum.
Values estimated with gauge-invariant techniques include
Ref. [10], giving ζ ¼ 1.68; [11] gives ζ ¼ 2.57; [16] has
ζ ¼ 2.00; and [17] claims ζ ¼ 2.18. The authors of [12,13]
invoke a Higgs field, and Ref. [11] attempts to remove the
Higgs mechanism by taking the Higgs mass to infinity,
leaving only the NG bosons that occur both in the Higgs
mechanism and in the PT. The result is that ζ ¼ 2.24, which
in principle would be gauge invariant. For whatever it is
worth, the average of these numbers is ζ ¼ 2.19, and the
spread around the mean is roughly 20%.
Although it is gauge dependent and need not agree with

the PT mass, we can define a Landau-gauge mass mL and
the corresponding ζL as

ΔLðp ¼ 0Þ≡ 1=m2
L; mL ¼ ðNg2Þ=ðζLπÞ: ð42Þ

For numerics, we take ΔLðpÞ as the d ¼ 3 Landau-gauge
propagator shown in Fig. 1, for which ζL ¼ 2.05. Next, we
discuss a relation between m and mL and evaluate their
ratio approximately.

VII. FROM THE PT TO THE LANDAU GAUGE

If lattice information were available on the PT propa-
gator and vertex, we could stop here. Unfortunately, such
data do not yet exist, but extensive propagator data are
available in Landau gauge. It is, in fact, possible for us to
use these data along with Eq. (46) below to give another
estimate of the PT mass, not dependent on the gap equation
that yielded ζ ≈ 2.48. To do this, use a background-
quantum identity (used somewhat differently in [17]),
reviewed in [6], that relates the Landau-gauge propagator
ΔL to the PT propagator Δ̂:

ΔLðpÞ ¼ ð1þ ĜðpÞÞ2Δ̂ðpÞ: ð43Þ

[We have used the simpler notation

κL ¼ ½1þ Ĝð0Þ� ð44Þ

in Eq. (3).]
The function Ĝ is, in principle, computable in terms of

Landau-gauge Green’s functions involving ghosts, but
these obey their own SDEs that are not elementary to
solve. Instead, we will use a simple approximation, in the
spirit of the approximations already made for the three-
gluon vertex. The asymptotic UV behavior is easy to find
since it comes from one-loop perturbation theory, and by
comparing one-loop results in the PT, given in Eq. (7), and
in the Landau gauge, we find the UV behavior

1þ ĜðpÞ → 1 −
2πbg2

15p
: ð45Þ

Not unexpectedly, this has a forbidden tachyonic pole in the
Euclidean regime. We cure it by the simple expedient of the
replacement of the massless perturbative one-loop integral
by the massive one, and we propose

1þ ĜðpÞ ≈ 1 −
4bg2

15p
arctan

�
p
2m

�
; 1þ Ĝð0Þ ≈ 1 −

ζ

16
:

ð46Þ

Unlike the original approximation for the three-gluon
vertex of Eq. (31), for the estimated value of m=g2 in
Eq. (40) this expression is nonsingular in the Euclidean
regime of a real positive p and we will use it as it stands.
(Using the dispersion-relation approach as we did for the
three-gluon vertex makes little difference in the Euclidean
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regime.) Then with ζ ¼ 2.48we find 1þĜðp¼0Þ¼0.845,
and of course Ĝðp ¼ ∞Þ ¼ 1. [At p ¼ 0 the authors of
[17] replace the 4=15 in Eq. (46) by 32=45.] The variation
of ĜðpÞ is so little in the IR that it is not worth plotting; the
major IR effect is just rescaling the propagator from the PT
to the Landau gauge.
We use the approximation in Eq. (46) to relate our PT

estimates and Landau-gauge lattice data in two ways. The
rescaling of Eq. (43) leads at zero momentum to the relation

m ¼ ½1þ Ĝð0Þ�mL; ð47Þ

which, with the aid of Eq. (46), becomes the quadratic
equation

ζL
ζ

¼ 1 −
ζ

16
: ð48Þ

If now we use the gap-equation value ζ ¼ 2.48 of Eq. (39)
to solve for ζL, we find ζL ¼ 2.10, to be compared to the
lattice value of 2.05. If, on the other hand, we ignore the gap
equation and use the lattice data for ζL to estimate the PT
value ζ, the relevant root of the quadratic equation (48) is
ζ ¼ 2.41, compared to the gap-equation value of 2.48. This
unnaturally close agreement can only be a coincidence,
given the roughness of our approximations. Further and
more accurate work is necessary.

