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ABSTRACT 

Sit-to-stand (STS) is a functional dynamic task, requiring movement of the 

lumbar spine, however, little is known about whether regional differences or 

between-gender differences exist during this task. The aim of this study was to 

confirm whether kinematic differences existed within regions of the lumbar spine 

during STS and also to determine whether between-gender differences were 

evident.  

An electromagnetic measurement device, recording at 25Hz, determined how 

different lumbar spine regions (combined, lower and upper) moved during STS 

in 29 healthy participants (16 males, 13 females). Discrete outputs including 

mean range of motion (ROM), maximum and minimum were calculated for each 

lumbar spine region. ANCOVA with repeated measures was used to determine 

whether regional differences and between-gender differences were evident in 

the lumbar spine during STS. With the lumbar spine modeled as two segments, 

the LLx and ULx regions made different contributions to STS: F1, 27=21.8; 

p<0.001. No between-gender differences were found with the lumbar spine 

modelled as a single region, however, modelled as two regions there was a 

significant gender difference between the LLx and ULx regions: F1, 27=7.3 

(p=0.012). The results indicate that modeling the lumbar spine as a single 

segment during STS does not adequately represent lumbar spine kinematics 

and there are important gender differences. These findings also need to be 

considered when investigating STS in clinical populations.  
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1. INTRODUCTION 

Transitioning between sitting and standing is a common daily activity and 

important for functional independence (Lomaglio & Eng, 2005) with the 

movement performed on average 60 times a day in a working population (Dall & 

Kerr, 2010). It is commonly a focus of rehabilitation strategies in people with 

mechanically provoked lower back pain (O'Sullivan, 2003) as well as those with 

mobility impairments (Kuo et al., 2010). 

A significant body of research has attempted to identify optimal sit-to-

stand (STS) biomechanics (Janssen et al., 2002), as rehabilitation of this 

functional task will benefit from knowledge of a typical performance (Shum et 

al., 2005; Fotoohabadi et al., 2010; Kuo et al., 2010). Most STS studies, 

however, typically report only ‘trunk’ inclination ( Wheeler et al., 1985; Shepherd 

& Gentile, 1994; Galli et al., 2008). Considering the trunk as a single rigid body 

may not be sufficient and more recent studies considering movements within 

the trunk during STS have demonstrated significant ‘lumbar region’ movement 

(Shum et al., 2005; Tully et al., 2005; Fotoohabadi et al., 2010; Kuo et al., 

2010). However, a single lumbar region may also not be sufficient, with a small 

methodological paper (n=10) suggesting that two functionally independent 

lumbar regions should be recorded (Leardini et al., 2011). The results of their 

study, however, need to be confirmed given the small sample recruited. Further, 

the relative contribution of each region to a combined lumbar region movement 

has not been verified nor the potential effect of gender on these relationships. 

Gender has been found to have no effect (Johnson et al., 2010) or some 

influence on lumbar range (Bible et al., 2010) during STS with the lumbar spine 
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modeled as a single segment. It is difficult to determine exactly why the findings 

of these two studies varied, however, there were differences in factors such as; 

age of participants, equipment used, starting (seated) position and statistical 

analysis techniques. It cannot be discounted that the analysis of regional 

differences may help clarify such discrepancies in findings. In particular there 

are known gender differences in lumbar spinal: muscle geometry (Marras et al., 

2001); posture (Rajnics et al., 2001; Murrie et al., 2003; O'Sullivan et al., 2011) 

and range of motion (ROM) (McGregor et al., 1995).  

There is a continually growing body of knowledge around the task of STS 

in normal (Janssen et al., 2002; Fotoohabadi et al., 2010; Kuo et al., 2010) and 

clinical (Shum et al., 2005; Faria et al., 2010; Boonstra et al., 2011) populations 

however meta-analyses of trunk assessments and intervention effects are not 

possible as no standard trunk model has been clarified. Clinical rehabilitation 

recommendations advise an extended trunk for the successful performance of 

STS (Carr & Shepherd, 2003 p143), however, kinematic findings indicate 

lumbar flexion normally occurs (Schenkman et al.,1990; Tully et al., 2005). It 

may be that these differences exist due to discrepencies in clinical examination 

and research methodologies. That is, whilst clinicians typically differentiate the 

lumbar region into at least two segments when performing clinical examination 

(O’Sullivan 2004, Dankaerts et al., 2006), clinical research studies to date have 

reported the movement of a single lumbar region. Given the disagreement 

regarding optimal spinal kinematics and in order to better describe normal 

kinematics of the lumbar spine investigating a more sensitive two-segment 

measure of spinal movements in STS is warranted. The knowledge gained in 
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this study in a normal population, regarding any differential contributions of sub-

division of the lumbar spine, could then be applied to future studies in clinical 

and non-clinical populations. 

