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Abstract. This paper presents a regional scale network-based real time kinematic positioning strategy based on use of 
three carrier GNSS signals, in which the inter-station distances of the network could be doubled, that is, around 140 to 
180 km instead of the current 70 to 90 km with the use of dual-frequency GPS receivers. The paper outlines the most 
efficient virtual observables and models that allow for resolving ambiguities of three carriers with observation of 
above 7 minutes for the baselines of a few hundreds of kilometres. As a result, the remaining key limiting factor for 
implementation of the regional scale network RTK is the distance-dependent residual tropospheric bias. A reference 
station placement scheme of doubling the inter-station distances is then suggested based on interpolation accuracy of 
the tropospheric errors within the network. A semi-simulation procedure is introduced for generation of the third GPS 
signals from the real GPS L1 and L2 data to allow for more subjective assessment of TCAR performance benefits in 
the real world situations. Numerical studies performed with the 24-h data sets from four US CORS stations have 
demonstrated superior AR performance benefits of the outlined TCAR algorithms, providing the technical basis for 
the deployment of regional scale network RTK services with doubled inter-station distances. The distance-
independent nature of the AR performance has significant implications for the future GNSS technological evolutions 
and applications. 
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1. Introduction 
The key limitation of the existing dual-frequency based real time kinematic (RTK) positioning systems is that the 
service distance between a reference station and receiver must be kept within a few tens of kilometres. This is why the 
rapid and reliable carrier phase ambiguity resolution (AR) becomes more and more difficult when the inter-receiver 
distance grows longer. This phenomenon is mainly caused by the effects of distance-dependent biases, such as orbital 
error, ionospheric and tropospheric delays in the double differenced (DD) measurements, or to be precise, distance-
dependent characteristics of the these bias or residual terms. As a result, designers of a RTK system have restricted the 
base-rover distance to about 10 to 20 km or less in the single-base RTK case (Rizos & Han, 2003). In current 
network-RTK implementations with the virtual reference station (VRS) techniques (Chen et al., 2001; Zhang & 
Lachapelle, 2001), the inter-station distance is typically 70 to 90 km. Hence, the network-based RTK has resulted in a 
reduction of the investment costs necessary to start a RTK positioning service, since the number of reference stations 
can be reduced basically by 3 to 4 times. For instance, about 10 reference stations are needed to cover the medium city 
with area of about 10,000 square kilometres using the 20km single-based RTK system, while deployment of the VRS 
system of 3 to 4 reference stations may provide services in the same coverage. However, such networks can be 
available mostly in developed areas with high population density and excellent internet and mobile communication 
infrastructures. The SunPOZ real-time GPS service, for example, is currently limited to south east Queensland and the 
five station SunPOZ network covers the area of about 11,000 square kilometres (Cislowski & Higgins, 2006). 
Nevertheless, if the coverage of the SunPOZ network were extended only to cover inhabited area in Queensland at 
this density, the number of reference stations would be 150 to 200, costing over ten millions of dollars in installation 
and significant amount for annual operations.  
 
Future Global Navigation Satellite Systems (GNSS) and augmentations, such as the US modernized Global 
Positioning System (GPS), the European Galileo system, the Japanese Quasi-Zenith Satellite Systems (QZSS) and the 
Chinese COMPASS system, all operate with three or more frequencies, as outlined in Table 1. Significant research 
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efforts have been made in the past ten years to make use of the third GNSS signals to improve RTK services, 
including the early contributions by Forssell et al (1997),Vollath et al (1998), Han & Rizos (1999), De Jonge et al. 
(2000), Hatch et al (2000), Teunissen et al (2002), Vollath (2004) and Henkel and Cünther (2007). Recent efforts by 
Feng & Rizos (2005), Feng and Moody (2006), Hatch (2006), Feng and Rizos (2007) and Feng (2008) have 
specifically examined the performance potential of multiple-frequency GNSS signals on the reliable AR over longer 
inter-receiver distances, resulting in some promising findings. Given three L-band frequencies, one can generally 
identify the three best virtual observables to allow for more reliable AR under the given observational conditions 
characterized by the magnitudes of ionospheric activity, tropospheric condition, phase noise and orbital error. The 
selected virtual observables often have minimum or low ionospheric effects, and are thus referred to as ionosphere-
reduced virtual observables. As a result, the effects of the ionospheric biases in the geometry-based observation 
models can be significantly mitigated even eliminated for the long baselines, such as those over tens to hundreds of 
kilometres in length. 
 

