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Abstract

This article reviews algorithms which turn measured ranges into position solutions. From their basic

mathematical principles, we relate and compare relevant aspects of these algorithms. Special attention is

given to the direct (non-iterative) algorithms, which are frequently applied in indoor positioning. Most of

them are shown to be essentially the same, as they can be related through applying different weighting

schemes. This article is intended as a useful guide to help researchers and system designers evaluate and

select appropriate range-based positioning algorithms for their applications at hand.

Index Terms

Least-squares, positioning algorithm, direct methods.

I. INTRODUCTION

Positioning and navigation have been of long-standing interest. Besides the value in the transport and

military context, positioning services find their applications in a variety of areas, such as industry (tracking

of objects in ware-houses), science (geodesy), sports (hiking), health care (monitoring of patients),

logistics (package tracking) security applications (localizing authorized persons in high-security areas),
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family supervision of children, and search and rescue (locating fire fighters, or avalanche/earthquake

victims) [1]. These applications are being developed at an astonishing rate. Given the societal interest in

the topic of positioning and the fact that there are a lot of related publications scattered widely across

many disciplines, a structured and detailed review of existing positioning algorithms is of interest to the

research community. This paper is different from earlier tutorial type of articles (outlined at the end of

this section) since it focuses on the very basic principles of the algorithms and intends to cast similar

types of methods in a uniform structure. The outcome of this work is applicable to various positioning

applications and systems, no matter whether the ranging signal is optical, radio or acoustic.

The majority of positioning systems estimate the unknown position based on range measurements

between transmitters and a receiver (or vice versa), which are obtained by extracting the information

contained in the received signal, such as Received Signal Strength (RSS), Time of Arrival (ToA) and

Time Difference of Arrival (TDoA). In TDoA systems, only pseudoranges can be obtained which contain

a common offset (or bias) bc, caused by the clock misalignment between the user receiver clock and the

synchronized transmitter clocks. The offset bc needs to be treated as an unknown parameter, in addition to

the unknown user position coordinates. It can be either estimated using the pseudoranges, or eliminated by

taking differences among the pseudoranges (hence TDoA). For fully synchronized (ToA) or non-timing

based systems (like RSS), this type of offset does not exist.

Numerical estimation of the unknown parameters of interest based on range measurements is usually

done by maximizing or minimizing an objective function. Typical objective functions are sums of squared

residuals, likelihood functions, posterior density functions, risk functions, and robust loss functions. The

two most common criteria are least-squares (LS) and maximum likelihood (ML). Applying the inverse

of the measurement covariance matrix as the weight matrix, the LS estimator and the ML estimator are

equivalent, and its variance achieves the Cramer-Rao Lower Bound (CRLB), when the ranging errors

are distributed with an elliptically contoured joint probability density function (PDF). For Line-of-Sight

(LoS) ranging, such an assumption is realistic, since the ranging errors can be modelled as Normally

distributed [2]–[4]. Furthermore, compared to ML estimation, un-weighted LS estimation does not require

any knowledge of the measurement PDF, and only first and second order moments of the measurement

errors may be required in the weighted case. In this paper, we will focus on algorithms based on least-

squares.

The unknown Cartesian position coordinates are involved in the range equations in a non-linear way.

The coordinates are usually estimated using Iterative Descent (ID) techniques, such as the Steepest-

Descent method, the Newton method, the Trust-Region method, the Gauss-Newton method and the



Levenberg Marquardt method. A detailed analysis of these methods can be found in [5]. The ID methods

solve the non-linear positioning problem iteratively by means of iterative linear approximation, i.e. they

start with an initial estimate x0 of the unknown vector x, which is then updated, from iteration to

iteration, based on the rule defined by the specific method. The final estimate x̂ results upon convergence.

Traditional ID methods, when successfully converged, provide estimators that closely approximate strict

least-squares solutions. One drawback is that they require an initial estimate to start. Additionally, the

heavy computations involved in the iterations can be problematic for low cost and low power indoor

applications.

In general, strict direct (non-iterative) least-squares solutions to non-linear problems do not exist.

However, with some assumptions or simplifications, direct least-squares positioning algorithms can be

developed, which are extensively documented in the literature, for both TDoA [6]–[18] and ToA/RSS

[19]–[24] systems. All these methods apply a squaring operation on the used range equations to cancel

the square root. After squaring, both linear and non-linear terms (functions) of the unknown parameters

are obtained, and the non-linear term (function), denoted as χ, is treated as an unknown parameter in

addition to the unknown vector x. As we will discuss later, these methods can be clearly classified based

on the objective functions, and it can be shown that many different variants of the same method do

exist, with the differences arising only through the use of different measurement weighting schemes.

This fact has not been documented in the literature so far. The direct methods provide simple-to-compute

estimates, but they are not strict LS solutions to the used equations, since the relation between χ and x

is not rigorously exploited.

There also exists a third group of methods that solve the positioning problem iteratively but with

only 1-dimensional calculations in each iteration. In [25], the estimation accuracy is improved over the

direct methods, by introducing a Lagrange Multiplier in the objective function to fully account for the

constraint between the non-linear term and the original unknowns after squaring. Applying eigenvalue

decomposition, the final estimate is obtained by iteratively searching the roots of a high order polynomial

with a single unknown. This method was further investigated in [26]. Another method [27], [28] first

transforms the multi-dimensional positioning problem to 1-dimension, based on direct methods, then finds

the estimate for the remaining single unknown iteratively using the original un-squared range equations.

These methods perform better than the direct methods in terms of Root Mean Squared Error (RMSE),

but they are again iterative and require an initial estimate to start.

Several tutorial type of articles exist in the literature [1], [29]–[38], regarding the topic of positioning

techniques. These papers cover a wide range of aspects of the topic on a general level, and devote



most of the attention to the signal processing techniques at the stage where RSS, ToA and TDoA are

estimated. Some of the papers do discuss the positioning algorithms, but the level is quite general and

a structural comparison is missing, which compose the central subject of our paper. The purpose of this

work is to give a structured and detailed review of the range-based least-squares positioning methods

mentioned above, and give special attention to the direct methods. The basic principles, assumptions

and approximations of these methods are discussed, their relations are pointed out, and the properties

of different types of methods are summarized. Positioning results obtained with actual Ultra-Wideband

(UWB) range measurements are used to illustrate and support the review. With the underlying principles

of the methods revealed, and thereby their inherent strong and weak points, the paper can be used to

assist researchers and developers in the field to find the right choice for their applications.

Please note that in this article, our discussion by default assumes self positioning systems (for instance

like GPS), but the discussion also applies for tracking systems in which the user sends signals to a set

of receivers where the signal processing and the position estimation are accomplished.

The paper is organized as follows. Section II introduces the positioning models and Section III gives

an overview of the principle of Non-Linear Least Squares. Then, range-based positioning methods are

reviewed in Section IV (ID methods), Section V (direct methods) and Section VI (1-dimensional iterative

methods). The review of the ID methods is treated first, because these methods had been widely used

for positioning long before the other two groups of methods were introduced. The comparison regarding

the computational costs of the methods are given in Section VII. To support the review, the validation

setup and the obtained results are shown in Section VIII. At the end of the paper, a summary is given

in Section IX.

II. MEASUREMENT AND POSITIONING MODELS

In this section, we briefly describe the models that are generally used to characterize RSS, ToA and

TDoA measurements. In the end, the positioning model is given. For any vector a, we will use the

notation â to represent its estimator, and the notation â for its estimate. The estimator is a random

vector (denoted with the underscore) while the estimate is a deterministic vector, which is a (numerical)

realization of the estimator.



A. RSS

RSS can be modeled as a linearly decreasing variable on a logarithmic scale of the distance [39], [40].

The RSS from the i-th transmitter can be formulated as

P̂ i(di) = P0 − 10np log10
di
d0

+ Si (1)

where P̂ i(di) is the estimator of the received power (in dB) at distance di, d0 is the reference distance,

P0 is the known power (in dB) received at the reference distance, np is the pathloss exponent, and Si is a

zero mean Gaussian random variable in dB. One should note that the pathloss exponent np can either be

obtained by conducting a measurement campaign at the initialization stage, or be treated as an additional

unknown parameter. In this paper, we assume that np is known from a campaign. Moreover, in the case

where the user is sending the ranging signal to several stations, the transmitted signals strength can be

unknown and it has to be considered as an additional parameter to estimate in the positioning algorithms.

Then the situation is similar as in a TDoA system, which will be addressed in Section II-C. In this paper,

we assume the transmitted signal strengh is known.

With the estimated received power, model (1) is used to estimate the range between the i-th transmitter

and the receiver as:

d̂i = d010
P0−Pi(di)

10np = di + ei, (2)

which is a log-normal random variable with ei = die
−Si ln 10

10np − di.

For long distance applications, such as satellite navigation, it is practically not feasible to estimate

ranges with RSS. The flat tail of the power-distance curve makes the ranging accuracy very poor.

Therefore, RSS is usually used for ranging in short range applications. Under Line of Sight (LoS)

condition for distances up to 15 m, the standard deviation (STD) of the estimated range using UWB

signals, is about 1 m based on total received power [41]–[44] and is about 0.5 m if only first path power

is considered [44].

B. ToA

ToA is the measured time at which a signal first arrives at a receiving end. It is widely used for range

estimation. A review of the ToA estimation technologies can be found in [1]. When the clocks of all units

are synchronized, the estimator of range between the i-th transmitter and the receiver can be obtained

by multiplying the difference between the ToA estimator and the Time of Transmission (ToT) with the

propagation speed of the medium c:

d̂i = c(τ̂ToA,i − τToT,i) = di + ei. (3)



Please note that the term τ̂ToA,i − τToT,i is the signal travel-time, which is directly measured in a

system, for instance like GPS, by cross-correlating the received signal with a locally generated replica.

Of course, as a GPS receiver clock is in general not synchronized to GPS satellite clocks, we can only

obtain a pseudo-travel-time. How to model clock misalignments will be presented in the next section.

The error term ei in (3) accounts for additive noise, multipath effects and Non-line of Sight (NLoS)

effects (if applicable). A more detailed description of the main sources of errors can be found in [34].

Under LoS conditions, ei is usually modeled as a zero mean Gaussian variable [2], [3], while under NLoS

conditions, ei is modeled as a positive bias superimposed on a zero mean Gaussian variable. The bias

is the extra distance due to the blockage of the direct path, which can be modeled as an exponentially

distributed random variable [3], [45], [46]. Ranging using ToA can have much higher accuracy than using

RSS, e.g. centimeter level accuracy can be achieved with an UWB signal in LoS cases [1].

