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Abstract PPP-RTK has the potential of benefiting
enormously from the integration of multiple GNSS/RNSS

systems. However, since unaccounted inter system bi-

ases (ISBs) have a direct impact on the integer ambi-

guity resolution performance, the PPP-RTK network
and user models need to be flexible enough to accom-

modate the occurrence of system-specific receiver bi-

ases. In this contribution we present such undifferenced,

multi-system PPP-RTK full-rank models for both net-

work and users. By an application of S-system theory,
the multi-system estimable parameters are presented,

thereby identifying how each of the three PPP-RTK

components are affected by the presence of the system-

specific biases. As a result different scenarios are de-
scribed of how these biases can be taken into account.

To have users benefit the most, we propose the con-

struction of an ISB look-up table. It allows users to

search the table for a network receiver of their own

type and select the corresponding ISBs, thus effectively
realizing their own ISB-corrected user model. By ap-

plying such corrections, the user model is strengthened

and the number of integer estimable user ambiguities is

maximized.
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1 Introduction

PPP-RTK is integer ambiguity resolution-enabled pre-

cise point positioning (PPP) (Wubbena et al, 2005;

Mervart et al, 2008; Teunissen et al, 2010). It extends

the PPP concept (Zumberge et al, 1997; Kouba and

Heroux, 2001; Bisnath and Gao, 2008) by providing
single-receiver users, next to the orbits and clocks, also

information about the satellite phase biases. In this

contribution we discuss PPP-RTK in the context of

multi-system integration and in particular with refer-
ence to the occurrence of system-specific receiver biases

(Hegarty et al, 2004; Montenbruck et al, 2011).

To gain from the enormous benefits that the in-

tegration of multiple GNSS/RNSS systems can bring
(Teunissen et al, 2014; He et al, 2014; Chu and Yang,

2014; Odolinski et al, 2015; Nadarajah et al, 2015; Li

et al, 2015), it is important that any misalignments be-

tween the systems is properly taken care of. Indeed,

as recent contributions have shown, the existence of
non-zero inter-system biases—experienced by receivers

of different types—results, if ignored, in a catastrophic

failure of integer ambiguity resolution (Odijk and Teu-

nissen, 2013a; Paziewski and Wielgosz, 2014; Nadara-
jah et al, 2014; Torre and Caporali, 2015). It is the goal

of the present contribution to present the undifferenced,

multi-system PPP-RTK enabled functional models for

both network and users, and to present different sce-

narios of how these system-specific receiver biases can
be taken into account. By an application of S-system

theory (Baarda, 1973; Teunissen, 1985), the estimable

parameters of the multi-system mixed-receiver network

and user models are described, thereby identifying how
each of the three components of PPP-RTK (Figure 1)

are affected by the presence of these biases. Although

we have chosen for a specific S-basis in this contribu-
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Fig. 1 Three components of PPP-RTK: 1) Network-component,
2) Correction-component and 3) User-component.

tion, the presentation is such that our conclusions can
be replicated for any such S-basis, thus also for those

chosen in e.g. (Laurichesse and Mercier, 2007; Collins,

2008; Ge et al, 2008; Bertiger et al, 2010; Geng et al,

2012), see the review (Teunissen and Khodabandeh,

2015).

This contribution is organized as follows. In Sect. 2
we first present and discuss the full-rank undifferenced

network system of observation equations for a single

system. Such a description of its estimable parameters,

and how they relate to the chosen S-basis, is crucial to

properly understand their propagation into the PPP-
RTK corrections and user models. A five-fold decom-

position of the PPP-RTK corrections is therefore pre-

sented in Sect. 3. It shows that next to the primary

function of the corrections, which is the removal of
satellite clocks and satellite phase/code biases from the

user observation equations, the corrections also estab-

lish an additional four S-basis dependent links between

network and user. As a result the decomposition di-

rectly makes clear how the estimability of the user pa-
rameters is linked to the estimability of the network

parameters.

In Sect. 4 we generalize the single-system network

model to the multi-system case, thereby taking the pos-

sible presence of system-specific receiver biases into ac-
count. Two different parametrizations of the full-rank

multi-system network system of observation equations

are presented. In the first formulation use is made of the

system-specific estimable receiver clocks and receiver

phase/code biases, while in the second formulation the
estimable Inter-System-Biases (ISBs) are introduced,

thereby taking the system-specific nature of the param-

eters relative to a reference system. Although there is

no preference per se between the two parametrizations,
the ISB parametrization is usually considered more ap-

pealing as it shows the effect of having system-specific

receiver biases explictly.

In Sect. 5 we discuss the role of the inter system

biases in the context of PPP-RTK. The effect of the es-

timable ISBs is shown and three different ISB-scenarios

are presented and discussed, the ISB-unknown model,

the ISB-known model and the ISB-corrected model.
This also shows which model a multi-system PPP-RTK

user has to use when confronted with PPP-RTK cor-

rections derived from a multi-system network of mixed

receivers. Such is the case, for instance, for many net-
works that provide information in the public domain,

like e.g. the IGS network.

In Sect. 6 we show how PPP-RTK users can bene-

fit from network-derived ISBs. Next to the provision of

the PPP-RTK corrections, the idea is to provide an ISB

look-up table as a means to support multi-system PPP-

RTK. It consists of accurately determined network-der-

ived estimable ISB solutions. As the ISBs may be con-

sidered stable in time, the look-up table is made up
of calibrated estimable ISBs having low refreshment

rates.The user can then search the table for a net-

work receiver of the same type and select the corre-

sponding ISBs, thus effectively realizing his own ISB-

corrected user model. By applying such corrections, the
user model is strengthened and the number of integer

estimable user ambiguities is maximized.

2 Single-system network estimability

To understand multi-system PPP-RTK estimability, one
first needs a rigorous estimability description of an in-

dividual single system. Let the single-system phase-

and code observation equations of a network receiver

r (r = 1, . . . , n), tracking satellite s (s = 1, . . . ,m) on

frequency j (j = 1, . . . , f), (Teunissen and Kleusberg,
1998; Hofmann-Wellenhof et al, 2008) be given as

∆φs
r,j = (∆ρsr + dtr − dts)− µjι

s
r + λj(z

s
r,j + δr,j − δs,j)

∆psr,j = (∆ρsr + dtr − dts) + µjι
s
r + (dr,j − ds,j)

(1)

where∆φs
r,j and∆psr,j denote the ‘observed minus com-

puted’ phase and code observations, respectively. Here

and in the following, the precise orbital corrections are
assumed included in the observed minus computed ob-

servations. The increment of the geometric range, lump-

ed with that of the zenith tropospheric delay (ZTD), is

denoted by∆ρsr. This increment can be further paramet-

rized into a position and ZTD increment ∆xr through
∆ρsr = gsT∆xr , with gs containing the receiver-satellite

direction vector and the tropospheric mapping func-

tion. The common receiver and satellite clock param-

eters are, respectively, denoted as dtr and dts. They
are accompanied by the frequency dependent code re-

ceiver and satellite biases dr,j and ds,j . Ambiguities, in

units of cycles, are composed of the integer part zsr,j



3

Table 1 Estimable parameters formed by the chosen S-basis of the single-system network model.

Positions/ZTDs ∆x̃r = ∆x1r; r 6= 1

Ionospheric delays ι̃sr = ιsr + dr,GF − ds,GF

Receiver clocks dt̃r = dt1r + d1r,IF ; r 6= 1

Satellite clocks dt̃s = (dts + ds,IF )− (dt1 + d1,IF )− gsT∆x1

Ambiguities z̃sr,j = zs1r,j − z11r,j ; r 6= 1, s 6= 1,

Rec. phase biases δ̃r,j = δ1r,j + 1
λj

(µjd1r,GF − d1r,IF ) + z11r,j ; r 6= 1

Sat. phase biases δ̃s,j = δs,j + 1
λj

(µj [d
s
,GF − d1,GF ]− [ds,IF − d1,IF ])− δ1,j − zs1,j

Rec. code biases d̃r,j = d1r,j − (d1r,IF + µjd1r,GF ); r 6= 1, j > 2

Sat. code biases d̃s,j = [ds,j − (ds,IF + µjd
s
,GF )]− [d1,j − (d1,IF + µjd1,GF )]; j > 2

S-basis parameters ∆x1, dt1, d1,j , δ1,j , zs1,j , z1r,j , dr 6=1,j=1,2, ds,j=1,2

(.),IF = 1
µ2−µ1

{µ2(.),1 − µ1(.),2}; (.),GF = 1
µ2−µ1

{(.),2 − (.),1}

and the receiver/satellite non-integer parts δr,j and δs,j ,

respectively. They manifest themselves through their

wavelength λj . The (first-order) slant ionospheric de-

lay, as experienced on the first frequency, is denoted by

ιsr. Thus we have the scalars µj = (λ2
j/λ

2
1) linking the

ionospheric delays to the observations. Apart from zsr,j ,

δr,j and δs,j , the rest of the quantities are all expressed

in units of range.