The aim of this study was to confirm (Leardini et al., 2011) whether 

regional movement differences exist within the lumbar spine when considered 

as two segments during STS and to examine the effect of gender on regional 

lumbar spine movements during STS. The outcomes of this investigation may 

directly relate to the way future clinical examinations and research 

investigations regarding STS are performed.  

 

2. METHODS 

2.1. Participants 

A sample of convenience was recruited via posters around the local community 

and university as well as via personal contacts. Twenty-nine healthy adults (16 

males, 13 females) mean ± standard deviation: age 31 ± 13 years, BMI 

23.4± 3.0 kg/m2 (Table 1). All participants provided written informed consent 

prior to data collection. The Human Research Ethics Committee, of the 

participating University approved this study. Participants were excluded from 

the study if they had a history of Lower back pain (LBP) or leg pain over the 

previous 2 years and/or had received previous postural education. 

 

2.2. Protocol 

Three-dimensional spinal kinematics were recorded during the STS 

using 3Space FastrakTM (Polhemus Navigation Science Division, Kaiser 
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Aerospace, Vermont). The Fastrak system is a non-invasive electromagnetic 

device, widely used in kinematic research, with demonstrated validity and 

reliability for the assessment of lumbar spine ranges reported as having an 

angular accuracy of 0.2° (Pearcy & Hindle, 1989). 

Two musculoskeletal physiotherapists fixed electromagnetic sensors on 

the skin surface according to a previously established model and protocol 

(Dankaerts et al., 2006; Mitchell et al., 2008). Sensors were placed over the 

spinous processes of the twelfth thoracic vertebrae, the third lumbar vertebrae 

and the second sacral vertebrae (T12, L3 and S2) respectively using double 

sided tape (Norton, Pty Ltd., NSW, Australia) and Fixomull® sports tape 

(Beiersdorf AG, Hamburg Germany). Participants were asked to sit in their 

usual posture on a stool adjusted to a height that allowed each participant’s 

thighs to be horizontal (line through femoral lateral epicondyle and greater 

trochanter) and their legs vertical (line through femoral lateral epicondyle and 

lateral malleolus). Participants viewed a visual target adjusted to eye level to 

standardise head posture. For each trial the feet were positioned shoulder width 

apart with arms relaxed, hanging next to their thighs. Participants were then 

asked to stand up at their natural speed, following an audio signal, and remain 

standing until the examiner requested they sit. Three trials were measured after 

subjects stood a few times to familiarised themselves with the task and 

equipment. The three-dimensional position and orientation of each sensor was 

recorded at a rate of 25Hz using a custom program (LabVIEW V6.1; National 

Instruments, Texas, USA).  
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2.3. Data processing 

Custom software (LabVIEW V8.6.1; National Instruments, Texas, USA) 

utilised a flexion-extension, abduction-adduction, axial rotation order of rotations 

to calculate the relevant angles throughout each STS trial. The lumbar spine 

was modelled as a single region (combined lumbar: CLx) as well as with two 

regions (upper lumbar: ULx, and lower lumbar: LLx) (Fig. 1) (Dankaerts et al., 

2006; Mitchell et al., 2008): 

1) CLx region sagittal plane angles were calculated from the intersection 

between the following two lines: the inclination of the sensor at T12 and 

the inclination of the sensor at S2. 

2) LLx region sagittal plane angles were determined from the intersection 

between the following two lines: the first was the inclination of the sensor 

at L3 and the second the inclination of the sensor at S2. 

3) ULx region sagittal plane angles were determined from the intersection 

between the following two lines: the inclination of the sensor at T12 and 

the inclination of the sensor at L3. 

A further LabVIEW program was then utilised to extract three sets of 

discrete outputs for each regional angle from the entire STS trial:  

1) Lumbar region ROMs during STS (the difference between peak flexion 

and extension).  

2) Maximum lumbar region angles (peak flexion) and  

3) Minimum lumbar region angles (peak extension).  

The lumbar region ROMs were calculated in Excel (Microsoft Office, 

2010). For maximum and minimum angles a zero angle indicated that the 
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sensors were directly in line: angles becoming less positive indicated movement 

towards spinal extension, and angles becoming more positive indicated 

movement towards flexion (Fig. 1).  