VIII. SUMMARY AND CONCLUSIONS

Landau-gauge lattice simulations of the gluon propaga-
tor in d ¼ 3 show a quantitatively important positivity
violation that could be a serious problem for studies of
nonperturbative effects such as dynamical gluon mass
generation with the gauge-invariant PT. We study this
effect with the vertex paradigm, a method for truncating
the PT Schwinger-Dyson equations that is, in principle,
more accurate for the three-gluon vertex than some other
truncation schemes and that has so far been implemented
only at the one-dressed-loop level. We complete the vertex
paradigm with a homogeneous Bethe-Salpeter equation
describing a set of composite NG bosons that are essential
to describing gluon mass generation gauge invariantly;
these NG bosons cancel out of all physical quantities.
However, implementing the vertex paradigm and the BS
equation with successive approximations could lead to
serious quantitative errors from nonpositivity. These are
substantially mitigated by the fact that, in the crucial BS
equation, nonpositivity effects in the output three-gluon
vertex are in the opposite direction from those in the gluon
propagator, as the QED-like Ward identity of the PT shows,
and significant cancellation can occur.
In the successive-approximation scheme, the input ghost

and gluon propagators are free propagators with mass m,
and the input vertices are the usual tree-level ones. There
are two parts to the vertex: a pole-free part constructed by

modification of the perturbative one-loop three-gluon
vertex and a part containing the NG massless poles. The
part with NG poles algebraically satisfies the Ward identity
relating its divergence to the poles of the inverse PT
propagator, as in Eq. (4). The full vertex satisfies the
Ward identity of Eq. (10).
It is straightforward, if tedious, to write the momentum-

space integral for the output pole-free three-gluon vertex,
but it is far from easy to compute the complete vertex,
which in fact has not even been done for the one-loop three-
gluon vertex in perturbation theory. But it is not difficult,
given the momentum-space integral, to use the Ward
identity to express the inverse propagator as the divergence
of the three-gluon vertex, provided that the mass m is
nonrunning and the same for all gluons. In view of the
difficulty in actually calculating the three-gluon vertex
itself, we approximate it using a tweaked version of ϕ3

5.
This scalar theory is a descendant of the asymptotically free
theory ϕ3

6 in one higher dimension, and it can be used as a
heuristic model for d ¼ 3 NAGT phenomena, including
nonpositivity effects. From this model plus a dispersion
relation that guarantees the absence of unphysical tachyons
coming from wrong signs, we construct an approximate
model for one of the scalar form factors of the three-gluon
vertex when one of its momenta vanishes. As noted in the
main text, gluon mass generation can tame the completely
unphysical tachyonic pole in the propagator down to a
nonpositivity bulge. Absence of these singularities allows
us to argue (as previously suggested for d ¼ 4 NAGTs
[8,9]) that the Ward identity suggests an interpretation for
the scalar form factor as the square of a running charge that
is defined without reference to a renormalization group or
beta function. As theWard identity (10) suggests, a bulge in
the propagator results in a dip in the three-gluon vertex.
Then we use this approximate three-gluon vertex in the

gap equation in the constant-mass approximation, and we
note that there is a certain amount of cancellation between
the propagator bulge and the vertex dip. In terms of a
parameter ζ, we define the PT mass as m ¼ Ng2=ðζπÞ.
With no accounting for nonpositivity, ζ has the unaccept-
ably large value of 6. The results of the present paper,
taking into account nonpositivity and the Ward identity
between vertex and propagator, give the lower value
ζ ¼ 2.48. To compare this to published data on the
Landau-gauge propagator, we use a background-quantum
identity telling us that the Landau-gauge propagator and the
PT propagator differ at zero momentum by a scale factor
½1þ Gð0Þ�2 < 1. We make a simple estimate of this scale
factor and use this estimate plus the gap-equation mass
value to estimate the lattice Landau-gauge mass parameter
as ζL ¼ 2.05, compared to the simulation value of 2.10.
Conversely, using lattice data and the scale factor, but not
the gap equation, leads to a PT mass parameter estimate of
ζ ¼ 2.41, as compared to the PT estimate of 2.48. The
closeness of the comparisons is undoubtedly fortuitous.
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APPENDIX A: A BRIEF REVIEW OF THE
VERTEX PARADIGM

The following is a road map, not a complete exposition.
The main point is to suggest how to organize matters so that
the NG-likemassless poles are canceled as much as possible
before carrying out any serious calculations. This leads us to
the pole-free vertex discussed in the main text.
The first step is to construct a tree-level model that has

gluon and ghost masses in it. The action is the usual NAGT
action plus a gauged nonlinear sigma model mass term,
plus gauge-fixing terms.
Pinching is greatly simplified in the Feynman gauge,

which we use for the gauged nonlinear sigma model. In this
model the gluon propagator is