C. TDoA

When the receiver clock is asynchronous to the transmitter clocks, the ToA estimator seen by the

receiver should be written as:

τ̂ToA,i = τ̂ ′ToA,i + τc, (4)

where τ̂ ′ToA,i is the ToA estimator according to the i-th transmitter clock, τc is the clock misalignment

between the receiver clock and the transmitter clock. In this case, one can only get a pseudorange by

multiplying (4) with c:

ρ̂
i

= c(τ̂ToA,i − τToT,i) = di + bc + ei. (5)

where bc = cτc needs to be treated as an unknown parameter in addition to the receiver position. In

a system where all the transmitters are synchronized, e.g. GPS, bc is a common term in all estimated

pseudoranges and it is canceled in TDoA measurements. TDoA is the difference of two ToA measurements

minus the ToT difference of the two involved transmitters. TDoA can be related to ranges as

∆̂i = ρ̂
i
− ρ̂

r
= di − dr + ei − er. (6)

After the differencing operation with a reference measurement (indicated with subscript ‘r’), the number

of available measurements is reduced by 1, but the unknown bc is also gone. One can either use the

pseudoranges to estimate the position and the offset bc, or use the pseudorange differences to estimate

the position only. Note that in a fully synchronized system, there is no need to form TDoA measurements,

since no clock offset exists.



TABLE I

UNKNOWNS FOR DIFFERENT SYSTEMS.

unknowns system

x = [xTu , bc] In case of TDoA with m pseudo range equations

x = xu In case of ToA/RSS with m range equations (bc = 0), or

TDoA with m− 1 pseudorange differences (bc is canceled)

From now on, the term TDoA will be used for the cases where the user receiver clock is asynchronous

to the synchronized transmitter clocks, and the term ToA/RSS for the cases where all the clocks are

synchronized or no timing information is required for ranging.

D. Positioning Model

Here, the notation y is used to represent range or pseudorange measurements in (2), (3) and (5), and

the general model for the positioning problem can be given as

y = A(x) + e, (7)

where the measurement vector y is in the m-dimensional space of real numbers Rm, x ∈ Rn is the

unknown vector which contains the unknown user position vector xu, cf. the details in Table I, A(.) :

Rn → Rm is a non-linear mapping, and e ∈ Rm is the measurement error vector.

Although the value of n is not fixed in this paper, please note that it is usually equal to 3 (ToA/RSS)

or 4 (TDoA) in a practical system.

For one single pseudorange measurement, the equation reads

y
i

= ‖xu − xi‖︸ ︷︷ ︸
di

+bc + ei, i = 1 . . .m, (8)

where xi is the position vector of the i-th transmitter, and ‖.‖ =
√

(.)T (.).

Since bc is common for all equations, instead of (8), range difference equations are often used, where

bc is canceled and xu is estimated with m− 1 difference equations. Taking the last measurement as the

reference r = m, denoted as y
r
, the range difference equations can be formed as:

y
i
− y

r
= ‖xu − xi‖ − ‖xu − xr‖+ ei − er, i = 1 . . .m− 1. (9)



Position estimation can be seen as an inverse problem to find a mapping M(.) : Rm → Rn, such that

the estimator of x can be represented as x̂ = M(y). The solvability of the problem can be analyzed by

first expanding A(x) into a Taylor series at the estimate x̂,

y = A(x̂) + ∂xTA(x̂)(x− x̂) + o(x− x̂) + e, (10)

where ∂xTA(x) denotes the Jacobian matrix of A(x), and the Landau order term o(x− x̂) indicates the

remainder in the Taylor series, which can be ignored when x̂ is close to x. The linear part of (10) can be

used as the approximation of the original equations in (7). With the linear approximation, the solvability

of the inverse problem can be described as follows:

1) Underdetermined: m < rank(∂xTA(x̂)). There exists an infinite number of solutions.

2) Consistent: m = rank(∂xTA(x̂)). The solution can be used to reproduce y. The solution is unique,

if and only if the column vectors of ∂xTA(x̂) are linearly independent, i.e. rank(∂xTA(x̂)) = n.

3) Overdetermined: m > rank(∂xTA(x̂)). In this case, there are more equations than strictly needed

for determining the solution. The number m− rank(∂xTA(x̂)) is referred to as the redundancy of

the system.

An exception to the above description would be the case with e = 0, i.e. error free measurements. The

problem is then actually consistent with an unique solution even when m > rank(∂xTA(x̂)). However,

this case is not considered in this paper, as the assumption of e = 0 is impractical.

In Figure 1, the geometric interpretations of consistent ToA/RSS systems and TDoA systems are given

with xu ∈ R2 for a better demonstration, which can be described as:

• ToA/RSS: for each transmitter, the unknown user is located on the circle centered at the transmitter

with radius equal to the corresponding range measurement. Localization is done by determining the

intersection of all the circles.

• TDoA: in this case, it is not possible to use a spherical interpretation since each pseudorange contains

an additional unknown parameter bc. As bc is canceled in the pseudorange difference, the user is

located on the hyperbola with two of the transmitters as the foci, and the difference of distances to

the two foci is equal to the pseudorange difference between the same pair of transmitters. Hence,

the user position can be found as the intersection of all the hyperbolas.

In an overdetermined system, redundant measurements are often taken to increase the position estima-

tion accuracy. Due to the presence of e, redundant measurements generally lead to an inconsistent system

of equations. Least-squares, reviewed in the next section, is one of the most widely applied theories to

solve an inconsistent system of equations.
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Fig. 1. Geometric interpretation of a consistent positioning problem. Transmitters are at known positions x1, x2, x3, and x4,

and the user position xu is unknown. Here we assume xu ∈ R2 for easy illustration, i.e. n = 2 in case of ToA/RSS and n = 3

in case of TDoA.

III. NON-LINEAR LEAST-SQUARES ESTIMATION

A. Principle

It seems reasonable to choose the estimate for x such that A(x̂) is, in some sense, as close as possible

to a measurement vector y. If the (weighted) sum of squares of the residual vector y −A(x) is used to

‘measure’ the size of discrepancy, the estimate x̂ will be the one minimizing

F (x) = [y −A(x)]T W [y −A(x)] = ‖y −A(x)‖2W , (11)

where W is a weight matrix. This is the weighted least-squares principle. For all values of x ∈ Rn,

A(x) describes an n-dimensional manifold, embedded in Rm. If the metric of Rm is described by the

positive definite matrix W , the scalar ‖y−A(x)‖W equals the distance from y to the point A(x) on the

manifold. Hence, the problem of minimizing F (x) corresponds to the problem of finding the point on

the manifold A(x̂), which has the least distance to y [5]. The geometry of the non-linear least-squares

problem [5] is shown in Fig. 2.
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Fig. 2. Geometry of non-linear least-squares. The vector of collected observations y is expected to lie on the manifold A(x),

but in practice it does not due to measurement errors.

B. Optimality Conditions

The sufficient and necessary conditions for a point x̂ to be a minimizer of F (x) in (11) are shown in

[47]:
a) ∂xF (x̂) = 0,

b) ∂2xxTF (x̂) > 0.
(12)

In a non-linear system, F (x) could have multiple minima. This can be seen based on the first condition

(12a). With A(x) being non-linear, ∂xF (x) could contain non-linear terms of x, and ∂xF (x) = 0 has

multiple solutions. These solutions are usually categorized as local minimizers and a global minimizer.

A point x̂ is said to be a local minimizer if F (x̂) < F (x) for all x near x̂, e.g. for all x within a sphere

(assuming dim(x) = 3) centered at x̂ with a certain radius ε. A point is said to be a global minimizer if

F (x̂) < F (x) for all x ∈ Rn.

Multiple minima can appear in both consistent and overdetermined systems. In a consistent 3-D

ToA/RSS systems with m = n = 3, the 3 transmitters always define a plane. No matter which side of

this plane the user is located, its position and its image position w.r.t the plane both satisfy ∂xF (x̂) = 0.

Without additional information, it is not possible to pick the correct solution.

In redundant cases, local minima occur when the transmitters are not well separated along at least one

dimension. For example, in a 3-D synchronized system, local minima appear when the transmitters are

placed (close to) coplanar. The difference between minima depends not on only the system geometry, e.g.

how close to coplanar the transmitters are, but also on measurement errors in e. This point is illustrated

with the following example.



In Fig. 3, the x-z portion of the least squares objective function of a 3-D fully synchronized overde-

termined system with 4 transmitters is shown, where the range measurement errors are assumed to be

independent and identically Gaussian distributed with zero mean. In Fig. 3(a), the transmitters are placed

almost in a plane and there is a clear sharp global peak pointing at the true position and a local peak

corresponding to an incorrect solution. The global minimum in this case is much smaller than the local

one, since the transmitters are still separated and the range measurements are of very good quality, with

standard deviation (STD) 0.02 m. In the same geometry, as the error STD gets larger, the local minimum

in Fig. 3(a) can become smaller than the global one with certain probability. This effect of measurement

error can be seen in Fig. 3(b) with STD 0.2 m, where the global peak is pointing at the incorrect solution.

In case of 3(a) it is still possible to choose the correct solution by picking the one corresponding to the

global minimum, while in Fig. 3(b) it is not possible without additional information. In short, the multiple

minima problem is mainly related to the system geometry; the coplanar type of geometries should be

avoided. The local minimum is eliminated with a good geometry in Fig. 3(c), where the transmitters are

better placed, and the objective function has only one clear peak, pointing at the correct solution.

Fig. 3. x-z portion of the least squares objective function of three 3-D (x-y-z) positioning systems. The range measurement

errors are assumed to be zero-mean Gaussian, independent and identically-distributed. The values of F (x) are represented by

different colors.