 

2.4. Statistical analysis 

All statistical analyses were performed in SPSS v20 (IBM, 2011). Inter-

trial variability was assessed for all participants by calculating the individual 

intra-class correlation coefficient (ICC),	
  standard error of measurement (SEM) 

and the Cronbach’s alpha between trials: for ROMs, maximums and minimums 

of each region (CLx, LLx and ULx). A descriptive analysis of the ROMs, 

maximums and minimums for each of CLx, LLx and ULx regions were 

determined for participants (n=29).  

Repeated measures analyses of covariance (ANCOVA) analyses with 

contrasts were performed once the variability between trials was assessed. The 

factors included in the model were lumbar region (CLx, LLx, ULx), discrete 

outputs (ROM, maximum and minimum) and gender. The SPSS analyses 

included Bonferroni adjustments to p values such that outputs could be 

considered a significant result if < 0.05 (IBM, 2011). However, this was not 

possible with SPSS for the additional between-gender comparisons; therefore 

gender results were described as significantly different if the post adjustment p 

value was < 0.025. Comparative differences in the spread of means were 

examined for CLx LLx and ULx ROMs using the coefficient of variation (CV).  

These data were collected as part of a larger study (Dankaerts, 2006) 

therefore PASS power analysis (Hintze, 2008)	
  calculations were performed 
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retrospectively to determine the power to detect a one standard deviation (SD) 

difference between LLx and ULx ROM, maximum and minimum angles with a 

sample of 29 participants. ROM angles had a power of 0.98, maximum angles a 

power of 0.99 and minimum angles a power of 0.16 to detect a one SD 

difference between LLx and ULx angles during STS. 

 

3. RESULTS 

The mean SEM was 1.4° (range 0.9°-2.2°) and mean individual ICC was 

0.93 (range 0.86-0.96) for the regional angles across lumbar ROM, peak flexion 

and peak extension angles and mean Cronbach’s alpha was 0.97 (range 0.95-

0.99).The low variability between the three trials allowed means to be used for 

all analyses. 

When all discrete outputs (ROM, minimum and maximum) were included 

in the analysis lumbar region angles in STS differed significantly from each 

other with a main effect for region: F1.4, 58.4=67.5, p<0.001. Within subject 

contrasts demonstrated that with the lumbar spine modeled as two segments, 

the LLx and ULx regions made different contributions to STS: F1, 27=21.8 

p<0.001. 

Strong three way interactions were found between region, discrete 

output and gender for STS: F2.2, 58.4=12.6 p<0.001. Gender interacted with 

region: F1.4, 58.4=6.1 p=0.012, as well as with the discrete output variables: F1.3, 

58.4=8.4 p=0.004. When the lumbar spine was modelled as a single region (CLx) 

no significant gender differences were demonstrated for effect or contrast. 
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Contrasts, however, showed that LLx and ULx regional angles differed 

according to gender: F1, 27= 7.3 p=0.012. 

The discrete output of maximum angles showed female ULx peak flexion 

(15.0°) was significantly greater than male (8.0°) as seen in the lack of overlap 

in the respective 97.5% CIs (Table 2). Female LLx and ULx regions contributed 

relatively equally to CLx flexion movement (57% and 43% respectively) 

whereas male LLx and ULx contribution to CLx flexion was far less equal (77% 

and 23% respectively). Male but not female peak flexion LLx and ULx angles 

were significantly different (p< 0.025) with male maximum LLx 18.5° greater 

than ULx, and female only 2.1° larger (Fig. 2).  

With regards to the variation within the sample, the female ROM 

coefficient of variation was much greater than for male: CLx (40%, 23%), LLx 

(56%, 33%) and ULx (40%, 23%) regions despite the fewer females (16M 13F) 

in this sample and they being younger than the males (p=0.04). 

 

4. DISCUSSION 

This study demonstrates that regional movement differences exist within 

the lumbar spine during STS when considered as two segments. The 

importance of using at least a two-segment model was exemplified using a 

gender comparison, with differences only observed when the lumbar spine was 

modelled as two segments. 

The comparison of within subject variability revealed that each 

participant’s spinal movement was remarkably consistent. Despite skin 

movement errors introduced in any surface marker kinematic study (Lundberg, 
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1996) this consistency has been found in previous STS research (Shum et al., 

2005; Leardini et al., 2011) suggesting that the assessment method was 

reliable and that individuals’ trunk movement patterns during STS under stable 

conditions were stereotypical. 