Δ0
ijðpÞ ¼

δij
p2 þm2

þ pipj

p2

�
1

p2
−

1

p2 þm2

�
: ðA1Þ

The last term ∼pipj, a difference of massless and massive
scalar propagators, suggests that the massless ghosts are
canceled out and replaced by ghosts of mass m, as in the
Feynman–Fujikawa-Lee-Sanda gauge [57], and this is
indeed what happens. Some such replacement must occur
in the PT. In general, the ghost mass is gauge dependent,
and since the PT propagator has only physical thresholds,
the massless ghost poles get replaced by poles at m2, in
much the same way as it happens in the PT for electroweak
theory [6]. Or one may simply argue that the PT propagator
can be constructed in a ghost-free gauge because it is the
same in any gauge. So for practical purposes we use the
tree-level propagators of Eq. (17), repeated here for
convenience,

Δ̂0
ijðpÞ ¼

δij
p2 þm2

; Δ̂gh ¼
1

p2 þm2
; ðA2Þ

that have no massless poles.
The second step is to follow [52] and write down the sum

of one-loop graphs that give the S-matrix element for the
scattering of three external quarks. Figure 5 shows these
graphs. Of course, some of these graphs, e.g., (g), are not
vertex parts, but they contain vertex parts that are extracted
by using tree-level Ward identities that pinch out the
internal parts of quark lines.
Satisfying the PT Ward identity at one-loop level is a

matter of satisfying it at tree level. The form quoted in the
text [Eq. (10)], although ghost free, is not really useful at
tree level because of its massless poles. Instead [6], we
write the usual tree-level vertex as the sum of two parts:

Γijkðp1; p2; p3Þ ¼ ΓFijkðp1; p2; p3Þ þ ΓP
ijkðp1; p2; p3Þ;

ðA3Þ

where ΓF is the BFM-Feynman-gauge vertex. It has one
line (called the background line) singled out; say it is p1.
The background lines are those attached directly to quark
vertices in Fig. 5. The remaining part, ΓP, has only
longitudinal terms ∼p2j; p3k that trigger pinch parts. On
the p1 line, ΓF satisfies a simple Ward identity with no
massless poles:

p1iΓF
ijkðp1; p2; p3Þ ¼ ½Δ̂0

ijðp2Þ�−1 − ½Δ̂0
ijðp3Þ�−1: ðA4Þ

It obeys this Ward identity even for the massive propagator
of Eq. (17), provided that the mass m does not run with

FIG. 5. The one-loop S-matrix element for finding the PT three-gluon vertex. Solid lines represent quarks.
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momentum and is the same for all gluons and ghosts. It
certainly would not satisfy this identity for a running mass.
This is the fundamental reason that we use the constant-
mass approximation in the d ¼ 3 problem. Satisfying the
tree-level Ward identity is 90% of the task of satisfying the
one-loop Ward identity with massive tree-level propaga-
tors; for the one-loop massless perturbative vertex, it is
100%. The interested reader can study [9] for the other 10%
that arises from other complications, such the appearance of
uncanceled m2 in the numerator arising from the pinch
process and dealing with seagull terms.

APPENDIX B: TWEAKED ϕ5
3 IS ANALOGOUS

TO A d ¼ 3 NAGT

We can get a qualitative—even semiquantitative—
understanding of how the full vertex can help to tame
the bulge in the propagator by turning to some higher-
dimension theories having no spin complications because
they refer to scalar fields. One of them, ϕ3

6, has AF
analogous to that of d¼ 4 NAGTs, and the other, ϕ3

5 scalar
theory in d¼ 5, inherits certain “wrong-sign” properties
just as does a d ¼ 3 NAGT. These higher-dimension scalar
models are to be used only at the one-dressed-loop level,
and with graphical coefficients adjusted to yield appropri-
ate results for gauge theories in two fewer dimensions.
Taken seriously, the scalar theories do not exist because
there is no stable vacuum, but that will not concern us here.
Just as for NAGTs, we do not allow a bare mass term, but
radiative corrections induce a mass m, assumed to be the
same for all fields.
There are two ways to remove the power-law divergen-

ces of the self-energies of these theories. One is a regulation
scheme [2] already used in d ¼ 3, 4. Appendix D gives this
scheme for higher dimensions. The other way is to calculate
the self-energy from a Ward identity, by introducing an
Abelian charge for two of the fields, and we will concen-
trate on that here. We use the corresponding Abelian vertex
to find a simple approximation to one of the scalar
functions occurring in the pole-free vertex Gijk, as an
integral over Feynman parameters. This scalar function
multiplies the Born kinematics, and its prefactor is taken
not as prescribed by the d ¼ 5 model, but from the
requirement that the Ward identity yields the correct
one-loop propagator in perturbation theory, given in
Eq. (7).