Table 1: GPS, Galileo, Glonass, Compass and QZSS frequencies (unit: MHz) 
System L1 E1 E2 L2 E6 E5B E5A/L5 
Modernized GPS 1575.42   1227.40   1176.45 
Galileo 1575.42    1278.750 1207.140 1176.45 

Glonass 1598.0625-  
1609.3125   11242.9375- 

11251.6875    

Compass/Beidou  1589.742 1561.098  1268.52 1207.140  
QZSS 1575.42   1227.40   1176.45 

 
Due to lack of the third frequency data, the above performance benefits from using multiple GNSS signals were 
understood from theoretical analysis and numerical analysis with simulated three frequency data. The problem is that 
simulated GNSS data sets are based on the operator’s assumptions instead of real world situations, for variations of 
different biases and uncertainty degrees of different error sources. To overcome this problem, Li (2008) proposed a 
semi-simulation approach for generating the third DD frequency GPS signals from L1 and L2 signals. The key is the 
separation between effects of ionospheric biases, tropospheric errors and phase noises. The idea is described as 
follows. First, the integer ambiguities of L1 and L2 frequencies are solved over the network and fixed to their integer 
values, and then the tropospheric and ionospheric delays are separated using the ionosphere-free and geometry-free 
measurements, respectively. Finally, the third frequency L5 or E6 signals are generated by substituting the 
tropospheric biases and their corresponding ionosphere errors into the linear equations, adding the simulated phase 
noises. This semi-simulation approach is rather convenient and efficient for generation of new DD signals based on 
the existing dual-frequency GPS data sets and can help the demonstration of network-RTK capability over longer 
inter-station baselines with multiple frequencies. 
 
This paper outlines a regional area network-based RTK strategy based on the use of three carrier GNSS signals, in 
which the inter-station distances of the network is doubled, that is, from 140 to 180 km instead of the current the inter-
station distances of 70 to 90 km when the reference stations are equipped with triple frequency GPS receivers. The 
context is organised as follows. Section 2 introduces the virtual observables and models for geometry-free and 
geometry-based three carrier ambiguity resolution (TCAR) processes, which allow for solving ambiguities of three 
carriers over the distance of a few hundreds of kilometres between continuously operating reference stations (CORS). 
Section 3 examines the reference station placement scheme by doubling the inter-station distances based on the long-
range AR capacity achievable with triple frequency measurements. Section 4 outlines the semi-simulation procedure 
that can generate the third and fourth GPS signals from the real GPS L1 and L2 data. Section 5 provides numerical 
analyses performed with three 24-h data sets from the US CORS network to demonstrate the performance benefits of 
the outlined TCAR algorithms. The final section gives a summary of the findings of the paper. 

 
2. Geometry-free and geometry-based models for TCAR 
 
We start with definitions of general observation equation for a virtual phase GPS signal, 



 3 

1 0 0
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1
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and the virtual code observable is, 
1

(l,m,n) orbit S R trop (l,m,n) P(l,m,n)2
1

KP c( t t )
f

= ρ + δ + δ − δ + δ +β + ε                                           (2) 

In both Eqs (1) and (2), ρ is the geometric distance between satellite S and receiver antenna R; c is the speed of light 
in vacuum; δorbit is the satellite orbital error in metres;  δtR is the receiver clock error of all components in seconds; δtS 
is the satellite clock error of all components in seconds; δtrop is the tropospheric propagation delay in metres; 2

11 fK  is 
the ionospheric delay at L1 carrier; 0

Sϕ  is the initial phase of the satellite oscillator in cycles, which is satellite-
dependent; 0

Rϕ  is initial phase of the oscillator in cycles, which is receiver-dependent; (i,j,k)φε  is the observation noise 
including the effects of the high-order ionospheric error and multipath (Kim & Langley, 2007). (i, j,k)φ  is defined as a 
linear combination of three fundamental observables (Feng & Rizos, 2005; Feng, 2008), 

1 1 2 2 5 5
(i, j,k )

1 2 5

i f j f k f
i f j f k f

⋅ ⋅ φ + ⋅ ⋅ φ + ⋅ ⋅ φ
φ =

⋅ + ⋅ + ⋅                                                                   
(3) 

where i, j, k are integer coefficients; iφ is the phase measurements in metres and fi is the frequency on Li carrier for 
i=1, 2 and 5; l, m, n are also integer coefficients. P1, P2 and P5 are the code measurements on each of the three 
observables; P(l,m,n) is similarly defined as,  

1 1 2 2 5 5
(l,m,n)

1 2 5

l f P m f P n f PP
l f m f n f

⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
=

⋅ + ⋅ + ⋅
                                                              (4) 

β(i,j,k) is the first-order ionospheric scale factor (ISF) expressed as, 
2

1 1 2 5
(i, j,k )

1 2 5

f (i / f j/ f k / f )
i f j f k f

+ +
β =

⋅ + ⋅ + ⋅
                                                                   (5) 

The variances for phase and code noises εφ(i,j,k) and εp(l.m.n) are given by, 

 