These two regions have previously been demonstrated to move 

independently (LLx ROM 14.8°± 4.2°, ULx 9.6° ± 6.8°) (Leardini et al., 2011) 

and our results on a larger population support this (LLx 25.1°± 11.7°, ULx 13.9° 

± 5.1°). The results of our study found that the contribution of LLx and ULx 

appeared to vary with gender, therefore, relative contribution of LLx and ULx as 

a group are not presented here. 

Investigations using a single lumbar segment measure have found both 

no gender lumbar STS differences (Johnson et al., 2010) and that males 

utilised less lumbar ROM than females in STS (Bible et al., 2010). This study 

found that with the lumbar spine modeled as a single segment male and female 

CLx ROMs were not significantly different, however the LLx and ULx 

demonstrated important independent movements that differed between 

genders.  

Neither gender showed a significant difference in contribution of LLx and 

ULx to CLx peak extension or ROM. This study, however, did not have the 

power (p=0.16) to demonstrate significant differences between minimum angle 

LLx and ULx contributions to CLx. Parameter estimates but not F values 

showed significant differences between male and female minimum and ROM 

ULx and LLx angles. Gender LLx and ULx ROM data approached but did not 
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reach significance and the study was insufficiently powered to detect ROM 

gender differences on post hoc power analysis. 

Unlike the findings of this study for STS, Mitchell et al. (2008) found a 

greater contribution from the LLx than ULx region to the CLx ROM in young 

adult females in several functional tasks including bending to the floor and 

picking up objects (Mitchell et al., 2008), however, both studies support that 

regional lumbar spine function should be considered in clinical practice. The 

results of this study support previous research that demonstrated regional 

lumbar spine differences in males and females in a range of functional tasks 

(Mitchell et al., 2008; Bible et al., 2010; Wade et al., 2012) and suggest that 

dynamic regional lumbar spine gender differences should be further 

investigated in other functional tasks and in clinical populations. The gender 

comparison results not only suggest that lumbar regions function differently in 

males and females, but are also a clear example of the importance of analysing 

the lumbar spine as two functional segments. The identified differences in LLx 

compared to the ULx spine during functional movements including STS might 

have important clinical implications including the modification of training during 

rehabilitation where a focus on regional differences in the lumbar spine may be 

warranted.  

Clinicians use STS as an assessment tool and a functional training task 

to treat impairments related to equilibrium, load transfer, strength and retraining 

pain disorders as well as to improve capacity and performance of this important 

activity of daily living. The results presented in this study, including that the LLx 

and ULx region contribute separately to CLx region in males in STS, present a 
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strong argument in support of the concept that the lumbar spine should be 

considered with a minimum of two functional regions (Mitchell et al., 2008). The 

results of this study and previous investigations support the use of a more 

complex torso model in kinematic and clinical analyses to better describe STS 

trunk movement. In light of interest in spinal movements during STS 

(Schenkman et al., 1990; Shum et al., 2005; Tully et al., 2005; Fotoohabadi et 

al., 2010; Johnson et al., 2010; Kuo et al., 2010) the authors agree with Leardini 

et al. (2011) that a standard trunk model is necessary to allow shared 

information and to better elucidate spinal and non-spinal contributions to STS. 

To date, no standard trunk model has been utilised for STS kinematic analyses. 

We propose that, until low radiation exposure and low cost measures of multiple 

segmental movement are available, based on the results of this study and 

previous studies that the most appropriate full trunk model should include at 

least: two cervical segments (Johnson et al., 2010; Kuo et al., 2010) two 

thoracic segments (Johnson et al., 2010), two lumbar segments and a sacral 

segment. This model would follow sagittal spinal curves and be consistent with 

basic clinical assessment. Having a standard STS model that conforms to 

normal spinal curves would enhance communication between clinicians and 

researchers, and assist collaborations to design studies to better understand 

the kinematics and the kinetics associated with spinal movements during STS. 

This study was limited to the on average low BMI, young cohort 

presented. The data was reanalysed with age as a covariate and the results 

were unaffected. The study did not have the power to detect age/gender 

interactions, such that future research in this area is required. This data could 
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not be temporally normalised, therefore only discrete aspects (ROM, peak 

flexion and peak extension) could be analysed. Although this was sufficient to 

answer the research questions of this study, future studies should consider 

analysing all time points during the STS movement and presenting continuous 

data throughout the STS movement. The system utilised in this investigation is 

associated with the known limitations associated with surface based motion 

analysis e.g. skin movement artifact (Lundberg 1996; Kuo et al., 2008). Fastrak 

has yet to be definitively compared to gold standard radiological measures 

(Mannion and Troke, 1999). Skin movement is acknowledged as an issue for 

kinematic research involving surface markers and has been discussed 

elsewhere (Mannion & Troke, 1999) 

 

5. CONCLUSION 

The study, as seen in other functional tasks, confirms the Leardini et al. 