The above network system of equations (1) is rank-
defect. The information content of the network obser-

vations is not sufficient to determine all the network’s

‘absolute’ parameters. Only estimable combinations of

these parameters can be solved for. Through a care-

ful application of S-system theory (Teunissen, 1985),
the underlying rank-deficiency of the network model

can be identified and then removed. Different choices of

such S-bases for rank-deficiency removal are possible,

see e.g. (Odijk et al, 2015; Khodabandeh and Teunis-
sen, 2015). For a given S-basis, a full-rank version of

the network model (1) reads

∆φs
r,j = ∆ρ̃sr + dt̃r − dt̃s − µj ι̃

s
r + λj(z̃

s
r,j + δ̃r,j − δ̃s,j)

∆psr,j = ∆ρ̃sr + dt̃r − dt̃s + µj ι̃
s
r + d̃r,j − d̃s,j

(2)

for r = 1, . . . , n, where ∆ρ̃sr = gsT∆x̃r.

The chosen S-basis and the corresponding interpre-

tation of the estimable parameters, indicated with the .̃-

symbol, are given in Table 1. The table shows how each

estimable parameter is formed as a certain linear com-

bination of the original parameters. The subscripts ‘IF’
and ‘GF’ stand for the ‘ionosphere-free’ and ‘geometry-

free’ combinations, respectively (see the table for their

definition).

Note that in the S-basis choice given here, the es-
timable parameters are formed by lumping the param-

eters of the reference receiver r = 1 and the satellite

code biases on the first two frequencies. Would one

choose another S-basis, a different set of estimable pa-

rameters is formed. Thus the estimable functions can

be formed in many different ways, presenting different

interpretations. Each set can be linked to one another

by S-transformations (Baarda, 1973; Teunissen, 1985).
Examples of such linkages are given in (Odijk et al,

2015).

The following three important remarks can be made

with respect to the estimable parameters of (2). First,

the GNSS observations are not capable of determin-

ing the ‘absolute’ parameters, but only estimable pa-

rameters that can act as such. After forming a full-
rank model, one can therefore not speak of the satellite

clock or the satellite phase biases. It is instead the S-

dependent estimable functions, dt̃s and δ̃s,j , that take

their role.

Second, with the chosen S-basis, the estimable code

biases, d̃s,j and d̃r,j , only exist on the third frequency

and beyond (i.e. j > 2). Thus, given the full rank
model (2), no estimable code biases exist in the dual-

frequency setup.

Third note that, with the chosen S-basis, the es-

timable phase and code biases, δ̃s,j and d̃s,j , become func-

tions of their ‘absolute’ versions, i.e. δs,j and ds,j , and (in

case of δ̃s,j) the integer-valued ambiguities zs1,j only (cf.
Table 1). This means that if the absolute parameters

δs,j, d
s
,j , and zs1,j are assumed constant in time, that the

estimable parameters δ̃s,j and d̃s,j can be assumed time-

constant as well. One is therefore allowed to directly
apply such a dynamic model to the stated estimable

parameters rather than to their absolute versions.

Large-scale networks: In our analysis so far, we have as-
sumed the network to be such that the receivers view

satellite s from almost the same direction angle, i.e.

gsr ≈ gs, r = 1, . . . , n. This assumption holds for small
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Table 2 The five-fold expression of the single-system PPP-RTK corrections, given the S-basis in Table 1

I II1 III1 IV1 V[1,2]
[

cs
φ,j

csp,j

]

=

[

dts + λjδ
s
,j

dts + ds,j

]

−

[

∆ρs1
∆ρs1

]

−

[

λjz
s
1,j

0

]

−

[

∆dt1 + λj∆δ1,j
∆dt1 + ∆d1,j

]

−

[

−µj

+µj

]

ds,GF

Absolute term Positional link Ambiguity link Receiver-specific link Ionosphere-specific link

∆dt1 = dt1 + d1,IF ; ∆δ1,j = δ1,j + 1
λj

(µjd1,GF − d1,IF ); ∆d1,j = d1,j − (µjd1,GF + d1,IF )

to regional networks. In case of a large-scale network

however, i.e. when gsr 6= gs, the linear dependency be-

tween the position increment∆xr and the satellite clocks

dts vanishes. The estimability of the stated parameters

changes then to (compare with Table 1)

∆x̃r 7→ ∆xr

dt̃s 7→ (dts + ds,IF )− (dt1 + d1,IF ),
(3)

while the estimability of the rest of the estimable pa-

rameters remains unaffected. In the following, without

loss of generality, we therefore keep assuming gsr ≈ gs,

r = 1, . . . , n. This assumption allows the inclusion of

small to regional networks in our discussion as well.

3 Single-system corrections

3.1 Five-fold functionality of the corrections

Not all of the network parameters, as given in Table 1,

are of interest to the PPP-RTK users. Apart from the

orbital corrections, the PPP-RTK users only need to

be provided with the satellite clocks, phase/code bi-
ases and (sometimes) the ionospheric corrections. Here

we consider the case where no ionospheric correction is

provided to the user.

Due to the network’s rank-deficiency, the network

cannot provide the actual satellite clocks dts, phase bi-

ases δs,j , and code biases ds,j , but only their estimable

variants dt̃s, δ̃s,j , and d̃s,j (f > 2). These corrections

come together, at the observation level of the user, in

the combined form

csφ,j = dt̃s + λj δ̃
s
,j

csp,j =

{

dt̃s j = 1, 2

dt̃s + d̃s,j j > 2

(4)

Thus csφ,j and csp,j are the combined corrections that

need to be added to the user phase and code data, re-

spectively.

As these corrections are not only composed of the

actual satellite clocks dts, phase biases δs,j , and code
biases ds,j , it is important for the user to know their

composition and to understand that their interpreta-

tion changes, would the choice of the network’s S-basis

change. With the aid of the interpretation given in Ta-

ble 1, the combined corrections (4) can be characterized

through the following five-fold expressions
[

csφ,j
csp,j

]

= I− II1 − III1 − IV1 − V[1,2] (5)

Each of these five terms has its own insightful func-
tionality (cf. Table 2). The first term I contains the

‘absolute’ parameters dts, δs,j and ds,j. Its functionality

is considered to be the most primary one, since it does

what it is supposed to do, namely to remove the satellite

clocks, phase and code biases from the user observation
equations.

The second term II1 contains the increment of the

geometric/tropospheric range of the reference network

receiver, i.e. ∆ρs1. Its functionality is therefore to es-
tablish a positional link between the user and the ref-

erence network receiver r = 1. That the first receiver

is taken as the reference network is due to the choice

of S-basis by the network-component. Would one lump

the geometric/tropospheric range of the second network
receiver (i.e. ∆ρs2) with the satellite clocks, the interpre-

tation of II1 would then change to

II1 7→ II2 =

[

∆ρs2
∆ρs2

]

, (6)

which then establishes a positional link between the

user and the reference network receiver r = 2. One

can also consider a more general case, when the satel-

lite clocks are lumped with an average of the geomet-
ric/tropospheric ranges over all the network stations,

say ∆ρsr̄ = (1/n)
∑n

r=1 ∆ρsr. Given such S-basis, the

interpretation of II1 changes to

II1 7→ IIr̄ =
1

n

n
∑

r=1

IIr, (7)

making a positional link between the user and the av-

erage of the network receivers, i.e. r̄.

The third term III1 contains the integer ambiguities
of the reference network receiver r = 1, i.e. zs1,j . Thus

it establishes an ambiguity link between the user and

the reference network receiver r = 1. Similar to the

second term, one can change its dependency on the first
receiver to another by changing the network’s S-basis.

The fourth term IV1 contains the receiver-dependent

parameters of the reference network receiver r = 1. Its
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functionality is to make the user receiver-dependent pa-

rameters estimable with respect to those of the refer-

ence receiver r = 1. Similar to the second and third

terms II1 and III1, the interpretation of IV1 can change,

for instance, to IV2 or IV̄r, would the network’s S-basis
change. Moreover, as we will see in Sect. 4, this receiver-

dependent fourth term may also change in case GNSSs

are combined.

The fifth and last term V[1,2] contains the geometry-

free components of the satellite code biases on the first
two frequencies (j = 1, 2), i.e. ds,GF

. As it is accom-

panied by the coefficients [−µj , µj ]
T , it gets fully ab-

sorbed by the user ionospheric parameters. Due to its

dependency on the network’s S-basis, the interpreta-

tion of V[1,2] can change. One can form ds,GF
based on

the first and third frequency instead of the first and

second frequency (cf. Table 1). With such newly-defined

geometry-free combinations, the last term V[1,2] switches

to V[1,3], thus resulting in a different estimable iono-
spheric parameter for the user.

