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Abstract. The least-squares ambiguity decorrelation
adjustment is a method for fast GPS double-di�erence
(DD) integer ambiguity estimation. The performance of
the method will be discussed, and although it is stressed
that the method is generally applicable, attention is
restricted to short-baseline applications in the present
contribution. With reference to the size and shape of the
ambiguity search space, the volume of the search space
will be introduced as a measure for the number of
candidate grid points, and the signature of the spectrum
of conditional variances will be used to identify the
di�culty one has in computing the integer DD ambigu-
ities. It is shown that the search for the integer least-
squares ambiguities performs poorly when it takes place
in the space of original DD ambiguities. This poor
performance is explained by means of the discontinuity
in the spectrum of conditional variances. It is shown
that through a decorrelation of the ambiguities, trans-
formed ambiguities are obtained which generally have a
¯at and lower spectrum, thereby enabling a fast and
e�cient search. It is also shown how the high precision
and low correlation of the transformed ambiguities can
be used to scale the search space so as to avoid an
abundance of unnecessary candidate grid points. Nu-
merical results are presented on the spectra of condi-
tional variances and on the statistics of both the original
and transformed ambiguities. Apart from presenting
numerical results which can typically be achieved, the
contribution also emphasizes and explains the impact on
the method's performance of di�erent measurement
scenarios, such as satellite redundancy, single vs dual-
frequency data, the inclusion of code data and the length
of the observation time span.
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1 Introduction

The GPS double-di�erence (DD) carrier-phase mea-
surements are ambiguous by an unknown integer
number of cycles. The a priori knowledge of the integer
nature of the ambiguities can be used to strengthen the
baseline solution. This is of particular relevance to
applications where use is made of short observation time
spans. No deterministic method exists for the computa-
tion of the most likely integer ambiguity estimates. In
the literature, many important contributions have
already been made in the area of GPS integer ambiguity
estimation. Examples of proposed methods, together
with suggested re®nements, can be found in e.g. Blewitt
(1989), Dong and Bock (1989), Frei and Beutler (1990),
Hatch (1991), Frei (1991), WuÈ bbena (1991) and Euler
and Landau (1992).

An alternative method for fast GPS integer ambigu-
ity estimation was introduced in Teunissen (1993). It
makes use of a sequential conditional least-squares
search, based on transformed ambiguities. The princi-
ples of the least-squares ambiguity decorrelation ad-
justment (LAMBDA) were discusssed in detail in
Teunissen (1995a). An elementary presentation of the
basic principles of the method is given in Teunissen et al.
(1995), and a statistically based validation of the GPS
baselines obtained with the method is given in Tiberius
and De Jonge (1995). In this contribution, it is the
performance of the method that will be discussed. The
numerical results presented are results that can typically
be achieved with the method. The results will be sub-
stantiated by means of a qualitative analysis of the
method's performance.

The discussion of the method's performance will be
restricted to applications where use is made of short
baselines. For instance, the ionospheric delays have been
assumed absent or su�ciently small to be neglected. The
model used for our analysis is therefore the `standard'
model for short-baseline applications. In it, only the
baseline components and integer DD ambiguities appearCorrespondence to: P. J. G. Teunissen

Journal of Geodesy (1997) 71: 589±602



as unknown parameters. It should be noted, however,
that this restriction does not stem from the method itself.
If needed and when estimable, additional parameters
(e.g. di�erent types of delay, such as atmospheric and/or
instrumental delays) can be included without a�ecting
the principle of the method. The method is also not re-
stricted to the use of single baselines only. Multiple
baselines, which are simultaneously adjusted, can be
handled too.

In order to make this contribution su�ciently self-
contained, we give a brief review of the steps involved in
integer ambiguity estimation. As a starting point, we
take the linearized system of observation equations

y � Aa� Bb� e �1�
where:

y is the vector of observed minus computed DD
carrier-phase measurements, possibly including
code measurements as well;

a is the vector of unknown integer DD ambiguities;
b is the vector that contains the increments of the

unknown baseline components;
A;B are the design matrices for ambiguity terms and

baseline components, respectively;
e is the vector of measurement noise and

unmodelled errors.

Note that we have followed the customary practice of
working with the DD version of the carrier-phase ob-
servation equations. This is not really necessary, how-
ever, as is explained in Blewitt (1989), Teunissen (1995a)
and Goad (1985). In fact, in our software we work with
the undi�erenced carrier phases and use a reparametri-
zation on the original non-integer ambiguities so as to
obtain integer ambiguities.

Since our estimation criterion will be based on the
principle of least-squares, estimates for the unknown
parameters of Eq. (1) follow from solving the minimi-
zation problem

min
a;b
ky ÿ Aaÿ Bbk2Qy

with a 2 Zn; b 2 R3 �2�

where k:k2Qy
� �:��Qÿ1y �:� and Qy is the variance-covari-

ance matrix of the observables (the asterisk denotes the
transpose). This minimization problem was referred to
as an integer least-squares problem in Teunissen (1993).
It is a constrained least-squares problem, due to the
integer constraint a 2 Zn. The solution of the integer
least-squares problem will be denoted as �a and �b. The
solution of the corresponding unconstrained least-
squares problem will be denoted as â and b̂. The
estimates â and b̂ are sometimes also referred to as the
`¯oat solution', and the estimates �a and �b as the `®xed
solution'.

As it was shown in Teunissen (1993), the objective
function of Eq. (2) can be decomposed into the follow-
ing sum of �n� 2� squares
ky ÿ Aaÿ Bbk2Qy

� e1 � e2 � e3 �3�
with

e1 � kêk2Qy

e2 �
Xn

i�1
�âijI ÿ ai�2=r2âijI

e3 � kb̂jaÿ bk2Qbja

and where

ê � y ÿ Aâÿ Bb̂

âijI � âi ÿ
Xiÿ1
j�1

râi;jjJ r
ÿ2
âjjJ �âjjJ ÿ aj�

b̂ja � b̂ÿ Qb̂âQÿ1â �âÿ a�

In this decomposition, ê is the unconstrained least-
squares residual vector, âijI , with I � f1; . . . ; �iÿ 1�g, is
the least-squares estimate of the i-th ambiguity condi-
tioned on a1 up to and including aiÿ1, and b̂ja is the
least-squares estimate of the baseline vector conditioned
on a. The variance of âijI is denoted as r2âijI , and the
covariance between âi and âjjJ is denoted as râi;jjJ . The
estimates âijI ; i � 1; . . . ; n follow from a sequential
conditional least-squares adjustment on the ambiguities.
As shown in Teunissen (1993, 1995a), this corresponds
algebraically to using a triangular decomposition of the
variance-covariance matrix of the ambiguities.