C. Least-Squares, Maximum Likelihood and Cramer-Rao Lower Bound

ML estimation is only applicable when the joint PDF of y ∈ Rm is available, i.e. fy(y|x) is known

apart from the unknown x. The ML estimate is the value which maximizes fy(y|x) as a function of x,

the so-called likelihood function, i.e.

x̂ = arg max
x

fy(y|x). (13)

The Cramer-Rao Lower Bound (CRLB) indicates the smallest variance an unbiased estimator can

possibly achieve [1], [34], [48]. Without considering the estimation method, the CRLB on the estimator

of the model (7) is calculated as:

CRLB =
{
−E
[
∂2xxT ln fy(y|x)

]}−1
(14)

When the joint PDF fy(y|x) of the range measurements is elliptically contoured, the properly weighted

least-squares estimate and the ML estimate are identical, and the variance achieves the CRLB, if the

errors in y have zero-mean. For example, fy(y|x) = (det(2πQ−1yy ))−1/2 exp{−1
2‖y − A(x)‖2

Q−1
yy
}, in

the case of normally distributed measurements with zero-mean errors and Q−1yy the covariance matrix

of y. The ML estimate can be expressed as arg max
x

fy(y|x) = arg minx‖y − A(x)‖2
Q−1

yy
, which is the

same as the least-squares estimate when the weight matrix W is chosen as Q−1yy . The CRLB is then

calculated as
{
−E
[
−1

2∂
2
xxT ‖y −A(x)‖2

Q−1
yy

]}−1
=
[
(∂xTA(x))T Q−1yy ∂xTA(x)

]−1
, which is identical to

the expression of the least-squares estimator variance derived in [5], when W = Q−1yy .

D. Error Analysis

An important measure of the quality of a position estimator is the root mean squared error (RMSE),

which statistically reflects the distance from the estimator to the true position. The first and second

moments of the estimator need to be evaluated for this purpose.

Here we review the general way [49] to derive the first and second moments of a (non-linear) least-

squares estimator. Suppose the true position x can be obtained from y = A(x) via a mapping M(.), i.e.

x = M(y), and its estimator x̂ can be obtained as M(y). With y containing error e, i.e. y = y + e, a

Taylor series expansion of x̂ at y gives an expansion in e:

x̂ = M(y) + ∂yTM(y)e+
1

2
eT∂2yyTM(y)e+ · · · (15)



Define the bias in x̂ as µx̂ = E{µ
x̂
} = E{x̂− x}, which is given, together with the variance of x̂, as

µx̂ = E{µ
x̂
} =

1

2
trace{∂2yyTM(y)Qee}, (16)

Qx̂x̂ = ∂yTM(y)Qee(∂yTM(y))T , (17)

RMSE =
√

trace{Qx̂x̂}+ µTx̂µx̂, (18)

where we assume E{e} = 0 and the terms with orders higher than 2 are ignored.

The rest of the task is to derive the expression of M(.). This is in general non-trivial in non-linear

least-squares problems. However, in (16) and (17), only the expressions of the n×m Jacobian ∂yTM(y)

and the n×m×m Hessian ∂2yyTM(y) are required to evaluate the first and second moments of x̂, which

can be obtained as follows. The first necessary and sufficient condition (12a) can be further written as

(∂xTA(x̂))TW [y−A(x̂)] = 0. Expanding the left hand side into a Taylor series at x gives an expansion in

x̂−x. Using (15), an expansion in e can be obtained with unknown coefficients ∂yM(y) and ∂2yyTM(y).

If x̂ is a least-squares solution, the condition (12a) holds for all e and one can collect the terms of

the same order and set them to zero. In this way, the expressions of ∂yTM(y) and ∂2yyTM(y) can be

determined. More details of derivations and the full expressions for (16) and (17) can be found in [49].

In case one is interested in the higher order moments or the complete PDF of x̂, one would need to

propagate the PDF of y through the mapping M(.). This can be done with Monte-Carlo or statistical

bootstrapping techniques [50], which is however outside the scope of the current review.

IV. ITERATIVE DESCENT ALGORITHMS

In this section, we will review the ID methods based on [5], including the Steepest Descent method,

the Newton method, the Trust Region method, the Gauss-Newton method, and the Levenberg Marquardt

method. These methods are widely used to solve non-linear least-squares problems, including positioning.

The mechanics of the ID methods can be described as:

1) Set k = 0, and choose an initial estimate x0,

2) update the estimate xk+1 from xk based on the predefined rule,

3) if a termination criteria is met, choose xk+1 as the final solution, otherwise increase k by 1 and

return to step 2.

According to [5], the estimates of the ID methods in each iteration are updated with a general form:

xk+1 = xk − tkQ(xk)∂xF (xk), (19)



where tk is a positive scalar and Q(xk) is an arbitrary but positive definite matrix, and with F (x) as in

(11).

An important performance measure of an iterative method is its rate of convergence, which can be

derived by expanding (19) into a Taylor series at the final estimate x̂:

xk+1 − x̂ = [I − tkQ(x̂)∂2xxTF (x̂)](xk − x̂) + 2nd and higher order terms, (20)

where we use the fact that for a least-squares estimate x̂, ∂xF (x̂) = 0. For points sufficiently close to

the solution, the rate of convergence is dominated by the term with lowest order of xk − x̂.

The choices of tk and Q(xk) vary with different ID methods, which are briefly reviewed as follows.

A. Steepest Descent Method

The choice of Q(xk) of the steepest descent method is

Q(xk) = I, (21)

and (19) can be further written as

xk+1 = xk − tk∂xF (xk). (22)

The motivation of this choice is that the opposite direction of the gradient vector, −∂xF (xk), represents

a direction of maximum rate of decrease for the function F (x) at xk. Plugging (21) into (20) gives the

rate of convergence for the steepest descent method, which is linear for points close to the solution x̂.

The scalar tk is generally chosen such that F (xk+1) = F (xk − tk∂xF (xk)) is minimized, which is

called the exact line search strategy. In this case,

∂tkF (xk+1) = −∂xF (xk+1)
T∂xF (xk) = 0. (23)

With the simple choice of Q(xk) = I , the advantage of the steepest descent method is clearly its

low-complexity (in terms of computational load). The involved highest order partial derivative of F (x) is

only one and no matrix needs to be inverted. However, the steepest descent method has the following two

drawbacks [5]: 1) With the exact line search strategy, ∂xF (xk+1) is orthogonal to ∂xF (xk), which means

the steepest descent method has the tendency to zigzag when the contours of F (x) are very elongated.

2) the performance of the steepest descent method is variant under reparameterization.



B. Newton Method

The Newton method is characterized by the choice of

tkQ(xk) = [∂2xxTF (xk)]
−1, (24)

and the update equation then becomes

xk+1 = xk − [∂2xxTF (xk)]
−1∂xF (xk) (25)

The motivation of the Newton method is that the root searching of the non-linear function ∂xF (x) = 0

can be approximated by iteratively searching the root of its tangent, evaluated at the intermediate points

xk. Plugging (24) into (20) shows that the Newton method has a quadratic rate of convergence for points

close to the solution x̂. This makes it very effective in dealing with general non-linear minimization

problems. However, one drawback of the Newton method is the heavy computational load required for

the evaluation and inversion of the Hessian matrix ∂2xxTF (x). The related calculations of ∂2xxTA(x), a

m × n × n tensor, are usually quite involved. Another drawback of the Newton method is that it fails

to work when ∂2xxTF (x) is close to singular or fails to be positive definite. The Trust Region method is

then developed to cope with these situations, and it is reviewed in the next subsection.

C. Trust Region Method

In case of a poorly conditioned ∂2xxTF (xk), the problem is highly non-linear and the contours of F (xk)

can be very elongated.

The trust region method works as follows. Once the estimate xk+1 is updated, F (xk+1) − F (xk) is

compared to its quadratic approximation f(xk+1)−f(xk). If the approximation is good, xk+1 is accepted

as the new iteration point. Otherwise, a possible poorly conditioned Hessian matrix is indicated, and the

search region should be contracted to obtain another xk+1. This idea is realized by choosing tkQ(xk) as:

tkQ(xk) = [∂2xxTF (xk) + αkR]−1, (26)

where αk is a non-negative scalar and R is a positive definite matrix. The trust region method then takes

the form

xk+1 = xk − [∂2xxTF (xk) + αkR]−1∂xF (xk). (27)

In this way, increasing the value of αk results in a smaller step size ‖xk+1− xk‖, and the trust region is

contracted. Actually, the trust region method is capable of alternating between the Newton method (25)

and the steepest descent method (22). That is, by adjusting the scalar αk for R = I , the trust region



method switches between the quadratic approximation of F (x) used by the Newton method (small αk),

and the linear approximation used by the steepest descent method (large αk).

D. Gauss-Newton Method

Unlike the steepest descent method and the Newton method that use direct approximations of F (x),

the Gauss-Newton method completes the linearization within the ‖.‖ operator of F (x) = ‖y −A(x)‖2W ,

which is done by replacing A(x) with its linearized version [5]: A(x) ≈ A(xk) + ∂xTA(xk)(x− xk).

The objective function is then approximated as ‖y−A(xk)−∂xTA(xk)(x−xk)‖2W . This approximation

gives the choice of Q(xk) as:

tkQ(xk) =
1

2

(
(∂xTA(xk))

T W∂xTA(xk)
)−1

, (28)

by setting ∂xT ‖y −A(xk)− ∂xTA(xk)(x− xk)‖2W = 0. The update equation then becomes

xk+1 = xk −
1

2

(
(∂xTA(xk))

T W∂xTA(xk)
)−1

∂xF (xk) (29)

The Gauss-Newton method does not have the zigzag problem of the steepest descent method, and only

the first order derivative needs to be calculated. But the convergence rate is linear, which can be seen

by plugging (28) into (20).

The Gauss-Newton method also struggles when the matrix ∂xA(xk)
TW∂xA(xk) is non-invertible.

These difficulties can be overcome by an adaptive technique called the Levenberg-Marquardt method,

which is reviewed next.

E. Levenberg-Marquardt Method

The Levenberg-Marquardt method [51] can be seen as a trust region modification of the Gauss-Newton

method, since it takes the form

tkQ(xk) =
[
(∂xTA(xk))

T W∂xTA(xk) + αkR
]−1

, (30)

where αk is a non-negative scalar and R is a positive definite matrix. The motivation and the mechanics

of the Levenberg-Marquardt method can be explained in a similar way as the trust region method, the

difference being that the Levenberg-Marquardt alternates between the Gauss-Newton method and the

steepest descent method.

The salient properties of the ID methods are summarized in Table II.



TABLE II

SUMMARY OF REVIEWED ID ALGORITHMS.

Methods Complexity Convergence Rate Comment

Steepest Descent Simple Q(xk) = I Linear May Zigzag

Newton Heavy computations for ∂2
xxT F (xk) Quadratic

Trust Region Similar to Newton Linear with large αk Several αk may be tested

Quadratic with small αk in one iteration

Gauss-Newton Medium Linear

Levenberg-Marquardt Similar to Gauss-Newton Linear Several αk may be tested

in one iteration

F. Initial Estimate

All iterative methods require an initial estimate x0 as the starting point to gradually converge to the

final solution. Intuitively, the closer the initial estimate is to the final solution, the smaller is the required

number of iterations. Moreover, in case the objective function has multiple minima, the method will

converge to the downward peak of the valley (see Fig. 3) where the F (x0) is located. Hence, obtaining

a good initial estimate is one of the crucial problems that should be addressed when applying iterative

techniques.

