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ABSTRACT
A proper choice of the observation weight matrix is of
importance for both adjusting and testing GPS data.
Our understanding of the noise characteristics of GPS
observations, on which the weight matrix should be
based, is however still underdeveloped. This makes it
difficult to draw up an appropriate weight matrix. The
first and foremost purpose of this contribution is
therefore to draw attention to the need to improve upon
our rudimentary knowledge of the GPS stochastic
model. To this end, results will be presented of a
relatively simple casestudy in which the possible
presence of cross-correlation between observables is
considered. With these results we hope to spur further
discussion and research on this important topic.

1. INTRODUCTION

GPS data are usually processed with algorithms based
on the least-squares principle. In order to apply the
least-squares principle one needs to specify both the
observation equations and the observation weights. The
observation equations link the GPS observables, like
pseudo ranges and carrier phases, to the unknown
parameters, such as, for example, baseline coordinates,
carrier phase ambiguities and atmospheric delays. The
observation weights, which are collected in a weight
matrix, allow one to specify by how much the
individual observations should contribute to the overall
solution. For instance, it is sensible to give lower
weights to the noisier observations and higher weights
to the less noisy observations. The choice of weights is
optimal when the weight matrix equals the inverse of
the variance-covariance (vc-) matrix of the
observations. In that case the balance between the
relative weights is such that the best possible precision
is obtained in the computed solution.
The GPS observation equations are (sufficiently)
known and well documented. However, the same can
not be said of the vc-matrix of the GPS observations. In
the many GPS-textbooks available, one will usually
find only a few comments, if any, on the vc-matrix of

the GPS observations. Also advertisement or data
sheets for GPS receivers are usually vague in their
specifications of the precision characteristics of the
data outputted by the receiver. Due to this lack of
information in the public domain, most of us are
probably inclined to start with the simplest weight
matrix possible, a scaled unit matrix for instance per
observation type (pseudo ranges and carrier phases).
Such a choice may however be an oversimplification
that fails to do justice to the more complicated noise
characteristics of the data.
A proper choice of the vc-matrix is of relevance for all
subsequent stages of data processing. The least-squares
solution for instance, will loose its property of
‘minimum variance’ when a misspecified vc-matrix is
used. In addition, the detection power of the statistical
tests, employed for model validation and quality
control (e.g. outliers and cycle-slips), will become
smaller when the noise characteristics are not properly
taken into account. And finally, the a posteriori quality
description of the computed results will also be affected
when mispecified or oversimplified vc-matrices are
used.
At present research into the stochastic model of GPS
observables is still in its infancy. Only a few studies
have been reported in the literature. Examples are
[Euler and Goad, 1991], [Jin and de Jong, 1996],
[Gerdan, 1995] and [Gianniou, 1996], who studied the
elevation dependence of the observation variances, and
[Jonkman, 1998] and [Tiberius, 1998], who considered
time-correlation and cross-correlation of the pseudo
ranges and carrier phases as well.
A systematic study of the stochastic model is of course
far from trivial. Not only do the noise characteristics
depend on the mechanization of the measurement
process, and therefore on the make and type of the
receiver used, but the residual terms which are not
captured by the observation equations, such as
environmental effects, will also have their influence.
Despite these difficulties though, we believe that the
time has come to put more effort into the stochastic



model and to try to come up with a more qualitative
description of the noise characteristics. This
contribution is therefore foremost a plea for having
more research done in this area. By directing attention
to the noise characteristics and sharing the knowledge
so obtained, one will hopefully be able to link the
stochastic model more firmly to one’s data. To
underline the need for this type of research, this
contribution presents the results of a relatively simple
casestudy in which the possible presence of cross-
correlation between the observables is the topic of
discussion. It illustrates that in some cases the use of a
scaled unit matrix or even a diagonal matrix as vc-
matrix will result in an unnecessary oversimplification
of the noise characteristics. Nondiagonal vc-matrices
for the pseudo ranges and carrier phases are suggested
instead.