In those GPS applications which are based on short
observation time spans, the bottleneck in ®nding the
solution of Eq. (2) is given by the problem of e�ciently
®nding the minimizers of e2 in Eq. (3), for ai 2 Z. The
approach taken with the LAMBDA method, is to rep-
arametrize the integer least-squares problem such that
an equivalent problem is obtained, but one that is much
easier to solve. It consists of two steps. First, an ambi-
guity transformation Z� is constructed that tries to de-
correlate the ambiguities. In the construction of Z�, use
is made of integer approximations to conditional least-
squares transformations. The ambiguity transformation
allows one to transform the original DD ambiguities,
their least-squares estimates and their corresponding
variance-covariance matrix as

z � Z�a; ẑ � Z�â; Qẑ � Z�QâZ �4�
Based on this ambiguity transformation, the sum of
squares e2 of Eq. (3) can be expressed in terms of the
new ambiguities. The corresponding minimization prob-
lem can then be formulated as

min
zi2Z

Xn

i�1
�ẑijI ÿ zi�2=r2ẑijI �5�

This minimization problem is equivalent to the minimi-
zation of e2 for ai 2 Z if and only if the ambiguity
transformation Z� is volume preserving and integer. For
a discussion of the properties of Z�, also in relation to
existing methods of taking linear combinations of DD
ambiguities, refer to Teunissen (1995b).

The computation of the integer minimizers �zi of Eq. (5)
is performed in the second step of the LAMBDA meth-
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od. Starting from the transformed ambiguity search
spaceXn

i�1
�ẑijI ÿ zi�2=r2ẑijI � v2 �6�

where v2 is a suitably chosen positive constant, the
solution of Eq. (5) is obtained by means of a search
using the following set of bounds

�ẑijI ÿ zi�2 � lir
2
ẑijI v

2 for i � 1; . . . ; n �7�
where

li � �1ÿ v2iÿ1=v
2� and v2iÿ1 �

Xiÿ1
j�1
�ẑjjJ ÿ zj�2=r2ẑjjJ

The two sets of inequalities, Eqs. (6) and (7), are
equivalent in the sense that they describe the same
ambiguity search space. That is, all integer vectors
z 2 Zn that satisfy Eq. (6) will also satisfy Eq. (7), and
vice versa. A search based on the sequential bounds of
Eq. (7) will give the desired integer least-squares solution
for the transformed ambiguities, �zi; i � 1; . . . ; n. The
search has been described in Teunissen (1995a). Once
the integer least-squares vector �z has been found, the
corresponding integer least-squares estimates of the
original ambiguities can be found by invoking
�a � Z�ÿ1�z. These integer estimates are then used to
compute the `®xed' baseline solution by means of

�b � b̂j�a � b̂ÿ Qb̂âQÿ1â �âÿ �a� �8�
Alternatively, one can also compute the `®xed' baseline
solution through a direct use of the integer estimate �z,

�b � b̂j�z � b̂ÿ Qb̂ẑQ
ÿ1
ẑ �ẑÿ �z� �9�

The present contribution is organized as follows. In
Sect. 2 the size and shape of the ambiguity search space
are discussed. In order to be able to start the search, a
choice ®rst has to be made regarding the size of the
search space. This choice is discussed in Sect. 2.1. In
Sect. 2.2 it is shown that the search for the integer least-
squares ambiguities performs poorly when this search
takes place in the space of the original DD ambiguities.
This poor performance is explained by means of the
discontinuity in the spectrum of sequential conditional
variances (by `spectrum' we mean a range of values of a
quantity). This discontinuity is a direct consequence of
the fact that the observation equations are parametrized
in terms of DD ambiguities. Through a decorrelation of
the ambiguities, transformed ambiguities can be ob-
tained which will generally have a ¯at and lower spec-
trum of conditional variances. The transformed spectra
and their relation to the original spectra are the topic of
Sect. 3. It is shown what one can typically expect of the
transformed spectra when di�erent measurement sce-
narios are used. The impact on the transformed spec-
trum of satellite redundancy and the use of dual-
frequency phase data is discussed in Sect. 3.1, and the
impact of the observation time span and the use of code

data is treated in Sect. 3.2. In Sect. 3.3, the statistics of
the decorrelated ambiguities are presented. In particu-
lar, the dramatic improvement in precision and corre-
lation of the transformed ambiguities is highlighted.
Finally in Sect. 4, some issues relevant to di�erent ap-
plications of the method are touched upon.

2 The ambiguity search space

The decorrelating ambiguity transformation Z� allows
for transformation of the ambiguity search space,Xn

i�1
�âijI ÿ ai�2=r2âijI � v2 )Z

� Xn

i�1
�ẑijI ÿ zi�2=r2ẑijI � v2 �10�

These two search spaces contain the same number of
integer vectors (grid points), but they di�er in shape.
The number of grid points contained in them can be
controlled by v2. In Sect. 2.1, ways of choosing suitable
values for v2 are discussed. The di�erence in shape
between the two search spaces is usually very pro-
nounced; in particular, when the data are based on very
short observation time spans. The shape of the original
DD ambiguity search space is then very elongated,
whereas the shape of the transformed search space is
closer to that of an n-sphere. The shape of the ambiguity
search space is governed by the ambiguity variance-
covariance matrix. The signi®cance of the variances r2âijI
and r2ẑijI ; i � 1; . . . ; n, in the denominators of the sum of
squares already given will be discussed in Sect. 2.2.

2.1 On the choice of size of the ambiguity search space

It will be clear that one needs to decide upon a value for
the positive constant v2 before one of the two inequal-
ities in Eq. (10) can actually be used to set up a search.
The value chosen for v2 should not be too small, but
also not too large. Too small a value will result in an
ambiguity search space which fails to contain the desired
integer least-squares solution. In that case we would be
trying to solve a problem which fails to have a solution.
Too large a value, however, is also not desirable, since it
will result in an ambiguity search space having an
abundance of grid points. In order to choose a value for
v2, some di�erent lines of thought may be followed. One
can di�erentiate between approaches which make use of
the observed data and those that do not. Approaches
not making use of the observed data can already be used
at the design stage, prior to the actual measurement
stage. They allow one to infer whether one can expect to
have a successful validation or not.

An appealing approach, from a statistical testing
point of view, is to rely on and make use of the statistical
properties of the least-squares estimates of the DD
ambiguities. These may be either the original estimates
âi, or the transformed estimates ẑi. If the least-squares
DD ambiguities are normally distributed with mean
vector a and variance-covariance matrix Qâ, then the
sum of squares of Eq. (10) will have a central Chi-square
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distribution with n degrees of freedom (it will have a
central F-distribution if Qâ has been scaled with the
appropriate a posteriori variance factor). As a reference
value for v2 one may now consider choosing the a-per-
centage point of the Chi-square (or F-) distribution.
With this choice for v2, one is of course not certain
whether the search will succeed in ®nding the desired
integer least-squares solution. It may still happen that
the ambiguity search space is too small and therefore
fails to contain a grid point. Although it cannot be
guaranteed that the ambiguity search space contains a
grid point with this choice, we do know there is a
�1ÿ a�-percent chance that it will contain one. This grid
point will then be the mean of the least-squares ambi-
guity vector â, or, if the transformed ambiguities are
used, it will be the mean of the least-squares ambiguity
vector ẑ.

