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number of utility-scale PV farms is currently fastreasing globally, with planned capacities ineseof
several hundred megawatts. This makes the cosV-afeerated electricity quickly plummet and reach
parity with non-renewable resources. However, likany other renewable energy sources, PV power

depends highly on weather conditions. This paiiéty makes PV energy difficult to dispatch unless
properly sized and controlled energy storage sy$E®U) is used. An accurate power forecasting ntetho
is then required to ensure power continuity bub &dsmanage the ramp rates of the overall poweesys

In order to perform these actions, the forecastimgframe also called horizon must be first defined
according to the grid operation that is consider€dis leads to define both spatial and temporal
resolutions. As a second step, an adequate sofimmpud data must be selected. As a third stepjrtpet
data must be processed with statistical methodsullij the processed data are fed to a precise &&m

It is found that forecasting the irradiance and ¢k# temperature are the best approaches to ffreca
precisely swift PV power fluctuations due to theutl cover. A combination of several sources of inpu
data like satellite and land-based sky imaging kdlad to the best results for very-short term fastiag.
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1. Introduction

Solar power is globally underexploited whereasshe can be seen as a
giant natural fusion nuclear reactor [1] that pded the Earth with far
more energy that the human kind needs [2][3] of mibst probably ever
need in the future [4]. Moreover, solar energyhe targest renewable
energy resource available on our planet as wethassource of other
resources like wind energy [5]. It is even reporteat as the first energy
input of the planet, it exceeds the second largaestgy resource by a
factor 104 [6]. As a gigantic power plant, the Sasically does not need
any maintenance nor any fuel supply. Additionatlye waste resulting
from its activity does not need to be processed @oes not pose any
environmental threat. Also, the Sun will continoesend a steady quantity
of solar energy to the surface of the Earth foeagal of time far beyond
the scale of human history. Yet, there is an urgerd for humanity to
develop as soon as possible sustainable gas emidste power
resources, for both economic and environmentaloreasindeed, fossil
fuels are becoming increasingly rare and expendiWereover, their

extensive use over the two past centuries has élacsignificant global
climate change [7].

PV generation is advantageous and valuable in warinarkets, as its
peak generation matches with the timeframe of hidgbed demand. M.
Morjaria et al.[8] mention that the cost of PV generation hasifitantly
plummeted, increasing greatly the competitivendsB\6 power. These
authors have even seen that PV-generated elegthes reached grid
parity in a large variety of markets, with a priequal or lower with
respect to electromechanical non-renewable elégtrids a result, the
number and the size of utility-scale PV farms hakgrocketed, as
mentioned by Manz et al. [9]. The latter authorsehaven reported that
some solar power plants are “planned to exceed raeveundred
megawatts of capacity.”

Nonetheless, as it may be perceived as an incensigsource, PV power
raises a grid integration concern [10] in particuae to the difficulty to
dispatch that energy. With time, this concern igtigg more and more
serious as the globally installed PV generatioraciyp is fast increasing,
reaching an estimated value close to 100 GW [11].
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Moreover, in terms of dynamics, PV plants’ respomsegrid system
disturbances conceptually differs from more tradisl synchronous
machines. It is however possible to improve ranip-cantrols along with
the ability to dispatch PV power through sophigtdacontrol algorithms.
An adequate control of PV power can also providegtid with a stable,
reliable and effective operation. Additionally, toanage the variable
generation of PV resources, grid operators needt-sfron forecasting
methods as well as some support from alternativenpemsatory
controllable resources. Indeed, the rapid progressincreasing accuracy
of short-term solar generation forecast guaranteaesinued efficient and
reliable system operations.

Yet, it is interesting to note that large capaditity-scale grid-connected
PV farms account for 38% of the overall PV generafil2]. PV farms
can also use tracking devices to optimize the Isareé solar energy.
Thus, such energy resources can be seen as a ip@ygion to achieve
an optimal penetration of PV power into the grithisTis why this study
focuses on large scale grid connected PV farms fighiiew also tries to
give an overview of all the tools needed to foretlas power of this type
of power plant.

Although forecasting PV power may seem straighivéod at first glance,
it must be noted that the dependence on weatheditzo s is an
important obstacle to tackle. Indeed, since thergemee of PV power
generation, the abundant and free solar energipédwes difficult to harvest
and to dispatch due to its entire dependency oertain and intermittent
solar radiance. The stochastic discontinuitiesusflight intensity during
the day create PV power fluctuations. Additionadlynlight is not always
available to harvest, as it is the case for ingasharing nighttime. Also,
changing climate conditions may result in changMgpower output. As
a result, the uncertainty of solar power makedfitcdlt to integrate into
the grid at a high penetration level. This can tvéngportant issue if solar
generation is to become a major source of enerdlyarfuture [9]. While
storing solar energy has long been seen as awoltdithis problem, a
precise forecast of the available energy is necgdsa the previously
mentioned control.

For the sake of simplicity, the solar radiancehia tomplete absence of
clouds in the atmosphere can be modelled analjticéhdeed, the
rotation of the Earth causes a daily disruptiontleé flux of extra-
terrestrial energy received by the top of the aphese. Additionally, the
tilt of the spin axis of our planet with respecttie Earth’'s plane of orbit
around the Sun makes the global horizontal irraganr the rate of total
incoming solar energy received on a unitary hotiabarea will be higher
in summer than in winter [13]. A unitary horizontalea is defined as
measuring 1 square kilometer located on a horitgéme at the Earth's
surface. This effect is more dramatic for regionsayafrom the equator, as
illustrated in Figure 1. Additionally, the incidenangle of the sunlight
when it goes through the atmosphere also playsjoitant role.

Nomenclature

G solar irradiance (W/f

t time (s)

RH relative humidity (%)

Lat latitude (degrees)

Wepeed wind speed (m/s)

Wairection  Wind direction (degrees)

Tamb ambient air temperature (degrees Celsius)

Besides those obstacles to a consistent harvesligtit intensity emitted
by the Sun varies on a regular basis, through nimgaetivity cycles. On
the other hand, it is not possible to model anedjty the intermittent
variations or disruptions of sunlight due to therifity suspended in the
atmosphere. Yet, the motion of clouds a dramatipaich on the
performance of a solar generator [14] and thus neduk forecasted to
avoid undesired issues and costs.

Due to changes in the cloud cover, it must be ntitatisome significant
drops in PV generated power output can occur,érréimge of up to 70%
in a matter of 5 seconds [12, 15]. This may resulepisodes of grid
instability if not properly compensated. The cossach weather-related
power outages is far from negligible. As an exampiehe comparable
case of wind generators, errors in power prediatmary cost up to 10% of
the income of selling the generated energy [16].

Power forecasting is a smart option to tackle thpssblems. This
approach can help to manage the ramp rate and ngintine of
compensatory systems to ensure both power continaitd low
operational costs. Diagne, Boland et al. (2013] [iake argued in that
sense, stating that an efficient integration ofwhgable energy output of
PV systems and a better quality service both reqair accurate and
reliable forecast of irradiance. Indeed, relialdee€ast information on the
solar resource is needed to adjust the power t@xpected load profile.
In other words, PV forecasting may help to bettanage the electrical of
the electrical balance between power generation eodsumption.
However, PV power forecasting is still relativescent. Such a forecast
requires to take many weather parameters into deraion. In
comparison, simpler wind power forecasting has bakeady better
studied during the past years and is at a morermatage of research. As
a result, PV power forecasting could inspire frone tmethodologies
already in use in wind power forecasting. This igeeaupported by Manz
et al., who state in [9] that “the integration afde-scale PV plants in the
transmission system can follow the successful mattehdy established
by wind integration, with the consequential impaicvariability treated in
the same manner. Consequently, the second settibis paper examines
the methodology used in wind power forecasting see how useful it
can be to PV power forecasting. The purpose of@e&is to supply the
reader with some information about the statistimathods that may be of
use for PV power forecasting. Section 4 compardswa popular PV
power forecasting methods. Section 5 presents tthgegy that may be
applied to model a PV Cell. This section startshvitie model of the
cell/module temperature, which is a critical stepthe overall PV model.
Section 6 put a stress on irradiance forecastiogsidering a sky free of
cloud as a first step and by taking clouds intooaot as a second step.
The cloud coverage of the sky and the cloud clasasibn are discussed in
section 7, along with their related image processirethods. In section 8,
mid-term PV output forecasting based on weathessdiaation is studied
while section 9 finally starts the actual topicvefy short term PV power
forecasting, considering and comparing various @ggres.

2. Methods used in the reference field of wind power
forecasting that can potentially be useful for PV power
forecasting

Solar power forecasting is relatively new and fahibd wind power
forecasting. Wind forecasting can consequently bkert as good
reference, as it has been further developed oeepakt years.
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Comprehensive reviews conducted by S.S. Soman €Gi0) [16] and
by S.M. Lawan et al. (2014) [18] both give a goocemiew of the
different horizons that are taken into account indiforecasting. Soman
et al. classified wind forecasting techniques idifferent categories
according to their temporal resolution as well azoading to their
approach. Some studies like the one conducted pyn&sind Hernandez
(2011) [19] have compared several approaches withiiious time scales
in order to define which method fitted the bestdach horizon. The paper
focuses on short (from 10 to 240 minutes) and g@grt term wind
forecasting using a statistical approach based opp@&t Vector
Regression (SVR).

A quick overview of the different time horizons femd speed and power
forecasting is given in Table 1 [16, 18]. Theseegaties are only a
popular set and not the sole classification uséditierature.

As illustrated in Table 1, the very short-term kori can also be called
nowcasting and ranges from a few seconds to 30tesrahead. It is the
shortest timeframe considered in prediction, usifuimmediate actions
like electricity market clearing and pricing. Onlittle literature is
available for the very-short term timeframe consiteboth wind and PV
power forecasting.

The actual short-term forecasting horizon is cosgai between 30
minutes and 6 hours ahead. This is the timefrared fr economic load
dispatch as 30 minutes is the usual timeframe fa gperations and
operating reserve. Most of the research relatedital forecasting has
been done in this time scale.

The medium-term horizon corresponds to a time sealging between 6
hours and 1 day whereas the long-term horizon elscéelay ahead.
These previously defined limits of forecasting terane however not strict
and may vary depending on the application of thelistion model. For
example, in the application field of meteorolodye US National Weather
Service considers 0 to 3 hours ahead forecastimpwasasting. For some
other agencies, forecasts up to six hours canbelsmlled nowcasting. In
particular, the National Oceanic and Atmospheric midstration
(NOAA) provides the following definition in the gisary of their website
[20]: “Nowcast: A short-term weather forecast, gatlg out to six hours
or less [...] also called a Short Term Forecast”, 18A@rm Forecast: A
product used to convey information regarding weathe hydrologic
events in the next few hours”, “Medium Range: Irefmsting, (generally)
three to seven days in advance”.

Besides various prediction time frames, severativeipeed and power
prediction models have already been used in s@iefiterature. The most
popular ones are listed in table 2 [16].

When using the persistence model, also known dsenaredictor’, it is
assumed that the physical quantity that is forechsthich is wind speed
and direction, as it happens, remains unchangeadgiartime increment
At. This means that for example the wind vectds the same at time At
as it was at time This approach thus implies a very strong cotiata
between present and future value. This predictioethod has been
reported to be the most accurate for very shom-temd short-term
forecasts. This approach is even commonly used é&tgarologists as a
reference benchmark tool to assess the performahamnother wind
forecasting method.

The persistence model can advantageously supplethentphysical
model, which is mainly elaborated using Numericaatther Prediction
(NWP). This approach consists in taking into coesition a detailed
physical description of the atmosphere. Indeedfuhee wind speed and
direction both strongly depend on other currentemetiogical quantities
such as ambient temperature, solar irradiance, spheoic pressure,

relative humidity, and dew point. The topology dfetterrain is also
considered when using a NWP for wind forecastingppses. Due to the
difficulty to gain live data and due to high cost8V/Ps are run only a few
times per day on powerful hardware resources, ustogplex
mathematical models commonly based on kinematisiphly equations.
Consequently, this model is not appropriate fomatre¢ly short-term
forecasting and is only accurate for medium and{emmm. This method
is thus suited for horizons exceeding 6 hoursetfggms best with time
scales comprised between 48 hours and 172 houaslahe

Statistical approaches consist in training a med#i measurement data
and in comparing the predicted values with thealatalues in immediate
past to fine-tune the parameters. These modelacaerate for relatively
short-term horizons. The two main subclasses apentively Time-series
based approaches and Artificial Neural Network (ANddsed methods.
Other statistical methods like fuzzy logic and denalgorithm can also
be used.