2. PSEUDORANGE NOISE

The choice of the weight matrix or its inverse, the vc-
matrix, should reflect the noise properties of the
observations. A first impression of the noise
characteristics can be obtained from appropriately
constructed time series of the data. For that purpose we
consider time series of
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where p1(i), p2(i) are the double differenced (DD)
pseudo range (code) observables on L1 resp. L2 at
epoch i; f1(i), f2(i) are the DD carrier phase
observables on L1 resp. L2 at epoch i, expressed in
units of range rather than cycles; a1, a2 are the time-
invariant integer DD ambiguities; and l1, l2 are the
wavelengths of L1 resp. L2.
The reason for using double differenced data is that it
allows the elimination of the unknown receiver and
satellite clock errors. The DD ambiguities are in
addition known to be integers. In fact, in our analysis
these two ambiguities were fixed. The integer values
were determined reliably using a sufficiently long time
span of data. The data were measured at a 1 second
sampling rate on a zero-baseline, so as to eliminate to a
sufficient extent the potential contributions of the
ionospheric delays (and environmental effects). As a
consequence, the noise characteristics of y1(i), y2(i),
which have zero mean, are predominantly those of
p1(i), p2(i). The noise contributions of the phase data
are namely so small (about a factor of one hundred
smaller), that they can safely be neglected.

Figure 1 shows an example of three time series for the
satellite-pair 01-25. The first is a time series of y1(i),
the second of y2(i) and the third is the time series of the
difference y2(i)-y1(i). The first two time series give an
impression of the pseudo range noise on L1 and L2,
and thus of their DD variances s2

p1 and s2
p2. The third

time series

Figure 1: Time series of y1(i) (top), y2(i) (middle) and
their difference y2(i)-y1(i) (bottom).

gives an impression of the noise of the difference
between the two pseudo ranges. Using the error
propagation law, the variance of  the pseudo range
difference Dp=p2-p1 can be expressed in the pseudo
range variances as

s s s s
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where sp2p1 denotes the covariance between p2 and p1.
When specifying the weight matrix or vc-matrix, one
will usually be inclined to set sp2p1 equal to zero,
thereby assuming that the receiver outputted dual
frequency pseudo range data are independent and thus
uncorrelated. But if that is the case, one would expect
the noise in the pseudo range difference to be larger
than the noise in either one of the two pseudo ranges. A
closer look at figure 1 shows however that this is not
the case. The noise of Dp is in fact somewhat smaller
than that of p2. This indicates the presence of positive
correlation between the two pseudo ranges.
In order to quantify the pseudo range noise
characteristics of this example, the data were used to
estimate the pseudo range vc-matrix. The estimated
matrix reads
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where the matrix entries are expressed in cm2. The
matrix is clearly not diagonal. The pseudo range
variance of L2 is about twice as large as that of L1 and
the correlation differs significantly from zero. The
correlation coefficient equals r=0.69. This shows that
the vc-matrix of the pseudo range data in this example
is not a scaled unit matrix nor a diagonal matrix.

3. CROSS-CORRELATION

From the above example it will be clear that the use of
a diagonal matrix as vc-matrix would be an
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oversimplification of the L1/L2 noise characteristics.
The receiver outputted L1/L2 data are simply not
stochastically independent. The stochastic properties of
outputted GPS data depend to a large extent on how
the measurement process is mechanized inside the
receiver. For instance, to circumvent the P-code
encryption (AntiSpoofing) implemented by the
Department of Defence (DoD), so-called codeless  and
semi-codeless techniques were developed. An overview
of these measurement techniques can be found in e.g.
[Ashjaee and Lorenz, 1992], [Dierendonck, 1995],
[Langley, 1996] and [Hofmann-Wellenhof et al., 1997].
One of these technique is cross-correlation. It is based
on the fact that both the L1 and L2 carrier are
modulated (coherently) with the same P- (or Y-) code.
This allows the receiver to measure the difference of
the L1 and L2 pseudo ranges and the difference of the
L1 and L2 carrier phases without knowledge of the
actual (secret) Y-code when AS is on.
As a measurement technique, cross-correlation has its
origin in interferometry. In the early eighties, the Jet
Propulsion Laboratory (JPL) developed the SERIES
(Satellite Emission Range Inferred Earth Surveying)-
receiver, see [MacDoran, 1979] and [MacDoran et al.,
1985]. The signal group delay measured between two
sites by correlation can be considered as (differential)
codeless pseudo ranging. As such this receiver is the
ancestor of the cross-correlation engines of the nineties.
Geodetic receivers that, to our knowledge, employ
cross-correlation to provide dual frequency code and
phase observations are the TurboRogue SNR-8000
[Meehan et al., 1992], the 4000 series (SSE/SSi) of
Trimble [Trimble, 1994] and the Sercel 5002/6002
[Barboux, 1997].