Network’s interpolated ionospheric corrections. The PPP-
RTK corrections are sometimes extended by the iono-

spheric corrections to speed up user integer ambiguity

resolution. In that case use is made of the network’s

interpolated ionospheric delays (Table 1)

ι̃so = ιso + do,GF − ds,GF
(8)

to be provided to the user. The subscript o indicates
the interpolation operator over r = 1, . . . , n. As the

combined corrections (4) are changed to

[

csφ,j

csp,j

]

7→

[

csφ,j

csp,j

]

−

[

−µj

+µj

]

ι̃so (9)

the first and last terms I and V[1,2] in (5) are, respec-

tively, changed to

I 7→

[

dts + λjδ
s
,j + µjι

s
o

dts + ds,j − µjι
s
o

]

(10)

and

V[1,2] 7→

[

−µj

+µj

]

do,GF (11)

According to (10) and (11), the functionality of I is
extended by also correcting the user ionospheric delays

ιsu using the interpolated delays ιso. On the other hand,

there would then be no user ionospheric parameter to

absorb the bias do,GF of the last term V[1,2]. This bias, if
unknown (and not calibrated e.g. through IGS), would

then need to be estimated as an extra parameter at the

user side.

NET. CORR. = + I − II1 − III1 − IV1 − V,[1,2]

USER DATA = − I + IIu + IIIu + IVu + Vu,[1,2]

+

⇓
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Fig. 2 Schematic construction of the user estimable parameters
that are formed by the five-fold functionality of the corrections

(Table 2), linked to the network’s S-basis.

3.2 User-component

Replacing the subscript r by the user index u in (1),

the single-receiver user observation equations follow as

∆φs
u,j = ∆ρsu + dtu − dts − µjι

s
u + λj(z

s
u,j + δu,j − δs,j)

∆psu,j = ∆ρsu + dtu − dts + µjι
s
u + du,j − ds,j

(12)

The above user system of observation equations is not
solvable for an integer ambiguity resolved position. Ap-

plying the correction-component (4) can, however, link

the user parameters to the network’s S-basis. To see

this, we re-write the user model (12) as (cf. 5)
[

∆φs
u,j

∆psu,j

]

= −I + IIu + IIIu + IVu + Vu,[1,2] (13)

with

Vu,[1,2] =

[

−µj

+µj

]

(ιsu + du,GF ) (14)

The five-fold representation (13) demonstrates how the
network-derived corrections govern the estimability of

the user parameters. The schematic construction of the

user estimable parameters is illustrated in Figure 2. The

figure shows the five-fold decomposition of the network
corrections (cf. 5) as well as how the user data can be

composed from the user-versions of these five terms (cf.

13). Recalling the five-fold functionality of the correc-

tions (5), the satellite clocks and biases are cancelled

out by the first term I. The ‘absolute’ position and am-
biguity terms IIu and IIIu are, respectively, biased by the

S-basis dependent terms II1 and III1, thus leading to the

‘estimable’ position and ambiguity terms (IIu−II1) and

(IIIu− III1), respectively. Likewise, the receiver-specific
term IVu as well as the ionospheric term Vu,[1,2] are re-

placed by their estimable counterparts (IVu− IV1) and

(Vu,[1,2]−V,[1,2]). Therefore, after applying the correc-

tions, the user corrected observation equations take the

following form

∆φs
u,j + csφ,j = ∆ρ̃su + dt̃u − µj ι̃

s
u + λj(z̃

s
u,j + δ̃u,j)

∆psu,j + csp,j = ∆ρ̃su + dt̃u + µj ι̃
s
u + d̃u,j

(15)
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with∆ρ̃su = gsT∆x̃u. These corrected observation equa-

tions are now solvable, but only for the estimable pa-

rameters (with the .̃-symbol). Their interpretation fol-

lows from the user version of those in Table 1, i.e. with

r replaced by u. Note that the ‘integer-recovered’ user
ambiguities have now become straightforward double-

differenced (DD) ambiguities, that is

z̃su,j = z1s1u,j ∈ Z, s 6= 1 (16)

These integer estimable ambiguities in the user system

of observation equations are thus dependent on zs1,j , the

integer ambiguities of the network reference receiver.
We remark that one may choose an average of the am-

biguities of the network receivers as the S-basis, i.e. III1
replaced by IIIr̄ (cf. Table 2). In that case, the ‘integer-

recovered’ user ambiguities become linear functions of

the DD ambiguities (Odijk et al, 2015, Eq. 34).

S-dependence of user parameters

The above has shown that the S-basis dependency prop-
agates from network, through the corrections, onwards

to the user. It is therefore of importance to under-

stand what the consequences of this dependence are.

Fortunately, the choice of S-basis does not affect ones

ability to secure the integerness of the single-receiver
estimable user ambiguities. That is, for every possible

choice of S-basis, PPP-RTK corrections can be formed

such that the estimable user ambiguities become inte-

ger. The choice of S-basis has therefore no consequence
for this primary goal of PPP-RTK. Examples of dif-

ferent such S-bases can be found in the review paper

(Teunissen and Khodabandeh, 2015).

The estimable user parameters themselves however,

do depend on the chosen S-basis. A change in S-basis
can for instance modify the interpretation of the posi-

tioning/ZTD increment ∆x̃u (cf. II1 in 5) and/or of the

DD ambiguities z̃su,j (cf. III1 in 5). Also non-positioning

users need to be aware of the S-basis dependence. This
is for instance true for the presence of the satellite and

receiver biases ds,GF
and du,GF in the estimable slant

ionospheric parameter ι̃su. But also users who are inter-

ested in analysing or calibrating receiver-specific biases,

like e.g. dt̃u, δ̃u,j and d̃u,j , need to know that these bi-
ases are not ‘absolute’, but relative to those of a refer-

ence station (satellite) or a linear function thereof.

4 Multi-system PPP-RTK

In the previous section, the three components of the

single-system PPP-RTK concept were formulated and
discussed. In this section, we generalize the concept

to the multi systems ⋆ = G, J, . . . , E. As one needs to

discriminate between the satellites of different systems,

Table 3 Current frequencies shared by GPS, QZSS, Galileo, Bei-
Dou and IRNSS. Overlapping frequencies have been sorted into
columns.

System Frequency-band

GPS L1 L2 L5
QZSS L1 L2 L5 LEX
Galileo E1 E5a E5b E6
BeiDou B2
IRNSS L5

Freq. (MHz) 1575.42 1227.60 1176.45 1207.14 1278.75

our earlier satellite index ‘s’ becomes obsolete. Instead,

we make use of the satellite index s⋆ (s⋆ = 1⋆, . . . ,m⋆)

for the system ⋆. Although each system can broadcast
signals on different frequency bands, we restrict our-

selves in this contribution to those frequency bands that

are in common with these systems. With this in mind,

our earlier frequency index ‘j’ (j = 1, . . . , f) stands for
the jth overlapping frequency of the systems. Note that

this restriction does not affect the generality of our dis-

cussion as one can apply the rank-deficiency removal to

the multi-system models, of different frequencies, along

similar lines as that of the single-system models.

Table 3 gives an overview of the current frequen-

cies shared by the navigation satellite systems. The two

systems GPS and QZSS, for instance, have the three
frequencies L1, L2 and L5 in common, while with the

Galileo system, they share the two overlapping frequen-

cies L1 and L5 (E5a).

4.1 System-specific receiver biases

When one combines systems one has to be aware of
system-specific receiver biases. That is, in the multi-

system case the receiver bias delays are experienced

in a way that is different from system to system, see

e.g. (Hegarty et al, 2004;Montenbruck et al, 2011; Sleewa-
gen et al, 2012; Odijk and Teunissen, 2013a). Under this

assumption, the observation equations of the receiver r,

tracking the system ⋆, follow as

∆φs⋆
r,j = ∆ρs⋆r + dtr − dts⋆ − µjι

s⋆
r + λj [z

s⋆
r,j + δ

⋆

r,j − δs⋆,j ]

∆ps⋆r,j = ∆ρs⋆r + dtr − dts⋆ + µjι
s⋆
r + d

⋆

r,j − ds⋆,j
(17)

with ∆ρs⋆r = gs⋆T∆xr.

Compare the above equations with (1). The role of the

receiver biases δr,j and dr,j is now taken by the system-

specific parameters δ⋆

r,j and d
⋆

r,j . Note also that the data
in (17) are registered in the ‘time-system’ of G, i.e. only

one receiver clock dtr is taken for all the systems. This

is allowed as the difference between the time-systems

of G and ⋆ 6= G is fully absorbed by the satellite clocks

dts⋆ (s⋆ = 1⋆, . . . ,m⋆).

Since the full-rank model (2) holds for any single

system, one can make the observations equations for
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a multi-system full-rank in a similar way. The corre-

sponding full-rank model reads

∆φs⋆
r,j = ∆ρ̃s⋆r + dt̃

⋆

r − dt̃s⋆ − µj ι̃
s⋆
r + λj [z̃

s⋆
r,j + δ̃

⋆

r,j − δ̃s⋆,j ]

∆ps⋆r,j = ∆ρ̃s⋆r + dt̃
⋆

r − dt̃s⋆ + µj ι̃
s⋆
r + d̃

⋆

r,j − d̃s⋆,j
(18)

for r = 1, . . . , n.