ANN models are powerful nonlinear data driven mdththat are easy to
model, inexpensive and less time consuming thaeratrethods. Rather
than being based on any predefined mathematicakinids based on
patterns. However, the accuracy of such prediatiadels quickly drops
as the time horizon is extended. Several variahtéenral Networks are
used like feed-forward neural networks (FNNSs), iFalfer perceptrons
(MLP), recurrent neural networks (RNNs) and timéageeural networks
(TDNN) to name a few. More details are given intlegt section.
Furthermore, some additional artificial intelligen€Al) techniques can
also be successfully applied for short-term préulst, like for example
genetic algorithms (GA), fuzzy logic, Markov chaiipC), etc.

Time series based forecasting methods have begnpegular for wind
prediction in the past years. The most commonlyl usedel is the Auto-
Regressive Moving Average (ARMA), which is an impement of the
regular predictive auto-regressive method (AR). Ewesv, this method
can only be used for stationary time series. Séwendations exist like
Auto-Regressive Integrated Moving Average (ARIMAnda Auto-
Regressive Moving Average with exogenous inputs NAX). The
coupled autoregressive and dynamical system (CARDS&Jso a popular
method. Other models like Bayesian Model AveradiBiglA) or Support
Vector Regression (SVR) [19] are also applied.

Model performance is often assessed by the meaR®a@f Mean Square
Error (or deviation) (RMSE), normalized (or stardiaed or even
relative) Root Mean Square Error (nRMSE or rRMSHgan Absolute
Error (MBA) or Mean Bias Error (MBE) or other means

The root mean square error (RMSE) and normalized meean square
error (hRMSE) are commonly used to evaluate théopaance of an
approach. If we consider the number N of samplegh terrors are
respectively defined by equations 1 and 2 [21]:

N
RMSE= \/% > (forecast measuremejt 1)

i=1

N
1 > (forecast measuremejt

nRMSEz\/ =

N
=" measuremen @
N =

The nRMSE equals the RMSE divided by the rangéefvariable that is
measured. The nRMSE is usually expressed as arpages
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The mean bias error (MBE) and mean absolute ei#E) are other

statistical quantities used to measure how closecésts or predictions
are to the eventual outcomes.

The MBE is an average of the algebraic errors wiile MAE is an

average of the absolute errors. Both are respégtgreen by equations
(3) and (4):

l N

MBE = NZ(forecast— measureme) (©)
i=1
1 N

MAE = NZ\forecast measureme @)

i=1

Additionally, it is also common practice to combidiéerent approaches,
like mixing physical and statistical approachesexample, or to combine
different horizons, such as short-term and mediemm-for instance. Such
combinations are referred to as hybrid methodsaamdat optimizing the
short-term prediction values. Indeed, many reseaschse a combination
of methods and all indicate that hybrid methodperiorm the individual
methods [17]. Amongst the many possible combinatiomxing together
NNs and fuzzy logic leads to the popular approatchdapted Neuron
Fuzzy Inference (ANFIS). Another popular technigaensists in
correlating the wind speeds at different sites.

All the discussed time scales and methods are\abd for PV power
forecasting. Indeed, wind speed and direction & factor amongst other
meteorological quantities that greatly influences tprediction of PV
power. As a matter of fact, a fast frontal wind nmepl down the cell
temperature within a PV array, which in turn in@esthe voltage output
and by extension also the power output.

Summary: Although the following considerations are validr fwind
power forecasting, they can also be used as almed®r solar power
forecasting, which is more complex since more \deis are taken into
account. As a first step, the forecasting horizodefined according to the
grid operation. Secondly, an approach is choserthenbasis of the
horizon. Wind power forecasting studies show tha fpersistence
approach is the best for very short-term horiz@rsthe other hand, time-
series and ANN-based approaches are only reliabteshort term
horizons. NWPs, for their part, prove to be onlgwate for medium to
long horizons.

3. Complementary information on statistical methods for
PV Forecasting

Tools like neural networks (NNs) are very effectieedeal with non-
linear systems. Specific types of NNs are commashid [2]:

« Expert Systems (ES)

« Artificial Neural Network (ANN)

* Genetic Algorithm (GA)

* Fuzzy Logic (FL)

« Computer Vision (CV)

¢ Hybrid Systems (HS)

« Many other methods

ESs interpret data to deal with knowledge procesaimd make decisions

for complex problems.

Genetic Algorithms utilize a fixed-sized populatioantaining individual
possible solutions to a given problem, which evoinetime. Genetic
operators such as selection, crossover and mutatien applied to
eliminate the poorest solutions and create newtisalsl from selected
existing ones. These algorithms are very populanachine learning.
ANNSs are based on the emulation of a biologicailnbié has the capacity
to be trained and to learn. The architecture ctngismultiple layers of
interconnected artificial neurons. The neurons comipate through
synapses. Each artificial neuron (AN) comparesrthmputs with a
threshold value to produce an output. The weigheaxth input can be
adjusted during a preliminary learning phase [Zje ANNs support
both supervised and unsupervised learning.

A multi-layer perceptron (MLP) is an ANN consistimg several fully
interconnected layers of ANs. It is trained withsapervised learning
technique. As a matter of fact, MLPs are the mogupar form of ANNS.
They are compound of an input layer, at least dddem layer and an
output layer. The hidden layers often use a hypiertengent function of
the input vector x, as shown in equation (5) [17].

_ exXp(X)-exp(-x)
f (X) N exp(x)+exp(-x) ®)

Considering a MLP that processes a numbesf input vectors x, is
characterized withh hidden neurons and a single linear output y, the
relationship between the input and the outputesfafiowing [17]:

y:j_iiwif@wﬁ ,xiﬂ ©

When used for one day-ahead forecasting, MLPs neay lto very

accurate results. For example, Mellit and Pavanl@20[23] have

successfully used a MLP to forecast the solar re#ia24 hours ahead
with a 98% precision during sunny days and less 8% during cloudy

days.

Fuzzy Logic is based on the utilization of logisthtements and binary
operators to model problem treated with a humaa-li&soning. It is
mainly used in control engineering.

These artificial intelligence methods have beercessfully applied for
the purpose of PV power output or irradiance foséing [23]. According
to Mellit et al. (2010), MLP and Radial Basis Fuaos (RBF) networks
as well as fuzzy logic are particularly suited tmetcase of precise
forecasts based on a significant number of metegicdl and
geographical input data. In other words, such nuttare effective when
the forecasted irradiance is expressed as follows:

G(t + 1) = f(Tamb (t)’ RH(t)’TCC(t) ’WSpEeit)’WdleC(IOH(t)’

™
P(t),Lat,Long,G(t),...)

In equation (7),Tamp is the ambient temperatur®H is the relative
humidity, TCCis the total cloud coveWVspees@NdWhirection are respectively
the wind speed and directio,is the atmospheric pressutet andLong
are respectively the latitude and longitu@es the irradiance.
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On the other hand, recurrent Neural Networks (RNNjvelet and
wavelet-fuzzy networks are more suitable for fostgabased on past
observed data only.

In mathematical terms, the forecast of the irracharfor instance, is then
expressed as:

G(t+1)=f(G(1) G(t-1),G(t-2)....) ®)

Alternatively, ANFIS methods are suitable when filvecasted irradiance
is modelled as a combination of the two previousietm

G(t+1) =f(G(1), G(t-1),G(t-2),..., T,y (1), RH(1), TCC(t),W o),
W girection(t)s P (1), Lat, Long, G(t)) )

Computer vision deals with image processing andamainalysis. Many
systems of this type have been developed for aelamgmber of
applications. However, the strategy employed depemdinly on the
system that is analyzed.

Other methods may include Markov Random Filters BYyJRProbability
Hypothesis Density filters (PHD), k-nearest neighlfbNN) or State
Vector Machine (SVM).

The kNN approach is used in particular by Heinleaét [24] and
Kazantzidis et al. [25] to classify clouds into wioclasses according to
some of their features. This operation is perfornbgdmajority vote.
However, kNNs can be slow to run and may requiterge amount of
memory.

A SVM is a nonlinear model that demonstrates fasbenputing features
than an ANN and good convergence [26]. It requiresetheless a large
amount of data for regression.

For the purpose of solar power forecasting, Diag@adand et al. (2013)

recommend the use of statistical methods for stwoecasting horizons

(intra-hour or intra-day), hence for high tempaoesHolutions (less than 10
hours) and high spatial resolutions (up to 500 rsgt&ven though hybrid

models are more robust, single methods can prespatticular strength

within for a specific resolution. Indeed, ANNs mlag recommended for
temporal resolutions between 30 minutes and 10shearlong as the
targeted spatial resolution is between 10 and 580as The persistence
method is the best choice for very fine resolutibaw 10 minutes and
10 meters. On the other hand, ARIMA, ARMA and CAR&® suitable

for resolutions between the previous cases (frdewaseconds to 1 hour
and up to 12 meters).

SummaryA large number of statistical methods are avaélaBNNs can

be accurate, especially when they are combined witter artificial

intelligence methods like genetic algorithms. Hoerewthey show slow
computational features. On the other hand, SVMdbasethod can be
faster but require more data.

4, Comparison of some popular PV power forecasting
approaches

Horizons for PV power forecasting may be defineffiedently with
respect to wind forecasting. Additionally, the adw®iof approaches may
differ.

As an example, two different approaches have beefianted to each
other in a study conducted by Yuehui et al. [27]cbysidering the case
study of a 1 MW PV farm comprising 6006 panels. e methods are
respectively statistical and physical.

Firstly, this quick review of PV power forecastingethods defines the
various time scales used in power system operatitmdifferent limits,
compared to wind forecasting. The new definitiohthe various horizons
are summarized in Table 3 [27].

The very short-term horizon is defined as beinghia order of several
minutes to several hours, aiming for intraday temé control. The short-
term horizon ranges from a few hours to up to 3day is used for day-
ahead economic dispatch. As an illustration of tstewm horizon, Diagne,
Boland et al. [17] mention that load patterns neele forecasted 2 days
ahead for scheduling of power plants and for plagntiansactions in the
electricity market. The long-term forecast is definas ranging from a
week to a year and targets grid balance operations.

This classification of PV forecasting horizons @ onique and Kostylev
and Pavlovski (2011) also distinguish 3 horizora #re intra-hour, intra-
day and day ahead. This alternative discriminatibhorizons has been
used by Diagne, Boland et al. and is exposed ie tfl7].

The effect of irradiance intermittency can be attgad through the use of
energy storage, spinning reserve and demand resgabg All these
methods need an accurate forecast on several fiteeso be optimally
operated. Indeed, day-ahead forecasting is reqtorddtermine pricing in
the market. In contrast, sub-hour-ahead forecastseful to schedule
spinning reserves.

The comparison focuses on short-term horizon antpeges the results of
a physical approach with the ones of a statisticathod by using the
same days over a period of one month during eaasoseof the year in a
place located in the northern hemisphere. The phalsnodel that is
utilized for PV generation consists in a clear shgdel and diode PV
model. The statistical method uses a neural net({dg.

The measured output power of one representativémudreach season is
compared with the clear sky model power predictamjusted with NWP
data. These measurements have been made in themohemisphere.
Unsurprisingly, the best match is achieved duritearcdays of each
month whereas the biggest mismatch is obtainechgutie month of
October and December, which have been chosen tesest respectively
autumn and winter. Both seasons are characterigedrbeasured power
output much lower than the prediction. Overall, tRMSE values range
between 11.48% and 16.58%, as shown in Table 5 YZ@gén the actually
measured values of temperature and irradiancedaliéamally fed to the
physical model, the precision increases dramaicafid the nRMSE
values drop down to 4.93%-8.78%. This makes thgdsigdiscrepancy
occur in spring for the cloudy month of March. Tlkeishanced precision
thus validates the physical model, provided it ésl fwith sufficient
weather data.

The central column is corresponds to a physicalehasing the measured
irradiance G and temperature T as inputs. The nRfSEe predictions
from the best trained NN model are showed in tgbtmost column of
Table 5. The optimal NN is set to have 11 neuramsis fed with several
weather data such as the ambient temperature,ldhd coverage, the
irradiance and the position of the sun. ComparethéeoNWP physical
model predictions, the results appear to be smifly better for the
wintry month but only slightly more accurate for@ther seasons.
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Overall, there is only little improvement with resp to the NWP physical
model. The study concludes that both approachesvalid for the
considered horizon and that the precision mainigedds on the data
input itself.

Another study, carried out by Guarnieri et al. @00[28] has
demonstrated that the ANNs using training dataredoce the nRMSE of
daily average global horizontal irradiance by 15&tpared to a 12-18
hours ahead irradiance forecast based on a NWRagipas pointed by
Diagne et al. in their review paper [17].

Summary:For solar power forecasting purposes, very skontytmay be
defined on a longer time frame than for wind pofegecasting. Indeed,
this horizon may be in range of several minutekerathan in range of
several seconds. However, a forecasting horizoworzkyery short-term
is required for power dispatch and grid balance. $teh horizons, the
input data proves to be actually more importanh tttee chosen method.
Nonetheless, neural network based forecasting rdethe more accurate
than NWP-based approaches for periods of the yearacterized by
heavy rain and snow falls like winter.