3.1 Pseudo range cross-correlation

The cross-correlation technique was implemented in
the measurement process that formed the basis of the
time series presented in the previous section. We will
therefore try to come up with a simple, but hopefully
effective description of the vc-matrix of such
reconstructed L1/L2 data.
In case of the pseudo range data one can argue that not
p1 and p2 are the independent observables, but rather p1

and the difference Dp=p2-p1. The outputted L1 and L2
pseudo ranges are then reconstructed as

p p p p p1 1 2 1= = +and D (3.1)

If we now apply the error propagation law and assume
p1 and Dp to be uncorrelated, the resulting vc-matrix
becomes
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This matrix is clearly nondiagonal. It is nondiagonal as
a consequence of the way in which the L2 pseudo range
is reconstructed from p1 and Dp. Note how well this

matrix fits the previous empirical estimate of the vc-
matrix.
To infer the significance of the correlation between p1

and p2, we consider the correlation coefficient. It reads
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This shows that the correlation coefficient equals 0.71
for a variance ratio of one and that it gets smaller the
larger the variance ratio becomes. Thus one is only
allowed to approximate the vc-matrix Cp by a diagonal
matrix when the variance of Dp is much larger than that
of p1. But it will then not be a scaled unit matrix, since
s p2

> s p1
.

3.2 Carrier phase cross-correlation

For the carrier phase data one can argue, somewhat
analogous to the pseudo range case, that not f1 and f2

are the independent observables, but rather f1 and the
difference of the two phases. This difference however,
is now taken in the domain of cycles instead of in the
range domain. In essence this means that the second
independent observable is not f2 but rather the
widelane carrier phase observable
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with the widelane wavelength lw=(1/l1-1/l2)
-1. Hence

the outputted L1 and L2 carrier phases, when expressed
in units of range rather than cycles, are reconstructed as
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If we now apply the error propagation law and assume
f1 and fw to be uncorrelated, the resulting vc-matrix
becomes
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Again this matrix is nondiagonal. The correlation
coefficient of the two carrier phases reads
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This shows that the correlation coefficient gets smaller
the larger the widelane phase variance gets. Thus for a
large enough value one may approximate the vc-matrix
by a diagonal matrix. The two diagonal entries will
then differ though, since sf2

>sf1
.

4. CONSEQUENCES

Dual-frequency receivers may output their data directly
on the L1/L2 frequencies, or the data are made



available via the Rinex format [Gurtner, 1994]. Hence
with two receivers, a user will have at his disposal the
DD phase and pseudo range observables f1, f2, p1, p2.
The observations can be linked to the unknown
parameters according to the following DD observation
equations
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where r(i) equals the DD range at epoch i, T(i) and I(i)
are the tropospheric resp. ionospheric delays at epoch i,
m1 and m2 are the wavelength ratios m1=l1/l2 and
m2=l2/l1 , and nf1(i), nf2(i), np1(i), np2(i) denote the
respective noise terms.
The observables of Eq.(4.1) are not stochastically
independent if the cross-correlation technique is used.
This implies that the user has two options available if
he wants to apply a proper weighting of his data. Either
he uses the receiver outputted data directly, in which
case he will have to work with the nondiagonal vc-
matrices Cp and Cf, or he back-transforms his data first
to the original uncorrelated observables f1, fw, p1, Dp,
in which case he can work with a diagonal vc-matrix
again. In the latter case, the observation equations will
have to be transformed as well of course. Both
approaches will give identical results, provided the
correct vc-matrices are used. Different, and in fact less
precise, results will be obtained when the first approach
is used while still assuming that the data are
correlation-free.