In long range maritime navigation and on-Earth satellite navigation, a good initial estimate is easy to

obtain, e.g. even the center of the Earth works. It gets tricky however for indoor applications, where the

scale of the system is much smaller than a satellite system and the prior information on whereabouts of

the target is more limited. An additional challenge is that systems should be built with preferably (very)

low-cost and low-power equipment. One promising way to obtain a good initial estimate is to use so

called direct methods, which complete position estimation non-iteratively. These non-iterative methods

are discussed in the next section.

V. DIRECT METHODS

There is a large number of direct methods documented in the literature, scattered across the fields of

radar, aerospace engineering, oceanic engineering, (acoustic) signal processing and wireless communi-

cations. In this section, these direct methods are classified based on the least-squares objective function



to minimize, which is the soul of the least-squares estimation and determines the accuracy (in terms of

RMSE) of the corresponding estimator.

Recall from (8), the non-linear part of the range equation takes the form
√

(.)T (.). To solve the non-

linear problem without iterations, one needs to first obtain a linear term of x by applying a squaring

operation to cancel the square-root. The new set of equations after squaring contains both linear and

non-linear terms that involve the unknown vector x. The general form of the equations used by all direct

methods can be written as:

y
D

= ADxu +BDbc + CDχ+ eD, with f(xu, bc, χ) = 0, (31)

where the subscript D stands for ‘direct’, y
D

is the new measurement vector obtained from y, different for

different direct methods, AD, BD, CD are known matrices, χ is an unknown non-linear term (function)

of x, and eD is the error term. Explicit examples of expressions for χ will be given in V-A. Note that

the above equation is linear in the unknown parameters, when f(xu, bc, χ) = 0 is ignored.

During least-squares estimation, the constraint f(xu, bc, χ) = 0 should be taken into consideration

since it provides information in addition to the model y
D

= ADxu + BDbc + CDχ + eD. One of the

possible ways is to use a Lagrange Multiplier λ to account for f(xu, bc, χ) = 0. The rigorous least-squares

solution of (31) then can be found as:

[x̂Tu , b̂c, χ̂]T = arg min
xu,bc,χ

[
‖y

D
−ADxu −BDbc − CDχ‖2WD

]
,

subject to: f(xu, bc, χ) = 0, (32)

which can be obtained by searching for the stationary point of the Lagrange function:

‖y
D
−ADxu −BDbc − CDχ‖2WD

+ λf(xu, bc, χ). (33)

This solution satisfies both (12a) and (12b), where F (x) is now the Lagrange function and x = [xTu , bc, χ, λ]T .

In the rest of this article, it is assumed by default that (12b) is satisfied when referring to a stationary

point of a Lagrange function.

In (33), the weight matrix WD is often chosen as the inverse of the covariance matrix of y
D

, i.e.

WD = Q−1y
D
y
D

. Please note that here we refer to (32) as a rigorous, least-squares solution to (31), but not

a strict least-squares solution to the original positioning problem, since the objective function to minimize

is different from the one in (11).

Furthermore, it should be noted that although with the direct methods some of the design matrices in

(31) become measurement-dependent, that we do not use an errors-in-variables or Total Least-Squares



approach [52] for solving (31). Such an approach would increase the computational complexity, thereby

making the direct methods less attractive.

In general, the rigorous least-squares solution to model (31) can only be approximated iteratively, due

to the non-linear constraint f(xu, bc, χ) = 0. Simplifications are therefore required, in order to obtain a

solution directly with no iterations. In the literature, two major types of simplifications exist:

1) With the first type of simplification, the constraint is completely ignored. In this case, (31) becomes

just a linear model

y
D

= ADxu +BDbc + CDχ+ eD, (34)

and the corresponding least-squares solution reads:

[x̂Tu , b̂c, χ̂]T = arg min
xu,bc,χ

‖y
D
−ADxu −BDbc − CDχ‖2WD

(35)

Denote FD = [AD, BD, CD] and xD = [xTu , bc, χ]T , then the final expression of the estimator

reads:

x̂D = (F TDWDFD)−1F TDWDyD. (36)

The direct methods that use this type of simplification will be referred to as the Single Objective

Function (SOF) methods, since only one objective function is involved for estimation.

The solution (36) however is not valid if dim(y
D

) < dim(xu) + 1 for ToA/RSS and dim(y
D

) <

dim(xu)+2 for TDoA. Compared to the original problem in (7) and (8), one extra measurement is

required to solve the problem with one additional unknown χ. Hence, some of the SOF methods

do not work if the system (7) is consistent with m = n.

2) Instead of completely discarding the information f(xu, bc, χ) = 0, the second type of simplification

partially exploits the constraint. The final solution can be seen as a combination of solutions obtained

with multiple objective functions, and the expression is different for different methods. In contrast

to the SOF methods, the direct methods applying the second type of simplifications will be referred

to as the Multiple Objective Function (MOF) methods. Moreover, the MOF methods are capable

of solving a consistent system of (7).

In the following sections, the SOF and MOF methods are reviewed in detail, and the results show that

although the derivations of the documented direct methods can be greatly different, the SOF methods

are essentially the same in the sense that they can be seen as one class of solutions to a unique problem

with just applying different weighting schemes.



A. Single Objective Function Methods

The first SOF method was introduced in [6] to solve range difference equations of TDoA systems.

Later on, other SOF methods are found in [9]–[11], [15], [16] for TDoA systems and [19]–[23] for

ToA/RSS systems. According to the number of differencing operations applied to (7), and therefore

different choices of AD, BD and CD in (34), the SOF methods are further sub-categorized into three

groups, which are discussed as follows.

1) No Differencing: Squaring on both sides of (8) gives:

y2
i

= xTuxu − b2c − 2xTi xu + 2y
i
bc + xTi xi + 2diei + e2i , i = 1 . . .m, (37)

which clearly contains linear terms of xu, bc and a common non-linear term xTuxu − b2c .

In accordance with (34), the SOF methods with no differencing are characterized by the following

choices of y
D,i

= y2
i
−xTi xi, AD,i = −2xTi , BD,i = 2y

i
, CD,i = 1, χ = xTuxu−b2c and eD,i = 2diei+e

2
i .

Note that with ToA/RSS systems, one has BD = 0 and χ = xTuxu. The method introduced in [9], [10],

falls in this category. Although the authors introduced the method with two steps, the expression of the

estimator can be given in one single equation, as shown with (36). Please note that the squaring implies

two effects on the new error vector eD: 1) it has a non-zero mean, and 2) its PDF is not elliptically

contoured, though it is well motivated that the error vector e = (before squaring) follows a Gaussian

distribution. This note holds true for all the direct methods reviewed in this paper and we will come back

to this for further discussion in V-D.

2) Single Differencing: Single differencing can be applied either to (37), ending up with a set of

squared-range differences or directly to the equations (8) followed by squaring, ending up with a set of

squared range-differences (please mind the different hyphenation).

In the first case, suppose y2
r

with r = m is chosen as a reference, subtracting it from all other m− 1

squared ranges gives:

y2
i
−y2

r
= −2(xi−xr)Txu+2(y

i
−y

r
)bc+xTi xi−xTr xr+2diei−2drer+e2i −e2r , i = 1 . . .m−1. (38)

Note that the common non-linear term xTuxu − b2c in (37) is canceled. The SOF methods with single

differencing then take the form y
D,i

= y2
i
−y2

r
−xTi xi+xTr xr, AD,i = −2(xi−xr)T , BD,i = 2(y

i
−y

r
),

CD,i = 0 and χ is canceled. In case of ToA/RSS systems, the single difference SOF methods using

squared-range differences can be applied by simply choosing BD = 0. Compared to the case with no

differencing, the number of equations is reduced by one, but the number of unknowns is also reduced

by one from n+ 1 to n, with χ canceled.



The single differencing SOF methods using squared-range differences include the ones in [19]–[23].

The methods in [19], [20] follow exactly the formulation of (38). Slight differences exist in [21], where

instead of y
r

: r = m, the reference is chosen as the average of all m available squared ranges:

y2
r

= 1
m

m∑
i=1

y2
i
; in [22], the differencing operation is repeated m times for r = 1, ...,m; and in [23], the

authors suggest to pick the shortest estimated range as the reference. However, the number of linearly

independent squared-range difference equations in [19]–[23] is m − 1 where by ‘linearly independent’

we mean that none of the equations can be produced by any linear combination of the other equations.

As shown later in this section, the methods described in [19]–[23] are equivalent.

Other than dealing with squared-range differences, it is also possible to obtain direct solution using

squared range-differences. Squaring on both sides of the range difference equation (9) gives:

(y
i
−y

r
)2 = −2(xi−xr)Txu−2(y

i
−y

r
)dr+x

T
i xi−xTr xr+2diei−2drer+e

2
i−e2r , i = 1 . . .m−1. (39)

In this case, with single differencing, one measurement is consumed to cancel the unknown clock offset

bc, instead of χ in the case of squared-range differences. Hence, this type of SOF method should not be

applied to ToA/RSS systems where no clock offset exists. The single differencing SOF methods using

squared range-differences are then characterized by the following choices: y
D,i

= (y
i
−y

r
)2−xTi xi+xTr xr,

AD,i = −2(xi − xr)T , BD,i = 0, CD,i = −2(y
i
− y

r
) and χ = dr =

√
(xu − xr)T (xu − xr). The SOF

method that uses (39) is the one introduced in [15], [16].

3) Double Differencing: Similar to the case of single differencing, double differencing can also be

applied to two different types of equations, i.e. squared-range differences in (38) and squared range-

differences in (39). However, the equations obtained by double differencing these two types of equations

are identical.