5. Strategy to model a PV cdll

Solar irradiance is the main driving parameter théittences PV power
output [29]. Although high-efficiency multi-junctioPV cells are under
development, the large majority of the current R$tallations use mono-
junction modules. Also, most of the current studiescentrate on mono-
junction modules. Consequently, this study onlyukss on mono-
junction modules.

With mono-junction modules, the operating tempeeaily greatly affects
the energy efficiency of the conversion of lightoinelectricity. In
particular, the cell temperature, &ffects a great deal the value of the
open-circuit voltage as shown in Figure 2 (a), witle example of a
mono-junction polycrystalline module [30]. For part, the short-circuit
current is significantly affected by the solar di@nce, as illustrated in
Figure 2 (b). The effects of both the cell tempamtand the solar
irradiance are obviously echoed on the output pawere [31].

Thus, it is important to know the operating tempee of photovoltaic
modules to improve their energy performance. Ambegseral empirical
formulas, Evans’ expression of efficiency summarittee effect of both
cell temperature and solar irradiance [22, 32]:

7= tﬁl— pT.-25)+ VE"O%(G&J } (10)

In equation (10) = 4.5*10°°C* andy = 0.12 for crystalline silicon
modules.

The cell temperature can either be modelled orretvely assessed
through the utilization of adaptive techniques sachartificial neural
networks (ANNs). An adaptive technique can actuély used in an
advantageous tool for a fast and precise foredasteocell temperature
and to guarantee a high performance.

Only 10 to 20% of sunlight is converted into a eatrby mono-junction
modules whereas the rest is converted into heaistipartially transferred
to the surrounding environment according to a d$jgedoefficient.
Consequently, the temperature of a module autoaiigtiéses as soon as
it absorbs some irradiance, which in turn affebts aperating point and

leads to a diminished electrical conversion of tligR2]. Yet, a
comprehensive analytical model would be excessivetgplex to use for
calculations.

This is why the various temperature cell modelsiébin literature assume
some simplifications and do not consider accuratedyfull complexity of
the irradiance absorption effect. However, aniarif neural network can
help to deal with this complexity in a timely eféat manner. In addition,
it must be noted that the current-voltage curvesiged by manufacturers
in their datasheets cannot be used to reliablysagbe thermos-electrical
behavior of a PV module as they are given for @mtstemperature or
constant irradiance. Indeed, such datasheet cuwwesot consider the
actual conditions in which the cell temperaturentfes along with the
irradiance.

5.1 Modeling the cell/module temperature

Various empirical models are available in literat§i22, 33]. They are
listed in table 6 [14, 22, 33-46]. In this tablégetinstantaneous solar
insolation is referred as G (kW/m2) whereagn,Tis the ambient
temperature given in °C. The NOCT conditions arfinéd as Gocr=800
W/, Wepeel M/s and I noc=20°C.

In any case, the two main parameters always rethaiirradiance and the
ambient air temperature. Amongst popular modets Rbss and Smokler
formula from 1986 is widely used [47]:

Tc = Tamb +52

G NOCT

[ (Tc, NOCT ~ TNOCT) (11)

It must be noted that the Ross and Smokler modalis valid for a free
standing module.

Another more precise example that considers 3 wegthrameters is
Chenni et al’s model. The coefficients are averagdues of
measurements performed on 6 different PV technetogamorphous
silicon, monocrystalline silicon, copper indium elenide, EFG-
polycrystalline silicon, polycrystalline silicon,nd cadmium telluride)
located on two different geographical sites [48]:

T,=0.943T, ,+0.028G-1528 W, + 43 12)

amb speed B

Nevertheless, this still remains an imperfect medat does not take heat
losses into account.

The approach of assessing and predicting the welliie temperature is
particularly interesting for hybrid PV/thermal systs containing a fluid
cooling the PV modules. Controlling the temperatofr¢he PV modules
help to increase the voltage output. Additionale heat that is extracted
from the module can be in turn exploited to imprtive efficiency of the
complete system. As mentioned by Ciulla, Lo Braaod Moreci [22],
best results are achieved through the employmenta aofmultilayer
perceptron network.
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In their publication, the MLP is composed of 2 rdimear threshold
function blocks, 2 weight layers, 1 hidden layerertor criterion block
and 2 input sources that consider the followingpusaters:

* ambient temperature,f,

* wind speed Wheed

* irradiance G

+ electrical power output of the moduleP,. =11V . (13)
» short circuit current of the module:|

* open circuit voltage of the module)y

The weather data comes from a weather stationrenddtual temperature
of the panels of the experimental setup is measwrtdthermocouples.
The electrical data are measured as well.

As a result, the confidence band of the evaluasamarrower than £1°C.
For different cell temperature correlations, theamabsolute error (MAE)
obtained with the ANN is around 0.1-0.2, accordinghe type of PV
panel. This is much below the MAE of the analyticainpirical
correlations like Servant, Duffie-Beckman and Hovidhese models
display an MAE between 4 and 16, making the ANNesigply accurate.
Additionally, the authors suggest that the veryrstearning time enables
to implement the ANN on a real-time system to eatduthe cell
temperature in run-time conditions.

5.2 Further considerations of the PV model

Knowing the operating temperature of the cell helpsdetermine the
maximum solar power perfas expressed in equation (14).

G 14
Po=P 0, o

STC

Where R is the nominal power (W) given by the manufactatestandard
test conditions (STC) solar irradiance 1000W/air mass of 1.5 and cell
temperature of 25°C, GSTC is the reference irramial000W/rf) and
the normalized efficiency; is defined by equation (15).

,71 :l+ymp [(TC_TSTC) (15)

In equation 12ym, is the maximum power thermal coefficient, typigall
about -0.5%/°C for crystalline modules. The =7,

efficiency rate is wherg, is the nominal conversion rate in STC, which
depends on the PV technology. The average nomiffialeacy of the
three main categories of mono-junction PV technel®g summarized in
table 7 [49]. Monocrystalline PV have the highestnmal conversion rate
whereas thin film amorphous silicon systems haeddtvest.

The maximum power of an array characterized byraa & is given by
equation (16) [50].

P, =P,IA (16)

mA ~ 'm

The temperature affects current and voltage coresidedividually [5]:

V = VNOCT Eb]'-'-IBEG-I-amb_-I—NOCT)] %1+5D}1(GG ]i| (17)

NOCT

I=1yocr Bi Eﬁl"' a [ﬁTC,NOCT _TNOCT)] (18)

© NOCT

In equation (17) and (18), the coefficientsy andd must be determined
from an initial condition. The two-diode model letmost precise for a

photovoltaic cell as shown in Figure 3 (a) [51].
In Figure 3 (a):
V=V,-R0 19)

qVa
S \Y/
|=|sc_|0%ekg _l}_Rd (20)
P

It should be noted that at% = 389 25°C, Additionally, the
series resistanck is typically significantly smaller than the paedll
resistance,,.

When n cells are arranged as a module with ab egjually insolated, the
voltage of the module becomes:

Vmodulte,insolated =n [(Vd - RS [ I ) (21)

However, if only one of the cells gets shaded pidwellel resistance of the
shaded cell will cause a dramatic voltage drop:

av =10R, -R;)OR, O (22)

This effect is illustrated in Figure 3 (b) [51]. that case, the output
voltage then becomes:

n-1
Vmodulte,l_shaded_cell :( n jwmodulte,insolated - AV (23)
The voltage drop compared with a fully insolatecdmde is
V V — Vmodulte,insolated AV
modultel_shaded cell ~ Vmodulte — — . (24)

n

Using shunt diodes to compensate this effect isranmon practice. It is
also possible to work on the design to attenuateetfiects of partial
shading.

Summary:Ross and Smokler's expression of the cell tempezdat very

popular and widely used by manufacturers in thatasheets. However,
Chenni et al.’s formula is the most precise to d@dtieough it can still be
improved as it does not take the coefficient ofthaiasipation into

consideration. It must also be noted that the 2lelimodel is the most
precise to date for a mono-junction PV cell. Frdwma point of view of the
nominal conversion rate, monocrystalline PV cehsl anodules are the
most productive, most expensive and also most tsen$d temperature
gradient amongst mono-junction modules. Thin filrndules are on the
contrary the least efficient but cheapest and moimist ones.

6. Irradiance Forecasting

Diagne, Boland et al. have stated that forecastifapal horizontal
irradiance GHI is the first and necessary stepnfmst of PV power
prediction models. [17]. These authors also stifesgact that an accurate
and efficient irradiance forecast can help gridrafigs to maintain grid
balance. Two steps are needed for a comprehernrsagiance forecast.
First, a clear sky irradiance needs to be modessidb on astronomical
facts. The actual irradiance can be forecast ineeorsl time by
considering the effects of clouds on the clearsskgr radiance.
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6.1 Clear Sky Model

The stochastic variations of global horizontal diemce cannot be dealt
with without a proper model of the clear sky sokdiation. Astronomical
considerations are necessary to implement this ingde Such
considerations relate mainly to cyclic variatioAs. important parameter
to consider first when building a clear sky modglthie calendar day
number of the year, referred torasThe numben hence represents how
many days have passed since thefUanuary of the current year.

The Sun-Earth distance varies slightly by a faofarl.7% throughout the
year. This is because the trajectory of the Earthat perfectly circular
but slightly elliptical. The distance can be expegkin km in function of
the calendar day number with equation (25).

4 =1.5010°* |1+ 0.01773in] 209 -93) 25
365 (25)

In particular, the equation of time models thepéitial orbit of the Earth
can be formulated in minutes with equation (26).

E =987 Bkin{Z 30 in- 81)} - 7530008 -0 in- 81)}
364 364

. | 360
-15 E{;ln{@ in- 81)}
(26)
The equation of time is very useful to calculate sblar time with respect
to civil time, as given by equation (27).
Solar time= Civil Time
+4[JLocal Time Meridian — Local Meridian] + E 27)

The meridians are expressed in degrees. The lova& meridian is
defined accordingly to the time zone of the conwdelocation. For
example, the time zone for Perth, Western AustradidJTC+8 and the
corresponding local meridian is 120° East. The fawent 4 min/degree
features the rotation speed of the Earth. The swancan be deduced
from the previous equation if solar time is 12 PM.

The hour angle is defined &= 15°h, whereh is the decimal number of
hours before solar noon, so thtis equal to +15° at 11:08.M. solar
time andH = -15 ° at 1:00P.M. solar time.

On a specific day of the year, the declination lé Earthd can be
expressed in a simple manner with equation (28).

. 13600 -81
0 =2345* sm{%} (28)
Another expression of the declination of the Eartias been formulated
by in the form of Fourier series by Spencer in 181shown in equation
(29) [52].
4 = 0.006918- 0.399912 cos(T, ) + 0.070257(sin(T, )
- 0.006758t0d2 (T, )+ 0.000907(3in(2[T, ) - 0.002697(¢0s(3(T,)
+0.001480(3in(3[T,)

(29)

Tq is the angular fraction of the year calculatedspgncer as per equation
(30).

_ 2(n((Jday-1)

-
d 36E

(30)

calculated as per equation (31) according to theg@ian day with
decimal timetqs, monthtms and Gregorian yeday;.

Jday= INT[36525L(t,, +4716)|+ INT[30.6001L(t,,, +1)]+t,, +2- A
+ INT[%} -15245

@1

In equation (31):
A= INT{ by } (32)

100

The operator INT[] returns the integer of the tebesveen the brackets.
Adjusted from the local time zone to Greenwich Mean Time, the Julian
day is expressed as per equation (33).

o ht}
Jday,adj = Jday—-| =%
y,ad] y {24 (33)

The altitude angle of the sinare respectively, both expressed in degrees:
B =sin*[cogLat) (tog(d) (tog(H ) + sin(Lat) (5in(3)] (34)

In equation (34)6 is the declination of the Earth, H is the hourlarand
Lat is the latitude.

The altitude angle of the s@rmight need to be corrected, as mentioned
byAnnear and Wells in their comparison of clear-dofar radiation
models [52]. An atmospheric refraction term is ajdas shown in
equation (35).

lgcorrected = ﬁ + CF (35)

The value of this correction term depends on theevaf the altitude
anglep as per table 8 [17].

At a given hour of the day, the solar azimuth angldefined in degrees
by equation (36).

_ 1 c098) in(H)

¢ =sin [7005(/3) (36)

It must be noted thdips| > 90° unless cogH )2 tan(s) in which
tan(Lat)

casd@g| < 90°.
At solar noon, the altitude angle of the sun becfg expressed in
degrees (°) by equation (37).

By =90 —Lat+d (37)

In the case of fixed orientation, the PV colledttrangle should be set up
according ty:

Tilt =90° - By, (38)

There are few alternative ways to determine thetiposof the sun. A
very exhaustive report has been published by Saridéional
Laboratories [53] to describe clear sky modelsasfous complexities and
precisions.