In order to be able to choose a value for v2 which is
neither too small nor too large, it is desirable to have a
diagnostic quantity which can be used to measure the
number of grid points located inside the ambiguity
search space. Preferably, such a measure should be easy
to compute, without the necessity actually to have to
compute all grid points inside the ambiguity search
space. Unfortunately, however, it is very di�cult in
general to ®nd a measure that exactly gives the number
of grid points located in the search space. For some
simple geometric ®gures it is possible; for instance, if we
consider the n-dimensional box centred at a grid point,
say the origin �jaij � 1; i � 1; . . . ; n�, then it is not di�-
cult to show that the number of grid points contained by
it equals 3n. For our ambiguity search space however, no
such simple expression can be given. We believe though
that it is possible to give a fair approximation to the
number of the grid points located in the ambiguity
search space. Based on our numerical experiments,
which were executed in the context of single-baseline
determinations, we believe that the volume of the am-
biguity search space gives a reasonable indication of the
number of grid points. The usage of the volume was
already proposed in Teunissen (1993).

In Fig. 1 the volume of the ambiguity search space
has been compared to the actual number of grid points
inside the search space (candidates). Shown are the re-
sults of ten experiments, each experiment based on an
observation time span of 1 s using two epochs of data to
seven satellites. The inset in Fig. 1 shows the ratios be-
tween the actual number of grid points and the volume.

The ®gure is based on dual-frequency phase data.
The volume chosen for the search space ranges from 1 to
100, with an increment of one. The lines run under ap-
proximately 45 degrees. This shows that the volume is
indeed a good indicator for the actual number of integer
candidate vectors in the ambiguity search space. See also
Teunissen et al. (1996).

The volume of the ambiguity search space is easy and
straightforward to compute. We refer to some of the
results already computed for the purpose of the sum of
squares of Eq. (10). The formula for the volume, Vn, of
the ambiguity search space �âÿ a��Qÿ1â �âÿ a� � v2

reads (Apostol 1969)

Vn � vnjQâj1=2Un �11�
where jQâj is the determinant of Qâ and Un is the volume
of the unit sphere in Rn. Using the LDL�-decomposition
based sum of squares of Eq. (10), the determinant of Qâ
becomes very easy to compute. It equals the product of
all ambiguity variances in the spectrum of conditional
variances. Hence,

jQâj � P
n

i�1
r2âijI �12�

Note that since both ambiguity search spaces, the
original and the transformed one, have the same
volume, we have jQâj � jQẑj. Hence, Eq. (12) can also
be computed from the conditional variances of the
transformed ambiguities. In order to compute Eq. (11),
we still need to compute Un. The volume of the unit
sphere is given as

Un � pn=2=C�n=2� 1�; with C�x� �
Z1
0

eÿttxÿ1dt; x > 0

�13�
where C�x� is the gamma-function. For our purposes it
is not necessary to evaluate the preceding integral
explicitly. Making use of the recurrence relation
C�x� 1� � xC�x�, for x > 0, and the fact that
C�1=2� � ���

p
p

and C�1� � 1, it follows for even and
odd n, respectively, that

C�n=2� 1� � �n=2�!; n � 0; 2; 4; . . . �0! � 1�
C�n=2� 1� � n

2

nÿ 2

2
� � � 1

2

���
p
p

; n � 1; 3; 5; . . .
�14�

The choice for the size of the ambiguity search space
can now be made as follows. Depending on the ap-
proximate number of grid points required, the value of
the volume Vn is set. Compute the volume Un of the unit

Fig. 1. Number of grid points inside ambiguity search space versus
the volume of the search space for dual frequency, phase-only case
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sphere by means of Eq. (13) and (14), and use the con-
ditional variances to compute the determinant
jQâj � jQẑj by means of Eq. (12). Then, using Vn;Un and
jQâj, the value for v2 follows from Eq. (11). Of course,
since Vn is only an indicator of the number of grid
points, it is not so much the precise value of Vn that
counts, but more its order of magnitude.

An important additional use that can be made of the
volume Vn lies in the area of validating the integer am-
biguities. Once v2 has been computed based on a chosen
value for Vn, one can use the Chi-square (or F-) distri-
bution to ®nd the corresponding a-percentage point. If it
then turns out that a is too large, one may conclude that
validation of the integer ambiguities will become prob-
lematic. This approach was used in the analytical study
in Teunissen (1996). The advantage of using the volume
Vn in this context of validation is that it can already be
used at the designing stage to infer whether one is likely
to have a successful validation or not.

Finally, an alternative approach to set the value of v2

at an appropriate level for the search is one that makes
use of the observed data. Hence it cannot be used at the
design stage. The idea is simply the following. Round
each of the entries of â to their nearest integer, substitute
the so-obtained integer vector for a into the ®rst sum of
squares of Eq. (10) and then take v2 to be equal to the
value of the sum of squares. This approach ensures that
the ambiguity search space will contain at least one grid
point. Of course, there is a possible disadvantage to this
approach, namely that the value for v2 may be overly
conservative. This will especially be the case when the
ambiguities are highly correlated and their ambiguity
search space is highly elongated, as is the case when DD
ambiguities are used based on short observation time
span data. Hence one should not use this approach for
the original DD ambiguity search space. It works much
better, however, when used for the transformed ambi-
guity search space. In fact, for validation purposes
where usually the most likely and second most likely
integer vector is needed, the same idea can be used to set
v2 to a value that guarantees that a minimum of two grid
points are located inside the search space. In this case,
one grid point is obtained by rounding all entries of ẑ to
their nearest integer and another grid point is obtained
by rounding one of the entries of ẑ to its second nearest
integer, while the remaining entries are rounded to their
®rst nearest integer. The value of v2 is then taken to be
equal to the larger of the two values the sum of squares
of Eq. (10) takes for the two grid points. The reason why
this approach works for the transformed ambiguities is,
as will be shown in Sect. 3.3, due to the following two
properties. Firstly, the shape of the transformed ambi-
guity search space is much closer to that of an n-sphere
than the shape of the original DD search space. Sec-
ondly, the individual transformed ambiguities are also
much more precise than the original ones.