(2011) observation that the LLx functions differently to the ULx during STS. It 

extends what is already known by demonstrating that a single segment lumbar 

model masks gender differences in the functional task of STS and therefore has 

implications for kinematic analysis of other functional tasks assessed with a 

single lumbar segment model.  

Our study adds to the body of knowledge the percentage contribution of 

LLx and ULx to CLx movement in STS, the gender differences evident when 

LLx and ULx are measured separately, and uses a larger sample to support 

these findings. Additionally no previous studies have quantified the degree of 

maximum flexion and extension of the LLx and ULx regions during STS. 
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These results support and extend previous findings that global lumbar 

spine kinematics (CLx) do not fully reflect the separate contributions of LLx and 

ULx kinematics and therefore a minimum of two lumbar segments should be 

included in STS kinematic examinations. 

Further research, looking at differences in ULx and LLx movement in 

clinical populations compared to healthy populations, is needed to determine 

whether this model is useful in describing specific clinical populations. 
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Table 1  

Means and standard deviations (SD) of Age and Body Mass Index (BMI) of the 

29 healthy participants 

  Mean (SD) Range p value 

Age (years) 

 

Male     (n=16)   35  (14.1) 22-63 0.04a 

Female (n=13)   26    (8.6) 18-51 

BMI (kg/m2) Male   22.8 (3.1) 17.0-29.4 0.95 

Female   24.0 (2.9) 19.6-28.0 
 

a p value for comparison between male and female 
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Fig. 1. Spinal model used for the calculation of lumbar angles  

Diagram reproduced by kind permission of Biomed Central from Mitchell et al., 

2008 under terms of Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/2.0). 
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Minimum angles indicate peak extension; maximum angles are peak flexion 

angles. Combined Lumbar angle (CLx), while not depicted here, was defined as 

between the T12 and S2 tangents (Dankaerts et al., 2006; Mitchell et al., 2008). 
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Table 2  
Means, standard deviations (SD) and 97.5% confidence intervals (CI) of male 
and female upper (ULx) lower (LLx) and combined (CLx) lumbar angles during 
sit-to-stand. 

 

 Minimum angle 
(Peak extension) (°) 

Maximum angle (°) 
(Peak flexion) 

ROM (°) 
(Range of Motion) 

 Mean (SD) 97.5% CI Mean (SD) 97.5% CI Mean (SD) 97.5% CI 

LLx       
Male 

Female 
-4.2 (6.2) -8.0 to  -0.3  a26.4 (10.9) 20.3 to 32.6   b30.6 (10.1) 24.6 to 36.6 
2.4 (6.9)           -1.9 to  6.7 20.7  (9.8) 13.8 to 27.5  18.3 (10.2) 11.8 to 24.9 

ULx       
Male 

Female 
-4.1 (4.0) -6.7 to  -1.5  a8.0  (5.0)  4.4 to 11.6    12.1  (2.8) 9.3 to 14.9 
-0.4 (4.8) -3.3 to  2.4   15.8  (7.2)  11.8 to 19.8  16.2  (6.4) 13.1 to 19.3 

CLx       
Male 

Female 
-7.7 (8.5)  -13.0 to  -2.3  34.0  (9.3) 27.8 to 40.2  41.7  (9.5) 35.1 to 48.2 
3.1 (9.7)   -2.9 to  9.1  34.9  (11.8)  28.0 to 41.8  31.8 (12.7) 24.6 to 39.1 

 
a Indicates a significance difference (p< 0.025) between genders evident from 

non overlapping 97.5% confidence intervals  

b Indicates within that gender a significant pair-wise difference (p<0.025)  

between ULx and LLx angles evident from non overlapping 97.5% confidence 

intervals 
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Fig. 2. Male and female maximum flexion combined lumbar (CLx) upper lumbar 

(ULx) and lower lumbar (LLx) regional angles 

a Indicates a significance difference (p< 0.025) between genders evident from 

non-overlapping 97.5% confidence intervals  

b Indicates within that gender a significant pair-wise difference (p<0.025)  

between ULx and LLx angles evident from non-overlapping 97.5% confidence 

intervals 

 
 
 
 
 