In equation (30)Jday is the Julian ephemeris day. The Julian calendar
starts on the %1 of January -4712 at Greenwich mean noon and is
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The report mentions that NREL has developed thet mosurate Solar
Position Algorithm (SPA) to date, which can be usedthe current
reference. Based on location, date, and time inpugs a period of 8000
years, this algorithm show as little uncertaintisst/- 0.0003 degrees and
has been described by Meeus [54] as well as by BedaAndreas [55].
NREL has provided an online calculator versionhig tilgorithm [56].

The extraterrestrial radiation emitted by the spifofvs a few cycles. As
per observation ranging from 1699 to 2008, somapoinactivities occur
every 11 years in average, to which some rapidiarece variations with
even larger amplitude are superimposed [6]. Whesuaspot peak
happens, the extra-terrestrial solar insolationickvis the solar flux from
outer space entering radially through the atmosph@r any point at the
top of the atmosphere, may become about 1.5% h[gheBy neglecting
the effect of sunspots, the extra-terrestrial smdration varies by about
6.8% during a year and can be expressed inAkjm

_ 360[h
ET = scc{u 0.034E¢o{ 265 ﬂ (39)

WhereSCis the solar constant and n is the day numbendutie year.
The value ofSCis actually not constant and varies with time. Vakie of
SC fluctuates about +1 Wfnaround a mean value during a typical 11-
year cycle [57]. The latest and most accurate viald860.8+0.5 W/has
per the latest measurement performed by NASA SORE&d#ar and
Climate Experiment) during the 2008 solar minimuerigd. This new
measurement is much lower than the canonical \@fld865.4+1.3 W/rh
defined in the 1990s [6]. Often 1366.1 W/ia used as an average solar
constant, as defined by Gueymard in 2004 [57]. muthe same year
2004, NASA defined the average of all the minimumd aaximum data
values collected from the 1970s as 1367.4 ¥[B2]. This is why the
1367 W/nt may also be often used in literature.

It must be noted, different clear sky irradiancedele of various
complexity and precision exist. We will try to rew a simple one as well
as the most accurate one, which is relatively cempl

It must also be noted that the total horizontaddiance contains three
components that are the horizontal beam, the @iftusd the reflective
radiations. The total horizontal radianigg is the radiation reaching the
surface of the Earth on a flat horizontal planeisThuantity will be
expressed firstly with simple common equations jled by G.M. Master
(2004) [4], based on an empirical model developgdThrelkeld and
Jordan (1958). The most precise model to date presslry will be
explained in a second time.

6.1.1.A relatively simple model
. Direct beam irradiance:

|, = AT (40)
low =1s Bin(ﬁ) (41)

Wherelg is the direct beam radiation, normal to the rayengy is the
horizontal beam solar radiance. The horizontal bigeadiance is defined
as the solar beam radiation reaching the surfachefEarth on a flat
horizontal planeA is the apparent extra-terrestrial solar fllxjs the
optical depth of the atmosphere and m is the assmatio [4].

A=1160+ YSBin[@ fn- 275)} (42)
365
k=0.174+ 0.035|:sin[@ In —100)} (43)
365
e 1
sin(5) @9

Recently, G.M. Masters has amended the express$ithre @ir mass ratio
with a more accurate equation that takes the smilenature of the
atmosphere into account [58]:

m=/(708sin(8) + 1417 +1417 - 7081sin(B) (45)

. Diffuseirradiance:

Assuming the sky to be isotropic, the diffuse ridimaon a horizontal
plane on the surface of the Earth is proportiomalttte direct beam
radiation:

360

I oy =C 0, =0.095+ 004[3in
365

ifn —100)} [AR™™
(46)

In equation (46), C =0.095+ 0.04Bin{% [ﬂn—loo)] is

referred to as the sky diffuse factor.
. Reflectiveirradiance:

The reflective component of the total horizontaladiance is often
neglected. This component depends on the groutettigfty or albedg
and the orientation of the PV collector. Typically,ranges between
approximately 0.1 for bitumen and gravel to 0.8 fesh snow. The
reflectance of grass is about 0.2. Consideringedficollector with a tilt
anglex, the reflective irradiance is defined as by equa(47).

'ac:,OEQ'BH“DH)EéLOS(Z)J (a7

2

Using tracking devices enable to optimize the hetrna# solar energy.

However, the orientation of the PV collector wi#tspect to the position
of the sun must be carefully studied. If the dileeam of the sun strikes
the PV collector with an incidence an@lavith respect to a normal vector
to the collector face, the beam and diffuse irmackareceived by the
collector are respectively:

le =15 [cog8) (48)

loc = oy EELOS(Z)j (49)

2

As illustrated in Figure 4 [4], the PV collector ynbe tipped up with an
angleX and oriented with an azimuth anglgwith respect to the south in
northern hemisphere or north in the southern Hemeisp
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The angle of incidendgis then expressed as shown in equation (50).

cogd) = codB)cod@s — ¢ )sin()+sin(B) [ codz)
(50)

6.1.2.Example of a very accurate model

Several models for calculating the position of sum and the clear sky
irradiance are available in literature. These modhelve been sometimes
compared with one another [52]. This has led todbeclusion that the
most complex models are also the most preciseaiticplar, the Meeus
(2999) and Bird and Hulstrom (1981) model has htested as the best
option with RMS errors in average 6 W/tower than the other tested
methods for 17 sites in North America over a penb@,726 clear days.
The Meeus and Bird and Hulstrom model takes seveadibration
parameters into account. The calibration parameétergiestion are the
ratio of forward-scattered irradiance to the tatehttered irradiance, the
aerosol absorption, and the atmospheric turbidity.

Wunderlish  (1972) formulated an even more precigst forder
approximation of the optical air mass ratiothan equation (44) on the
basis of an expression found by Kasten (1964) rieatlifi the light of the
variations of atmospheric pressure according talttiiidez presented by
List (1958). This expression of air mass ratio sediby Meeus and Bird
and Hulstrom, with the sun altitude andlecalculated as per equation
(34).

{(288— o.ooe‘aSZ)TZS6
288

m= sin(B)+ 0.1500[{g3 + 3.885)***

(61)

Klein (1948) identified two distinct effects of dusn the solar radiation

that are the scatterirdy and the absorptiod,. However, the absorption is
negligible, which meand = ds Kimball (1930), Bolsenga (1964), along
with Klein, have established a set of values ferdffect of dust according
to the environment as per table 5. The dust vatarege from 0 to 0.08 in

remote areas and from 0.03 to 0.13 in urban areas.

In order to calculate the total irradiance, sev@@ameters need to be
taken into account. The relative position of thetlE# respect to the sun
is one of them. Please note that all the followiagtronomical
considerations are drawn from Meeus (1999). Basdti® mean anomaly
of the surMeanAnand on the centre of the sG@entSunthe true anomaly
of the sun expressed in degrees is by equation (52)

v = MeanAn+ CentSun (52)

Considering the current Julian centurythe current eccentricity of the
Earth’s orbite is expressed without dimensions as:

e=0.016708634-t[(0.000042037+ t[0.000000126%
(53)

The current distance between the Earth and the Sqmessed in
astronomical units (AU) both dependwand e:

. 1000001018{1 - ¢)
1+eltody)

(54)

The eccentricity correction, which is dimensionjesepends on the
current Earth-Sun distance&eompared to the average distangeavhich is
1 AU.

E, = (rj (55)
rD

This leads to a new expression of the apparenatextestrial irradianca
that isfunction of the solar constaBCand of the uncorrected sun altitude
angle from equation (34):

A=SCIE, [sin(8) (56)

This model takes into account 4 different causesunfight scattering.
The water vapor suspended in the atmosphere mpatis to scatter
sunlight. Indeed, depending on the dew-point teatpee Tqy, the mean
hourly content of water that can potentially préeigw, expressed in cm,
as per Reitan (1963) and Bolsenga (1965), is diyeeguation (57):

w = exp(-0.0592+ 0.06912(T,,) (57)

All the following formulas are based on the expi@sf the air mass
ratio given by equation (51). The transmittancevafer vapoiX,, in cm is
as follows:

w

Bird and Hulstrom (1981) determined the transmiéaaf water vapor as
the dimensionless expression:

2.49590(X,,

T,=1- (59)

(1+79.0340X,,)°*** +6.385[X,,

The ozone content in the atmosphere also playslen imo scattering
sunlight.

The ozone content vallé, has been empirically measured as 0.31 cm for
mid-latitude summer atmospheric conditions.

Still according to Bird and Hulstrom (1981), the amt of ozone in a
slanted patbx is:

X, =U,[m (60)

As a result, the transmittance of ozone contegivisn by equation (61).

T, =1-0.16110X,, [{1 +139481X, ) **** 61)
~ 0002715, [{L + 0.0441X,, + 0.00030X 2)*

Uniformly mixed gases like carbon dioxide and oxygee responsible
for scattering sunlight as well. The transmittardéesuch gases is the
following:

Tyw =€xp(-0.0127[n**®) (62)
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In addition, the transmittance of Rayleigh scatigis given by:

T,, = exp(-0.09030n? ft + m-m?*)) (63)
Finally, aerosols scatter sunlight too. Considerthg aerosol optical
depthtao ss in @ vertical path for a wavelength of 380 nm,idrich there
is no molecule absorption, and the aerosol optieathtapso at 500 nm
wavelength, which corresponds to ozone absorpti@npverall turbidity
a is the following:

T, =0.2758I7 , 1, + 0357, (64)
The values ofao .35 andtagso Vary significantly with the location and must
be empirically measured. Their values may typichéybetween 0 and 1.
Similarly, the overall atmospheric turbidity may have values typically
comprised between 0.02 and 0.5.

The transmittance of aerosol absorption and saagtdi, is function of
the overall atmospheric turbidity and the air mass ratio:
T, = exp(— T2.873(1+ I, - Z.;]\JOBS) Dmo.glos) (65)
Considering an empirical transmittance of aerofslogption K, which
recommended value is 0.1, even though the valueldto®e empirically
evaluated as it may reach 0.35 in urban areasrahsmittance of aerosol
absorptiorTaa is:

Ton =1- K, ffL-m+m™®)cL-T,) (66)
Considering the transmittance of empirical ratio fofward-scattered

irradianceB,, which recommended value is 0.84 according to Bind
Hulstrom (1981), the atmospheric albed expressed as:

rs = 0.0685+(1- B, ) [ﬁl—:"*}

AA

(67)

Finally, the total horizontal irradiande, is expressed as follows, on the
basis of equations (67), (68), and (69):

T 70
o) o

p is the ground reflectivity or albedo, andsrthe atmospheric albedo.
6.2 Irradiance forecasting considering clouds

The precision of a PV power forecast depends greatlthe precision of
the solar radiance forecast. So conclude E. Loeg¢nal. [59]. In their
study, these authors have managed to use one-dzad alradiance
forecasts at the scale of a country to predictoreg)i PV power output up
to three days ahead. Overall, the method consisterisidering a regional
observation, which greatly improves forecasts wétspect to a single site
observation. It must be noted that the precisiothisfmethod depends on
the size of the observed region. Indeed, the latgeregion where the PV
systems are distributed, the more precise the dsteés an illustration,
the overall rRMSE for a day ahead for a single R¥is 37%. This value
is decreased to 19% for a region of size 3° latithijh and 3° longitude
wide. The rRMSE is further reduced to 13% for theole of Germany,
which dimensions are 9° x 10°. To describe the odtogy that is used,
a global numerical weather prediction (NWP) modalesolution 3 hours
and 0.25° x 0.25° (which is approximately 27 km 26-09) km in
Germany) from the European Centre for Medium-Rayeather
forecasts (ECMWF) is used as the source of foredastadiance data. A
network of 11 PV system with a resolution of 20020 km is also used
to measure the power output. Finally, 200 weathetioss spread over
Germany are utilized to measure the irradiance @veseriod of 10
months. A spatial interpolation technique on aoegif 100 km x 100 km
is first utilized to refine the ECMWF global irradice forecasts for a
specific given site. Additionally, a temporal irgetation is performed by
combining the 3-hourly forecast dataforecast,3hprovided by the
ECMWF with a clear sky model. The 3-hourly mearueatlear sky index

The atmospheric albeda depends on the transmittance of aerosol k_3h is calculated as k_3h=G_(forecast,3h)/k T8te. hourly mean value

absorption and scattering and on the atmosphebdity.