Figure 2 shows two cases where the volume of the
ambiguity search space has been computed following the
preceding principle. The ®rst case holds for the trans-
formed ambiguity search space, whereas the second
holds for the original ambiguity search space. From the

real-valued least-squares estimate of the transformed
ambiguities, ẑ, the following �n� 1� integer vectors were
obtained: the integer vector which has as its entries the
integers nearest to the corresponding entries of ẑ, and
the n integer vectors one gets when rounding all entries
of ẑ but one to the nearest integer; the remaining entry
being rounded to the next nearest integer. Each of these
�n� 1� integer vectors were substituted for z into the
second sum of squares of Eq. (10) and the corresponding
value of the sum of squares was then used to compute
the �n� 1� volume values.

Thus we now have the volumes of �n� 1� trans-
formed ambiguity search spaces of which it is guaranteed
that each one contains minimally one grid point. The
sequence of �n� 1� volumes ± sorted in increasing order
± are shown for ten experiments in Fig. 2a. The data used
for these ten experiments are the same as used for Fig. 1.
Figure 2a shows that the second smallest volume ± the
one that guarantees at least two integer candidates ± is

Fig. 2a, b. Volume of a transformed and b original DD ambiguity
search space for k � 1; . . . ; �n� 1� rounded integer vectors
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smaller than ten. This, together with the results of Fig. 1,
shows that the actual number of grid points inside this
search space is less than twenty. Hence, we have indeed
been able to set the size of the ambiguity search space at
not too a high level, while at the same time making sure
that the search space contains at least two grid points.
Figure 2b shows the case where the same procedure was
followed, but now for the original ambiguity search
space. It will be clear from these results that in this case
the procedure has no chance of success whatsoever. With
the original DD ambiguities, the volume values become
too large for a reasonable search space.

2.2 On the discontinuity in the DD spectrum

The elongated shape of the DD ambiguity search space
is also a hindrance for the computation of the integer
least-squares estimates of the DD ambiguities. In the
introduction, we already mentioned that the bottleneck
in solving the integer least-squares problem, Eq. (2), lies
in the di�culty one has in e�ciently solving the
minimization problem

min
ai2Z

Xn

i�1
�âijI ÿ ai�2=r2âijI �15�

In order to understand this di�culty properly, we will
show what happens when Eq. (15) is solved in the same
way as we proposed to solve its transformed expression,
Eq. (5). Therefore, in analogy with Eq. (6), we start from
the DD ambiguity search spaceXn

i�1
�âijI ÿ ai�2=r2âijI � v2 �16�

and use, in analogy with Eq. (7), the following n-number
of search bounds

�â1 ÿ a1�2 � r2â1v
2

�â2j1 ÿ a2�2 � r2â2j1v
2 1ÿ �â1 ÿ a1�2=r2â1v2
� �

�
�

�ânjN ÿ an�2 � r2ânjN v2 1ÿ
Xnÿ1
j�1
�âjjJ ÿ aj�2=r2âjjJ v

2

 !

8>>>>>>>>>>><>>>>>>>>>>>:
�17�

Now, consider the number of integer candidate vectors
that progressively satisfy the given bounds. For that
purpose, we introduce the concept of the j-level
ambiguity search space or the partial ambiguity search
space of level j which is de®ned asXj

i�1
�âijI ÿ ai�2=r2âijI � v2 �18�

Note that the integer minimizers of the left side of this
inequality are identical to the integer minimizers of

Eq. (15), provided that the last �nÿ j� ambiguities in
Eq. (15) are relaxed to be real numbers instead of
integers. Also note that the partial search space Eq. (18)
is described by the ®rst j bounds in Eq. (17). For our
purpose, it is now of interest to consider the number of
integer vectors that satisfy the inequality of Eq. (18),
when the level j is changed from 1 up to and including n.
The relevance of this information is that it gives an
indication on how well the search for the integer least-
squares solution will perform. For instance, if the
number of integer candidate vectors decreased as the
level j increases, then, for a number of integer candidate
vectors �a1; . . . ; aj�� at level j, no integer aj�1 could be
found such that �a1; . . . ; aj; aj�1�� is an integer candidate
vector at level j� 1.

To illustrate the situation, a typical GPS example was
taken, based on dual-frequency data for a single baseline
using carrier phases only. Seven satellites were observed
over an observational time span of only 1 s (two epochs
of observation), with the a priori standard deviation of
the L1 and L2 carrier phases set at r � 3mm and the
constant v2 chosen equal to 100. The dashed curve of
Fig. 3 shows the number of integer candidates as func-
tion of the level j. The number of integer candidates can
be read from the vertical axis at the left. Note its loga-
rithmic scale. We observe that the dashed curve in-
creases from level 1, reaches its maximum at level 3, and
from then on strictly decreases. It ®nally reaches the
value of 966, which equals the number of integer vectors
(or grid points) that are located inside the ambiguity
search space of Eq. (16). The behaviour shown here is
highly typical and prevails when one works with GPS
DD ambiguities which are based on very short obser-
vation time span data. A direct consequence of the sharp
decrease in function value when going from level 3 to
level 4, is that the search for the integer least-squares
solution of the DD ambiguities will su�er from a high
likelihood of halting. By halting we mean that the search
cannot be continued, as no integer satis®es the bounds
of Eq. (17) for the next level.

Fig. 3. Number of integer candidate vectors per level j (dashed curve)
and the corresponding spectrum of DD ambiguity conditional
standard deviations in cycles (full curve)
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In order to understand the reason for this ine�cien-
cy, we need to understand why the dashed curve of Fig. 3
exhibits this typical behaviour. Consider therefore the
individual bounds of Eq. (17). Each one of these bounds
generally admits less integer candidates the tighter the
bounds are. It follows from Eq. (17) that these bounds
depend, apart from the constant v2, on the conditional
least-squares ambiguity estimates âijI and their variances
r2âijI .

The bounds already have the natural tendency of
getting tighter with increasing level. For instance,
�1ÿPj

i�1�âijI ÿ ai�2=r2âijI v
2� will always get smaller as j

increases. Also, when we assume that all unconditional
variances are of the same order, the sequential condi-
tional variances tend to get smaller as more constraints
are imposed. This tendency is however inherent to the use
of the sequential conditional least-squares based bounds
of Eq. (17) and does not explain why the dashed curve of
Fig. 3 shows such a clear peak. Since the greater behav-
iour of the dashed curve in Fig. 3 is typical for all single-
baseline solutions, it has to be due to the model-driven,
GPS-based characteristics of the sequential conditional
variances Teunissen et al. (1994). For the same con®gu-
ration, we computed the sequential conditional standard
deviations of the twelve ambiguities, shown in Fig. 3 as
the full curve. The values taken by the conditional stan-
dard deviations can be read from the vertical axis on the
right. Again note the logarithmic scale.