Compare the full-rank model (18) with its single-system

version (2). The interpretation of the estimable param-

eters of this multi-system network model is given in Ta-

ble 5. It also shows the additional S-basis parameters
that are chosen for each extra ⋆-system.

Due to the ‘system-dependency’ of the receiver bi-
ases δ

⋆

r,j and d
⋆

r,j , each system has its own estimable

receiver clocks dt̃
⋆

r, receiver phase biases δ̃
⋆

r,j and re-

ceiver code biases d̃⋆

r,j (r = 2, . . . , n). Thus we see that
the 2fn extra parameters δ⋆

r,j and d
⋆

r,j result in (2f −

1)(n−1) extra estimable parameters per additional sys-

tem. The difference in these number of parameters, i.e.

2fn− (2f − 1)(n− 1), is taken up by the extra S-basis,

namely by δ
⋆

1,j, d
⋆

1,j and d
⋆

r 6=1,GF
, see Table 5.

Thus note, although the systems are assumed to

have only one common clock dtr per receiver, the full-
rank multi-system model (18) results in estimable clocks

dt̃
⋆

r that are system specific. The between-system dif-

ferences of these clocks are however functions of the

code biases d⋆

r,j , which are more stable than the receiver

clocks over time. In Sect. 5, we will therefore reformu-
late (18) to study the role played by these functions.

Another consequence of the ’system-dependency’ of
the receiver biases is that, similar to the single-system

case, the single-differenced ambiguities of the pivot satel-

lites s⋆ = 1⋆, i.e. z
1⋆
1r,j, are taken as the S-basis to form

the system-specific DD ambiguities

z̃s⋆r,j = zs⋆1r,j − z1⋆1r,j ∈ Z, s⋆ 6= 1⋆, (19)

This thus implies that one pivot satellite must be taken

for each system.

Table 4 gives an overview of the multi-system net-

work redundancy. It shows how each extra system con-
tributes to the overall redundancy. For instance, with

two systems (S = 2), each having the same number

of satellites (M = 2m), the increase in redundancy of

adding a second system is (n− 1)(f − 1)(m− 1).

4.2 Multi-system corrections applied

Similar to the single-system case, one can form the
multi-system combined corrections (cf. 4)

cs⋆φ,j = dt̃s⋆ + λj δ̃
s⋆
,j

cs⋆p,j =

{

dt̃s⋆ j = 1, 2

dt̃s⋆ + d̃s⋆,j j > 2

(20)

Table 4 Single-epoch, multi-system network model’s redun-
dancy, together with the number of observations and number
of estimable parameters: f is number of overlapping frequencies;

n is number of network stations; M is number of satellites; S is
number of systems; ν is dimension of position/ZTD vector.

No. of observations Total
#∆φ

s⋆
r,j = fnM , #∆p

s⋆
r,j = fnM 2fnM

No. of estimable parameters Total

#ι̃
s⋆
r = nM , #dt̃s⋆ = M , #{δ̃s⋆,j , d̃

s⋆
,j } = 2(f − 1)M 2fM + (n− 1)M

#dt̃
⋆

r = S(n− 1), #{δ̃⋆r,j , d̃
⋆

r,j} = 2S(f − 1)(n− 1) S(2f − 1)(n − 1)

#∆x̃r = (n− 1)ν #z̃
s⋆
r = f(M − S)(n− 1) [ν + f(M − S)](n− 1)

Redundancy (n− 1){(f − 1)(M − S)− ν}

Since the system-dependent receiver biases δ⋆

1,j and d
⋆

1,j

are lumped with the estimable satellite clocks dt̃s⋆ and

biases δ̃s⋆,j /d̃
s⋆
,j , the fourth term IV

1
in the five-fold ex-

pression (5) is replaced by (cf. Table 2)

IV
1
7→ IV⋆

1 =

[

∆dt1 + λj∆δ
⋆

1,j

∆dt1 + ∆d
⋆

1,j

]

(21)

As the functionality of IV⋆
1 is to make the user receiver-

dependent parameters estimable with respect to those
of the reference receiver r = 1, the estimable receiver

clock of the user, i.e. dt̃⋆u, becomes system-specific as

well. The user observation equations follow from (18)

by replacing the subscript r with u,

∆φs⋆
u,j = ∆ρ̃s⋆u + dt̃

⋆

u − dt̃s⋆ − µj ι̃
s⋆
u + λj [z̃

s⋆
u,j + δ̃

⋆

u,j − δ̃s⋆,j ]

∆ps⋆u,j = ∆ρ̃s⋆u + dt̃
⋆

u − dt̃s⋆ + µj ι̃
s⋆
u + d̃

⋆

u,j − d̃s⋆,j
(22)

Applying the combined corrections (20) to (22) gives

the user corrected observation equations

∆φs⋆
u,j + cs⋆φ,j = ∆ρ̃s⋆u + dt̃

⋆

u − µj ι̃
s⋆
u + λj [z̃

s⋆
u,j + δ̃

⋆

u,j ]

∆ps⋆u,j + cs⋆p,j = ∆ρ̃s⋆u + dt̃
⋆

u + µj ι̃
s⋆
u + d̃

⋆

u,j

(23)

As with the multi-system network model (18), the user

must also take one pivot satellite per system to form the

DD ambiguities z̃s⋆u,j . Likewise, the user must estimate

different receiver clocks dt̃⋆u and receiver biases δ̃⋆

u,j/d̃
⋆

u,j

for each system.

5 Role of the inter system biases

5.1 Inter system biases and their estimable functions

So far, the concept of single-system PPP-RTKwas shown
to carry over quite naturally to that of multi-system

PPP-RTK.While the number of satellites increases from

single-system : s ∈ {1, . . . ,m} (24)

to

multi-system :

E
⋃

⋆=G

{s⋆ ∈ {1⋆, . . . ,m⋆}} , (25)
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Table 5 Estimable parameters formed by the chosen S-basis of the multi-system network model.

Positions/ZTDs ∆x̃r = ∆x1r ; r 6= 1

Ionospheric delays ι̃
s⋆
r = ι

s⋆
r + d

⋆

r,GF − d
s⋆
,GF

Receiver clocks dt̃
⋆

r = dt1r + d
⋆

1r,IF ; r 6= 1

Satellite clocks dt̃s⋆ = (dts⋆ + d
s⋆
,IF )− (dt1 + d

⋆

1,IF )− gs⋆T∆x1

Ambiguities z̃
s⋆
r,j = z

s⋆
1r,j − z

1⋆
1r,j ; r 6= 1, s⋆ 6= 1⋆

Rec. phase biases δ̃
⋆

r,j = δ
⋆

1r,j + 1
λj

(µjd
⋆

1r,GF
− d

⋆

1r,IF ) + z
1⋆
1r,j ; r 6= 1

Sat. phase biases δ̃
s⋆
,j = δ

s⋆
,j + 1

λj
(µj [d

s⋆
,GF − d

⋆

1,GF
]− [ds⋆,IF − d

⋆

1,IF ])− δ
⋆

1,j − z
s⋆
1,j

Rec. code biases d̃
⋆

r,j = d
⋆

1r,j − (d⋆1r,IF + µjd
⋆

1r,GF
); r 6= 1, j > 2

Sat. code biases d̃
s⋆
,j = [ds⋆,j − (ds⋆,IF + µjd

s⋆
,GF )]− [d⋆1,j − (d⋆1,IF + µjd

⋆

1,GF
)]; j > 2

Former S-basis ∆x1, dt1, d1,j , δ1,j , z
sG

1,j , z
1G

r,j , d
sG

,j=1,2, dr 6=1,j=1,2

Additional S-basis d
⋆

1,j , δ
⋆

1,j , z
s⋆
1,j , z

1⋆
r,j , d

s⋆
,j=1,2, d

⋆

r 6=1,GF
; ⋆ 6= G

(.),IF = 1
µ2−µ1

{µ2(.),1 − µ1(.),2}; (.),GF = 1
µ2−µ1

{(.),2 − (.),1}

the network and user have to estimate extra system-

specific estimable receiver parameters, namely

network :

#dt̃
⋆

r= (n− 1), #δ̃
⋆

r,j= f(n− 1), #d̃
⋆

r,j = (f − 2)(n− 1)

user :

#dt̃
⋆

u= 1, #δ̃
⋆

u,j= f, #d̃
⋆

u,j = (f − 2)

(26)

per additional system ⋆ 6= G. The presence of these ex-

tra unknowns results from the ‘system-dependency’ of

the receiver biases δ⋆

r,j and d
⋆

r,j . Instead of parametriz-

ing the system of equations in system-specific parame-

ters, one may also choose for a parametrization in which
one system is chosen as reference, say system G. In that

case the system-specific nature of the parameters is

taken relative to the reference system and one would

be working with the differences

δ
G⋆

r,j := δ
⋆

r,j − δr,j

d
G⋆

r,j := d
⋆

r,j − dr,j
(27)

where δr,j := δ
G

r,j and dr,j := d
G

r,j . The parameters δ G⋆

r,j

and d
G⋆

r,j are referred to as the phase and code inter

system biases (ISBs), respectively (Hegarty et al, 2004).