Using the previous expressions from the equatibfy, (59), (61), (62),
(63), (65), and (67), the direct horizontal beadiation is expressed as:
l gy =0.9662[AIT, [T, [Ty, [T, [Ty (68)
Similarly, it can be inferred from equations (5(6), (59), (61), (62),

(63), (65), and (66}hat the diffuse radiation from atmospheric scatte
is:

050f1-T,)+B, EEl—TAj
Tan

l oy = 079CAT,, [T, (T, T,

1-m+ m*®

(69)

B, is the empirical ratio of forward-scattered ircutie, already
mentioned above.

k_1h is then derived by linear interpolation. Aftetively, the mean
hourly irradiance can be directly interpolated frdme original 3-hourly

data Gforecast,3h but this method has proved to be less accurate
situations without clouds or with only a few. A cestion may be

necessary in some sky configurations. For examnipleéhe case of the
German region, the forecasted irradiance is untier@ted in overcast
situations with low irradiance (k < 0.2) and ovéireated in the case of
variable cloud cover (0.3 < k < 0.8). The values #us replaced by the
clear sky model irradiance in the case of a tdtalat cover below 0.03.

In addition, a situation-specific bias is introddder correction purposes.
Other studies also use linear time series of glaatiiance, possibly
normalized with respect to a clear sky model, ampot with a two stage
approach. During the first stage, either a PV sgsteetwork [60] or

satellite data [21] are utilized to forecast thiadiance.

In a second stage, some autoregressive models aslicutoregressive
moving average (ARMA) [21] or autoregressive witkogenous input
(ARX) [60] are also used. However, such methods/ datus on the
irradiance and neglect the effect of temperaturd aind on the
performance of the systems.

n
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Moreover, sudden changes in cloud cover may noddseribed in the
model. As a matter of fact, the wind plays an impote in the abrupt
changes of irradiance due to the passing of cloddth an increasingly
fine temporal resolution, the swift changes of d@over play a more and
more important role.

Independently from the irradiance forecasting methbe source of data
can be chosen on the basis of the desired tempesalution. A finer
resolution can always be obtained through intetjmia

Such temporal interpolations can be satisfactorynduperiods when the
sky is completely clear or overcast. However, thiey lead to significant
errors in situations during which the sky coveriesistochastically, as it
is the case in sub-hourly forecasts. Table 9 gavbsoad overview of the
various sources of data that may be used to fdresalar radiation.
Hassanzadeh et al. (2010) suggest that satellitevazll adapted for very
short-term forecasting, whereas numerical weattedigtion (NWP) data
are better suited for long term forecasting, beymml days. However, for
fine temporal resolutions, real-time measured iamack data can
dramatically improve the performance of now-castimg particular,
Bacher et al. (2009) have demonstrated that diresurements of the
irradiance prevail in forecasts up to 2 hours ahehdreas NWP inputs
are more valuable beyond that horizon.

On top of the input source, the targeted tempa@sblution also defines
the choice of forecasting methodology. For examged-connected
photovoltaic plants require a horizon of at leaéth®urs for integration
purposes. Mellit et al. [23] have chosen to useéABiN-based approach
for such a 24-hour irradiance forecast. More spetlf, this team has
utilized a multilayer perceptron to process théydmrerage irradiance and
daily average temperature. The data consists irsumements taken in
Italy over the course of several months. The chofce method based on
artificial intelligence is justified by the natuoé the input data, as it is a
time series containing several meteorological e With the help of a
cross validation method, the team has managedaioate a performance
above 98% during sunny days but below 95% duriogidy days. The
authors suggest that adding more input parametech s cloud,
pressure, and wind speed and sunlight durationdcpassibly improve
the accuracy of the forecast.

SummaryA clear sky model requires two main sub-models. gbsition
of the sun needs to be precisely defined. The gubaition algorithm
developed by Reda and Andreas is the most prazidate. Additionally,
the direct or global horizontal solar radiance aiseds to be modeled.
The Meeus and Bird and Mulstrom model is the masiuete with
respect to measured insolation values. After modethe irradiance in
absence of clouds, the solar radiance must be eubdgi considering the
effect of clouds. Doing so requires to follow a hwetology. The temporal
resolution is chosen in accordance with the grjglieation that is sought.
The selected temporal resolution influences thacehof the source of
input data. A sky camera is the best source oftidpta for very short-
term forecasting, whereas sensor networks anditaiehages are both
very suitable for short term. NWP data only perfermell for longer
horizons. In addition, the temporal resolution alsonditions the

forecasting method. For very-short horizons, pasise-based methods

are the best, time series and ANN methods are th&t appropriate for
short term whereas an NWP approach is well-fitteddnger terms.

7. Cloud coverage modeling and cloud classification

Using Energy storage units (ESU) has long been gzep as a
solution to dispatch PV power. Frequency domain leesn previously
utilized to specify PV power. Yet, this approachnat suitable for sizing
an ESU. It is indeed necessary to know the peakggnamount
corresponding to a charge or discharge of the yaffi]. Therefore,
modeling and predicting cloud-related PV powernmiéency is required
for an efficient ESU control strategy with a detemstic scheduling
approach. Studies have proven that two parameterssiongly impact
the generation of PV power: the cloud coveragehefsky and the cloud
type or class [25]. The cloud coverage can eitheereRpressed as a
percentage or in octas, also spelled oktas, wiiehunit corresponding to
1/8th of the sky, i.e. 12.5%. Indeed, the sizekifiess and altitude of the
clouds covering the sky can greatly influence tireatl solar irradiance
received by a photovoltaic module [24, 29]. As atareof fact, both the
total coverage of the sky and the altitude of lbed define the size of the
shaded area on the ground, whereas the thicknékes ofoud is linked to
its opacity and by extension to its ability to Hocsunbeams.
Consequently, considering a precise sky model iy velevant for PV
power forecasting purposes.

The cloud coverage can be measured by analyzingndieidual
pixels of digital pictures obtained from a sky cameClear sky pixels are
characterized with a high saturation of color amgtedominance of blue.
As opposite to cloud-free pixels, cloudy pixelspiiy dull colorations
featuring different shades of whites, possibly eihtof colorful hues
ranging from red to blue.

These characteristics have been notably used bgriglat al. (2003) and
Souza-Echer et al. (2006) to define a method tamest the cloud

coverage [25]. Alternatively, in the absence ofks samera, the cloud
cover can also be defined as the percentage ofrtend area that is
covered by cloud shadow [29]. This last approaghlies however the use
of an accurate cloud shadow model. This is an @gbréhat can be used
for example with a regional network of dispersedugid sensors. After
correction of shading due to permanent obstaclassate not cloud, the
clear-sky index K of a location can be defined as:

G

K=o (71)

clear

In equation (72)( is the instantaneous irradiance &g, the predicted
clear sky irradiance [15].

By convention, there is a total of 27 identifiegpép of clouds, equally
divided within three altitude levels also callechg#s. Each étage thus
contains 9 types of clouds. It must be noted thatelevation of the base
of each type of cloud depends on local atmosphesinditions. This
elevation varies according to the season and tbatitm. Table 10
illustrates some approximate heights [61].

The sunlight intensity, observed under a cloud that scatters and absorbs a
clear-sky intensity of sunlight depends on the optical depth or optical
thickness of the cloud.



O©CO~NOOOTA~AWNPE

RENEWABLE AND SUSTAINABLE ENERGY REVIEW 00 (2015) 000—000 13

The optical depth is expressed by the relationship [62]:
(72)

From a shading point of view, it may not be reldvandeal with the
whole complexity of all 27 types of clouds. Indeasgyveral types may
cause similar shading effect. Heinle et al. haveagad to automatically
classify clouds into 7 genera [24, 25] summarizadTable 11 and
illustrated in Figure 5. Some values of opticatkimess defined by the
International Satellite Cloud Climatology Projet$CCP) [63] are given
in Table 8. This quantity is directly related teethpacity of the clouds.
However, some average values of the optical depthickness for each
type of clouds are difficult to get, as per thehaus’ knowledge. A study
is currently in progress to define simple and t#éavalues that could be
used to define the transparency of clouds. Indbeth the type and the
thickness of a cloud directly affect the beam congmd of sunlight as
mentioned by Chengrui et al. [29].

Clouds can be categorized in four main categor@srding to their
altitude level.

Low level clouds occur below 6,500 feet i.e. 2,006ters and are either
namedcumulo- (meaning ‘heap’) ostrato- (which means ‘layer’) [64].
Stratus, cumulus and stratocumulus clouds are thlg types that
exclusively populate the lower level. Stratus (&jds are composed of a
uniform and diffuse flat layer of gray cloud covi5]. As they are
partially transparent, the outline of the sun isady visible when seen
through such clouds. This type of cloud may remstationary from
several hours to a couple of days but some layexg break up or
dissipate, partially revealing some clear sky. Ttieyelop horizontally. In
contrast, cumulus (Cu) clouds are detached andederith a sharp
outline. They grow vertically and eventually matwae cumulonimbus
clouds prior to eventually dissipating. They arearelsterized with flat
horizontal bottoms and rounded tops that resembldifowers. The
sunlit parts of such clouds are bright white witile base is darker. They
usually develop during clear sky conditions, duedtarnal convection.
Low-altitude cumulus clouds may move fast and casmmificant
sunlight discontinuity as these clouds have a lglelefined edge and cast
a deep shadow [29]. On the other hand, stratocism(#lo) clouds are a
hybrid type composed of several individual cumudlegids distributed in
characteristic stratus layers. They consist inxaahithick and thin layers
of gray or whitish patches. They also almost alwagse dark rounded
masses resembling a honeycomb.

Mid-level clouds occur between 6,500 and 20,000 ifee between 2,000
and 6,100 meters. Their names are given the paétfix (meaning ‘high’).
The two main types are altostratus and altocumulmstratus (As)
clouds are similar to stratus in structure and lmamssociated with them.
They present gray or bluish layers of fibrous clehéets that may totally
cover the sky. They are very thin and commonly aktkee sun as if it was
seen through ground glass. They will thus not caaisg significant
decrease of insolation. They do not create any pladmomena and do not
cast any shadow on the ground. Similarly to stratodus clouds in low
levels, altocumulus (Ac) clouds are constitutedlo$ters of cumulus type
features in middle levels. They are the most commdfitlevel clouds,
composed of thin semitransparent white or lightydeyers of rounded
shapes that may be partly diffuse and fibrous. Bé&V@yers may appear,
often in presence of other types of clouds. A carappears when such
clouds pass in front of the sun. This ring has Ifuthe inside and red on
the outside.

High level clouds appear above 20,000 feet i.@@®heters and are given

the prefix cirro- (which means ‘wisp of hair’)Cirrus clouds (Ci) are
wispy and feathery as they are entirely composettefcrystals. They
consist in delicate separate hair-like semitraresgtanhite silky filaments
and they hardly diminish the insolation. Cirroaig{Cs) clouds form a
widespread layer of whitish transparent veil-likeuds similar to low
level stratus clouds. They almost always cover vinele sky with an
extensive sheet cover. The sun produces a halo hidden by a layer of
cirrostratus.

Cirrocumulus (Cc) clouds are layered with small alus-like clouds.
They correspond to a degraded stage of cirrusropstiatus. They are
composed of more or less regularly arranged vesllghin white grains,
forming a ‘mackerel sky’ or ‘buttermilk sky’.

Finally, some enormous clouds may be present ithedle levels of the
sky. This is the case for cumulonimbus (Cb) clowdsich correspond to
a mature stage of vertical development of cumulosdc These dense
clouds are responsible for storms, hail and heainsr The base is very
dark and the overall cloud is very large and exélgropaque. The upper
part is usually smooth and flat, reminding the shap an anvil. Like
cumulonimbus clouds, nimbostratus (Ns) clouds atsmpy a large range
of altitude, although not necessarily as high.

They are dark gray, very opaque and they obscareskls, causing very
low insolation. Nimbostratus clouds result fromck@ning dense stratus,
altostratus or stratocumulus clouds. They caussodps of continuous
rain or snow.

A chart summarizing the various types of cloudgiven in table 12.

It must be noted that to the knowledge of authibes Cai et al. [29], no
universal algorithm can deal with all types of dsudue to the
complexity of a comprehensive atmospheric modelledunl, many
occurrences may simultaneously happen on variousisleof altitude,
caused by unrelated parameters. The hereinaboveiomesh authors
recommend to focus on low level cumulus cloudshay aire the type of
clouds that are responsible for most of fluctuatiorhe same authors also
propose to model the solar irradiance in a prokstigilmanner. Climate
science has established that the shape of cumiolud shadows contours
have a fractal structure [12, 29].

Cai et al. use a midpoint displacement algorithrmtadel this structure.
The algorithm used result in a 3-dimensional friaotaput, which is only
a mathematical artifact that enables to generateidcishadows by
intersecting a cross section of this output withoaizontal plane. Barnes
et al. [12] point out that the size x a cumulusud® shading a ground area
for a period of time follow the power law distribution wher® andb are
distribution parameters:

f(x)= A (73)

It has been inferred that the clear and shadeditommsldistribution of the
same ground area follow a generalized Pareto ldigion wherek, o and
0 are parameters of the distribution. The duratibthe clear condition is
truncated based on the length of the day. Thelldision is as follows:

f(t|k,a,0):%EE1+k t;‘g)]ﬁ (74)

In order to evaluate the area shaded by a clouaiatters to know the
altitude of the cloud base. This can be either diynasing a ceilometer or
indirectly by calculating the lifted condensati@vél. A laser ceilometer
uses a laser beam that is reflected back by treedfagdouds.
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By using either time travel method or triangulatidche device can

measure the distance of a light beam.