Dividing both sides of (38) by y
i
− y

r
gives:

y
i
+ y

r
=
−2(xi − xr)Txu + xTi xi − xTr xr + 2diei − 2drer + e2i − e2r

y
i
− y

r

+ 2bc, i = 1 . . .m− 1. (40)

The subscript rr will be used to denote references used in the second round of differencing. Suppose

rr = m− 1, subtracting y
rr

+ y
r

from the first m− 2 equations in (40) gives:

y
i
− y

rr
= −2

[
(xi − xr)T

y
i
− y

r

− (xrr − xr)T

y
rr
− y

r

]
xu +

[
xTi xi − xTr xr
y
i
− y

r

− xTrrxrr − xTr xr
y
rr
− y

r

]

+

[
2diei − 2drer + e2i − e2r

y
i
− y

r

− 2drrerr − 2drer + e2rr − e2r
y
rr
− y

r

]
, i = 1, ...,m− 2. (41)

Although it seems that only one differencing operation y
i
− y

rr
exists, the above equation is obtained

from (38) where another differencing has already been applied to obtain squared-range differences.



Eq. (41) can also be obtained by first dividing both sides of (39) by y
i
− y

r
:

y
i
− y

r
=
−2(xi − xr)Txu + xTi xi − xTr xr + 2diei − 2drer + e2i − e2r

y
i
− y

r

− 2dr, i = 1 . . .m− 1, (42)

and then choosing y
rr
− y

r
as the reference and subtracting it from the first m − 2 equations in (42),

which gives exactly (41).

Clearly, in both cases of double differencing, one equation is consumed to cancel the clock offset bc

and another one for the non-linear term χ. Therefore, double differencing should not be applied to a

ToA/RSS system which does not have a clock offset, i.e. single differencing is already enough to obtain

a set of equations that contains only xu as the unknown, see (38).

In contrast to (34), the SOF methods with double differencing are characterized by the following

choices:

y
D,i

= y
i
− y

rr
−

[
xTi xi − xTr xr
y
i
− y

r

− xTrrxrr − xTr xr
y
rr
− y

r

]
(43)

AD,i = −2

[
(xi − xr)T

y
i
− y

r

− (xrr − xr)T

y
rr
− y

r

]
(44)

and BD = CD = 0. The methods that belong to this subcategory include the ones in [6], [11]. In

[6] the author first introduced the method for a consistent set of equations with dim(y) = m =

dim(xu) + dim(bc) = n and then dealt with the overdetermined case with m > n. Note that only

in the overdetermined case, the method belongs to SOF methods, while in the consistent case it belongs

to MOF methods, which will be covered later in Section V-B.

4) Relating SOF Methods: If two sets of equations can be linearly related, the corresponding solutions

can be seen as obtained using different measurement weighting schemes and therefore are equivalent.

Let us check this point by first assuming another set of equations, in contrast to (34):

y′
D

= A′Dxu +B′Dbc + C ′Dχ+ e′D, (45)

and y′
D

can be related to y
D

in (34) with a transformation matrix T : y′
D

= Ty
D

. Hence, it holds

that (.)′D = T (.)D for all coefficients on the right hand sides of (34) and (45). Using the notation

F ′D = [A′D, B
′
D, C

′
D] and xD = [xTu , bc, χ]T , the least-squares estimator of (45) can be written as:

x̂′D = arg min
xD

‖y′
D
− F ′DxD‖2W ′D . (46)

With a specific choice of

W ′D = (TW−1D T T )−1, (47)



Eq. (46) yields:

x̂′D = (F ′TD W ′DF
′
D)−1F ′TD W ′Dy

′
D

(48)

= (F TDWDFD)−1F TDWDyD = x̂D, (49)

if T is invertible: (TW−1D T T )−1 = T−TWDT
−1. Hence, two sets of equations, that can be linearly

related by any invertible transformation matrix, provide equivalent solutions, with the specific choice of

(47).

Our case is more complicated, since T is not invertible. For example, in (38), the numbers of equations

and unknowns are both reduced by one, as compared to (37). The matrix, transforming (37) to (38), then

takes the form:

T =


1 0 −1

. . .
...

0 1 −1


(m−1)×m

, (50)

which is non-invertible.

However, it can still be proved that when W ′D, the weight matrix for (38), is related to WD, the weight

matrix for (37), as W ′D = (TW−1D T T )−1, these two sets of equations provide identical least-squares

solutions. The proof can be done by rigorously computing the expressions of the least-squares solutions

for xu in the two cases, which takes quite cumbersome calculations and is therefore not shown in this

review. Interested readers can complete the proof using the block matrix inversion lemma [53].

To this end, it is clear that all the mentioned SOF methods are linearly related, and provide identical

solutions with special choices of weight matrices, see (47). In general, these methods can be seen as

realizations of a unique method with different weighting schemes.

B. Multiple Objective Function Methods

The MOF methods employ more than one objective function, and the corresponding estimator is in

general not a minimizer for any of the employed objective functions, but a ‘combination’ of them. As a

result, the MOF methods and the SOF methods are generally not equivalent. Currently, there exist two

types of MOF methods, which are reviewed in the following.

1) MOF Type I: Recall from (35) and (32), the simplified and rigorous least-squares solutions to the

squared range equations are obtained by minimizing two different objective functions and the correspond-



ing solutions then take the forms:

Simplified: x̂D = arg min
xD

F1(xD), (51)

Rigorous: x̂D = arg min
xD

F1(xD), subject to: f(xD) = 0. (52)

where F1(xD) = ‖y
D
−FDxD‖2WD

and xD = [xTu , bc, χ]T . The rigorous least-squares solution (52) can

be found by searching for a stationary point of the Lagrange function:

F2(xD, λ) = ‖y
D
− FDxD‖2WD

+ λf(xD). (53)

which cannot be obtained non-iteratively without simplification, due to the presence of a non-linear

constraint f(xD) = 0. Rather than directly using (51) as the final solution like the SOF methods do, the

MOF methods derive the estimators by combining the following equations:

∂[xD,1,...xD,k−1,xD,k+1,...]F1(xD) = 0→ x̂D = f1(xD,k), (54)

∂λF2(xD, λ) = 0→ f(x̂D) = 0, (55)

where in (54) one of the unknowns in xD, assumed as xD,k, is used to represent all other unknowns. As

y
D
− FDxD is a linear function of xD, f1(x̂D,k) is also a linear function which can be further written

as f1(x̂D,k) = a+ bx̂D,k. Combining the above two equations gives:

f(a+ bx̂D,k) = 0. (56)

In positioning problems, the above equation is quadratic [6]–[8], [12]–[14], [17], [18], and two possible

solutions of x̂D,k can be obtained. Together with (54), two sets of [x̂Tu , b̂c]
T (part of xD) can be calculated,

and the final solution can be chosen as:

[x̂Tu , b̂c]
T = arg min

x̂u,j , b̂c,j

F (xu, bc), j = 1, 2, (57)

where F (xu, bc) is the least-squares objective function defined in (11).

In case of an overdetermined system (7) with m > n, the MOF estimator (57) is not equivalent to the

rigorous solution (52). Nevertheless, with a consistent set of equations, (57) and (52) are identical, since

in this case:

‖y
D
− FDxD‖2WD

= 0 (58)

f(x̂D) = 0 (59)

λ̂ = 0 (60)



In [7], Bancroft used the squared-range equations (37) for estimation, and the constraint takes the form

f(xD) = xTuxu− b2c −χ = 0. This method was introduced for both overdetermined and consistent cases,

i.e. m ≥ n. In [8], Schau et al. only covered the consistent case m = n, and the squared range-differences

(39) are used instead with χ = d2r . The constraint becomes f(xD) = ‖xu − xr‖2 − d2r = 0. Note that

bc is canceled in this case, and the authors made the assumption that the reference transmitter is placed

at the origin, i.e. xr = 0. Later double range differences are used in [17] to form a consistent set of

equations, and the constraint in use is equivalent to f(xD) = ‖xu − xrr‖ − ‖xu − xr‖ − (y
rr
− y

r
) = 0.

Similar methods can also be found in [6], [12]–[14], [18].

The mechanics of these MOF methods can be summarized as a process with two major steps:

1) Obtain a linear relation x̂D = a+ bx̂D,k by means of minimizing ‖y
D
− FDxD‖2WD

,

2) form a quadratic function f(x̂D,k) = 0 based on the linear relation and the corresponding constraint

to solve x̂D,k, and then, x̂D.

The linear relations in the first step of the MOF methods that follow the above mechanics are equivalent,

irrespective of whether they are obtained from squared ranges, squared-range differences or squared range-

differences. In the second step, there exist an unlimited number of choices for the quadratic constraint.

For example, in ToA/RSS cases, for any point xc in space, one can form a quadratic constraint:

χ = (xu − xc)T (xu − xc). (61)

In accordance with (34), the new measurements and the coefficients are characterized as y
D,i

= y2
i
−

xTi xi + xTc xc, AD,i = −2(xi − xc)T , BD,i = 0, CD,i = 1, and eD,i = 2diei + e2i . For TDoA cases, a

similar explanation applies.

In the consistent case, these MOF methods with different constraints are equivalent. However in general

when the system is overdetermined, MOF Type I methods with different choices of the constraint are

not equivalent. The best choice for xc in (61) is obviously xc = xu. In this case, the problem is linear

with the non-linear term χ = 0, and the MOF Type I method gives a rigorous least-squares estimator to

(34). In practice, however, it is not possible to choose xc = xu since xu is not known.

2) MOF Type II: Another type of MOF method, e.g. [24], does not follow the mechanics described

above. This method, however, can be seen as an improved version of the methods in [19]–[23], where the

squared-range differences (38) are used. Since [19]–[23] all deal with ToA/RSS systems with BD = 0,

the method in [24] will be reviewed with this type of system first.

Grouping (38) with y
r

= dr + er, and y2
r

= d2r + 2drer + e2r , with dr = ‖xu − xr‖, one can formulate



two solutions:

[x̂Tu , d̂
2

r ]
T = arg min

xu,d2r

∥∥∥y
D
−ADxu

∥∥∥2
WD

+ ‖y2
r
− d2r‖w1

,

subject to: ‖xu − xr‖2 − d2r = 0. (62)

and

[x̂Tu , d̂r]
′T = arg min

xu,dr

∥∥∥y
D
−ADxu

∥∥∥2
WD

+ ‖y
r
− dr‖w2

subject to: ‖xu − xr‖2 − d2r = 0. (63)

where w1 and w2 equal to V ar(y2
r
)−1 and V ar(y

r
)−1, respectively. Moreover, it is assumed that there

is no correlation between y
D

and y2
r
.

Assuming the above two solutions are equal, one can obtain three closed form solutions for xu, and

one of them is equivalent to the SOF solution. Similar as the MOF I method, the final solution should

be picked as the one that corresponds to the smallest F (x) in (11). Note that the requirement for this

method to work is m > n [24].