2 2 2
1 2 52 2 2 2

(i, j,k ) 1 (i, j,k ) 12
1 2 5

(i f ) (j f ) (k f )( )
(i f j f k f )φ φ φ
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                                 (6)
 

and  
2 2 2

1 2 52 2 2 2
p(i, j,k ) P1 (i, j,k ) P12

1 2 5

(i f ) (j f ) (k f )( )
(i f j f k f )
⋅ + ⋅ + ⋅

σ ε = σ ≡ µ σ
⋅ + ⋅ + ⋅

                                    (7) 

The DD phase and code measurements are, 
1

(i, j,k ) orbit trop (i, j,k ) (i, j,k ) (i, j,k ) (i,j,k)2
1

K N
f ∆∇φ

∆∇
∆∇φ = ∆∇ρ + ∆∇δ + ∆∇δ −β − λ ∆∇ + ε                      (8) 

and  
1

(l,m,n) orbit trop (l,m,n) p(l,m,n)2
1

KP
f ∆∇

∆∇
∆∇ = ∆∇ρ + ∆∇δ + ∆∇δ +β + ε                                (9) 

where the symbol “ ∆∇ ” represents the DD operation applied to the quantity immediately to the right; ∆∇ρ  is the 
computed value of the DD range. 
 
In addition, the linearly combined phase observable has the virtual frequency, 

(i, j,k ) 1 2 5f i f j f k f= ⋅ + ⋅ + ⋅                                                                 (10) 
the virtual wavelength, 

)k,j,i()k,j,i( fc=λ                                                                          (11) 
and the cycle ambiguity, 

http://findarticles.com/p/search?tb=art&qa=Richard+B.+Langley�
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(i, j,k ) 1 2 5N i N j N k N= ⋅ + ⋅ + ⋅                                                                  (12) 
For any three GNSS signals, we will assume the conditions for their frequencies, 521 fff >>  and 2152 ffff −<− .  
 
2.1 Geometry-free TCAR models 
 
The term “geometry-free” refers to the observation model for ambiguity parameters being formed without the term of the 
geometric distance between receivers and satellites. Geometry-free TCAR directly estimates ambiguity parameters using 
either code measurements or ambiguity-fixed phase measurements. In the former case, the geometry-free 
observational model for the integer parameter is given by, 
 

TN)k,j,i(
)k,j,i(

)k,j,i()n,m,l( N
P

ε+∇∆=
λ

φ∇∆−∇∆                                                         (13) 

where, 1
TN (l,m,n) (i, j,k) P(l,m,n) (i, j,k)2

(i, j,k) 1

1 K{[ ] }
f ∆∇ ∆∇φ

∆∇
ε = β +β + ε + ε

λ
 and (l, m, n) and (i, j, k) generally represent different 

groups of integers, thus infinite possible combinations. In this context, we define the combinations with wavelengths 
longer than 2.93m and between 0.75 and 2.93m as extra-widelane (EWL) and widelane (WL), respectively. Code and 
phase observables that are minimally affected by the joint ionospheric term, code and phase noises, with respect to 
their virtual wavelengths, should be considered as the best choices for AR purposes. Three usual choices are the WL ( )(1,1,0) (1, 1,0)P −∆∇ −∆∇φ  and ( )(1,0,1) (1,0, 1)P −∆∇ −∆∇φ , as well as EWL ( )(0,1,1) (0,1, 1)P −∆∇ −∆∇φ , where the ionospheric term 
in Eq (13) is cancelled, and the effect of the code noise term is nearly minimised. However, considering the effects of 
all the factors, it is possible to find more useful observables for AR purpose under the different ionospheric and noise 
conditions. Feng et al (2007) set up a criterion making the total noise level (TNL) in cycles minimal. Then given an 
appropriate error budget in TNε of Eq (13) and a preferred choice of virtual code measurements, typically (1,1,0)P∆∇  that 
is available for any triple frequency systems, one can identify two most useful linearly independent EWL/WL virtual 
observables. The first one always is the EWL (0,1, 1)−∆∇φ , which has the minimal total noise level. In each GNSS three 
frequency service there are a few more WL virtual observables, such as (1, 4,3)−∆∇φ  and (1, 3,2)−∆∇φ  having lower total 
noise levels than that of the traditional WL observable, (1, 1,0)−∆∇φ  and (1,0, 1)−∆∇φ . One can choose to determine the 
ambiguity for any one of the lower TNL observables along with the first EWL observable through a rounding process, 
usually taking certain number of epochs to obtain 100% AR success rate (Feng, 2008). 
 