They capture the difference between the receiver biases

of the two systems G and ⋆ 6= G. They are therefore, by

definition, absent in the observation equations of the
first system ⋆ = G.

Using the above definitions, together with the in-
terpretations given in Tables 1 and 5, the estimable pa-

rameters dt̃⋆r, δ̃
⋆

r,j and d̃
⋆

r,j (r = 2, . . . , n) can be linked

to their counterparts of the system G through

dt̃
⋆

r = dt̃r + d̃
G⋆

r,IF

δ̃
⋆

r,j = δ̃r,j + δ̃
G⋆

r,j −
1
λj
d̃

G⋆

r,IF

d̃
⋆

r,j = d̃r,j + d̃
G⋆

r,j , j > 2

(28)

Table 6 Estimable ISBs of the network model (29).

Phase ISBs δ̃
G⋆

r,j = δ
G⋆

1r,j +
µj

λj
d

G⋆

1r,GF
+ z

1G1⋆
1r,j ; r 6= 1

IF code ISBs d̃
G⋆

r,IF = d
G⋆

1r,IF ; r 6= 1

Code ISBs d̃
G⋆

r,j = d
G⋆

1r,j − (µjd
G⋆

1r,GF
+ d

G⋆

1r,IF ); r 6= 1, j > 2

in which d̃
G⋆

r,IF , δ̃
G⋆

r,j and d̃
G⋆

r,j are estimable functions of

the ISBs δ
G⋆

r,j and d
G⋆

r,j . Their interpretations are given

in Table 6.

As the three estimable parameters dt̃⋆r, δ̃
⋆

r,j and d̃
⋆

r,j

stand in a one-to-one relation with the three estimable
ISBs d̃G⋆

r,IF , δ̃
G⋆

r,j and d̃
G⋆

r,j , the relation (28) can be used to

reparametrize the observation equations (18) and (23)

in terms of the estimable ISBs.

ISB-unknown models. Substitution of (28) into (18) gives

the ISB-parametrized multi-system full-rank network

model,

∆φs⋆
r,j = ∆ρ̃s⋆r + dt̃r − dt̃s⋆ − µj ι̃

s⋆
r + λj [z̃

s⋆
r,j + δ̃r,j − δ̃s⋆,j + δ̃

G⋆

r,j]

∆ps⋆r,j = ∆ρ̃s⋆r + dt̃r − dt̃s⋆ + µj ι̃
s⋆
r + d̃r,j − d̃s⋆,j + d̃

G⋆

r,IF + d̃
G⋆

r,j

(29)

for r = 1, . . . , n. Likewise, substitution of (28) into

(23) (with r replaced by u) gives the ISB-parametrized,

multi-system full-rank user-corrected model as

∆φs⋆
u,j + cs⋆φ,j = ∆ρ̃s⋆u + dt̃u − µj ι̃

s⋆
u + λj [z̃

s⋆
u,j + δ̃u,j + δ̃

G⋆

u,j ]

∆ps⋆u,j + cs⋆p,j = ∆ρ̃s⋆u + dt̃u + µj ι̃
s⋆
u + d̃u,j + d̃

G⋆

u,IF + d̃
G⋆

u,j

(30)

The multi-system models (29) and (30) are just repara-

metrized versions of the models (18) and (23), respec-

tively. There is therefore no preference per se between

the two, as they give the same outcomes once a rigourous
least-squares adjustment is applied. The ISB-parametri-

zation of (29) and (30) may however be more appealing

as it explicitly links the unknown estimable ISBs to the
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Table 7 Increase in the network model’s redundancy by switch-
ing from the ISB-unknown model (former) to the ISB-known
model (new). The number of the former estimable parameters

that need to be replaced by the new estimable parameters is also
given. Increase in the user model’s redundancy follows by setting
n = 2.

Former vs. new parameters #redudancy per system ⋆ 6= G

Former New Amb. float Amb. fixed

#δ̃
G⋆

r,j : f(n − 1) #z
1G1⋆
1r,j : f(n − 1) 0 f(n− 1)

#d̃
G⋆

r,IF : (n− 1) 0 (n− 1) (n− 1)

#d̃
G⋆

r,j : (f − 2)(n − 1) 0 (f − 2)(n − 1) (f − 2)(n − 1)

Total: (2f − 1)(n − 1) f(n− 1) (f − 1)(n − 1) (2f − 1)(n − 1)

observations. The multi-system models (29) and (30)

are therefore referred to as the ISB-unknown models.

5.2 Strengthening the network and user models

5.2.1 ISB-known models

The network and user models (29) and (30) strengthen

if the ISBs can be assumed absent, i.e. if the receiver
bias delays of all systems are experienced in the same

way:

d
G⋆

r,j = 0 and δ
G⋆

r,j = 0 (31)

Substitution into the expressions of d̃G⋆

r,IF , δ̃
G⋆

r,j and d̃
G⋆

r,j

in Table 6 gives then

d̃
G⋆

r,IF = 0, d̃
G⋆

r,j = 0, δ̃
G⋆

r,j = z1G1⋆
1r,j ∈ Z (32)

This shows that the zero ISBs (31) result in zero es-

timable code ISBs, d̃G⋆

r,IF and d̃
G⋆

r,j , and in a transition

from the originally real-valued estimable phase ISBs δ̃ G⋆

r,j

to the integer-valued ambiguities z1G1⋆
1r,j .

Table 7 shows how the network redundancy increases

by assuming the ISBs known. The (f − 1) times (n− 1)

number of code ISBs d̃G⋆

r,IF and d̃
G⋆

r,j (per system ⋆ 6= G)

are now corrected, thus decreasing the number of the es-

timable parameters. Although the change in the phase
ISBs δ̃ G⋆

r,j does not increase the redundancy in the net-

work ambiguity float mode, it does recover the inte-

gerness of the ambiguities z1G1⋆
1r,j . Hence, after successful

integer ambiguity resolution, the redundancy increases
by f(n − 1) per system ⋆ 6= G. To obtain the increase

in redundancy for the user, one has to set n = 2 in

Table 7.

Only one pivot satellite for all the systems. That the es-
timable phase ISBs δ̃ G⋆

r,j turn into the integers z1G1⋆
1r,j has

an important implication for the estimable DD ambi-

guities z̃s⋆r,j. To see this, consider the interpretation of

z̃s⋆r,j + δ̃
G⋆

r,j , using (19) and (32), through the following

steps

z̃s⋆r,j + δ̃
G⋆

r,j = z1⋆s⋆1r,j + z1G1⋆
1r,j

= (zs⋆1r,j − z1⋆1r,j) + (z1⋆1r,j − z1G

1r,j)

= z1Gs⋆
1r,j ∈ Z, s⋆ 6= 1G

(33)

This last expression of (33) reveals that only one pivot

satellite, i.e. the first satellite of the first system G, is

required to form the estimable DD ambiguities z1Gs⋆
1r,j .

With the equality (33), substitution of (32) into (29)
gives the ISB-known network model

∆φs⋆
r,j = ∆ρ̃s⋆r + dt̃r − dt̃s⋆ − µj ι̃

s⋆
r + λj [z

1Gs⋆
1r,j + δ̃r,j − δ̃s⋆,j ]

∆ps⋆r,j = ∆ρ̃s⋆r + dt̃r − dt̃s⋆ + µj ι̃
s⋆
r + d̃r,j − d̃s⋆,j

(34)

for r = 1, . . . , n. Likewise, the ISB-known version of the

user corrected observation equations (30) follows as

∆φs⋆
u,j + cs⋆φ,j = ∆ρ̃s⋆u + dt̃u − µj ι̃

s⋆
u + λj [z

1Gs⋆
1u,j + δ̃u,j ]

∆ps⋆u,j + cs⋆p,j = ∆ρ̃s⋆u + dt̃u + µj ι̃
s⋆
u + d̃u,j

(35)

5.2.2 ISB-corrected models

In the previous subsection we discussed the consequences
of having zero ISBs. The assumption of zero ISBs is a

plausible assumption when one works with the same

receivers (i.e., make, type, firmware). It is however not

a testable assumption that can be inferred from the
GNSS data itself. After all, as was shown in the previ-

ous sections, the ISB parameters δ G⋆

r,j and d
G⋆

r,j cannot be

determined in their ‘absolute’ forms, but only in their

estimable forms δ̃ G⋆

r,j , d̃
G⋆

r,IF and d̃
G⋆

r,j . Hence, only the van-

ishing of these estimable ISBs, or functions thereof, can
be tested.