Generally speaking, the altitude range for suckewce is 25,000 feet /
7,620 meters and clouds above this height are etetted. Alternatively,

knowing the dew point temperature, the ambient tgatpre and the
altitude of the weather station with respect togba level, it is possible to
evaluate the altitude of the base of low level dblike cumulus clouds.
The lifted condensation level above sea level (A&iryesponding to this
altitude can be evaluated in meters with the exwad66]:

LCL = 400%0.3048 (T, ~ T,,) + h (75)

al

In equation (75), LCL is given in meters. The vhlgah is the altitude
above sea level (ASL) of the weather station, agoressed in meters,

developed a method to process color sky imagesohparing the RGB
images with some blue and red thresholds in omestimate the total
cloud coverage. By using this method, pixels carlhssified as cloudy
or not cloudy according to the value of the red#b(®/B) signal ratio.
According to Long et al.’'s method, pixels with veduabove a threshold
value R/B= Th; are classified as cloudy. Although Long et al.éhaged
the value 0.6 for Th this threshold value may vary a lot accordinght®
camera that is used. Indeed, the R/B criteriondadbustness and the
threshold value needs to be recalibrated for eamh set of images
coming from a different camera. For example, Hegtlal. (2010) [24]
used a value of 0.8 for ThAdditionally, some problems may arise to
detect thick clouds or to classify circumsolar fgxe

To tackle these issues, Heinle et al. propose ¢athss difference R-B =
Th, as a criterion instead of the ratio’R. The value Th= 30 is used by

and T,mp and Teew are respectively the ambient and the dew pointthis team as an optimal reference threshold far tven set of images and

temperature both expressed in °C, at the exactitocaf the weather
station.

When the dew temperature value is not availableis ippossible to
approximate it based on the ambient temperaturerancelative humidity
ratio, as given in equation (76) with RH standingthe relative humidity,
expressed as a percentage [67]:

Tdew = Tamb - (]-OORHJ (76)

5
Identifying accurately the type of cloud and clggsg clouds also helps
to get an idea of the altitude range. This is nyaurdeful for high level
clouds.
A full classification of clouds helps to evaluate tcloud cover and hence
cloud length as well as the type of clouds thatliaedy to cause shadows
above a specific geographic site.

7.1 Cloud Classification Part 1: Assessment of cloud coverage

It is necessary to process images from a wholecakyera to evaluate the
cloud coverage. This can be performed with a diygpixel classification
and sorting pixels as either ‘clear sky’ or ‘clougyxels. As a first step,
an image-mask must be applied onto the imagesdier d¢o filter out any
irrelevant information that are not related to #ky, like the ground or
surrounding infrastructures. The solar disk andbigéssunrays may also
bias the estimation of cloud coverage and mustlipgnated from the
image as well. This can be done by using the fadtthe related pixels in
the image are usually completely white, revealingpaerexposure of the
camera’s sensor. In addition, a whitening effectctfud-free pixels
around the solar disk may lead to a misclassificatif these pixels. After
filtering all irrelevant pixels, the remaining plgeneed to be classified as
‘clear sky' or ‘cloudy’. An interesting property difie atmosphere can be
used at this effect. As a matter of fact, in arclenosphere, which means
in absence of natural (like fog or mist) or artdic(like haze or fog)
aerosols, air molecules scatter more blue light tleg light, making the
sky appear blue to the human eye.

In contrast, clouds scatter blue and red lightinnilar proportion, leading
us to see them light grey or even white [24, 25kz#htzidis,
Tzoumanikas et al. (2012) give an excellent ovevvaé the current cloud
pixel discrimination criteria [25]. In particulathese authors point out the
fact that Pfister et al. (2003) [68] and Long et @O006) [69] have

for their own application. Though more robust thiha R / B threshold
Thy, this threshold value This also relatively sensitive to the set of
images it is applied to and may need adjustment.

Kazantzidis, Tzoumanikas et al. [25] have alsofiestithat the difference
R-B outperforms R/ B for a sufficiently large set of images.
Nevertheless, this team has discovered that a -sultir criterion
combining R, G and B thresholds ((B > R +,)T& (B > G+Th,) & (B >
Ths)) used to detect clear sky pixels outperforms 8 difference
method in some common cases of cloud cover. Tltirion is the most
robust and accurate one so far. The referencewalieh = 20, Th = 20
and Th = 60 are optimum for the Canon Ixus used by &gt and may
require some tuning for other cameras.

However, no criterion at the authors’ knowledge campletely reliably
discriminate thin cirrus or cumulus clouds closdhe sun. This extreme
case is often problematic and a source of sigmificencertainty, leading
to a possible underestimation of the cloud coverage

7.2 Cloud Classification Part 2: I dentification of cloud types

Heinle et al. (2010) [24] automated the classifarabf clouds as a further
step following theclear/cloudy classification. On the basis of their Fisher
Distances, a technique used in satellite imageanKwicz, 1995), 12
features have been selected to classify clouderSefthese features are
spectral while 4 are textural and 1 is simply thtaltcloud cover. Indeed,
the spectral features of an image do not provigeirgormation about the
spatial distribution of clouds. However, using eslsolely is unsufficient
to distinguish altocumulus from stratocumulus ckudhis is why
textural features must also be taken into consiberaln addition, the
cloud cover is also used as a feature to tackleitkee of spatial
distribution. In particular, estimating the totalowd cover helps to
distinguish stratiform clouds from the rest. Théocanformation of each
cloud image is partitioned into a set of three nobmomatic (also referred
to as Grey Level) red (R), green (G) and blue (Bjadsets. Each
monochromatic (or grey level) partial image is tedaseparately as levels
of R or G or even B. The average color and theltwagation of the
image both provide some useful information to ditiish thick and thin
clouds, or even to tell high altitude bright cloddsm other clouds.
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The color component B proves to have the highgsragon power due
to the fact that it is the dominant color of they.sKable 13 [24, 25]

comprises some details related to the 12 hereirmbwntioned features.
The color for which the feature is calculated i®dcfied between the
brackets of the name of the feature. In the exfmessN represents the
total number of pixels in the image under consitiena

presence of rain clouds. Furthermore, as theralissmall differences of
entropy feature among the various cloud classezamtaidis et al. have
decided not to use this feature. A set of 1050 &saupve been used to
train the algorithm after visual inspection, whig00 images are used for
testing. A minimum of 150 images per cloud class been used for the
training, with only one cloud class per image. Imley to tackle the

The values p; and g, are respectively the monochromatic intensity value problem of variability of cloud within the same otb class, three new

of red and blue for an individual pixel of the resfive red and blue grey
level image referred to with the numbeso that 0 4 < N-1, N being the
total number of pixels inside the grey level imagke variables andb
represent two different monochromatic intensityelsvwithin the blue
grey level dataset of the image. The values of etheariables are
comprised between 0 a1 = 255, where G= 256 is the number of grey
level intensities. The spatial relation between pghel of intensitya and
the pixel of intensityb is also called an offset. In particular, the sgati
relation relationship [1,1] corresponds to a bottoght single pixel

parameters have been introduced, as per Table5]4A2cording to the

values of these parameters, three tiers are defined

These new parameters lead to the creation of aicemumber of new
subclasses for each cloud class as per Table 15 [25

The accuracy of the overall classification rangesveen 78% and 95%.
In particular, cumulus clouds are detected withuecsss rate of about
92%. Despite these innovations, a small confusenains between the
cloud classes St-As and Cb-Ns. The misclassifinatioSt-As engenders
the lowest performance of 78%. However, a corrdassification of

offset. The valuer,..[111(a, b) represents the number of occurrences thatclouds is very relevant for PV power forecastingewithe optical depth of

a pixel with an intensity od has a pixel with an intensity bfas its direct
diagonal bottom right neighbor inside the blue gsegle dataset. It must
be noted that the matrix of dimension G x G cofi@irall n,c.[, 1(a, b)
values with 0< a< G-1 and 0< b < G-1 is called the Grey Level Co-
occurrence Matrix (GLCM).

A very accurate k-nearest-neighbor (kNN) classifier used to
discriminate sky images into one of the seven cloadditions on the
basis of the features mentioned in Table 13.

Heinle and al. used a sample of 1500 reference emdgr training
purposes, containing about 200 independent imageslpud class, with
a wide variety of cloud forms. After training thgsteem and processing
the input images, the Manhattan Distance is caiedldo assess the
difference between the normalized feature vettof each element and
the reference feature vectipr. On this purpose, the following formula is
used:

dim

d(f’ ref)zz‘fl_frem‘ (77)

i=0

The cloud visualized in the input images is claadifaccording to the
majority vote of the k closest matches to each knaloud class. The
parameter k has been set as 3 by Heinle .etle@lding to an average
performance of 96% elements classified correctBr@il 7 cloud classes.
The performance is measured by using a Leave-Oné&fags-Validation
(LOOCV).

The authors noticed that the only difference betweemulus and
altocumulus clouds is the size of individual claidl

Additionally, some noticeable misclassification oesr appear due to a
confusion of stratiform clouds and thick rain clsyduch as nimbostratus.
This is due to the fact that stratiform clouds sumh stratus and
stratocumulus can build up to form thick rain clsubat still display the
same characteristics. Moreover, the presence ofd@ips on the camera
dome may distort images and lead to some furthsclassifications.

To address these problems, Kazantzidis et al. (2[2B2 improved this
classification method by introducing subclasses éagdproposing a
method to detect the presence of raindrops ovecdheera lens. A circle
factor (CF) is used to evaluate how close to aepertircle the fish-eye
image of the camera is. In the presence of raipdrthe contour of the
image is distorted, leading to a circle factor bbat CF=0.6 whereas this
factor is close to CF=0.9 with a dry dome. Thigdacloes not only help
to prevent a misinterpretation of texture values tan also detect the

each cloud class is known.

Summary:The shorter the forecasting timeframe, the morendti the
impact of clouds on the power output of PV systehs.it has been
concluded in section 7, a sky imager is the besolopf input data. This
source of input images is indeed the only one ¢hathelp to distinguish
the different types of clouds. Considering the dyita of clouds, a
sampling period of 1 second between each consecutiages is ideal to
extract an accurate cloud motion vector. Adequast-processing of the
images is necessary to determine the cloud covasgell as the type of
clouds present in the sky. A multicolor criterionntbining different
thresholds for R, G and B data is the optimal mettfoy this step. The
images from a sky camera can also possibly be tesestimate the size of
clouds are therefore the area of the cast shaddter Alentifying the
cloud masking the sun by comparison with a dataliagealso possible
to infer the opacity of this cloud and thus ther@dcattering of sunlight.
For this purpose, it is indeed vital to be ablédentify each type of cloud
among a set of 7 classes. Heinle’s method perfeens well to identify
clouds accurately. It consists in working on momoatmatic R, G and B
images. A set of 12 features are extracted andimisated through a
kNN classifier with k ideal set to 3. A risk of mlassification nonetheless
remain leading to a possible confusion betweertifstna clouds and rain
clouds, which both scatter sunlight differently. salution proposed by
Katzantzidis consists in introducing 3 more crdem@nd subclasses.
However, to consider the effect of shading on P¥tays, a sensor
network remains the ideal option as it measuresctljr the area and
shape of the shadow cast by clouds on the surfawethis reason, such
networks are often utilized as reference data. rieyreeter networks are
precise but expensive although it is possible te as existing PV
network instead to cut costs. The size and cordignm of the network
must nonetheless fit with the required spatial ltggm. Independently
from the source of input data, the altitude of Hese of low altitude
clouds, which are responsible for the fastest tiaria, can be assessed
from the ambient temperature, the dew temperatudetize elevation of
the weather station.
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8. Weather Classification for mid-term PV Output
Forecasting

For many utility applications including power disga and grid
balance, a short-term to long-term horizon suffieesmentioned in Table
4. In this instance, PV power forecasting methassist in focusing on a
period of time that ranges between 30 minutes @veral days ahead.
Such methods may mix statistical and physical apgres with either PV
networks or numerical weather prediction (NWP) m&ngut.

Peder Bacher et al. [60] have demonstrated thagctdisolar power
observations are the most appropriate source of uigta for forecasts up
to 2 hours ahead whereas NWP is better suited betfehorizon of 2
hours.