A similar procedure can be performed to find the third virtual observable from a new category, of which any 
combination is independent of the previous two EWL/WL virtual observables. The problem is that there are no 
EWL/WL candidates in the new category that allows ambiguity fixing to be carried out as easily as the first two 
observables. AR with medium-lane (ML, 0.1903 m <λ< 0.75m) and narrow-lane (NL, 0.10 m < λ< 0.1903 m) 
observables would suffer heavily from the effects of code noises and the effects of the ionospheric delays. However, it 
is possible to use an ambiguity-resolved phase observable, )n,m,l(φ , derived from the above EWL/WL category to 
estimate the ambiguity of the new observable, generally with the following equation, 

TN)k,j,i(
)k,j,i(

2
1

1
)k,j,i()n,m,l()k,j,i()n,m,l()n,m,l()n,m,l(

Nf
K̂][N

ε+∇∆=
λ

∇∆
β−β+φ∇∆−∇∆λ+φ∇∆

                                     (14) 

where 1
TN (l,m,n) (i, j,k) (l,m,n) (i, j,k)2

(i, j,k) 1

1ΔK{[ ] }
f ∆∇φ ∆∇φ
∇

ε = − β −β − ε + ε
λ

; (l,m,n)φ , for instance, can be the WL observables 

(1, 1,0)−φ  or )1,0,1( −φ . Considering that the uncertainty of the ionospheric estimate 2
1 1K̂ f∆∇  may be generally derived 

from an independent method and error dependence between all the noise terms in the analysis, one can similarly 
compute the total noise levels (in units of cycles) to identify the ‘best’ useful observable for AR of the third 
observable. However, unlike the selection of EWL/WL observables in the previous category where a few observables 
have apparently the lowest total noise level TNσ , there are hundreds of candidates, including the three original 
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observables, )0,0,1(φ , (L1), )0,1,0(φ  (L2) or )1,0,0(φ (L5) have near values of TNLs (in cycle). Therefore, any one of the 
observables may be used to complete the AR process of the third ambiguity. 
 
2.2 Geometry-based TCAR Models 
 
The term “geometry-based” refers to the observation model for ambiguity parameters being formed with the term of the 
geometric distance between a receiver and a satellite. Geometry-based TCAR makes use of the DD phase observations: 

1
(i, j,k) orbit trop (i, j,k) (i, j,k) (i, j,k) (i,j,k)2

1

K N
f ∆∇φ

∆∇
∆∇φ = ∆∇ρ+ ∆∇δ + ∆∇δ −β −λ ∆∇ + ε                                (15) 

Referring to Feng (2008), it is possible to identify the three most useful observables for geometry-based TCAR, based 
on a criterion, for instance, a minimum of the total noise level for Eq (15). Given an appropriate error budgets with 
respect to the different baseline lengths for all error terms of Eq (15), two most useful EWL/WL and one ML/NL 
observables for AR with the geometry-based models can be given for any three frequency GNSS case. It is important 
to note that in each GNSS three frequency service, the EWL and NL choices often have minimal or near minimal 
ionospheric scale factor. For instance, in the GPS case the EWL observable (1, 6,5)−∆∇φ  and NL (4,0, 3)−∆∇φ  have the ISF 
values of -0.0744 and -0.0099 and wavelengths of 3.256m and 11.45cm, respectively. As a result, the ionospheric 
effect in the geometry-based observation models can be eliminated or reduced, thus allowing AR to be performed over 
the baselines of tens to hundreds of kilometers in length.  
 
2.3 Network-based AR process and performance 
 
In the network-RTK case, the required AR performance at the network centre is different from the AR performance 
requirement at the user end. The network processing software can make good use of the continuously recording data 
for AR process and the constraints of known station coordinates, then determine the tropospheric delays with 
ambiguity-resolved ionosphere-free phase measurements. At the user-end, ideally, the ambiguities can be fixed epoch 
by epoch, or as few epochs as possible, and the accurately known tropospheric corrections. Therefore, the AR 
algorithms for the network-based processing and user-based processing could be different. Based on the above virtual 
observables for geometry-free and geometry-based models, we outline the five-step procedures for the network-based 
AR processes versus the user-based AR and position estimation (PE) processes in Table 2, considering the cases 
where all reference stations are equipped with triple frequency receivers and users may use either dual-frequency or 
triple-frequency receivers. As far as the AR performance in the network-based process is concerned, it can be 
generally expected that the 100% AR success for all three observables is achievable over hundreds of kilometres using 
the data of a few epochs to minutes. This has not been possible with dual-frequency based measurements.  
 
3. Reference station placement with doubled inter-station distances 
 
The above analysis indicates that the AR with three carrier observables could be reliably achieved over the inter-
station distances of a few hundred kilometres in the network RTK services, which is followed by estimation of the 
ionospheric and tropospheric biases in DD phase measurements to form grid corrections. However, in order to specify 
to what degree that the inter-station distances can be extended, care has to be taken to effects of residual ionospheric 
and tropospheric errors on the rover user terminals anywhere within the network coverage. In the operation of 
network-RTK systems, the precisely predicted GPS orbits, such as ultra-rapid orbits, are available in real time to 
replace the broadcast GPS ephemerides, and the effect of orbit errors is no longer of concerns (Kim & Langley, 2007). 
 