The shape of the curves in Fig. 3, now allows us to
explain why the number of integer candidate vectors
increases from level 1 to level 3 and why it decreases
when level 3 is passed. The ®gure shows three very large
conditional standard deviations at the beginning and
then nine extremely small ones. The discontinuity cor-
responds with the peak of the dashed curve. Because of
the fact that the ®rst three conditional standard devia-
tions are large, the ®rst three bounds of Eq. (17) will be
rather loose. Hence, the ®rst bound of Eq. (17) already
admits a very large number of integer candidates and
this number progressively increases until one hits level
four. After the third level, a sudden dramatic drop in
value of the conditional standard deviation is experi-
enced. The fourth and remaining conditional standard
deviations are all of about the same small order. Because
of this tremendous drop in value, the fourth and re-
maining bounds of Eq. (17) will all be very tight indeed.
Hence, of the many integer candidate vectors that sat-
is®ed the ®rst three bounds, a large number will not pass
the test of the fourth and remaining bounds. As a con-
sequence, search halting is experienced.

The shape of the curves shown in Fig. 3 is typical for
GPS short-baseline positioning and can be explained as
follows. Assume that three out of the n DD ambiguities
are known. The three DD phase observation equations
in which these three ambiguities appear then only have
left the three baseline components as unknowns. Hence,
these three equations form a system of three equations
in three unknowns. This system is uniquely solvable,
assuming that con®guration defects in the correspond-
ing relative receiver-satellite geometry are absent. Due

to the high precision of the three DD carrier-phase ob-
servables, the three baseline components are then de-
termined with a correspondingly high precision. Now
consider, for the same observation epoch, the remaining
�nÿ 3� DD phase observation equations. This set of
equations again constitutes a uniquely solvable system,
but now of �nÿ 3� equations with �nÿ 3� unknowns.
The unknowns are the remaining �nÿ 3� ambiguities
and the `observations' are linear combinations of the
remaining �nÿ 3� DD carrier phases and of the baseline
components determined from our earlier set of three
equations. Since these `observations' can be seen as be-
ing linear combinations of all n DD carrier phases, it
follows that the remaining �nÿ 3� DD ambiguities can
be determined with a very high precision indeed. The
conclusion is thus reached that the ambiguities can be
determined with a very high precision once three out of
the n ambiguities are known. This is precisely what is
seen in the shape of the spectrum of conditional vari-
ances. For instance, once we arrive at the fourth con-
ditional variance, the precision is considered of an
ambiguity which is conditioned on knowing the ®rst
three ambiguities. Note that the use in Hatch (1991) of
two groups of satellites, a primary group and a sec-
ondary group, is essentially based on a recognition of
the discontinuity in the spectrum of conditional vari-
ances already explained.

3 The spectra of the decorrelated ambiguities

It is important to understand that the discontinuity in
the spectrum of conditional variances is due to the fact
that the DD phase observation equations have been
parametrized in terms of one particular set of ambigu-
ities, namely the DD ambiguities. With the DD
ambiguities, one and only one ambiguity is assigned as
unknown parameter per observation equation. It is this
assignment which makes it possible to determine the
three-dimensional baseline with such a high precision
once only three ambiguities are assumed known. This
would generally not have been possible if more than one
ambiguity was assigned to the phase observation
equation. For instance, if we used a full ambiguity
transformation matrix Z�ÿ1 to reparametrize the DD
ambiguity vector a, by substituting a � Z�ÿ1z into the
system of DD phase observation equations, then
generally no three ambiguities from z could be found,
which would allow one to determine the baseline once
these ambiguities are assumed known. Thus, the shape
of the spectrum of the new ambiguities will generally be
quite di�erent from the shape as seen in the spectrum of
the DD ambiguities. This therefore gives the opportu-
nity to search for an ambiguity transformation which
allows one to mould the spectrum in an appropriate
shape. As discussed in Teunissen (1993, 1995a), this is
precisely what the ambiguity transformation does when
it aims at a decorrelation of ambiguities, thereby
removing the large di�erences between the conditional
variances of the ambiguities.
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In this section results will be presented that can
typically be achieved through the decorrelation of the
ambiguities. The transformed spectra will be shown and
compared to the original spectra. The ¯attening and
lowering of the spectra will be discussed and the impact
of di�erent measurement scenarios on the shape of the
transformed spectra will be explained. In particular, two
sets of cases will be treated. The ®rst set is discussed in
Sect. 3.1 and considers the impact of satellite redun-
dancy and the use of dual-frequency phase. The second
set is discussed in Sect. 3.2 and considers the impact of
the observation time span and the use of code (pseudo-
range) data.

3.1 The impact of satellite redundancy
and dual-frequency phase

In this section the impact of satellite redundancy and the
use of dual-frequency phase data on the original and
transformed spectrum of conditional variances is con-
sidered. It is well known that the use of more than four
satellites and the use of a second frequency has a very
favourable in¯uence on the ability to resolve the integer
ambiguities. In general, this can be understood by
referring to the increasing redundancy. For instance, if
�n� 1� satellites are observed then the redundancy
equals �nÿ 3� if two epochs of only single-frequency
phase data are used. This shows that every satellite

which is added to the minimum number four increases
the redundancy by one. In case of two epochs with dual-
frequency data, the redundancy equals �2nÿ 3�. In this
case, the redundancy is increased by two for every
satellite which is added.

An increase in redundancy implies a `stronger' model,
thereby allowing one to determine the unknown pa-
rameters with an improved precision. This, however, is a
general statement, and for our GPS applications is too
imprecise to enable us really to understand the impact of
redundancy. We shall therefore consider the spectrum of
conditional variances for both the original and trans-
formed ambiguities. In particular the bene®cial role of
redundancy for the level of the transformed spectrum
will be highlighted. Four cases will be considered. They
are
a. single frequency �L1�, no satellite redundancy �4sm�,
b. single frequency �L1�, with satellite redundancy �7sm�,
c. dual frequency �L1=L2�, no satellite redundancy �4sm�,
d. dual frequency �L1=L2�, with satellite redundancy
�7sm�.
The original and transformed spectra of these four

cases are shown in Fig. 4. These spectra are based on an
observation time span of only 1 s (two epochs of ob-
servation), with the a priori standard deviation of the
carrier phases set at r � 3mm. Only phase data were
used. Since we know that the determinant of the original
ambiguity variance-covariance matrix equals that of the
transformed variance-covariance matrix, and also that

Fig. 4a±d. Original and transformed
spectra of conditional standard devia-
tions in cycles. The sequential conditional
standard deviations of the original DD
ambiguities, râijI , are shown as black bars
and their counterparts in the transformed
spectrum, rẑijI , are shown as white bars.
a no redundancy, b satellite redundancy,
c dual frequency, d satellite redundancy
and dual frequency
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the determinant of the variance-covariance matrix
equals the product of all sequential conditional vari-
ances, we have the equality

P
n

i�1
râijI � P

n

i�1
rẑijI (cycles n� �19�

Thus we have as a rule, because of the logarithmic scale
along the vertical axis, that the sum of the areas of the
black bars equals the sum of the areas of the white bars.