4.1 Effect on the least-squares ambiguities

In order to illustrate the effect of using diagonal vc-
matrices instead of the nondiagonal ones, Cp and Cf, we
will consider the least-squares ambiguity estimates and
their formal and empirical precision. We will use the
observation equations of Eq.(4.1) and assume that the
baseline is sufficiently short so as to neglect the
ionospheric delays, i.e. I(i)=0 . This is the typical
assumption for most surveying applications. We also
keep the observation equations parametrized in terms
of the DD ranges. That is, they are not parametrized
further in terms of the baseline coordinates. For
ambiguity resolution this is the simplest model one can
think of. The model is linear and no special precautions
need to be taken for the tropospheric delays, since these
delays are automatically lumped with the corresponding
DD ranges. As a consequence, the solution for the
ambiguities is bias-free as far as the contribution of the
troposphere is concerned.
Based on these observation equations for a single
epoch of data, the least-squares solution for the DD
ambiguities, when using scaled unit matrices as vc-
matrices for respectively the pseudo ranges and carrier
phases, reads
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Hence, the least-squares ambiguities are equal to the
differences between the carrier phases, expressed in
units of range, and the average of the pseudo ranges.
Would we use the same observation equations, but now
with the nondiagonal vc-matrices Cp and Cf, rather than
with diagonal vc-matrices, then the least-squares
solution becomes
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When we compare this solution with the previous one,
we immediately notice a distinct difference. In the first
solution, Eq.(4.2), it is the average of the two pseudo
ranges that contributes to the solution, whereas in
Eq.(4.3) it is only the L1 pseudo range that contributes.
The first solution depends therefore on all four types of
observables, whereas the second solution depends only
on three.

4.2 Effect on the precision of the L1-ambiguity

 Not using one of the available observations, while still
claiming that a more precise solution is obtained, may
seem strange at first sight. It is a direct consequence
however of using the nondiagonal vc-matrices Cp and
Cf. It is solely due to their structure that the L2 pseudo
ranges get eliminated from the solution.
To make these findings more plausible, we will  first
consider the formal precision of  the single epoch L1
ambiguity estimates. If we assume the L1 and L2
pseudo ranges to be uncorrelated and of equal variance
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If instead the L1 and L2 pseudo ranges are assumed to
be correlated according the non-diagonal vc-matrix Cp,
application of the error propagation law to Eq.(4.3)
yields
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On comparing these equations, it is perfectly clear that
the use of both the L1 and L2 pseudo ranges results in
more precise ambiguity estimates provided that the L1
and L2 pseudo ranges are uncorrelated.
If however, we assume the L1 and L2 pseudo ranges
uncorrelated and therefore use the estimation formula
Eq.(4.2), while the pseudo ranges are actually
correlated according to the vc-matrix Cp, we will obtain



less precise ambiguity estimates. To illustrate this fact,
the error propagation law is applied to Eq.(4.2) with the
vc-matrix Cp. This yields
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It appears from this equation that under this assumption
the inclusion of the L2 pseudo ranges in the solution
does not improve the precision of the ambiguity
estimates. On the contrary, the precision of the
ambiguities estimated with the L2 pseudo ranges is
even worse than the precision of the ambiguities
estimated without the L2 pseudo ranges.
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Figure 2: Time series of a1(i) estimated according to
Eq.(4.2) (top) and according to Eq.(4.3) (bottom).