The residual ionospheric errors after correction through interpolation of the ionospheric biases can still remain 
distance-dependent and random in the DD phase measurements of between a user and its nearest or virtual base 
station. With triple-frequency measurements, the ionospheric term may be corrected at user end to the accuracy of 
centimetres, to become almost distance-independent (Feng, 2008). With dual-frequency measurements, for instance, 
i.e., L1 and L2 or L1 and L5, the effect of the residual ionospheric errors reaches the minimum with the ionosphere-
reduced virtual observables, such as φ(4, -3, 0) or φ(4, 0, -3), relative to wavelength. As a result, the AR at user-end can 
tolerate larger ionospheric errors.  
 

http://findarticles.com/p/search?tb=art&qa=Richard+B.+Langley�
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Table 2. Network-based computations versus user-based computation 
Network-based computation User-based computation 

Step 1: Determination of the first EWL ambiguity using the geometry-free model (13) for the best EWL observable, the AR 
is computed using measurements from single or a few epochs: 

(0,1,1) (0,1, 1)
(0,1, 1)

(0,1, 1) round

PN −
−

−

 ∆∇ − ∆∇φ
∆∇ =  λ 

                                                             (16) 

In the case of P5 code unavailable P(1,1,0) can be used instead with the similar performance.  
Comment: The 100% AR success of the first EWL observable is achievable with single or a few epochs of observables.  
Step 2: Formation of the geometry-based linear equation for the second best EWL observables from single or a few epochs, 
for instance, (1, 6,5)N −∆∇ for (1, 6,5)−∆∇φ , can be expressed as  

IF(1,1,0) P

1
(1, 6,5) (1, 6,5) (1, 6,5) (1, 6,5) (1, 6,5)2

1

P
K N

f

∆∇

− − − − ∆∇φ −

∆∇ = ∆∇ρ + ε

∆∇
∆∇φ = ∆∇ρ −β − λ ∆∇ + ε

                                           (17) 

Using the AR method, such as LAMBDA method to resolve the ambiguity (1, 6,5)N −∆∇ . After the first two EWL ambiguities, 

(0,1, 1)N −∆∇  and (1, 6,5)N −∆∇  or their derivatives, including the WL (1, 1,0)N −∆∇  and (1,0, 1)N −∆∇  are determined. 
Comment: The 100% AR success of the second EWL observable in Step 2 with the geometry-free model should be also 
achievable with normally  single epoch to a few epochs over long distances. 

Step 3: Estimation of the ionospheric delay with the 
ambiguity resolved )1,1,0( −φ∇∆  and )1,1,0( −φ∇∆ , 

 
2 5

(1,0, 1) (1,0, 1) (1,0, 1)
1 2 5

(1, 1,0) (1, 1,0) (1, 1,0)

f fÎ [( N )
f (f f )

( N ]

− − −

− − −

∆∇δ = ∆∇φ + λ ∆∇
−

− ∆∇φ + λ ∆∇                            (18)

 

This estimation has the noise of 83 1φ∇∆σ in the GPS case 
(Feng,2008), but can be refined through smoothing process 
with the precise ionosphere delay 

2
1 2

(1,0,0) (0,1,0)2 2 2
1 1 2

K f ( )
f f f

∆∇
= ∆∇φ − ∆∇φ

−
                     (19) 

Comment: a RMS accuracy of a few centimetres should be 
achievable within a few minutes of observations as shown 
in Fig 4. 

Step 3:  
Case 1: Dual-frequency users 
Interpolation of both ionospheric and tropospheric corrections 
for user locations, which are delivered to users for AR and 
position estimation in Step 5. 
 
Case 2: Triple frequency users 
Interpolation of the tropospheric corrections for user 
locations, smoothing the ionospheric estimates from EWL 
observables as the left, and refining the WL measurements 
with smoothed ionospheric correction for AR in Step 4. 

Step 4: With the smoothed ionospheric delay estimation 
obtained in Step 3 and the refined WL with the geometry-
free model over m epochs, 

1
(1, 1,0) (1, 1,0) (1, 1,0) (1,0,0) (1, 1,0) (1,0,0)m 2

1
(1,0,0)

(1,0,0)1

round

K̂N [ ]1 fN
m

− − − −

 ∆∇
∆∇φ + λ ∆∇ − ∆∇φ + β −β 

 ∆∇ =
λ 

 
 

∑


                                    

                                                                                       (20) 
The estimate (18) is substituted into (20) without 
smoothing, then taking average of the estimate over m 
epochs to achieve 100% AR success in (20). 
 