1. A vertex approximation coming from the
tweaked models

As shown in earlier works [7–9], the asymptotically
free six-dimensional theory ϕ3

6 can be slightly modified to
lead to a qualitatively reasonable approximation for
the one-dressed-loop three-gluon vertex and gluon proper
self-energy of a d ¼ 4 NAGT. The modifications
involve introducing an Abelian charge for the scalars

(two of which carry equal and opposite charge) and a
corresponding one-loop current vertex, as well as supplying
one-loop graphs “by hand” with coefficients taken from the
NAGT. We call this model tweaked ϕ3

6. The QED-like
Ward identity for the tweaked-model current vertex yields
the ϕ proper self-energy, which turns out to be practically
identical to what the vertex paradigm yields for d ¼ 4
NAGTs.
Similarly, tweaked ϕ3

5 bears a close resemblance to a
d ¼ 3 NAGT, as one might expect because the trilinear
coupling g has the mass dimension 1=2 in both theories. We
introduce an Abelian current and find a finite propagator
from its Ward identity. In d ¼ 6, the Ward identity reduces
the self-energy divergence from the quadratic divergence of
ϕ3
6 to the logarithmic one of NAGTs. In d ¼ 5, the Ward

identity removes completely the linear self-energy diver-
gence. The same reduction in divergences comes from the
regulator of Appendix D below.
In d ¼ 5, the one-loop Abelian current vertex is

GiðpiÞ ¼ ðp2 − p3Þi
− 2b

Z
½dz� ½p2ð1 − 2z3Þ − p3ð1 − 2z2Þ�i

ðDþm2Þ1=2 ; ðB1Þ

with b from the zj representing Feynman parameters and

Z
½dz� ¼ 2

Z
1

0

dz1dz2dz3δ
�
1 −

X
zi
	
;

D ¼ p2
1z2z3 þ p2

2z3z1 þ p2
3z1z2: ðB2Þ

The factor 2b (but not the minus sign, which comes from
d ¼ 6 AF) is chosen by hand so as to give the correct
perturbative correction to the propagator, as determined by
the QED-like Ward identity of Eq. (B7).
The current vertex should obey the Ward identity

p1iGðpiÞ ¼ Δ−1ðp3Þ − Δ−1ðp2Þ: ðB3Þ

Since we are given the current vertex, this equation can be
used to define the inverse propagators, provided that it has
the correct structural form to be the difference of two
inverse propagators, one with momentum p3 and the other
with p2. This is the case because

p1 · ½p2ð1 − 2z3Þ − p3ð1 − 2z2Þ� ¼
� ∂
∂z2 −

∂
∂z3

�
½Dþm2�

ðB4Þ

and the integrals over the zi give only end-point contribu-
tions that are of the needed functional form as in Eq. (B3).
In order to bridge from this Abelian one-gluon vertex to

the needed three-gluon NAGT vertex, we define the scalar
function G in the d ¼ 3 NAGT by
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Gijkðp1; p2; p3Þ ¼ Γ0
ijkðp1; p2; p3ÞGðp1; p2; p3Þ; ðB5Þ

where Γ0 is the Born vertex and
P

pi ¼ 0. Similarly, we
define a scalar form factor from the Abelian ϕ3

5 model as
the coefficient of ðp2 − p3Þi:

Gðp1; p2; p3Þ ¼ 1 − 2bg2
Z ½dz�

ðDþm2Þ1=2 ; ðB6Þ

and as the notation suggests we use the Abelian scalar form
factor of this equation as an approximation to the non-
Abelian scalar form factor.
Now check to see that the coefficient 2b in (B1) is

correctly chosen. At zero mass, the Ward identity yields

Δ−1ðpÞ ¼ p2 − 2bg2
Z

1

0

dzð1 − zÞ½p2zð1 − zÞ�1=2

¼ p2 − πbg2p; ðB7Þ

as one-loop PT perturbation theory requires [see Eq. (7)].
Another feature of the approximation is that the vertex
integrand ðDþm2Þ−1=2 is correct for the equal-mass
triangle graph in d ¼ 3. The numerator, however, is not
correct for d ¼ 3 NAGTs.
A potential problem with the expression (B6) is that it