In fact the method in [24] can be improved, because the assumption that Cov(y
D,i
, y2
r
) = 0 is not

very realistic. The covariance, however, becomes very small with a specific choice of the reference. By

choosing the average y2
mean

= 1
m

m∑
i=1

y2
i

instead of y2
r
, the covariance becomes:

C(y
D,i
, y2
mean

) =
1

m
D(y2

r
), (64)

which is negligible for a large m. Note that the unknown in (62) and (63) then become [x̂Tu , d̂
2

mean]T

and [x̂Tu , d̂mean]′T , respectively, and the constraint becomes xTuxu − 2
m

m∑
i=1

xTuxi + 1
m

m∑
i=1

xTi xi = d2mean.

In TDoA cases, the method can work in a similar way as described for the ToA/RSS case. However,

we suggest not to use this method in TDoA cases, since it still may suffer from numerical problems, just

like the SOF methods. Hence, the details for the method to work in TDoA cases are not reviewed here

in this article.

C. Geometric Interpretation

1) SOF Methods: The geometric interpretation of the SOF methods is probably best revealed with

squared-range differences for ToA/RSS systems and with double differences for TDoA systems, where

xu is the only unknown. Since in both cases, the equations are linear in xu, they represent lines in 2-D

cases or planes in 3-D cases. Here, the interpretation is only given for 2-D for a better demonstration.



Take the ToA/RSS case in Fig. 1 as an example, line li (i = 1, 2) is defined by the two intersection

points of the circle centered at xi and the circle centered at x3. Assuming xr = x3, the perpendicular

distance from xr to line li can be expressed as,∣∣∣∣(xi − xr)T (xu − xr)
‖xi − xr‖

∣∣∣∣ = li. (65)

The unknown position then can be located at the intersection of all these lines, when the system is

consistent or measurements are error-free. In an overdetermined system with measurement errors, these

lines generally do not intersect at a unique point. The geometric interpretation should then consider Fig.

2, with a slight difference that the manifold A(.) should be linear.

The calculation of li is simple, but should be done considering two different situations,

1) (xi − xr)T (xu − xr) ≥ 0, d2r − l2i = d2i − (‖xi − xr‖ − li)2 ⇒ li = d2r−d2i+‖xi−xr‖2
2‖xi−xr‖

2) (xi − xr)T (xu − xr) < 0, d2r − l2i = d2i − (‖xi − xr‖+ li)
2 ⇒ li = −d2r−d2i+‖xi−xr‖2

2‖xi−xr‖

with di the true distance between xi and xu. Thus, together with (65), the following equation can be

obtained

d2i − d2r = −2(xi − xr)Txu + xTi xi − xTr xr, i = 1, ...,m− 1, (66)

which is identical to the error free version of (38), with bc = 0 for ToA/RSS cases.

In TDoA cases, each line is defined by the intersections of two hyperbolas. In [17], the equations linear

in xu that correspond to these lines are found based on the fact that, for any point xu on the hyperbola

i, the ratio between the distance from xu to xr (the common focal point for all i, e.g. xr = x2 in the

case of Fig. 1) and the distance from xu to the directrix (plane) is the eccentricity of the surface (see

Fig. 4). This gives

‖xu − xr‖ = ec,i
[
dx,i − nTi (xu − xr)

]
, i = 1, ...m− 1 (67)

where ec,i = ‖xi−xr‖
di−dr is the eccentricity of hyperbola i, dx,i = 1

2

[
‖xi − xr‖ − (di−dr)2

‖xi−xr‖

]
represents the

(perpendicular) distance from xr to the directrix, and ni = xi−xr

‖xi−xr‖ is a unit vector pointing from xr to

the directrix.

Any two of the equations defined by (67) can be used to cancel the left hand side term ‖xu − xr‖.

Picking rr = m− 1 as the reference, subtracting it from all other equations gives a set of m− 2 linear

equations:

(ec,ini − ec,rrnrr)T (xu − xr) = ec,idx,i − ec,rrdx,rr, i = 1, ...m− 2, (68)

which, after rearranging, is identical to the error free version of (40).
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Fig. 4. According to plane geometry, quadratic curves (where xu lies) can be defined in terms of a focal point (in our case,

xr), a directrix, and by their eccentricity. The directrix is a line in the plane and the eccentricity represents the ratio of the

distance of a point on the curve to the focus and the directrix. The generalization to three dimensions is made by considering

the directrix to be a plane. Here ni is a unit vector pointing from xr to the directrix. Please note that this example only applies

to the TDoA case.

2) MOF Methods Type I: Here the geometric interpretation for the MOF method in [7] is shown for

a 2-D ToA/RSS system with χ = xTuxu. In this case, (54) can be written in the form: xu,1 = a1(x
2
u,1 + x2u,2) + b1 ⇒ (xu,1 − 1

2a1
)2 + x2u,2 = 1−4a1b1

4a2
1

xu,2 = a2(x
2
u,1 + x2u,2) + b2 ⇒ x2u,1 + (xu,2 − 1

2a2
)2 = 1−4a2b2

4a2
2

(69)

where xu,1, xu,2 are the Cartesian coordinates of the user position, i.e. xu = [xu,1, xu,2]
T and ai, bi are

known constants.

Clearly, (69) represents two circles in the xu,1-xu,2 plane, centered at ( 1
2a1
, 0) and (0, 1

2a2
), with radius√

1−4a1b1
4a2

1
and

√
1−4a2b2

4a2
2

, respectively. The two intersections represent two possible solutions and the

final estimate is chosen based on (57).

In a fully determined system, with m = n = 2, these two circles intersect at two points which are

exactly the two intersections of the two measurement circles, centered at x1 and x2 with elements in y as

radius, see Fig 5. Without additional information about the unknown user position xu, it is not possible

to tell which intersection point corresponds to the true position of the user, since they both satisfies

F (x) = 0, with F (x) defined in (11).

When m = 3 > n = 2 and e = 0, it is much easier to pick the final solution, since in this case,



the five circles, including two circles of (69) and three measurement circles, intersect at a unique point,

which is the true user position, see Fig 6.
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Fig. 5. 2D geometric view of the MOF I solution in determined case with 2 measurements. Solid: measurement circles;

Dashed/Dotted: two circles represented by (69).

3) MOF Methods Type II: Here the geometric interpretation for an inconsistent ToA/RSS based system

is given in Fig. 7.

The column vectors of the matrix AD span a linear manifold in Rm, which is the range space of

AD : <(AD). Without loss of generality, it is assumed that xr is at the origin. The estimated residual

êD is expressed as:

êD = yD −ADx̂u =
[
I −AD(ATDWDAD + λ̂I)−1ATDWD

]
yD, (70)

where the expression for x̂u is obtained by taking the first order derivative of either (62) or (63).

According to Section V-B2, three values of λ̂ can be obtained non-iteratively and one of them is

equal to zero. With λ̂ = 0,
[
I −AD(ATDWDAD + λ̂I)−1ATDWD

]
is an orthogonal projector, and êD is

orthogonal to <(AD). In this case, the solution x̂u follows from finding the vector ADxu ∈ <(AD) which

has the least distance to yD. This is identical to the solution of the SOF methods where no constraint
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Fig. 6. 2D geometric view of the MOF I solution in consistent case with 3 measurements. Solid: measurement circles;

Dashed/Dotted: two circles represented by (69).

is considered. In cases of λ̂ 6= 0, the residual vector is not orthogonal to <(AD) and the corresponding

solution is different from the SOF estimate.

In the consistent cases, yD lies in <(AD), and one always has êD = 0.
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Fig. 7. The geometric interpretation of the solution of the Type II MOF method.



D. Error Analysis

1) Bias and Variance: For the SOF methods, the expressions for the first and second moments of a

linear least-squares estimator are rather simple. In case of an error-free design matrix FD:

µx̂
D

= (F TDWDFD)−1F TDWDE{y
D
− yD}, (71)

Qx̂
D
x̂
D

= (F TDWDFD)−1F TDWDQy
D
y
D
WDFD(F TDWDFD)−1, (72)

which can be directly used for e.g. ToA/RSS cases.

In TDoA cases, however, the design matrix FD contains measurements y. The derivations for the first

and second moments of x̂D then become much more complicated and some approximations are required.

The details of the expressions in TDoA cases are skipped in this review, and interested readers can find

the relevant results in [11].

For the MOF methods, the error analysis of the corresponding estimators is not available in the literature

yet. One possible way to derive the MSE is to follow the general way described in III-D. This part,

however, is left for future research and is not included here.

2) Optimality: Taking (37) as an example, one has y
D,i

= y2
i
− xTi xi, and hence:

y
D,i
− yD,i = (ei + yi)

2 − y2i (73)

With the assumption that ei follows a Gaussian distribution, i.e. ei ∼ N (µe,i, σ
2
e,i), one has:

σ−2e,i (y
D,i
− yD,i + y2i ) ∼ χ2(1, (µe,i + yi)

2/σ2e,i) (74)

where χ2(1, (µe,i + yi)
2/σ2e,i) represents a non-central chi-square distribution. Eq. (74) shows that the

measurements y
D,i

used by the direct methods are biased and the PDF of the measurement vector y
D

is

not elliptically contoured. This means the corresponding estimator is biased, see (71), and the solution

is neither equivalent to the ML estimator nor achieving CRLB, even with µe,i = 0 and WD = Q−1y
D
y
D

.

In this sense, the direct methods do not provide optimal solutions. However, the direct methods are still

very attractive for their low complexity, and a comparison of computational costs is given in VII. The

outcomes of the direct methods can be used in two ways:

1) as initial estimates for the iterative methods, which usually leads to the same position estimates as

if the true positions were fed to the iterative methods. This is shown at least with all the validation

setups used in this paper, see VIII-D.

2) directly as final results, when the direct and iterative methods provide estimators with minor

difference in accuracy. For example, in case the measurement standard deviation is less than 5



cm, the RMSE difference between estimates from direct methods and the Gauss-Newton method

are less than 2.5 cm (Fig. 11).

In practice, how to use the direct methods of course depends on the applications and how the users want

to balance between computation cost and accuracy. Moreover, WD = Q−1y
D
y
D

is still a valid choice, as

the measurements with larger variances are given less weights during estimation.

E. Comparison of Direct Methods

A comparison of the reviewed direct methods can be done based on their basic principles.