Comment: It is expectable that 100% AR success is 
achievable over a certain period of observation, for 
instance 5 to 10 minutes. This performance is distance 
independent, suitable for network-based AR process.  

Step 4: Geometry-based AR 
Case 1: Dual-frequency users or single-based RTK 

(1,1) 0 P(1,1)

(1, 1) 0 (1, 1) (1, 1) (1,1)

(4, 3) 0 (4, 3) (4, 3) (4, 3)

P A 0 0 X
A 0 N
A 0 N

∆∇

− − − ∆∇φ

− − − ∆∇φ −

∆∇ −∆∇ρ δ ε       
       ∆∇φ − ∆∇ρ = −λ ∆∇ = ε
       ∆∇φ − ∆∇ρ −λ ∆∇ ε       

(21) 

where, A is the design matrix for parameter δX. 
Comment: Comparing to the direct use of L1 and L2 
observables, this model is less sensitive to ionospheric 
errors/biases, but more sensitive to the tropospheric biases. 
 
Case 2: Triple frequency users 









ε
ε

=







∇∆
δ









λ−

=







ρ∇∆−φ∇∆

ρ∇∆−∇∆λ+φ∇∆

φ∇∆

−φ∇∆−−

)0,0,1(

)1,0,1(

)0,0,1()0,0,1(0(1,0,0)

0)1,0,1()1,0,1((1,0,-1)

N
X

A
0AN (22) 

Comment: This model uses the ionosphere delay corrected 
measurements (via Step 3), and is less sensitive to 
tropospheric errors. 

Step 5: Estimation of ionospheric grid corrections using 
all-resolved L1 and L2 phase measurements and 
determination of the tropospheric grid corrections with the 
ionospheric free phase measurements.  

Step 5:Using ambiguity resolved WL for decimetre position 
estimation and the ionosphere-free phase measurements for 
centimetre position estimation. 
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To discuss the effects of the residual tropospheric errors after correction through interpolation of the tropospheric 
biases in the DD phase measurements, we refer to Zheng and Feng (2005), which showed results from analysis of 
about 130,000 Zenith Tropospheric Delay (ZTD) data points sampled from 129 IGS stations across Europe over 90 
days. As shown in Fig 1, the results have strongly confirmed dependency of the interpolated ZTD errors on rover-to-
base distance and random noise level. For a network with the maximum base-to-rover distance of 100 to 200 km, the 
maximum STD values of the interpolated residual ZTD errors lies between 10 to 17 mm. This level of errors can 
cause DD ranging errors of about a few centimetres, which is considered normal for the AR and centimetre 
positioning with ambiguity-fixed ionosphere-free observables at the user-end.  
 

 
Fig 1 Residual ZTD errors versus base-rover distances through interpolation  

(from Zheng and Feng, 2005) 
 
In the future station placement, we must also consider the situations where both dual-frequency and triple-frequency 
receives would be used as reference station equipment together for long term. One straightforward strategy is to 
double the inter-station distance when triple frequency receivers are equipped with respect to the inter-station distance 
where the dual-frequency stations are used in a CORS network. In this placement scheme, dual-frequency receiver 
stations between the triple frequency stations are considered as densifications, or removable or temporary stations. Fig 
2 schematically illustrates a square layout of the reference stations with dual-frequency or triple-frequency receivers. 
The factor of the station reduction with triple-frequency receivers is 4. However, this square layout is not ideal. As the 
inter-stations are non-equidistant, thus it is difficult to control of distance-dependent residual tropospheric errors. For 
the inter-station distance of 2d, the maximum base-rover distance can however reach 1.414d inside the network 
coverage, which is about 100 km when the inter-station distance is 140 km for the triple-frequency network. A more 
reasonable placement strategy is similar to the cell design of a cellular network, where a hexagon pattern provides for 
equidistant stations, which are in the centre of each coverage area as shown in Fig 3. For the inter-station distance of 
2d=140 km, the maximum base-rover distance would be only 1.155d=81 km for a triple-frequency network. When the 
inter-station distance is increased to about 2d=180 km, the maximum base-rover distance is of 103km. This maximum 
base-rover distance can restrict the STD uncertainty of the interpolated residual ZTD to the level of 10 mm or so. 
Doubling the inter-station distance leads to the reduction of stations to a factor of 4. As a result, the number of triple-
frequency stations needed to cover the inhabited Queensland areas would be reduced to 40 to 50 stations, which is 
much more affordable. 
 