In practice the improvement in precision of the
ambiguity estimates resulting from the elimination of
the L2 pseudo ranges in the solution can take on a
rather dramatic form. Consider to that end figure 2.
This figure contains time series of L1 ambiguities
estimated from zero baseline data according to Eq.(4.2)
(top) and according Eq.(4.3) (bottom). On comparing
the time series in the figure it is clear that the noise in
the ambiguities estimated with the L2 pseudo ranges is
indeed considerably larger than the noise in the
ambiguities estimated without the L2 pseudo ranges. In
addition it appears from figure 2 (top) that the noise in
the ambiguities estimated with the L2 pseudo ranges
increases notably towards the end of the observation
interval. This in fact is another consequence of the
cross-correlation technique. Application of cross-
correlation results namely in a smaller signal-to-noise-
ratio (SNR) as compared with code correlation, see e.g.
[Ashjaee and Lorenz, 1992]. Hence, the noise in the
cross-correlation derived pseudo range (and carrier
phase) differences is expected to exhibit a pronounced
dependence on the satellite elevation. And as one
satellite of the pair considered for figure 2 sets during
the observation span, this may well explain the
progressive increase of the noise in the ambiguities
estimated according to Eq.(4.2).

4.3 Effect on the precision of the L1-L2 ambiguity
pair

In the previous section we considered the formal
precision of the single epoch L1 ambiguity estimates.
However, as we simultaneously estimate both L1 and
L2 ambiguities, it is more opportune to consider the
formal precision of the single epoch dual frequency
ambiguity estimates. To that end, the error propagation
law is applied to Eq.(4.2) under the assumption that the
observables are uncorrelated and to Eq.(4.3) under the
assumption that the observables are correlated
according to the vc-matrices Cp and Cf. The resulting
formal ambiguity vc-matrices will be denoted by Ca

and Ca
" .

It is of course not enough to restrict attention to the
formal precision alone. After all, if we want to study
the noise characteristics of the data, we should let the
data speak for themselves. In addition to the formal
precision, we therefore also need its empirical
counterpart. The empirical precision of the ambiguities
is described by their empirically determined vc-matrix.
For the ambiguities estimated according to Eq.(4.2),
this matrix is computed as
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where k denotes the number of samples - 3000 in our
case - and a1and a2 denote the ambiguity sample

means. For the ambiguities estimated according to
Eq.(4.3), the empirical vc-matrix is computed in a

similar way and denoted as $
"Ca .

Both the formal and empirical dual frequency
ambiguity precision will be shown by means of 95%
standard ellipses. However, as the L1 and L2 ambiguity
estimates are strongly correlated, the ellipses

corresponding to the vc-matrices Ca and Ca
"  and to the

vc-matrices$Ca and $
"Ca  are extremely elongated. In

order to allow a better interpretation of the precision
results, a decorrelating LAMBDA transformation, see
[Teunissen, 1995], was applied to these matrices. The
standard ellipses depicted in this section correspond
consequently to the transformed vc-matrices Cz and

Cz
" , and $Cz and $

"Cz .

The precision results will be given for two cases, a
zero-baseline and a short-baseline (13 km). The zero-
baseline was measured as part of the 1995 ARI receiver
test conducted by the University NAVSTAR
Consortium (UNAVCO) [Rocken et al., 1995]. The
experiment took place on Sept. 14th, 1995 around
23:30h (GPS) in Boulder, Colorado, US. The 13 km
baseline was measured as part of a small network in the
Flevopolder in the Netherlands on Dec. 22nd, 1996,
around 17:30h (GPS).



Figure 3: Formal and empirical standard ellipses of
dual frequency zero-baseline ambiguity estimates; (top)

Cz (dashed) and $Cz (full) of solution Eq.(4.2); (bottom)

Cz
"  (dashed) and $ "Cz (full) of solution Eq.(4.3).

Figure 3 shows typical standard ellipses for the zero
baseline case. It can be seen from the figure that a
significant disagreement exists between the standard
ellipses corresponding to the formal and empirical
precision of the ambiguities of Eq.(4.2). The formal
standard ellipse appear to be far too optimistic. For the
ambiguity estimates of Eq.(4.3) however, an almost
perfect match is found for the formal and empirical
standard ellipses. This illustrates that the nondiagonal
matrices of Eq.(3.2) and Eq.(3.6) indeed give a more
realistic description of the noise characteristics than
simple diagonal matrices do.
For the short-baseline the results are less pronounced as
a consequence of environmental effects in general and
multipath effects in particular. Still the same trend can
be seen. As figure 4 shows, the formal standard ellipse
of Eq.(4.3) matches better with its empirical

counterpart than the formal and empirical standard
ellipses of Eq.(4.2) do.