The SOF methods are widely documented in the literature [6], [9]–[11], [15], [16], [19]–[23]. It has

been shown that these methods are essentially equivalent. These methods are mutually related through

their measurement weighting schemes, and they share the following strong and weak points:

• Strong Point: The final solution is uniquely obtained from a set of linear equations. As compared

to the MOF methods, no extra quadratic equation needs to be solved and there is no need to check

certain criteria to pick the final estimate out of several candidates.

• Weak Point: The non-linear constraint is neglected (loss of information). Thus, the SOF methods

work only with a redundant set of equations (7) where m > n. Moreover, the SOF methods may

face numerical problems in TDoA systems, as for instance an inverse of a close-to-singular matrix.

This will be shown later in Section VIII.

The reviewed MOF methods include Type I: [6]–[8], [12]–[14], [17] and Type II: [24], which are in

general not equivalent to each other. The first type of MOF methods has the following characteristics:

• Strong Point: The constraint is (partially) exploited.

• Weak Point: In contrast to SOF methods, one extra step of solving a quadratic function is required

to obtain two candidate estimates, from which the final estimate is chosen with certain criteria.

The second type of MOF method has the following strong and weak points:

• Strong Point: Improvement on accuracy is achieved non-iteratively, as compared to SOF methods,

by combining multiple solutions that exploit the non-linear constraint.

• Weak Point: This method can only deal with the overdetermined case m > n and the final solution

is selected from three candidates obtained by solving an extra function.

VI. 1-DIMENSIONAL ITERATIVE METHODS

Based on the discussions in the previous section, the SOF methods and the MOF methods are capable

of finding the position estimate non-iteratively. However, with the employed simplifications, neither SOF



TABLE III

SUMMARY OF REVIEWED DIRECT ALGORITHMS.

Methods Characterization

SOF: No y
D,i

= y2
i
− xTi xi

Differencing AD,i = −2xTi , BD,i = 2y
i

Eq. (37), [9], [10] CD,i = 1, χ = xTuxu − b2c

SOF: Single y
D,i

= y2
i
− y2

r
− xTi xi + xTr xr

Differencing AD,i = −2(xi − xr)T , BD,i = 2(y
i
− y

r
)

Eq. (38), [19]–[23] CD,i = 0 and χ is canceled

SOF: Single y
D,i

= (y
i
− y

r
)2 − xTi xi + xTr xr

Differencing AD,i = −2(xi − xr)T , BD,i = 0

Eq. (39), [15], [16] CD,i = −2(y
i
− y

r
) and χ =

√
(xu − xr)T (xu − xr)

SOF: Double y
D,i

= y
i
− y

rr
−

[
xTi xi−x

T
r xr

y
i
−y

r
− xTrrxrr−x

T
r xr

y
rr

−y
r

]
Differencing AD,i = −2

[
(xi−xr)T
y
i
−y

r
− (xrr−xr)T

y
rr

−y
r

]
Eq. (41), [6], [11] BD,i = CD,i = 0 and χ is canceled

MOF I: can be characterized as all

[6], [7], [12]–[14], [18] the listed SOF methods

MOF II: Eq. (62), (63) same characterization as

[24] SOF Single Differencing Eq. (38)

methods nor MOF methods provide rigorous least-squares solutions to the squared-range equations with

or without differencing.

In this section, two different types of iterative techniques that bring improvements on estimation

accuracy are reviewed:

1) The first type estimates the position by solving (76). Through eigenvalue decomposition, the solution

is found by determining the roots of a high order polynomial.

2) The second type first transforms the multidimensional positioning problem to a 1-D optimization

problem, and then iterates.

The interesting feature of both iterative techniques is that the solution is obtained with only 1-dimensional

iterations (1DI), i.e. during the iterations, only one single parameter needs to be calculated and updated.



The advantages of 1-D iteration are twofold:

1) The computations in each iteration, compared to a full n-D iterative case, are reduced by a factor

of up to 1/n [27], [28].

2) The heavy computations required by the evaluation of ∂2xxTF (x) in the Newton method is greatly

relieved with dim(x) = 1. Thus one can enjoy the quadratic rate of convergence brought by the

Newton method with much less computations than in the case of dim(x) = n.

A. 1DI Type I

The methods introduced in [25], [26] improve the direct methods by fully exploiting the non-linear

constraint f(xD) = 0, and the solution is obtained exactly as (32):

x̂D = arg min
xD

‖y
D
− FDxD‖2WD

, subject to: f(xD) = 0, (75)

which can be obtained by searching for a stationary point of:

‖y
D
− FDxD‖2WD

+ λf(xD). (76)

The procedure can be described as follows,

1) Taking the partial derivative of (76) w.r.t. xD and setting it to zero, gives an expression of x̂D in λ̂.

By means of eigenvalue decomposition, each element of x̂D can be further written as an explicit

expression in λ̂, i.e. x̂D,k = gk(λ̂), k = 1, ...,dim(xD).

2) Taking the partial derivative of (76) w.r.t. λ and setting it to zero, gives f(x̂D) = 0.

3) Plugging x̂D,k = gk(λ̂) into f(x̂D) = 0 gives an explicit high order polynomial in λ̂, which can

be solved with the reviewed iterative search techniques. With the single unknown λ in this step,

the iteration is performed in 1-D.

4) Once λ̂ is available, x̂D can be obtained via x̂D,k = gk(λ̂).

The identical result can also be obtained without the eigenvalue decomposition in Step 1, but the explicit

polynomial in λ in Step 3 cannot be obtained, and the solution needs to be calculated iteratively with

full dimensions.

B. 1DI Type II

The idea of another type of 1DI method, introduced in [27], [28], can be described in general terms

as follows:



1) Obtaining a mapping between x = [xTu , bc]
T and a scalar parameter z: x = L(z), with L : R→ Rn

and plugging the relation into (7) gives:

y = A(x) + e = A(L(z)) + e. (77)

2) The least-squares solution to (77) is obtained as:

x̂ = L(ẑ) = L
(

arg min
z

∥∥y −A(L(z))
∥∥2
W

)
, (78)

If the mapping x = L(z) is error-free, the estimator (78) is better than (11), in both the sense of

accuracy and computational complexity, since the objective function in (78) contains less unknowns than

(11) due to the additional information x = L(z). Note that one reduces computational complexity most

when z is a scalar (1-D vector).

Now the unsolved issue is how to find the mapping L(z) in Step 1. In practice, an error-free mapping

is usually not available, but for a positioning problem, one can always estimate it using the data at hand

based on the SOF methods. Hence, the mapping in Step 1 becomes L(z, e), which contains measurement

errors, and (78) becomes

x̂ = L(ẑ, e) = L
(

arg min
z

∥∥y −A(L(z, e))
∥∥2
Q−1

yy
, e
)
. (79)

Note that the first step of the Type II 1DI method is identical to the SOF methods or the first step of

the Type I MOF methods. However, in the second step of the Type II 1DI method, the single parameter

is iteratively estimated using the full non-linear model (77). In this way, improvement on the accuracy

is achieved.

Another issue to be discussed is how to choose the scalar z. In [27], [28], the author suggests to choose

z as the coordinate along the worst precision direction, which can be done using the eigenvalue decompo-

sition [27]. However, the decomposition can be simply skipped by directly choosing the coordinate along

the zenith direction (the height) [28], which typically is of worst precision in on-Earth satellite navigation

and also in typical indoor positioning applications, where the room heights are generally smaller than

lengths and widths.

C. Comparison and Error Analysis

Both of the two types of 1DI methods provide possible estimation accuracy improvements over

the direct methods, but their differences can be described as follows, w.r.t. estimation accuracy and

computational complexity.



1) Accuracy: The estimator of the Type I 1DI method, obtained with successful convergence, closely

approximates the rigorous least-squares solution to (31). The estimator of the Type II 1DI method,

however, is not a strict least-squares solution to the original problem (7), due to the estimation

errors in xu = L(z, e).

2) Complexity: the eigenvalue decomposition is skippable with the Type II 1DI method to obtain a

solution with 1-D iterations, but is necessary for the Type I 1DI method. In general, the decom-

position itself is a non-linear problem and it has to be solved iteratively for a m×m matrix with

m ≥ 3. In [25], [26], the matrix to decompose is of 5× 5 and 4× 4 for 3-D TDoA and ToA/RSS

positioning, respectively.

The error analysis for both types of 1DI methods can be done by following the general way described

in [49]. The results can be found respectively in [26] for Type I (with simplifications) and [28] for Type

II, which are quite complicated and therefore not included in this review.

VII. COMPUTATIONAL COSTS

In general the computation costs of different methods within a group, i.e. ID, direct and 1DI methods,

are similar, exception is the MOF II method, which takes more computational cost than other direct

methods. The computational cost differences between different groups are quite obvious. Taking the

Gauss-Newton method and a direct method for example, in each iteration of the Gauss-Newton method,

the computational cost is very close to a direct method. Then for k iterations, the computation cost of

the Gauss-Newton method is k times of that of a direct method. The comparison of a direct method to a

1DI method is that a direct method does not iterate at all, i.e. no 1-D iterations. The comparison between

the Gauss-Newton method and a 1DI method is that in each iteration, a 1DI method iterates on only 1

parameter, and thus takes about 1/n computations compared to an ID method.

In this section, the computational costs of the SOF method [54], the MOF Type I method [7], the 1DI

Type II method [28], and the Gauss-Newton method are addressed in detail.

The flop-counts for the SOF method and for the MOF Type I are given as:

flopsSOF = n3/3 + 2mn2 + 2n2 + 7mn+ 4m+ 3n− 2/3, (80)

flopsMOF,TDoA = n3/3 + 2mn2 + 9mn+ 3n2 + 3m+ 9n+ 14, (81)

flopsMOF,ToA/RSS = n3/3 + 9mn+ 2mn2 + 3n2 + 7m+ 9n+ 14, (82)

where we have assumed diagonal weight matrices. Please note that the evaluation of (57) is a big

contributor in (81)-(82). In fact, the MOF I may get two candidates that are equal and there might be



other ways to pick the final solution than (57). Hence, the computations related to (57) may be skipped

or reduced.

The derivations of (80) to (82) can be done based on the flop-counts derived for the Gauss-Newton

method and the 1DI Type II method in [28]:

flops1DI,TDoA = n3/3 + 2mn2 + 2n2 + 7mn+ 4m+ 3n− 2/3 + k(3mn+ 8m+ 2n), (83)

flops1DI,ToA/RSS = n3/3 + 2mn2 + 2n2 + 7mn+ 4m+ 3n− 2/3 + k(3mn+ 6m+ 2n), (84)

flopsGN,TDoA = k(n3/3 + 2mn2 + 5mn+ n2 − 3m+ 3n− 3), (85)

flopsGN,ToA/RSS = k(n3/3 + 2mn2 + n2 + 8mn+m+ 2n− 1), (86)

where k is the number of iterations. Please note that here n is the dimension of x, whereas in [28] n

is the dimension of xu. Moreover, the 1DI type II method requires some computations to complete the

transform stage, which requires (one time) computations similar to the SOF method, but with 1 less

unknown parameter, which corresponds to n3/3 + 2mn2 + 2n2 + 7mn+ 4m+ 3n− 2/3 in (83) to (84).