In the actual reference station deployment, however, it is desirable to optimally select station locations from candidate 
sites in a specific area to cover for given criteria of the network, such as inter-station distances. Tang et al (2007) 
made the first attempt for an optimal station placement scheme based on a graph-theory tool to minimize the number 
of stations, for a specific maximum base-rover distance and user geographical distributions. Furthermore numerical 
studies on the case of candidate stations being uniformly distributed may be helpful to verify the consistence between 
an optimal station selection result and a theoretical hexagon layout. 
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Fig 2.  Square layout of reference station placement    Fig 3. Hexagon layout of reference station deployment 
with triple and dual –frequency receives                       with triple and dual-frequency receivers. 
 
4. Generation of additional carrier phase observables from dual-frequency GPS data 
 
The above AR performance of using multiple GNSS signals sounds promising but is given in theory. The problem is 
that simulated GNSS data are based on operator’s assumptions instead of the real world situations, for variations of 
different delays and magnitudes of uncertainty of different error sources. In this section, we will outline a semi-
simulation approach proposed by Li (2008) for generating the third frequency DD GPS signals from the existing L1 
and L2 signals, and the semi-generated data can be applied for AR and PE performance analysis purposes. 
 
The fundamental formulae for generating DD P5 code observation and DD L5 phase observation can be described as, 

5P2
5

2
1

trop5 I
f
fP ∇∆ε+δ∇∆+δ∇∆+ρ∇∆=∇∆                                                         (23) 

552
5

2
1

trop5 NI
f
f

φ∇∆ε+∇∆+δ∇∆−δ∇∆+ρ∇∆=φ∇∆                                                  (24) 

While the tropospheric term trop∆∇δ  and the ionospheric term I∆∇δ  are the same as for L1 and L2 phase 
measurements, the DD code and phase noises noise terms 

5P∆∇ε  and 
5∆∇Φε  should be generated. The phase ambiguity 

term 5N∆∇  can be set to arbitrary integer values. 
 
The semi-simulation method includes three main steps. As shown in Eqs (23) and (24), the ionospheric delay, 
ambiguity and observation noise are dependent on the different frequency observables and the tropospheric error is 
free of frequency effects. Therefore, in order to create new frequency observation, the ionospheric delay and the 
tropospheric error terms must be determined separately in advance. In the first step, the integer ambiguities for L1 and 
L2 are fixed, just what is being done in the network-based RTK processing, and thus the DD ionospheric delay at L1 
can be obtained and the DD tropospheric error terms are determined with ionosphere-free combinations. Nevertheless, 
both the resolved ionospheric delay and tropospheric error contain the effects of L1 and L2 phase noises and these 
effects must be carefully considered in generation of the third signals, in order to give the third signals with correct 
level of phase noises. In other words, the simulated random noised 

5P∆∇ε  and 
5∆∇Φε should include the noises 

introduced by ionospheric delay and tropospheric error. In the second step of semi-simulation method, a new 
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multiple-difference based method is used to assess the uncertainty of code and phase observations and cross-
correlation between L1 and L2 phase signals for long range baselines, which are considered in generation of the 
random noise components in the third signals. At last, the third frequency signals are generated based on the 
correlation coefficient of these noises and their corresponding standard deviations (STD) obtained from the particular 
sets of the real dual-frequency GPS measurements. 
 
The generation of DD L5 phase signals is, however, no longer as easy as code signal generation. In principle, the 
random noise must be added in the generated signals to reduce the dependence of generated signal on the original 
ones. The STD values of phase measurements at different frequencies are always very close to each other. However, 
STD of noise introduced at L5 phase by the total ionospheric and tropospheric delay is larger than STDs of DD L1 
and L2 and it becomes much larger when the random noise is added. Therefore, in semi-simulation method, the 

filtering technique is applied to reduce the uncertainty of the total delay, notated as 
2

1
trop 2

5

fW I
f

= ∆∇δ − ∆∇δ , such that its 

influence for DD L5 can be somehow reduced. As a result, the DD L5 signal is practically generated as, 

55 5 5W N ∆∇Φ∆Φ = ∆ρ + − λ ∆ + ε                                                                     (25) 

with W  is filtered/smoothed integrated error.  
 
On all accounts, the semi-simulation approach is convenient and efficient for generation of new DD signals based on 
the existent dual-frequency GPS data sets, and the generated signals are rather consistent with the real word scenarios, 
and they can be used to demonstrate the network-RTK capability over longer inter-station baselines and benefit of 
three-frequency based GNSS technology and applications (Li, 2008). 
 
5. Experimental Results 
 
The purpose of numerical experiments is to demonstrate the capability of AR over long inter-station baselines as 
outlined in Table 2. Four RINEX GPS data sets sampled at 1 second on February 1, 2008 were collected from the US 
CORS (http://www.ngs.noaa.gov/CORS), and the lengths of three baselines are about 53km, 78km and 155km, 
respectively. Observation types for all data sets include C1, P2, L1 and L2. For each baseline, the third phase and code 
observables were primarily generated using the semi-simulation method as outlined in Section 4. The network-based 
RTK computations are completed with four steps as outlined in Table 2. Results obtained from each step are presented 
below. 
 