Figure 4: Formal and empirical standard ellipses of
dual frequency short-baseline ambiguity estimates;

(top) Cz (dashed) and $Cz (full) of solution Eq.(4.2);

(bottom) Cz
"  (dashed) and $

"Cz (full) of solution

Eq.(4.3).

Apart from comparing the formal standard ellipse with
its empirical counterpart, one can also compare the two
empirical standard ellipses, the one of Eq.(4.2) with the
one of Eq.(4.3). This comparison has the advantage
that it is completely driven by the data themselves,
since no formal variances and covariances need to be
specified in order to compute the two solutions. Such a
comparison is shown in figure 5 for three different
cases. The first two are zero-baseline solutions, while
the third is a short-baseline solution.



Figure 5: Comparison of the empirical ambiguity
standard ellipses of Eq.(4.2) and Eq.(4.3); (top and
middle) zero baseline, (bottom) short baseline; (all)
$Cz (dashed) and $ "Cz (full).

In all three cases, the empirical precision of Eq.(4.3) is
better than that of Eq.(4.2). The difference is most
pronounced in the first zero-baseline solution. This

solution is based on DD data having one of its two
satellites at a low elevation. The satellites of the other
two solutions were at moderate elevations.

5. DISCUSSION AND CONCLUSION

By means of a simple analysis the correlation between
the dual frequency observables of a cross-correlating
receiver was revealed. The results presented appear to
confirm that the nondiagonal vc-matrices Cp and Cf

give a more realistic description of the noise
characteristics of the data, than simple diagonal
matrices would do. If that is the case, it has the
following consequences for positioning with the
surveyor’s short-baseline model.
Let us first consider the pseudo range data. The dual
frequency receiver outputs both p1 and p2. Would one
use a diagonal vc-matrix for the pseudo range noise,
one would assume the data to carry more information
than it actually does.  This is due to the fact that not p1

and p2 are the independent observables, but rather p1

and Dp. For the latter pair a diagonal vc-matrix can be
used, but not for the former. When using the
appropriate vc-matrix, it automatically follows that no
contribution can be expected from p2. Only the L1
pseudo range contributes to the solution. This can be
understood by noting that also Dp fails to contribute,
since in the short-baseline model, it has no model
parameters in common with p1. We thus end up in a
remarkable situation: a more precise solution is
obtained by not using one of the receiver-outputted
observables, namely p2. Hence we are better off by
using less data. We may therefore conclude for this
example, that although dual frequency data is made
available by cross-correlation, it certainly does not
imply the presence of a full GPS positioning capability
when AntiSpoofing is turned on.
For the case of the carrier phase data the situation
differs somewhat from the case of the pseudo range
data. This is due to the fact that the carrier phase
difference is measured in the cycle-domain and not in
the range domain. Still a few remarks can be made. It is
well-known that due to its longer wavelength, the
widelane is often used for the purpose of ambiguity
resolution, although this may even not be an argument
in its own right [Teunissen, 1995]. It is therefore
somewhat cynical to observe, that while the outputted
L1 and L2 carrier phases are often transformed by the
user to the widelane, it is actually this widelane which
is the independent observable in the first place. With
this transformation, the user will also obtain an
erroneous widelane variance if he applies the error
propagation, while assuming the L1 and L2 carrier
phases to be independent. As a case in point, compare
the widelane variance with the variance of the L2
carrier phase observable. In the context of ambiguity
resolution, one often states as drawback of the widelane
observable its higher noise level when compared to the
noise level of the L1 and L2 carrier phases. This is
certainly true when the L1 and L2 carrier phases are



independent. But it is not necessarily true when the vc-
matrix Cf  of Eq.(3.6) applies. In that case the variance
of the L2 carrier could well be larger than the widelane
variance, since it depends on how precise the widelane
can be observed. These last remarks may in fact well
explain the disagreement between the empirical and
formal results presented in [Takac et al., 1998].
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