Weather classification is widely used for foreaagtipurposes for
horizons exceeding 24 hours. For example, a dagehloe week-ahead
PV power output profile can be obtained with a sifesation of simple
daily weather patterns such as rainy, cloudy, suyolear sky) and foggy
days. Historical data of solar irradiance (for amdiiect forecasting
approach) [50] or PV output (for a direct forecagtapproach) [26, 70]
and meteorological forecasts are used as inputahathis purpose. These
two frequently used PV output forecasting methadsmay a pivotal role
to size the storage batteries required to comphetePV system under
consideration. As an illustration, the case stuidy sun-powered house in
the Tokyo area, Japan, within the government supgosmart city
project, as described by Niimura et al. (2012) tils¢ weather forecast
from 9 years of historical data has been usedttdbksh the classification.
Table 16 [50] is an example of how the weather tmrd can be
reinterpreted in simple terms, based on varioustayls that may appear
within the descriptive text of a weather forec&ich a simplification of
weather patterns is very suitable to forecast theep generation from a
day to a week ahead.

The hourly profile of insolation is obtained basau the values that are
statistically the most likely considering the tiraed weather conditions.
The most likely insolation values from 4 am to 8 pmder various
weather conditions are obtained from the probabititstribution of
insolation, which is based itself on hourly soladiance data. The
estimated radiation of a specific day and at a ifipecour t is then
defined based on the weather forecast gi¥) = Grax * Gmost (t)
Pyrecipitations Where Guax is the maximum monthly insolation,mg(t) is
the most likely normalized value of solar radiatiah the hourt and
Porecipitations IS @ factor that indicates the probability of refinally, in that
case study, the maximum seasonal Mean Absolute BfAE) of the
forecast is about 0.33 for seven consecutive dBEys. major prediction
errors occur during spring and summer in the nontiiemisphere. The
authors conclude that the major of the errors cass¢he 80% of
uncertainty of weather forecasts.

A support Vector Machine can be used for the sampgse of weather
classification based PV power output forecastingafmne-day horizon.
For example, Jie Shi and al. [26] select a simather model out of four
possibilities (sunny, cloudy, rainy, foggy) on thasis of historical data
and weather forecast of the next day. The histbiigait data are similar
to the ones used by Niimura. The performance id#st for sunny days
with mean Relative Error (MRE) of 4.85% whereas MiRE is 12.42%
for cloudy days, with an average of 8.64% for atidwls.

since the dynamic variation of the cloud covecah be applied when an
average daily value of the solar radiance is sobghtsome significant
errors may be expected during cloudy days. Thesefarshorter term
forecasting method is needed to ensure grid dhakiéspite the changes
of cloud cover during cloudy days.

9. Very short term PV power forecast

Accurate very-short term PV power output forecastimethods are
required for safety and efficiency reasons. Inipaldr, utility operators
require a ten-minute warning to bring spinning rese online. Besides
ramp rates issues, an accurate forecast withitaaaware smart grid can
also help to prevent keeping industrial-scale lcadh as water-pumps on
when not needed. Additionally, a precise previgoables to plan when
to turn such loads on. Nevertheless, the main prohbkith very short-
term PV power forecasting is the swift intermittgnaf sun radiation,
which is essentially due to cloud motions. Trackimgl forecasting such
cloud movements is therefore necessary in ordeéeabwith this problem.
However, when it comes to deterministic predictdrPV output power,
adequate temporal and space resolutions are tfiti2a29]. A first group
of studies have favored the use of a numerical lveegirediction (NWP)
model whereas a second group prefers to use skyemna or
geographically dispersed sensors or even satetfiges to track clouds.
A third group utilizes a random-sequence and tierees models.

9.1 NWP approach

In the first group, NWP models can provide veryuadlle outputs such as
forecasts of cloudy conditions, wind direction, dispeed and even
sometimes irradiance with a large spatial and teatpesolution. Such a
resolution fits well with the day-ahead forecaseeded to determine
energy pricing or for energy dispatch purposes. él@s, the accuracy of
such an approach is quite variable. In the casewéather research and
forecasting (WRF) numerical atmospheric model thatild be made 30
hours in advance, the best result seem to be @pténthe occurrence of
large-scale cirrus clouds or in the event of airegtcovered skies. Such
a model may otherwise sometimes fail to predictgtesence of clouds
during a day or be mistaken in the timing of clau@serall, this approach
is not suited to deal with small clouds in a pdticloudy day.
Additionally, substantial computation time is regai for NWP models.
Indeed, 2 hours of computation may be needed taigg®nly 2 minutes
of forecast [15].

9.2 Sky, satellite images and sensor array approach

With regard to the second group of studies, whish image processing
and sensor analysis, three variables must be takenaccount when
tracking clouds: position, velocity (as a vectondasize [71]. Some
bottlenecks faced by this approach are respectitielgffectiveness of the
feature extracting filter and the associated extensomputation time.

Additionally, time resolution may sometimes be tmarse for a reliable
forecast of power variation caused by clouds, &b fluctuations happen
in matter of seconds. Figure 6 gives a rough idéahe temporal

resolution with respect to the area that is obskrfee three different

categories of input data. The range of observatiost not be confused

Summary: For the purpose of power dispatch, SVM and weatherwith the spatial resolution.

classification prove to be extremely accurate fonny or uniformly
overcast days. Such an approach lacks precisiooldady days though,
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On the other hand, the spatial resolution may eailgt among each type
of input data source and the format of the spatisblution may differ too
much to make comparisons. For instance, sky imagersommonly used
to observe the base of clouds and are charactehiyed resolution
expressed in terms of pixels. In contrast, satsllibbserve the top of
clouds or the ground with a precision expressechéters or kilometers.
Neighboring PVs or sensors of weather stationsofien dispersed with
an arbitrary and inconsistent distance.

An important challenge is to determine the velooitylouds as ground-
based measurements of the wind are not reliabléni®purpose [15].
Indeed, the wind direction and speed may vary aiagrto the altitude.
The only relevant wind measurement would need tddree at the level
of clouds.

9.2.1.Sky Images

In most cases, a fish-eye lens is mounted on wsélglecameras to give a
panoramic field view of 180 degrees in every dimgtso that the entire
sky can be observed. However, the spatial resolusidimited to a local
range consisting in a radius of a few kilometemuad the camera. On the
other hand, the time resolution of whole sky cameésaexcellent as the
time between two consecutive shots can be less dhaacond, which
virtually enables real-time observations. This tally gives a significant
advantage to whole sky imagers for a detailed exation of the cloud
cover.

Additionally, sky cameras can be used to identify types of clouds and
small-scale variations of cloud cover over a spesipot. Combined with
a solar radiation sensor, this enables to unctseeffect of specific types
of clouds on the insolation. A 1-second samplinggekto take and store
snapshots of the sky is a popular choice [72] bawwer periods ranging
from 15s [24] to up to 5 minutes [25, 73-75] areoatonsidered. The
resolution of sky camera images vary within thegeaaf 8 to 30-bit JPEG
640x480 [25, 72, 74, 75], 512x512 [73], 1024x128@][ or up to
3648x2736 pixels [24]. One or two axis sun traclkasswell as to sun-
masking techniques can be sometimes added. It beishoted that
processing color images is an important step tesiflaclouds. Color [73]
or infrared [75] filters can possibly be appliedthe camera. In any case,
due to the high amount of data, sky images mustalm®matically
classified with high accuracy.

The classification is usually either based on ayirtlear/cloudy basis or
on an identification of cloud types. Various filregy methods are applied
to the images after classification. The extractidrfeatures lead to the
determination of a cloud motion vector includingua velocity, which is
used in turn for prediction purposes. An exampleahplete processing
flow is given in Figure 7. It must be noted thag thethods used in each
step of the flow may vary, especially the statatimethod used prior to
forecasting.

Optical flow based on Lucas-Kanade method has baeoessfully used
by Wood-Bradley et al. [72] to process whole skyages with a
prediction error from 5.3% (1 second off) to 21.2%seconds off) to
estimate the obstruction of the sun by a cloudh wiines to shading
ranging from 20 to 40 seconds. Based on jpg imagesmethod follows
a flow of cloud detection, cloud movement trackirmtpud movement
forecasting, and image processing through OpenCWctions.
Unfortunately, the excessive computational timehi§ method may not
permit to implement it online.

9.2.2.Satellite images

Satellite images offer a wider spatial range cdimgisn a few thousands
of kilometers. The time resolution of forecastsduhen velocimetry from
satellite images is often comprised between 1 atb@l's, which may
however not be well suited to observe small-scaléast cloud motion
[15]. As an example, forecasts based on GOES isatiefiages have a 10
km spatial resolution and are updated every hoecaBse of their limited
temporal resolution, satellite-based forecasts csometimes be
outperformed by forecasts based on persistencelsgdg. Additionally,
low-resolution large-scale cloud observation froatelites does not
permit cloud-radiation studies, e.g. determining impact of a specific
cloud type obstructing the sun on the solar irmackareaching the ground.
Nevertheless, satellite images are very useful acechst Global
Horizontal Irradiance (GHI) on a relatively shaets basis, for horizons
shorter than 6 hours [77]. In particular, for upSohours ahead GHI
forecasts, satellite derived methods outperfornsictamably NWP based
forecasts. It has even been demonstrated thatiteabelsed methods are
the best option for a temporal horizon comprisesveen 30 minutes and
6 hours [78]. This makes satellte images valuable maintain
dynamically the balance between solar energy sugpty consumption.
Satellite observation generally involve cloud motiovector field
extraction from the images.

Some high quality services such as EUMETCAST [78h deliver
satellite images on a 15-minute basis for Europfic& and South
America, which is an excellent temporal resolutidn. particular,
Dambreville et al. (2014) have used an estimatibthe GHI forecast
provided by HelioClim-3 images with a high resabutiof 3 km x 3 km
per pixel sampled every 15 minutes. In comparistammer, Heinemann,
Lorenz and Luckehe (1999) could observe cloudinveitis 30 minutes
precision and a resolution of 2.5 km x 2.5 km figlETEOSAT satellite.
Based on a year-long database, Dambreville etaake implemented a 3
step method. First, a block matching algorithmdsdiuto extract the cloud
motion vector field after comparing two consecuteellite images Im(t
- Ty and Im{Ts) where t is the time anf; =1 corresponds to a 15minutes
sampling period. This cloud motion vector field negents the global
movement observed between the images. As a setepdasregion of
interest (ROI) is found in the upstream directi@rthird step consists in
using statistical method or trained conversion inithe ROI to define a
minimum, a maximum and a mean forecast of the GHtinae t+Ts.
Finally, the forecast is compared to ground measents and corrected if
needed. This flow is illustrated in Figure 8.

During the first step, the two consecutive imagesdivided into square-
shaped pixels blocks characterized by a side b=%6lsp A research
horizon rh=10 pixels (corresponding to a wind speédl20 km/h) is
defined as the furthest possible translation (diafip) of one block
between the first and the second image. A blotkénsecond image Im)(
is identified as the same block from the first imd - T through a
maximum correlation coefficient. The vector of edmbck is defined by
the difference of the coordinate of the block ceh&tween both images.
The global motion vector is drawn from the averafjthe vectors within
the 9 closest blocks from the site that is considler

The region of interest is calculated on the badisaowindow size
expressed by:

ws=1+2T, (78)

In equation (78)Tsis the sampling period.
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The atmospheric transmissi@(t)= GHI(t,p)/GHluear skft,p) at the instant
t is defined as the ROI's GHI normalized with regpecthe clear sky
GHI(t,p) at the same timé¢ and for the same pixg), based on the
European Solar Radiation Atlas model. The valudefined ak = 1 in

This problem can be tackled by using an existirfitagtructure, as Lonij
et al. did. Unlike sky or satellite images, the sadiation is directly
measured. There is thus no need to know aboutptieabproperties of
clouds or to use radiative models [15]. The infiagture in question

clear sky conditions an# = 0 in case of complete obstruction. The consists in a network of residential PV modulese Timin limitation in
average forecasted value fois used to get the average forecasted GHlI, precision is due to the relative small size of tieéwork compared with

on the basis of a wind persistence hypothesis.aVkeage forecasted GHI
is:

GHI(t +T,, p) = K(t +T,) [GHI oy, 4ot +T., P) 79)

Similarly, the minimum and maximum values of theeftastk lead to a
minimum and maximum forecasted GHI. However, corispas with the
ground measurements obtained with a sensor netalwlv systematic
errors. This is why a post-processing stage i®dhuiced for correction.
The performance of the forecast has been assesmEdsta ground
measurements. With an nRMSE between 23.5% and 8@¥corrected
forecast outperforms slightly the persistence méolehorizons between
15 and 45 minutes.

Variability poses a serious tracking and forecastimoblem. As clouds
are not plastic but continuously vary in shape mamehber, cloud tracking
can be seen as a multi-target tracking (MTT) probl& framework able
to deal with variable number of targets is thusunesgi. A probability
hypothesis density filter (PHD) filter has been cessfully applied to
track cloud features (such as position, size antiomaectors) by Paolo
Addesso, Roberto Conte, Maurizio Longo, Rocco Raestand Gemino
Vivone [71].