Let us now start our discussion of Fig. 4. Part a is
based on single-frequency data and four satellites.
Hence there are three ambiguities and redundancy is
absent. Due to the absence of redundancy, all three
conditional standard deviations of both spectra are
quite large. The values of the conditional standard de-
viations of the transformed ambiguities start at a much
lower level and increase, instead of decrease.

When three satellites are added to the con®guration,
we obtain Fig. 4b. The number of ambiguities has in-
creased from three to six. The inclusion of satellite re-
dundancy has two e�ects on the spectrum of DD
ambiguities. First we note a general improvement in
precision of the original three DD ambiguities. The ®rst
conditional standard deviation, râijI for i � 1, is actually
an unconditional standard deviation and its value is
representative for the precision of the DD ambiguities.
Its value is signi®cantly smaller than its counterpart of
Fig. 4a. The amount by which the precision of the
original three DD ambiguities improves depends on the
relative receiver-satellite geometry of the seven-satellite
con®guration. For instance, the improvement will be
large when the additional three satellites are close to the
original four satellites. A second consequences of in-
cluding three additional satellites is that the spectrum
now contains three conditional standard deviations that
are very much smaller than the ®rst three. This is the
discontinuity in the spectrum, which was explained
earlier in Sect. 2.2. It is the presence of this discontinuity
and thereby the presence of satellite redundancy, that
has a very favourable in¯uence on the transformed
spectrum. Note, that the transformed spectrum is quite
¯at and that its level is dramatically lower than the large
conditional standard deviations of the original spec-
trum. The conditional standard deviations of the
transformed ambiguities are all in the order of a few
cycles. The low level of the transformed spectrum can be
explained as follows. By aiming at decorrelation, the
ambiguity transformation Z� tries to lower the large
conditional standard deviations. However, since the
condition Eq. (19) holds true, large conditional standard
deviations in the spectrum can only be lowered signi®-
cantly if the spectrum already contains some very small
conditional standard deviations. We thus see that it is
the presence of the three very small conditional standard
deviations in the spectrum of Fig. 4b that allows us to
push the three large ones to a much lower level.

When the second frequency L2 is added to the con-
®guration, which formed the basis of Fig. 4a, we obtain
Fig. 4c. The number of ambiguities has now been dou-
bled from three to six. Quite similar to the case when

satellite redundancy was added, two e�ects can be seen
on the spectrum of DD ambiguities. The precision of the
DD ambiguities has improved and again a discontinuity
in the spectrum appears. Note that the signature of the
®rst three DD conditional standard deviations of Fig. 4c
is identical to the one of Fig. 4a. This is of course due to
the fact that both cases are based on an identical rela-
tive-satellite geometry. The presence of the three very
small conditional standard deviations again allows us to
¯atten and lower the spectrum. The conditional stan-
dard deviations of the transformed ambiguities are now
of the order of a few cycles.

When both dual frequency and satellite redundancy
are used we obtain Fig. 4d. The number of ambiguities
now equals twelve. The signature of the ®rst six DD
conditional standard deviations is identical to that of
Fig. 4b. This is due to the fact that both cases are based
on the same relative receiver-satellite geometry. The
precision of the ambiguities has improved however, due
to the additional redundancy. Again we note a large
drop in value in the original spectrum when moving
from the third to the fourth conditional standard devi-
ation. In the present case however, we now have, when
compared to cases b and c of Fig. 4, six additional very
small conditional standard deviations. This therefore
allows us to push down the level of the transformed
spectrum even further. The conditional standard devia-
tions of the transformed ambiguities are now at the very
low level of a few tenths of a cycle.

3.2 The impact of the observation time span and code data

In the previous section the relevance for the transformed
spectrum, of satellite redundancy and of using dual-
frequency data has been shown. Through this type of
redundancy, we obtain very small conditional variances,
which allows us to bring the transformed spectrum to a
dramatically lower level than the original spectrum. As a
result, the e�ciency in the search for the integer least-
squares solution is greatly enhanced. There are of course
other means of improving the precision of the ambigu-
ities. In this section we will therefore show what the
impact is of the observation time span and of the use of
code (pseudo-range) data. We will also consider the
e�ect of using widelaning. The idea behind the use of
widelane ambiguities is in some sense similar to the idea
of using the ambiguity transformation Z�, see Teunissen
(1995b). Four cases will be considered; they are all based
on the use of dual-frequency phase, observing seven
satellites, using only two epochs of observation. The
four cases are

a. Dt � 1 s, phase only,
b. Dt � 60 s, phase only,
c. Dt � 1 s, code included,
d. Dt � 1 s, phase only, but widelaning.

The ®rst case is shown in Fig. 5a. It is identical to
Fig. 4d and will be used as our reference. Figure 5b
shows the situation when the observation time span
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equals 60 s instead of only 1 s. Since only two epochs of
observation are used, the redundancy for this case is
identical to that of Fig. 5a. The two cases di�er however
in their relative receiver-satellite geometry. The discon-
tinuity in the DD spectrum of Fig. 5b is still present, but
it is already somewhat smaller than that of Fig. 5a.
When compared to the DD spectrum of Fig. 5a, the
three large conditional standard deviations of the DD
spectrum of Fig. 5b have all been pushed to lower val-
ues. The smaller discontinuity in the DD spectrum im-
plies that the search will be less likely to halt. All the
same, a signi®cant improvement can be reached by
means of the transformed spectrum. The discontinuity
has disappeared and the transformed conditional stan-
dard deviations are now all less than 0.1 cycle. This level
is also lower than the level of the transformed spectrum
of Fig. 5a.

In the DD spectrum of Fig. 5b, the ®rst three con-
ditional standard deviations are smaller than their
counterparts of Fig. 5a. Note, however, that the nine
very small conditional standard deviations have hardly
changed at all. We thus see that an extension of the
observational time span has a major e�ect on the ®rst
three conditional standard deviations, but only a small
e�ect on the remaining nine conditional standard devi-
ations. In some way this must have to do with the rel-
ative receiver-satellite geometry. In order to understand
this properly, one needs to make a clear distinction be-
tween, on the one hand, the instantaneous receiver-

satellite geometry at one single epoch and, on the other,
the change in receiver-satellite geometry from epoch to
epoch. The precision with which the ambiguities can be
estimated is very much dependent on the amount of
change that takes place in the receiver-satellite geome-
try. In fact, least-squares ambiguity estimation, based on
phase data only, is impossible when only one epoch of
observation is used. Thus, the ambiguity precision is
poor when the change in geometry is small, and preci-
sion improves the larger the change. This explains why
the ®rst three conditional standard deviations of the DD
spectrum of Fig. 5b are smaller than their counterparts
in Fig. 5a. The situation for the remaining nine condi-
tional standard deviations is quite di�erent however. In
this case, it is not so much the change in geometry that
counts, but the instantaneous geometry itself. Remem-
ber from our earlier discussion that once three DD
ambiguities are known, the remaining DD ambiguities
can be estimated with a very high precision, using only
one epoch of phase data. The instantaneous receiver-
satellite geometries of the two cases, (a) and (b), do not
di�er signi®cantly, neither do their nine small DD con-
ditional standard deviations.