Such functions are present in DD zero- and short-

baseline setups, when one differs the observations of

multiple systems with respect to a pivot satellite of one

of the systems. Here the term ‘short’ means that the DD

ionospheric delays are assumed absent in the model. Let
us now, under this assumption, take the first satellite

of the first system ‘G’ as the pivot (i.e. 1G) and form the

DD observation equations from (17). They read (ι1Gs⋆
1r =

0)

∆φ1Gs⋆
1r,j = ∆φs⋆

1r,j −∆φ1G

1r,j = ∆ρ1Gs⋆
1r + λj [z

1Gs⋆
1r,j + δ

G⋆

1r,j ]

∆p1Gs⋆
1r,j = ∆ps⋆1r,j −∆p1G

1r,j = ∆ρ1Gs⋆
1r + d

G⋆

1r,j

(36)

with ∆ρ1Gs⋆
1r = g1Gs⋆T∆x1r . The above DD observation

equations are solvable for the so-called code differential

ISBs (DISBs) dG⋆

1r,j and an integer-shifted version of the

phase DISBs δ G⋆

1r,j (Odijk and Teunissen, 2013b).

Recent contributions have studied the size and the
temporal stability of the stated DISBs, see e.g. (Odijk

and Teunissen, 2013a,b; Melgard et al, 2013; Nadarajah

et al, 2014; Paziewski and Wielgosz, 2015). While they
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Fig. 3 DISB and ISB solutions of two GPS/Galileo data-sets of two independent baselines: 1) a zero-baseline and 2) a long baseline
(∼110 km). Top (the first two rows): the single-epoch (black dots) and the multi-epoch (blue lines) solutions of the DISBs of the
zero-baseline. Bottom (the third row): the difference between the multi-epoch solutions of the estimable phase ISBs of the long baseline
and the expected ISBs evaluated by the zero-baseline DISBs through (38) (green lines). After convergence, the difference is shown to
completely lie within the %99 confidence interval (red dashed lines), corroborating the correcting role of the DISBs.

found that the DISBs are absent in the baseline setup
with same type receivers (make, type, firmware),

same type receivers : δ
G⋆

1r,j = 0, d
G⋆

1r,j = 0, (37)

they found non-zero, but time-stable, DISBs in the base-

line setup with receivers of different types. Although

some short-term periodic variations of the phase DISBs
of the Galileo IOV-1 and IOV-2 satellites were observed

(Odijk and Teunissen, 2013b; Paziewski et al, 2015), we

remark that these variations should not be attributed

to the DISBs, but to a cross talk in their clock monitor-
ing and control unit (Montenbruck et al, 2015). That

the DISBs are very time-stable brings the question to

the fore as to whether our earlier estimable ISBs δ̃
G⋆

r,j ,

d̃
G⋆

r,IF and d̃
G⋆

r,j can be linked to these DISBs. Would that
be the case, one can, similar to the ISB-known scenario,

strengthen the ISB-unknown model (29) by providing

the a-priori ISB corrections that are obtained by a zero-

/short baseline setup.

Fortunately, the answer to the above question is af-

firmative. With the information presented in Table 6,

the estimable ISBs δ̃ G⋆

r,j, d̃
G⋆

r,IF and d̃
G⋆

r,j can be expressed
in terms of the DISBs δ G⋆

1r,j and d
G⋆

1r,j as

δ̃
G⋆

r,j − z1G1⋆
1r,j = δ

G⋆

1r,j +
µj

λj µ12

[dG⋆

1r,2−d
G⋆

1r,1]

d̃
G⋆

r,IF = 1
µ12

[µ2 d
G⋆

1r,1−µ1 d
G⋆

1r,2]

d̃
G⋆

r,j = d
G⋆

1r,j−
µj

µ12

[dG⋆

1r,2−d
G⋆

1r,1]

− 1
µ12

[µ2 d
G⋆

1r,1−µ1 d
G⋆

1r,2]; j > 2

(38)

with µ12 = µ2−µ1. Thus the DISBs provide us with the

phase ISBs δ̃ G⋆

r,j lumped with the unknown, but integer,

ambiguities z1G1⋆
1r,j . By applying the above a-priori correc-

tions to (29), the ISB-corrected version of the network

model follows as

∆φs⋆
r,j−λj [δ̃

G⋆

r,j − z1G1⋆
1r,j ] =

∆ρ̃s⋆r +dt̃r−dt̃s⋆−µj ι̃
s⋆
r + λj [z

1Gs⋆
1r,j +δ̃r,j−δ̃s⋆,j ],

∆ps⋆r,j− d̃
G⋆

r,IF −d̃
G⋆

r,j =

∆ρ̃s⋆r +dt̃r−dt̃s⋆+µj ι̃
s⋆
r +d̃r,j−d̃s⋆,j

(39)

for r = 1, . . . , n.

Compare the ISB-corrected model (39) with its ISB-

known counterpart (34). Both are identical in struc-

ture. By a-priori providing the ISB corrections, one can
therefore realize a model of the same structure as the

one made by the zero ISB assumptions δ
G⋆

r,j = 0 and

d
G⋆

r,j = 0.
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Example (Estimable ISBs linked to the DISBs): To gain

further insights into the role played by the DISBs in cor-

recting the estimable ISBs, two GPS/Galileo data-sets

of two independent baselines (of mixed receivers) have

been analyzed: 1) a zero-baseline and 2) a long base-
line (∼110 km). The reference and rover receivers of

the two baselines are, respectively, of the same types.

The zero-baseline is aimed to the determine the DISBs

δ
G⋆

1r,j and d
G⋆

1r,j (cf. 36), whereas the long baseline is

aimed to determine the estimable ISBs δ̃
G⋆

r,j , d̃
G⋆

r,IF and

d̃
G⋆

r,j (cf. 29). The overlapping frequencies are L1/E1 and

L5/E5a (cf. Table 3).

In the top-panel of Figure 3, both the single-epoch
(black dots) and the multi-epoch (blue lines) solutions

of the DISBs of the zero-baseline are shown. The term

‘single-epoch’ refers to the case where the DISBs are

treated unlinked in time, while the term ‘multi-epoch’

refers to the case where the DISBs are assumed constant
in time.

Given the multi-epoch DISB solutions, we make use

of the first expression of (38) and compute the expected

ISBs. On the other hand, the multi-epoch ISB solutions

δ̃
G⋆

r,j are obtained by the long baseline. In order to inves-
tigate how well the a-priori ISBs (evaluated by the zero-

baseline) can correct the long baseline ISBs, we com-

pute their difference (green lines) together with the cor-

responding %99 confidence intervals (red dashed lines),

see the bottom-panel of Figure 3. After convergence, the
difference is shown to completely lie within the confi-

dence interval, corroborating the correcting role of the

DISBs.

6 Network-derived ISB look-up table

In this section we show how PPP-RTK users can benefit

from network-derived ISBs. Next to the provision of the

PPP-RTK corrections, a network-derived ISB look-up

table is provided that allows users to select and apply
the appropriate ISBs.

6.1 User ISB-corrected model

Recall that non-zero user estimable ISBs pop up, when
the types of the network reference receiver r = 1 and

user receiver are different. The user estimable ISBs read

δ̃
G⋆

u,j = δ
G⋆

1u,j +
µj

λj
d

G⋆

1u,GF
+ z1Gs⋆

1u,j

d̃
G⋆

u,IF = d
G⋆

1u,IF

d̃
G⋆

u,j = d
G⋆

1u,j − (µjd
G⋆

1u,GF
+ d

G⋆

1u,IF ), j > 2

(40)

Thus if the type of the user receiver u would be the

same as that of the reference network receiver r = 1,

User-component

  Network-

component u

 Correction-

component

pcφc ,

= 1r

= 2r

= 3r r

n=r

,j1

G⋆
d̃,,j1

G⋆
δ̃

IF,1
G⋆d̃,

,j
G⋆

d̃,,j
G⋆

δ̃
IF,

G⋆d̃,q q q

,j
G⋆

d̃,,j
G⋆

δ̃
IF,

G⋆d̃,
n n n

q=

⋆
GSystem:

System:

Fig. 4 Three components of multi-system PPP-RTK supported
by the ISB look-up table (in red). Given a network of mixed-
receiver types, the user ‘u’ has the possibility of finding the
network-derived ISBs of the network receiver of the same type,
say r = q (in green).

the ISB parameters (40) can be excluded from the user

model (30), since δ
G⋆

1u,j = 0 and d
G⋆

1u,j = 0.

In practice however, the choice of the network S-

basis is not necessarily known to the user. Even if it
would be known to the user, the types of the user and

reference receivers might be different. Does it mean that

the idea of the network ISB-corrected model cannot be

applied to the user? Fortunately not.

To enable the users to apply the appropriate ISB-

corrections, the idea is to construct an ISB look-up ta-

ble, consisting of the network-derived ISB solutions δ̃ G⋆

r,j,

d̃
G⋆

r,IF and d̃
G⋆

r,j(j > 2) for r = 1, . . . , n. As the ISBs

δ
G⋆

r,j, d
G⋆

r,j may be considered stable in time, the look-up

table will be made up of accurately calibrated estimable
ISBs having a low refreshment rate.

The user can then search the table for a network
receiver of the same type (i.e. receiver r = q) and pick

up the corresponding ISBs δ̃ G⋆

q,j , d̃
G⋆

r,IF and d̃
G⋆

q,j (see Fig-

ure 4). Since the DISBs of both the receivers, u and q,

are the same with respect to r = 1, i.e.