In Figure 8, an example is given with m = 5, n = 4 (TDoA), n = 3 (ToA/RSS), and k = 5. The

results are as expected that the SOF method is the most simple one, the MOF Type I method takes a

bit more computations (worst case with two different candidates), the 1DI Type II method is a bit more

computationally costly than the MOF Type II due to iterations, and the Gauss-Newton method is the

most complicated, which takes about k times the computations of the SOF method.

VIII. PRACTICAL RESULTS

A. System Setup

The radio system used to generate range results to demonstrate the performance of the reviewed

algorithms, consists of one transmitter and one receiver, i.e. the system is only capable of 1-D ranging.

These limitations arise from the size, price and availability of the system hardware.

The setup of the radio UWB system is shown in Figure 9. The generator fires a Gaussian-like pulse

with a duration of 50 ps. A 6 dB attenuator is placed before the transmit antenna to avoid multiple antenna

reflections. The receiver part includes a sampling oscilloscope, a sampler unit and a PC. The sampling

oscilloscope controls both the sampling unit and the pulse generator with trigger pulses, implying that

the transmitter and the receiver are synchronized. The sampling unit samples the received signals using

a stroboscopic sampling mechanism [55], which has a virtual sampling rate of 100 GHz. A bandpass

filter in the 3-20 GHz bandwidth, to reduce out of band interference and noise, and an LNA, working in
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Fig. 8. A comparison between the computational costs of the SOF, MOF Type I, 1DI Type II and the Gauss-Newton methods.

This figure is obtained with m = 5, n = 4 (TDoA), n = 3 (ToA/RSS), and k = 5, according to (80) to (86).
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Fig. 9. Setup for UWB radio system.



the band between 0.1 and 12 GHz, follow the receiver antenna. As a result, it is possible to cover the

bandwidth between 3.1 and 10.6 GHz allowed by the FCC for UWB radio transmissions [56]. Both the

transmitter and the receiver use vertically polarized, omni-directional biconical antennas.

The Channel Impulse Response (CIR) h(t) is estimated by deconvolving the received signal in the

frequency domain using the inverse filtering technique. Here the spectrum of the received signal is

divided by the one of the reference signal, measured at a distance of one meter, in the absence of

reflections. In this way, it is possible to take into account the transmit and receive antenna transfer

functions and the characteristics of the other system components. The division is done only for the parts

of the spectrum within the frequency band of interest. The rest of the spectrum is filled with zeros.

Taking the complex baseband Inverse Fast Fourier Transform (IFFT), the complex impulse response of

the channel is obtained. To reduce the leakage problem when transforming the signal back to the time

domain, a Hamming window is used, which provides sidelobes less than -43 dB. Note that the inverse

filtering and the Hamming window are applied for easy and fast processing of the data.

The ToA is determined as the arrival time of the first path of the CIR. The first path is defined here as

the first local maximum of the envelope of the estimated channel, with an amplitude within 20 dB from

the strongest peak. The distance between the transmitter and the receiver is then computed using (3).

The measurements were carried out in the faculty building of EEMCS of Delft University of Tech-

nology. Both the transmitter and the receiver antenna are placed 1.5 m above the floor. The distances

between the transmitter and the receiver are between 2 and 15 m and 400 LoS measurements are collected

in total. The corresponding true distances, measured with a laser-disto, are also recorded.

As the UWB radio measurement system is restricted to a single link (1 Tx, 1 Rx, synchronized), a

3-D positioning system is created virtually. Without loss of generality, the receiver is placed at the origin.

From the total of 400 range estimates, a subset of 5 estimates is randomly chosen. For the i-th transmitter,

spherical coordinates (di, θi, φi) are assigned, see Fig. 10, where θi and φi are randomly chosen from the

intervals shown in Table IV. In this way, problematic geometries that make the positioning unsolvable,

e.g. with all transmitters on a line, are avoided.

B. Ranging Results

1) ToA: The range error standard deviation (STD), calculated as

STD =

√√√√ 1

399

400∑
l=1

‖d̂l − dl‖2, (87)
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Fig. 10. Spherical coordinates of a single measurement. The receiver is at the origin and the transmitter at (d, θ, φ).

TABLE IV

THE INTERVALS OF ZENITH ANGLE θ AND AZIMUTH ANGLE φ.

i θ φ

1 [π
8

3π
8
] [π

8
3π
8
]

2 [ 5π
8

7π
8
] [ 5π

8
7π
8
]

3 [π
8

3π
8
] [ 9π

8
11π
8
]

4 [ 5π
8

7π
8
] [ 13π

8
15π
8
]

5 [0 π] [0 2π]

considering all 400 measurements obtained with a fixed bandwidth B, is given, cf. the values in Table

V.

TABLE V

SIGNAL BANDWIDTH AND RANGING ERROR STD.

Bandwidth [GHz] 0.5 1.5 3.5 7.5

STD [cm] 11.0 3.5 1.8 1.5



TABLE VI

CHANNEL PARAMETERS AND RANGING ERROR STD.

Bandwidth [GHz] 1 1.5 3.5 7.5

σS [dB] 1.42 1.17 0.84 0.56

nfp 1.86 1.88 1.88 1.87

STD [m] 1.34 1.05 0.78 0.48

C. RSS

The values for σS , np, and the STD of the range errors obtained under several of the tested bandwidths

are summarized in Table VI.

D. Positioning Results

The tested methods include the SOF method, the MOF Type I method with χ = xTuxu− b2c , the MOF

Type II method, the 1DI methods (both types), and the Gauss-Newton method. The empirical RMSE

curves are plotted in Fig. 11 for the ToA case and in Fig. 13 for the TDoA case. On the horizontal axis,

the range error STD is given.

In the ToA case, the Gauss-Newton method and the 1DI Type I method give best performance, since

they closely approximate rigorous least-squares solutions to the corresponding models. The 1DI Type II

method performs slightly worse than the rigorous solutions, but still better than the direct methods. The

MOF Type II method brings improvements compared to the SOF method, but the absolute improvement is

not very large since the ranging errors are only of centimeter level. With very precise range measurements

(nearly) any method can achieve accurate positioning results; differences start to occur when it gets tougher

with noisier measurements. In [24] with decimeter level or even meter level RSS ranging accuracy, the

improvements are much more obvious, see Fig. 12. The MOF type I special (marked by ‘special’ in Fig.

11) performs very good with xc chosen as the origin (exactly as xu), since in this case the MOF type I

solution is rigorous. On the contrary, the MOF Type I method performs worst with a regular choice of

xc 6= xu. Again, we should note that in practice, it is not possible to choose xc equal to xu. In practice,

xc can be obtained in a similar way as how a initial estimate is picked: 1) as the outcome of a SOF

method, or 2) as the geometrical center of the transmitters if one wants to reduce as much as possible

the computation load.



In the TDoA case, the design matrices of the SOF method and the MOF Type II method are close

to singular. The RMSEs of their estimates are hundreds of meters, and are not shown in Fig. 13. Other

tested methods behave in a similar way as in the ToA case, only that the differences between various

estimates are very small. Moreover, for the MOF Type I method, different choices of constraints hardly

affect the final estimates. In Fig. 13, we show the result obtained with default choice χ = xTuxu − b2c .

E. Initial Estimate

For the iterative methods, i.e. the Gauss-Newton method and the 1DI methods, we have tested two

different ways to obtain a initial estimate:

1) use the true values,

2) use the outcome of the MOF I [7]. Main reason is that this method works for both ToA/RSS and

TDoA systems. Please note that for the 1DI Type I method, the initial estimate is always chosen

as 0, see [25], [26].

Results show that exactly the same position estimates are obtained in either way. Moreover, using the

outcome of a direct method as the initial guess makes the iterative methods converge faster than directly

using the true values. This is due to the fact that the outcome of a direct method is in general closer to

the final LS estimate, and this point is also verified in [57]. So, using the direct method to calculate the

initial estimate for the iterative techniques is a very promising way.

IX. SUMMARY

In this article, range-based positioning algorithms are reviewed, including iterative descent methods,

direct methods and methods with 1-D iterations.

The traditional iterative descent methods are widely used in non-linear estimation problems. They

iteratively approximate a strict least-squares solution with an accuracy achieving the CRLB, in case of

convergence. The drawbacks of these methods are that 1) the final estimates are obtained iteratively, i.e.

no closed-form analytical expressions are available; 2) these methods all require an initial estimate to

start with, which can be quite tricky for some applications, e.g. indoor localization.

One of the possible ways to provide an initial estimate for the iterative descent methods is to use a

direct method, which provides a closed-form solution without any iterations. In this paper, two major

types of the direct methods, namely SOF and MOF methods are reviewed. It has been shown that the

SOF methods are strictly identical with a specific choice of the weight matrices. Compared to the iterative
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Fig. 11. RMSE of the estimates obtained using the actual ToA UWB data, for different methods.

descent methods, the advantage of the direct methods is clearly their simplicity (and small computational

load), which however is achieved at the price of reduced accuracy.

There is also a third group of methods, referred in this paper as 1DI methods, which solve the problem

with only 1-D iterations. These methods, on one hand, provide better accuracy than the direct solutions,

and on the other hand, require less computations than applying iterative descent methods directly to

the positioning problem. The Type I 1DI methods even approximates rigorous least-squares solutions

to squared range equations which approximate the CRLB [26], but it requires a step of eigenvalue

decomposition, which is itself a non-linear problem that needs to be solved iteratively in general.

A full summary of all reviewed methods can be found in Table VII, concerning computational com-

plexity, positioning accuracy and requirements on the number of measurements. It should be pointed out

that for a consistent system, there is no need to resort to iterative techniques and one should always use

the Type I MOF methods, since the least-squares residual is zero.

This review paper intends to help system designers and researchers to have a better understanding

of the existing range based positioning algorithms, their inter-relations and their performance, so that a

balance between computational load and positioning accuracy can be found and the choice for a method

can be made according to the requirements set by the application at hand.
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