If dual-frequency code data are added to the dual-
frequency phase data of Fig. 5a, Fig. 5c is obtained. The
standard deviation of the code observations was set at
r � 60 cm. Note that a signi®cant improvement can be
obtained through the transformed spectrum. Also note
that the spectra of Fig. 5c resemble those of Fig. 5b. The

Fig. 5a±d. Original and transformed
spectra of conditional standard devia-
tions in cycles. a L1=L2 phase, Dt � 1 s;
b L1=L2 phase, Dt � 60 s; c L1=L2 phase
�code, Dt � 1 s; d widelane phase,
Dt � 1 s
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explanation di�ers however. The ®rst three DD condi-
tional standard deviations of Fig. 5b are smaller than
their counterparts of Fig. 5a, because of the fact that
they are based on a more signi®cant change in receiver-
satellite geometry. In the case of Fig. 5c however, it is
not the change in geometry that counts, but the com-
bination of the instantaneous geometry and the preci-
sion of the code data. Using code data of higher
precision would lower the values of the ®rst three DD
conditional standard deviations. Also the level of the
transformed spectrum would then be lower. If in the
limiting case one worked with perfectly known code
data, then all conditional standard deviations would be
of the order of the precision of phase divided by the
wavelength.

The data used for Fig. 5d, is identical to the data used
for Fig. 5a. In case of Fig. 5d however, the dual-fre-
quency phase data were used to form the so-called
widelane linear combinations, see Melbourne (1985),
Blewitt (1989), Dong and Bock (1989), WuÈ bbena (1991),
Euler and Landau (1992), Cocard and Geiger (1992),
Goad (1992) and Teunissen (1995b). As a result, six
widelane ambiguities are obtained, instead of the twelve
original DD ambiguities. The common rationale behind
using the widelane combination is that it has a longer
wavelength. One can therefore expect that the widelane
ambiguity can be estimated with a precision better than
that of the original DD ambiguities. This is also re¯ected
in the widelane spectrum of Fig. 5d. Of course, the
widelane ambiguities can also be transformed by means
of a decorrelating ambiguity transformation. In the
analytical study of Teunissen (1996), it is shown that the
widelane ambiguities often appear in the ®rst step when
constructing the decorrelating ambiguity transformation
Z�. The transformed conditional standard deviations are
shown in Fig. 5d and they are all of the order of 1 cycle.
Note, that they are all clearly larger than the trans-
formed conditional standard deviations of Fig. 5a. This
is caused by the fact that in the widelane case only three
small conditional standard deviations can be used to
pull the larger values down. We may therefore conclude
that no advantage is gained from working with the
widelane ambiguities. Transforming the original L1=L2
DD dual-frequency ambiguities gives a better result.

In order to show that the use of the transformed
ambiguities indeed allows one to improve signi®cantly
on the search for the integer ambiguities, two examples
are given, each showing the number of grid points per
partial search space. The two examples are based on the
two preceding cases (a) and (c). Figure 6a shows the
dual-frequency, phase-only case and Fig. 6b the dual-
frequency case with code data included. For both cases,
the same level of signi®cance was used to set the size of
the ambiguity search space. In both cases we clearly see
the peak at level 3 (dashed curve), when the original DD
ambiguities are used. This peak is completely absent,
however, when the transformed ambiguities are used
(full curve). Due to the much higher precision of the
transformed ambiguities, this curve starts from a lower
value and gradually increases (Fig. 6a) or stays constant
(Fig. 6b). Per case, the dashed and full curve meet of
course at level n, because although the original and
transformed ambiguity search spaces di�er in shape,
they still contain the same number of grid points.

3.3 The statistics of the decorrelated ambiguities

In this section we will discuss the precision, râ and rẑ,
the elongation, eâ and eẑ, and the decorrelation, râ and
rẑ, of both the original and transformed ambiguities.
Results will be given for all seven cases treated in the
previous two sections. Elongation is a dimensionless
quantity which measures the shape of the ambiguity
search space. It equals the square root of the condition
number of the ambiguity variance-covariance matrix.
Hence, it equals the square root of the ratio of the
largest and the smallest eigenvalue of the ambiguity
variance-covariance matrix. Elongation is at its mini-
mum when it equals one. In that case, the ambiguity
search space becomes a perfect n-sphere. Statistically,
the elongation can be interpreted as the ratio of two
standard deviations; the standard deviation of the linear
function of ambiguities having poorest precision, divid-
ed by the standard deviation of the linear function of
ambiguities having the best possible precision.

In two dimensions, decorrelation is measured by the
square root of r2 � 1ÿ q2, with q being the dimen-

Fig. 6a, b. Number of integer candidate vectors per level
j, for the original DD ambiguities (dashed curve) and the
transformed ambiguities (full curve). a L1=L2 phase only,
b L1=L2 phase� code
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sionless correlation coe�cient. Since 1ÿ q2 equals the
determinant of the ambiguity correlation matrix R, jRj,
the decorrelation will be measured in dimensions higher
than two, by the square root of the determinant. A full
decorrelation corresponds then to r � 1 and a poor
decorrelation with a value close to zero. Geometrically,
the decorrelation number r can be given the following
useful interpretation. Since jRj equals the determinant of
the variance-covariance matrix, divided by the product
of variances, r equals the ratio of the volumes of two n-
boxes. The numerator of this ratio equals the volume of
the n-box that encloses the ambiguity search space and
which has its sides parallel to the principal axes of the
search space. The denominator equals the volume of an
n-box that encloses the ambiguity search space, but now
one which has its sides parallel to the grid axes. It will be
clear that a full decorrelation is achieved when these two
n-boxes coincide. The results for the seven cases are
shown in Table 1. These results clearly show that the
precision, the elongation and the decorrelation have
improved considerably in all cases. The seven cases have
been divided into three groups. This grouping has been
done according to the number of very small conditional
variances contained in the original spectrum. The ®rst
group consists of one case which fails to have small
conditional variances in the original spectrum. The
second group consists of three cases, all of which have
three small conditional variances in the original spec-
trum. The third group again consists of three cases, but
now all have nine small conditional variances in their
original spectrum.