δ
G⋆

1u,j = δ
G⋆

1q,j , d
G⋆

1u,j = d
G⋆

1q,j , (41)

an application of the ISB identities (38) gives

δ̃
G⋆

u,j − z1G1⋆
1u,j = δ̃

G⋆

q,j − z1G1⋆
1q,j

d̃
G⋆

u,IF = d̃
G⋆

q,IF , d̃
G⋆

u,j = d̃
G⋆

q,j

(42)

Thus, similar to the network ISB-corrected model (39),

the user ISB-corrected model follows by applying the
above corrections to (30),

∆φs⋆
u,j + cs⋆φ,j−λj [δ̃

G⋆

q,j − z1G1⋆
1q,j ] =

∆ρ̃s⋆u +dt̃u− µj ι̃
s⋆
u + λj [z

1Gs⋆
1u,j+δ̃u,j],

∆ps⋆u,j + cs⋆p,j− d̃
G⋆

q,IF −d̃
G⋆

q,j =

∆ρ̃s⋆u +dt̃u+µj ι̃
s⋆
u +d̃u,j

(43)
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Compare the above model (43) with (30). The (f − 1)

number of code ISBs d̃G⋆

u,IF and d̃
G⋆

u,j are corrected. Thus

the model is strengthened as the model’s redundancy

increases by (f − 1) per system ⋆ 6= G. Note also that

the f number of integer ambiguities z1G1⋆
1u,j are now re-

covered. Thus after integer ambiguity resolution, the re-

dundancy even increases further by f per system ⋆ 6= G.

One can also compare the user ISB-corrected model

(43) with its single-system counterpart (15). Both are

identical in structure. Thus the ISB-corrected model

(43) acts as if a single-system setup is considered, with a

difference, that the number of visible satellites can then
be much larger than that of the single-system setup.

6.2 Cluster-based ISB-unknown network model

In constructing the aforementioned look-up table, one

has to recognize the following two issues:

1. With respect to the ISB-unknown model (29), one

has to include the extra unknowns δ̃
G⋆

r,j , d̃
G⋆

r,IF and

d̃
G⋆

r,j for all the network receivers r 6= 1, thus consid-

erably weakening the strength of the network model
as compared to the ISB-known model (34).

2. In case the number of network receivers is large, a

large amount of ISB-data need to be stored in the

stated look-up table.

For instance, for a network of size n = 100 tracking

dual-frequency data, the number of the estimable ISBs

becomes (Table 7)

(2f − 1)(n− 1)
f=2
= 297 per additional system

Fortunately, the above issues can be properly han-
dled by considering the fact that the network receivers

are confined to a limited number of types. In our ear-

lier formulation, we consider the estimable ISB param-

eters δ̃
G⋆

r,j , d̃
G⋆

r,IF and d̃
G⋆

r,j to be different from receiver
to receiver. We now consider the more practical sce-

nario where the network of mixed-receiver types is par-

titioned into h clusters symbolized by ⋄ (⋄ = △, . . . , �).

Each cluster ⋄ contains receivers of the same type (see

Figure 5). Our earlier receiver index ‘r’ (r = 1, . . . , n)
becomes therefore obsolete. It is replaced by r⋄ (r⋄ =

1⋄ . . . , n⋄). For each cluster ⋄, the ISB-unknown model

(29) takes the following form then

∆φs⋆
r⋄,j

=

∆ρ̃s⋆r⋄ + dt̃r⋄ − dt̃s⋆ − µj ι̃
s⋆
r⋄
+ λj [z̃

s⋆
r⋄,j

+ δ̃r⋄,j − δ̃s⋆,j + δ̃
G⋆

r⋄,j
]

∆ps⋆r⋄,j =

∆ρ̃s⋆r⋄ + dt̃r⋄ − dt̃s⋆ + µj ι̃
s⋆
r⋄
+ d̃r⋄,j − d̃s⋆,j + d̃

G⋆

r⋄,IF
+ d̃

G⋆

r⋄,j

(44)

7→

7→

7→7→

Fig. 5 Illustration of a network of mixed-receiver types that is
partitioned into h clusters symbolized by ⋄ (⋄ = △, . . . ,�). Each
cluster ⋄ contains receivers of the same type.

Recall that the DISBs are absent in the cluster ⋄, i.e.
δ

G⋆

1⋄r⋄,j
= 0, dG⋆

1⋄r⋄,j
= 0. Using the ISB identities (38),

we therefore have

δ̃
G⋆

1⋄r⋄,j−z1G1⋆
1⋄r⋄,j

= 0, d̃
G⋆

1⋄r⋄,IF = 0

d̃
G⋆

1⋄r⋄,j
= 0, j > 2

(45)

The equations presented above can now be imposed on

(44) as constraints, thus strengthening the ISB-unknown

network model. To do this, we make use of the following
parametrization

δ̃
G⋆

r⋄,j
= [δ̃ G⋆

1⋄,j
+ z1G1⋆

1⋄r⋄,j
] + [δ̃ G⋆

1⋄r⋄,j
− z1G1⋆

1⋄r⋄,j
]

d̃
G⋆

r⋄,IF
= d̃

G⋆

1⋄,IF + d̃
G⋆

1⋄r⋄,IF

d̃
G⋆

r⋄,j
= d̃

G⋆

1⋄,j + d̃
G⋆

1⋄r⋄,j, j > 2

(46)

Substitution of the above equations into (44), together

with (45), gives the cluster-based ISB-unknown network

model
∆φs⋆

r⋄,j
=

∆ρ̃s⋆r⋄ + dt̃r⋄ − dt̃s⋆ − µj ι̃
s⋆
r⋄
+ λj [∆z̃s⋆r⋄,j + δ̃r⋄,j − δ̃s⋆,j + δ̃

G⋆

1⋄,j]

∆ps⋆r⋄,j =

∆ρ̃s⋆r⋄ + dt̃r⋄ − dt̃s⋆ + µj ι̃
s⋆
r⋄
+ d̃r⋄,j − d̃s⋆,j + d̃

G⋆

1⋄,IF + d̃
G⋆

1⋄,j

(47)

with the estimable DD ambiguities

∆z̃s⋆r⋄,j = z̃s⋆r⋄,j + z1G1⋆
1⋄r⋄,j

, r⋄ 6= 1⋄ (48)

Compare (47) with (44). The f times n⋄ number of

phase ISBs δ̃ G⋆

r⋄,j
are replaced by the f number of non-

integer parameters δ̃ G⋆

1⋄,j and the f times (n⋄−1) number

of integer parameters ∆z̃s⋆r⋄,j . In the network ambiguity
float mode, this replacement does therefore not increase

the redundancy. In the network ambiguity fixed mode

however, the redundancy increases by f(n⋄ − 1) per

system ⋆ 6= G.
Next to the phase ISBs, the (f − 1) times n⋄ num-

ber of code ISBs d̃
G⋆

r⋄,IF
and d̃

G⋆

r⋄,j
are, respectively, re-

placed by the (f − 1) number of parameters d̃G⋆

1⋄,IF and

d̃
G⋆

1⋄,j
. This replacement does therefore further increase

the model redundancy by (f − 1)(n⋄ − 1) per system

⋆ 6= G.

For a network of size n = 100 tracking dual-frequency
data, but then clustered by h = 8 receiver-types, the

number of the estimable ISBs reduces from 297 to

(2f − 1)(h− 1)
f=2
= 21 per additional system
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Therefore, with the cluster-based ISB-unknown model

(47), the network-derived look-up table reduces the ISB-

data from

δ̃
G⋆

r⋄,j
, d̃

G⋆

r⋄,IF
, d̃

G⋆

r⋄,j
, for the receivers r⋄ 6= 1△ (49)

to

δ̃
G⋆

1⋄,j, d̃
G⋆

1⋄,IF , d̃
G⋆

1⋄,j, for the receivers 1⋄ 6= 1△, (50)

The user ‘u’ would just need to search the table for the
receiver types ⋄ (⋄ = △, . . . , �) to which his receiver

belongs.

7 Summary and concluding remarks

In this contribution we developed the ISB-affected full-

rank, undifferenced, multi-frequency model for multi-

GNSS PPP-RTK. It was shown how the estimability of

network parameters, PPP-RTK corrections, and user
parameters, changes when ISBs are present. This is im-

portant as both network providers and users need to be

aware of the potential changes their parameter estima-

bility may undergo. For instance, with the same PPP-

RTK user platform, a user switching from one provider
to another may still experience significant changes in

the interpretation of his/her parameters.

We discriminated in this work between the following

three components of multi-system PPP-RTK:

1. Network-component

2. Correction-component

3. User-component

To get a proper understanding of how each of these

components can become affected by ISBs, we first treated

their ISB-free, single-system counterparts.