First, we examine AR performance for the EWL observables with Eqs (16) and (17). Table 3 presents the AR success 
rates for different EWL observables obtained from single epoch measurements. AR success rate here is defined as the 
ratio of the total number of epochs when all DD ambiguities were correctly determined to the total number of epochs 
over the 24-h sample period. It is clear that the AR performance of the EWL observables does not show distance 
dependency. The slightly lower AR success rate on the 53 km baseline may reflect the effect of larger code and phase 
noise. 
 

Table 3: The success rate of AR for EWL observables from single epoch 

Observables Model 
 AR process 

Success rate of AR (%) 
53km 78km 155km 

( ) ( )0,1,1 0,1, 1P −∆∇ − ∆∇Φ  Geometry-free 
Eq (16) 

Rounding  
100 100 100 

( ) ( )1, 6,5 1,1,0, P−∆∇Φ ∆∇  Geometry-based 
Eq (17) 

LAMBDA 99.99 100 100 

 
As indicated in Table 2, the noise level of the estimated ionospheric delay (18) in Step 3 is amplified, and thus being 
smoothed with the estimate (19). For the 155km baseline, Fig 4 compares the DD ionospheric biases that are 
estimated from Eq (18) and smoothed with Eq (19) over a window of the most current 100 seconds and computed 
from the ambiguity-fixed L1 and L2 phase measurements (19), respectively. The lower panel shows the difference 

http://www.ngs.noaa.gov/CORS�
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between the two estimates, in the range of ± 4 centimetres, or roughly STD of less than 2 centimetres. Similar 
smoothing results were obtained from other baselines. This smoothing result is promising: the DD ionospheric delays 
can be determined to accuracy of a few centimetres over a few minutes for long baselines. This performance is 
possible only when the third carrier signal, e.g. L5, is available. And could extend some impact for future positioning 
services and applications. 
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Fig 4. Illustration of the DD ionospheric estimates: accurate and smoothed over 100 seconds 
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Fig 5. AR success rates of the third observable versus the averaging time 

 
We now study the AR performance of the third observable with Eq (20) in Table 2, which is based on the smoothed 
ionospheric estimation in Step 3. Fig 5 plots the AR success rates of the third ambiguity versus the 
averaging/smoothing period for the 155 km baseline. It is observed that over about 6 to 7 minutes, the 100% AR 
success rate is achieved. This result shows significant performance potential for future GNSS technological evolutions 
and applications. 
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Fig 6. DD tropospheric biases estimated from ionosphere-free phase measurements (Baseline =78km) 

 

 
 

Fig 7. DD tropospheric biases estimated from ionosphere-free phase measurements (Baseline =155km) 
 
After all ambiguities are successfully resolved, the DD tropospheric biases can be estimated with ionosphere-free 
phase measurements. Figs 6 and 7 show the variations of the tropospheric biases estimated for some DD pairs over a 
few hours, for two baselines: 78 km and 155 km, respectively. These biases must be corrected at the user locations via 
interpolation process to achieve centimetre positioning accuracy, which is the key for long distance RTK performance 
in the future.  
 
6. Concluding remarks 
 
The paper has outlined the geometry-free and geometry-based models that allow the ambiguities of three carriers to be 
resolved over the baselines of a few hundreds of kilometres between continuously operating reference stations 
(CORS). As a result, the key remaining limiting factor for implementation of a regional scale network RTK would be 
the distance-dependence of the tropospheric errors in DD phase measurements. A reference station placement scheme 
by doubling the inter-station distances has been proposed based on the long-range TCAR capacity and predictability 
of the tropospheric errors within a few hundred kilometres.  
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A semi-simulation procedure has been used for generation of the third GPS signals from the real GPS L1 and L2 data, 
in order to assess the TCAR performance benefits in the real world situations. Numerical studies performed with the 
24-h data sets from 4 US CORS stations are highlighted as follows: 
• 100% AR reliability of the two best EWL observables can achieve almost without distance constraints, using 

measurements from a single to a few epochs;  
• With the two ambiguity-resolved observables, the DD ionospheric delays can be determined to centimetre 

accuracy within an observation period of a few minutes for long baselines.  
• With the two ambiguity-resolved observables as constraints, the AR reliability of 100% for the third observable 

is achievable by averaging over the observation period of above 7 minutes. 
 
The above demonstrated superior AR performance achieved with the outlined TCAR algorithms directly provides the 
technical basis for deployment of regional scale network RTK services with doubled inter-station distances. There is, 
however, no doubt that the distance-independent nature of the AR performance would have significant implications 
for future GNSS technological evolutions and applications. 
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