might have a zero in the Euclidean region if the mass is
small enough. Generally, such a zero leads to a tachyonic
pole in the inverse propagator, from the Ward identity (15),
and there is no evidence for this pole in lattice data. Such a
coincident pole and vertex zero does not appear in the S
matrix. One way to remove the tachyon is to use a
dispersion relation for a squared running charge, quite
analogous to a dispersion relation used for a squared
running charge proposed earlier [7–9] in d ¼ 4. This
necessarily positive quantity is related, in d ¼ 4, to the
vertex form factor Gðp;−p; 0Þ introduced above, which
cannot have any tachyon. Of course, any running charge in
d ¼ 3 is not related to a beta function or a renormalization
group; the point is that it can be defined from a plausible
interpretation of the Ward identity.

APPENDIX C: A RUNNING CHARGE
IN THREE DIMENSIONS

In d ¼ 4 there is another use for this Abelian vertex
that, at least qualitatively, links it to NAGTs. It was
argued [8,9] that the current-vertex form factor that
multiplies the Born kinematics yields a running charge
defined at all momenta down to zero that agrees in the
UV with the usual running charge based on the renorm-
alization group for one and two loops. This running
charge has the usual UV properties, and due to mass
generation it is well defined in the IR as well. It is a
physically well-motivated function in the IR, but it is not
unique. In d ¼ 4 the renormalization-group properties of

PT Green’s functions suggest writing the PT propagator,
multiplied by g2, as

g2Δ̂ðpÞ ¼ ḡ2ðpÞHðpÞ: ðC1Þ

Provided that both the PT propagator and g2 are
renormalized at the same renormalization point, their
product is renormalization-group invariant [8,9]. By
definition each of the factors in (C1) is also renormal-
ization-group invariant.
Although Δ̂ is unique, its factorization is not. To be

definitive, in both the d ¼ 3 and d ¼ 4 cases we define
HðpÞ as a standard massive propagator with a running
mass:

HðpÞ ¼ 1

p2 þm2ðpÞ ; ðC2Þ

where the running mass is finite at zero momentum and
vanishes in perturbation theory. In d ¼ 4 perturbation
theory, this definition for ḡ in the UV is the usual running
charge to two-loop order.
All of this has its analogs in d ¼ 3, except for the fact

that there is no renormalization group in this dimension. In
d ¼ 3 we write the pole-free propagator Δ as

Δ−1
ij ðpÞ ¼

p2

ḡ2ðpÞPijðpÞ þ… ðC3Þ

(omitted terms are irrelevant). Then simple manipulations
of the pole-free Ward identity (15) with one vertex
momentum set to zero express the so-defined running
charge in the form of Eq. (32), repeated here for conven-
ience,

ḡ2ðpÞ ¼ g2

Gðp;−p; 0Þ ; ðC4Þ

where G is the scalar coefficient of the Born term in the
three-gluon vertex. Our introduction of the d ¼ 3 running
charge is just another way of speaking of this vertex form
factor, but we use it heuristically to argue that the vertex
Gðp;−p; 0Þ is everywhere positive in the Euclidean region.

APPENDIX D: REGULATING THE
TWEAKED MODELS

If ϕ3
6 is a decent model of d ¼ 4 NAGT, does ϕ3

5

resemble d ¼ 3 NAGT, with the characteristic signs inher-
ited from d ¼ 4? At first sight this seems impossible since
ϕ3
5 is not obviously a superrenormalizable theory; it has

linear UV divergences in the proper self-energy, as calcu-
lated directly from a Feynman graph. But because the three-
point Abelian current vertex is finite, the Ward identity

JOHN M. CORNWALL PHYSICAL REVIEW D 93, 025021 (2016)

025021-16



yields a finite proper self-energy. The regulator given here
also yields a finite self-energy.
In addition, one might worry that seagull graphs in

d ¼ 3, 5 are divergent. But our regulator [2,4] gets rid of
power-law divergences, as of course dimensional regulari-
zation also does, but the alternative regulator does not
introduce (as dimensional regularization does) potential IR
divergences by the introduction of terms with massless
poles. This regulator was originally used in d ¼ 3, 4, but it
can be constructed for any dimension d ≥ 3. The regulator
rule is

Z
ddkFðk2Þ → −

2

d − 2

Z
ddk

�
1þ k2

∂
∂k2

�
Fðk2Þ: ðD1Þ

This replacement is an identity when the integrals in
question converge, and it gets rid of power-law divergences
when they do not. The effect of the regulator is to reduce
divergent integrals by two space-time dimensions. It is an
alternative to using the Abelian current vertex to define
the proper self-energy, but we do not pursue that subject
further here.
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