Single System Network, Correction, and User:

1. Network estimability: By an application of S-system

theory, we presented the full-rank geometry-based
network model of observation equations. The inter-

pretation of the resulting estimable parameters is

given in Table 1. It shows how they depend on the

original ’absolute’ parameters and how they change
when different choices of S-bases are made.

2. Correction-component has a 5-fold functionality: By

means of the estimable satellite clocks dt̃s, satel-

lite phase biases, δ̃s,j , and satellite code biases, d̃s,j
(j > 2), we were able to identify the estimability
of the combined PPP-RTK corrections for phase

and code, csφ,j and csp,j. It was shown that their

functionality is not confined to only removing the

satellite clocks and phase/code biases from the user
observation equations. Next to this primary func-

tionality, the phase and code corrections also estab-

lish an additional four links between network and

user. They are the 1) positional, 2) ambiguity, 3)

receiver-specific, and 4) ionosphere-specific links (cf.

Table 2). Furthermore, all of them depend on the

network’s chosen S-basis.

3. Estimability of user parameters is not unique: Just
like the PPP-RTK corrections are dependent on the

network’s chosen S-basis, so are the parameters of

the user. Hence, the estimability of the user pa-

rameters is driven by the estimability of the PPP-
RTK corrections, which on its turn is driven by the

choice of the network’s S-basis. Would the network’s

S-basis change, the interpretation of the estimable

user parameters would change accordingly (cf. Fig-

ure 2). For instance, if the choice of the network
reference receiver changes from r = 1 to r = 2, the

structure of receiver-specific corrections (in Table 2)

changes from IV1 to IV2. The user receiver clocks and

biases become then estimable with respect to those
of r = 2 and not r = 1. Users need to be aware

of such S-basis dependency when interpreting and

analysing the results of their own parameter estima-

tion.

Based on the single-system analysis, we extended the

analysis to multi-systems thereby introducing the inter-

system biases (ISBs) in the combined system of obser-

vation equations.
When some or all of the ISBs are unknown, addi-

tional rank deficiencies occur with their corresponding

impact on the interpretations that has to be given to the

parameter solutions of network, corrections and user.

Multi System Network, Correction, and User:

1. ISBs affect all three PPP-RTK components: In case

of multi-GNSS, additional ISB parameters may en-

ter the system of observation equations. As their in-

clusion introduces additional rank-deficiencies, the
parameter estimability of such multi-GNSS system

will differ from that of a single-system. This dif-

ference in parameter estimability is not confined to

the network, but gets propagated to the user via the
user-provided PPP-RTK corrections.

2. Network estimability: In our analysis of the network

estimability we considered three different scenar-

ios: ISBs known, ISBs unknown and ISBs-corrected.

Each scenario has different consequences for the pa-
rameter estimability:

(a) ISB-known: This is the simplest case and it oc-

curs when all receiver biases can be assumed

to experience the same delays for all systems,

in which case the ISBs are all zero. The multi-
system full-rank system of equations can then be

viewed as that of a single-system (cf. 34) with

like-wise parameter estimability.
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(b) ISB-unknown: This is the more complex case

as the inclusion of the unknown ISBs changes

the rank-deficiencies of the model. It was shown

which additional S-basis parameters are needed

(cf. Table 5) and how this enabled the construc-
tion of the full-rank ISB-unknown model (cf. 29).

The resulting interpretation of the estimable ISBs

is summarized in Table 6.

(c) ISB-corrected: This is the case for which the
so-called differential ISBs (DISPs) are assumed

known (e.g. through calibration). By expressing

the estimable ISBs in terms of the known DISPs,

the system of equations can be given the same

structure and redundancy as that of the ISB-
known case (compare 34 with 39). Hence, the

whole combined network system of equations can

then again be treated as if it was coming from a

single-system.

The user has the same number of integer estimable am-

biguities, whether the PPP-RTK corrections come from
the ISB-unknown or from the ISB-corrected network.

This number is however less than when the corrections

would come from the ISB-known model. To be able to

compensate for this loss in model strength at the user
side, we introduced a novel approach of providing users

with the required additional information.

Multi System Network with ISB Look-up Table:

1. The network-derived ISB look-up table: Due to the

system-dependency of the ISBs, the user observa-

tion equations will now have fewer integer param-

eters, since the ‘non-integer’ phase ISBs δ̃
G⋆

u,j (cf.
30) take the role of the ‘integer’ estimable ambi-

guities of the first satellite of each system ⋆ 6= G, i.e.

z1G1⋆
1r,j . To compensate for this reduction, we proposed

the creation of an ISB look-up table containing all

the network estimable ISBs (cf. Figure 4). The user
can then search the table for a network receiver of

the same type and select the corresponding ISBs,

thus effectively realizing his own ISB-corrected user

model. By applying such correction, the user thus
brings back the integers z1G1⋆

1r,j , thereby maximizing

his number of integer estimable ambiguities.

2. The cluster-based model and ditto ISB look-up table:

As it follows from experience that ISBs may only oc-

cur when use is made of receivers of different types,
the large number of unknown estimable ISBs in the

n station network model (29) could be reduced sig-

nificantly by partitioning the network receivers into

h clusters based on their types (cf. Figure 5). As
a result the cluster-based full-rank model (47) was

obtained, having a significantly fewer number of es-

timable ISBs since the network receivers are usually

limited to only a few different types (i.e. h ≤ n).

As a consequence, the size of the ISB look-up table

reduces accordingly, thus making the information

transfer to the user also easier.
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gianni G, Hugentobler U (2015) High-rate clock variations
of the Galileo IOV-1/2 satellites and their impact on car-
rier tracking by geodetic receivers. GPS Solut pp 1–10, DOI
10.1007/s10291-015-0503-z

Nadarajah N, Teunissen PJG, Sleewaegen JM, Montenbruck O
(2014) The mixed-receiver Beidou inter-satellite-type bias and
its impact on RTK positioning. GPS Solut 19(3):357–368

Nadarajah N, Khodabandeh A, Teunissen PJG (2015) Assessing
the IRNSS L5-signal in combination with GPS, Galileo, and
QZSS L5/E5a-signals for positioning and navigation. GPS So-
lut pp 1–9, published Online

Odijk D, Teunissen PJG (2013a) Characterization of between-
receiver GPS-Galileo inter-system biases and their effect on
mixed ambiguity resolution. GPS Solut 17(4):521–533

Odijk D, Teunissen PJG (2013b) Estimation of differential inter-
system biases between the overlapping frequencies of GPS,
Galileo, BeiDou and QZSS. In: Proceedings of the 4th Interna-
tional Colloquium Scientific and Fundamental Aspects of the
Galileo Programme, Prague, Czech Republic

Odijk D, Zhang B, Khodabandeh A, Odolinski R, Teunissen PJG
(2015) On the estimability of parameters in undifferenced, un-
combined GNSS network and PPP-RTK user models by means
of S-system theory. J Geod 90(1):15–44

Odolinski R, Teunissen PJG, Odijk D (2015) Combined BDS,
Galileo, QZSS and GPS single-frequency RTK. GPS Solut
19(1):151–163

Paziewski J, Wielgosz P (2014) Assessment of GPS+Galileo and
multi-frequency Galileo single-epoch precise positioning with
network corrections. GPS Solut 18(4):571–579

Paziewski J, Wielgosz P (2015) Accounting for Galileo-GPS inter-
system biases in precise satellite positioning. J Geod 89(1):81–
93

Paziewski J, Sieradzki R, Wielgosz P (2015) Selected properties
of GPS and Galileo-IOV receiver intersystem biases in multi-
GNSS data processing. Measurement Science and Technology
26(9):095,008

Sleewagen J, Simsky A, Wilde W, Boon F, Willems T (2012)
Demystifying GLONASS inter-frequency carrier phase biases.
Inside GNSS, May/June pp 57–61

Teunissen PJG (1985) Generalized inverses, adjustment, the da-
tum problem and S-transformations. In: Optimization and De-
sign of Geodetic Networks, EW Grafarend and F Sanso (Eds),

Springer
Teunissen PJG, Khodabandeh A (2015) Review and Principles

of PPP-RTK methods. J Geod 89(3):217–240
Teunissen PJG, Kleusberg A (1998) GPS for Geodesy, 2nd edn.

Springer Berlin
Teunissen PJG, Odijk D, Zhang B (2010) PPP-RTK: Results of

CORS Network-Based PPP with Integer Ambiguity Resolu-
tion. J Aeronaut, Astronaut Aviat 42(4):223–229

Teunissen PJG, Odolinski R, Odijk D (2014) Instantaneous Bei-
Dou+ GPS RTK positioning with high cut-off elevation angles.
J Geod 88(4):335–350

Torre AD, Caporali A (2015) An analysis of intersystem biases
for multi-GNSS positioning. GPS Solut 19(2):297–307

Wubbena G, Schmitz M, Bagg A (2005) PPP-RTK: Precise Point
Positioning using state-space representation in RTK networks.
In: Proceedings of ION GNSS, pp 13–16

Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH
(1997) Precise point positioning for the efficient and robust
analysis of GPS data from large networks. J Geophys Res

102:5005–5017