The precision of the DD ambiguities of the ®rst case
is the poorest of all cases. This is due to the absence of
redundancy. The precision of the transformed ambigu-
ities is considerably better. When compared to the other
cases, however, it is still at a poor level. This is due to the
absence of the small conditional variances in the DD
spectrum. For the elongation, we also note a consider-
able improvement in all cases. Since the elongation has
been made smaller, the transformed ambiguity search
space is more `sphere-like' than the original ambiguity
search space. Note that the elongations of all trans-
formed search spaces are of about the same order. This
is not true however for the original search spaces. The
elongation of the original search space of the ®rst case
for instance is much smaller than the elongations of the
other six cases. This can also be explained by the ab-
sence of redundancy. Due to this absence, no functions
of the least-squares DD ambiguities can be found which

have an extremely high precision. Hence, also the
smallest eigenvalue of the ambiguity variance-covari-
ance matrix, the denominator in e2â � kmax=kmin, will not
be so small as to push eâ to very high values.

In the second group, all three cases have three very
small conditional variances in their original spectrum.
Note the dramatic improvement in precision of the
transformed ambiguities. In all three cases, the precision
is of the order of a few cycles only. The precision of the
original ambiguities, however, di�ers greatly between
the three cases. When we compare the second with the
®rst case in this group, we note that satellite redundancy
has a more favourable e�ect on the precision of the DD
ambiguities than the redundancy coming from the use of
a second frequency. Similarly, when we compare the
third case with the second, we observe that the use of
phase with a longer wavelength improves upon the
precision of the original ambiguities. The shape of all
three original search spaces is very far from being
`sphere-like'. This is due to the fact that redundancy
allows one to ®nd functions of the original ambiguities
that have a very high precision.

In the third group, all three cases have nine very
small conditional variances in their original spectrum.
Again note the improvement in precision of the trans-
formed ambiguities. In all three cases, the precision is
now of the order of a few tenths of a cycle. When
compared to the three cases of the second group, this
improved level of precision is due to the additional six
very small conditional variances of the original spec-
trum. Within this third group, the precision and elon-
gation of the original ambiguities of the ®rst case are
considerably worse than those of the second and the
third case. This is due to the very small change in time of
the relative receiver-satellite geometry. This change is
larger for the second case and it has, due to inclusion of
code data, almost no e�ect on the third case. In order to
understand the link between decorrelation and precision
improvement, consider the ratio of rẑ and râ. Since the
determinant of the ambiguity variance-covariance ma-
trix is invariant under the ambiguity transformation Z�,
this ratio equals the product of the ratios
râi=rẑi ; i � 1; . . . ; n. This link also shows that the preci-
sion improvement of the ambiguities implies an im-
provement in the correlation coe�cient between pairs of
ambiguities and vice versa. This is shown in Fig. 7 for
the ®rst and third case of group three of Table 1. Shown
are the histograms of the absolute values of the sixty-six
original (white bars) and transformed (black bars)

Table 1. Precision �râ; rẑ in cycles), elongation �eâ; eẑ� and decorrelation �ÿ log10 râ;ÿ log10 rẑ� of original and transformed ambiguities

minrâ maxrâ minrẑ maxrẑ eâ eẑ ÿ log10 râ ÿ log10 rẑ

L1; 4sv; 1 s 213.8 641.6 88.3 384.3 42 4.4 1.3 0.002
L1=L2; 4sv; 1 s 117.8 453.7 0.9 3.5 58120 5.0 13.4 0.192
L1; 7sv; 1 s 98.1 285.7 2.0 2.7 23300 2.4 11.5 0.225
widelane, 7sv; 1 s 15.3 44.6 0.9 1.2 2870 3.1 8.8 0.259
L1=L2; 7sv; 1 s 54.1 202.0 0.2 0.3 26800 5.5 33.6 1.000
L1=L2; 7sv; 60 s 0.9 3.3 0.1 0.1 445 5.1 17.6 0.928
L1=L2; 7sv; 1 s, code 1.1 3.1 0.1 0.1 467 6.8 17.7 0.951
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correlation coe�cients. It is clear that the ambiguity
transformation has indeed succeeded in pushing the
largest (in absolute value) correlation coe�cients down
to much lower values.

4 Discussion

In our implementation, the construction of the decor-
relating ambiguity transformation and the actual search
for the integer least-squares ambiguities are intimately
linked through the sequential conditional least-squares
adjustment. However, if so desired, one can use di�erent
search procedures. Instead of applying it to the original
DD ambiguities, it should then be applied to the
transformed ambiguities. In fact, since the transformed
ambiguities are generally of a very high precision, a
simple rounding to the nearest integer of their real-
valued least-squares estimates often already gives the
correct integer least-squares solution. Here however, a
word of caution is in order. Due to correlation that still
may exist between the transformed ambiguities, it is not
guaranteed that the simple scheme of `rounding to the
nearest integer' will always produce the desired integer
least-squares solution.

It is remarked that the decorrelating ambiguity
transformation is completely determined by the vari-
ance-covariance matrix of the ambiguities. Even the a
posteriori variance factor need not be known. This
shows that actual measurements are not needed for the
decorrelation and that the construction of the ambiguity
transformation can commence in principle prior to the
actual measurement stage. This is particularly relevant
for kinematic positioning and navigation applications.
Also, since the relative receiver-satellite geometry will
not change too much over small periods of time, the
ambiguity transformation computed for one period will
be a good approximation to the ambiguity transforma-
tion belonging to a neighbouring period. In this way,
`old' ambiguity transformations can be used as `predic-
tors' for `new' ambiguity transformations.

In this contribution, we have restricted our perfor-
mance study to the `standard' model used for short-
baseline applications. The method, however, is generally
applicable. Its use is not restricted to the single- baseline
case and can also be applied when additional parameters
are estimated. The method is also applicable to cases
where the relative receiver-satellite geometry is not used;
that is, for cases where code data are used directly to-
gether with phase data to determine the integer ambi-
guities, see Hatch (1982), Euler and Goad (1990) and
Euler and Hatch (1994). An analytically based study for
this case is given in Teunissen (1996). This study also
gives the appropriate decorrelating ambiguity transfor-
mations for varying levels of precision of the code and
phase measurements.

At present, it is common practice to use longer ob-
servation time spans for long baselines. With longer
observation time spans, the gain in baseline precision
experienced by resolving phase ambiguities gets smaller
but is still signi®cant. Furthermore, other parameters of
interest, see e.g. Mervart (1995), may be estimated more
precisely by the ambiguity resolution. Hence, if these
parameters are of interest, integer ambiguity estimation
remains a valuable option, so as to determine these
parameters with the best possible precision.

5 Conclusion

In this contribution, the performance of the least-squares
ambiguity decorrelation adjustment method has been
presented and discussed. The cause of the poor perfor-
mance for the search of the DD ambiguities has been
explained. We have shown that the method is capable of
dramatically improving the integer cycle ambiguity
estimation. (Information on the LAMBDA method
can be found also on Internet: http://www.geo.tud-
elft.nl/mgp/lambda/. The computer code and a detailed
description of the implementation are available.)
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