To complete the flow, a time-dependent penalty tfeds a Maximum a
Posteriori Markov Random Fields (MAP-MRF) algorithosed for
classification. Features are extracted after dlaatibn and used to update
the multi-target state. The penalty term considbes classification of
previous acquisitions for the current image clésaiiion, reducing the risk
of misclassification. The purpose of such a metisdmn reach a trade-off
between classification accuracy and reduced cortipnta he entire flow
except the MAP-MRF takes less than a second to gtamgm single-core
3.4 GHz Intel CPU for each image. NeverthelessMA®-MRF takes 82
seconds to run in the same conditions. One of thi rbenefits is an
increased classification accuracy compared witherotmethods. In
particular, the accuracy has been significantlyroapd around the cloud
borders, which often tends to generate a high assdication rate, due to
the fact that edges fade into the background withdontrast.

9.2.3.Sensor network

Geographically dispersed sensors or a largelyiligéd PV network can
be another source of observation data for clou@cds it enables direct
measurements, it is often used as a referenceséssthe performance of
an irradiance forecasting method. It provides véth intermediate and
probably complementary spatial and temporal regmiuvith respect to
sky imaging and satellite views. In particularstapproach offers a better
resolution than forecasts based on satellite imdgdsed, the distributed
range of the 83 residential rooftop PV network usgdayadevan, Lonij,
Cronin et al. [15, 80, 81] covers an area of 50 k0 km with an
average spacing of 3 km between two neighbourimgass. It records
average AC power normalized by the system ratingl&minutes
intervals. A disadvantage of dealing with such asse network is the
installation cost.

time resolution. The sampling rate is also too Idoreover, the same
publication mentions that cloud edge velocity mayalways be the same
as wind velocity, which may lead to significantaesr as a result. It must
also be noted that Weather Research and ForecdstiR§) numerical
atmospheric models are better at forecasting tipadtnof slowly varying
cirrus (high altitude, 9 to 12 km) clouds for up5® hours ahead whereas
PV network is better to forecast the effects ofchlyi varying cumulus
(low altitude, up to 5km) clouds.

9.2.4.Hybrid solutions

Satellite and sky images can be combined to opdirttie resolution of
nowcasting of clouds in near-medium future. Thisuisolution used by
Gonzalez et al. [75] by interpolation. This teaspalise an ANN to detect
clouds. A k-nearest-neighbour (kNN) algorithm iseof used to classify
cloud types [24].

Even all three approaches (NWP, satellite and semstwork) can be

combined together to optimize even further the alVelemporal and

spatial resolution of the forecast. This is done_bwij, Cronin et al. [15]

to perform a 45-minute forecast.

9.3 Random-sequence and time series models

Considering the third group, the methodology ineslvacquiring and
processing power output data commonly coming froooaple of 200-
300 W PV panels with MPPT ability as well as ireatie data fed by a
sensor like a pyronameter. Sampling these datalasecond interval is
the most popular practice [12, 29]. However, it trios noted that high
solar angles of incidence around sunrise time ambed time usually
result in a poor accuracy of the measurement opdveer output, leading
to corrupted samples. Nevertheless, little genmmais expected during
those times. Considering a dataset of valid sampléisreshold is usually
defined to separate clear and shaded periods.tGai[29] consider the
irradiance to define a constant threshold of 85%efmean direct normal
irradiance (DNI)Ggear,avig Any period of timeTshacea Characterized by a
DNI below this threshold can be considered as shadkth the help of a
sky camera, it has been observed by this teamtligatnost dramatic
variations of the average DNI lev8sqeanormalized with respect to
Gelear,avg OCCUr during short shaded periods of time, shdttan 200 s.
Within these short shaded periods, the normaliadiiance may vary in
range from 5% to 90% of the me@gearavg DNI. With the help of a sky
camera, it has been established that shaded péoinglsr than 200 s may
be due to opaque and slow-moving cumulus cloudsil&ly, Barnes et
al. [12] also classify the clear-sky irradiancefipeanto clear and shaded
data by using a classification algorithm. This alipon consists in
performing a second-order curve fit on the irradeprofile completed by
normalization of the irradiance profile and K-meahsstering with two
centroids. The probability for a PV generator to sfeaded or fully
insolated in the future is a crucial informationsiae the energy storage
unit (ESU) needed to mitigate the effect of surlidisruptions. It must be
noted that only the discharge power of the ESlaken into account to
assess its size. The likelihood for a PV generatorbe shaded is
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calculated on the basis of the time series of istates (either clear or
shaded) considering the duration of each stateserAi-Markov discrete-
time process has been modelled and applied. Themmexnumber of tap
changes per day as well as the minimum clear-skyubyower required
to induce a tap change need to be established lmasdde lifetime of
system elements and load-flow analysis.

For the specifically studied day, ESU throughpwt haen established as
2.625 MWh with 20 tap-changes per day. Nonetheltrgs, method is
used by Barnes et al. for selecting an offline c@rdtrategy. The authors
would recommend to consider a live feed of weatlaa to improve the
performance. The results presented by the samerauthlated to this
method are shown in Figures 9 (a) and (b) [12] fesy of A.K. Barnes,
Dr. J.C. Barda and J.K. Hayes, university of Arles)s

Summary:Optical flow is very precise but takes too longcmmpute.
Hence, such a method can only be used off-lineceSithe spatial
resolution plays a pivotal role in irradiance fasting, sky cameras can
provide with the ideal space resolution to defireyswshort term cloud
motion vectors. Sky cameras are also needed fodabtassification. A
persistence approach also proves to outperfornilisats|sed methods.
However, sensor networks are the reference souréepat data since
they can measure directly the irradiance and deetptire complex cloud
models. Such networks are nonetheless costly ang moa have the
adequate temporal and spatial resolution to tralduds precisely.
Consequently, sky images sampled every second oechhiith a sensor
network with a refresh of data every few minuteansideal combination
for an optimal accuracy of irradiance forecastiimgleed, the correlation
of both systems enable to uncover the effect oflisigaof each type of
cloud. Satellite images may also considered intexidito increase the
spatial resolution and to observe the top of clouds

10. Conclusions

As of now, PV power remains not fully predictabledehence relatively
expensive and difficult to dispatch. However, a fapproaches can be
envisaged to improve the possibility to dispatchéPérgy, to optimize its
generation and to plan its storage, making it aemmiliable energy
resource. In particular, controlling the energyrage can mitigate the
discontinuity of PV generation over various periofisime. However, an
accurate forecast of the PV power output is necgssacontrol a system
containing PVs, energy storage and additional nmachi The temporal
and spatial definition of the system must be defirs a first step,
accordingly with the intended grid operation. Irtjgalar, to guarantee
power continuity and safety, a very fine resolutismeeded. Although,
various approaches can address the problem, teisteeice model tends
to be the most accurate approach for very sharm-ferecasting. ANNs
and SVM are appropriate approach for short-ternizhns and NWP are
better suited for longer horizons. While a proliatid method based on
historical data may be valuable for very long teflorecasts, such an
approach cannot take into consideration the compéiations of the
cloud cover causing short-term sunlight disruptidDely a deterministic
atmospheric modelling approach can deal with tbehststic changes of
solar radiance during the day. Within this typerafdel, NWP data-based
models are well adapted for day ahead forecastsuifter from a too
coarse temporal resolution. On the other hand, skiagers,
geographically dispersed sensors or satellite image excellent sources
of data for cloud identification and tracking. Si#images give a large-
scale overview of cloud events, possibly with a dyoesolution. Sky

imagers are a precious tool to identify cloud tyaesl anticipate the
impact of the shading on PV power generation. A ridytsystem

combining at least a sensor network and a sky apeforms better than
separate systems. Even combining all three solitcam outweigh the
drawbacks of all individual solution. Low altitud#ouds like cumulus
clouds may cause fast occurring power discontinwitereas thick rain
clouds like nimbostratus clouds may cause longAgsind severe power
outing. Finally, it has been found that observirffiree the effect of

cloud-related shading on solar power generatiom ameadequate period
of time can help to calculate the size of the neglienergy storage. This
can notably be successfully done by using randomuesee and
clear/shaded classification. Some further improv@mean be sought in

the future. In particular, it would be valuablediaborate algorithms that

can calculate cloud coverage and classify cloudsgusnline data and a

fine sampling period. In addition, measuring prelgighe effects of each
type of cloud on the solar irradiance could greb#ip. Finally, finding a

method do distinguish reliably rain clouds fromasform clouds would
be valuable.
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Fig 1 - lllustration of seasonal variations of global solar irradiance for a given place on the surface of the Earth.
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Fig. 2 - 1-V curves of the module Kyocera KC200GT showing the impact of various temperature on the open circuit output voltage
(a) and the effect of various solar radiance on the short-circuit output current (b) [30].
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Fig. 5 — Illustration of the various types of clouds corresponding to Table 11.
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Table

Table 1 - Wind speed/power forecasting time frames [16, 18]

Time horizon Range Possible purpose

Very Short-term A few seconds to 30 minutes Electricity market clearing

/Nowcasting

Short-term 30 minutes to 6 hours Economic load dispatching

Medium-term 6 hours to 1 day Operational security

Long-term More than 1 day Maintenance scheduling to optimize the operating cost

Table 2 - Popular methods used for wind speed/power forecasting [16].

Approach Subclass/Tools Examples Characteristics
Persistence P(t+At)=P(t) if k is small -Reference benchmark
Method V(t+At) = V(t) -Very accurate for very-short-term and short-term
wind forecasting
Physical Numeric  Wheather Prediction | Global Forecasting System Use of meteorological data.
Approach/ (NWP) Accurate for long term wind forecasting.
Numerical
Weather
Statistical Neural Network (NN) Artificial Neural Network (ANN) | Accurate for short-term
Methods Multilayer perceptron
Other techniques Fuzzy Logic Good for short-term
Genetic Algorithm
Markov Chain
SVR
Time-series Models ARMA Accurate for short-term
ARMAX
ARIMA
AR
Hybrid - ANN+Fuzzy Logic = ANFIS -ANFIS is very good for very-short term forecast
Structures - NWP+NN
-NWP+NN is very accurate for medium and long
term

Table 3 - One possible definition of the various horizons for PV power forecasting [27].

PV Horizon Time resolution Possible purpose
Very Short-term A few minutes to several hours Real-time control
/Nowcasting
Short-term Up to 3 days Economic dispatch
Long-term A week to a year Grid balance

Table 4 - Another definition of the various horizons for PV power forecasting [17].

PV Horizon Time resolution Possible purpose
Intra-hour 15 minutes to 1 hours Ramp rates control, variability management
Intra-day 1 to 6 hours Load following
Day ahead 1 to 3 days Transmission scheduling

Table 5 - nRMSE expressed as a percentage for different forecasting methods. Data collected by Yuehui (2010) [27].

Month/Season Physical Model Physical Model Statistical Approach
(NWP input) (measured G and T inputs) (NN)

March/Spring 11.48 8.78 11.05

June/Summer 11.54 5.17 10.45

October/Autumn 16.58 4.93 15.49

December/Winter 15.33 5.61 12.62

Overall Year 12.45 551 10.5




Table 6 - Various empirical models available in literature to evaluate PV cell temperatures, as listed by Jakhrani et al. (2011) [32]
and Ciulla et al. (2013) [22].

Year Authors Empirical Model Comments
1976 Ross [33] Tc = Tanb +k-G k = 0.02-0.04°C-m*W
G Considering wind speed Wspeee™>1m/s and a
Rauschenbach | T =T 4 (T T J1-m 9 p speed
1980 [34] ™ G eer (Tesoer ~Tancer) o constant heat loss coefficient Up
1983 Risser-Fuentes -|-C =381+0.0282-1.31-G 'Tarm —165- Wspeed Model verified with MPPT
[39]
- Model verified for 1m/s<V,,<1.5m/s and
1985 Schott [36] T =T,,+0.028-G-1 Oo‘é <9TV923'59°C or 1m/s m/s an
amb’
_ A=0.0138, $=0.031, y=0.042, Tamp iS given
T.=T,, +a-G-1+4-T,, ) 1-y W
1985 Servant [37] : i ( p amb) ( 4 speed) in °C with a constant wind speed V,=1m/s
-(1-1.053-7,)
only valid for free standing modules with a
Ross-Smokl - G
1986 OSS[ 38m]o o To=Ta+ (TC,NOCT - TNOCT) constant wind speed Wapees=1m/s and
noer constant heat loss coefficient U_
Lasnier-An For p-Si only, Tamp is given in °C whereas
1990 [39] g T, =30.006+0.0175-(G —300)+1.14-(T,,,, —25) the wind speed and heat loss coefficient U,
are not taken into account
Tamp iS given in °C, the ratio 6—"’ (with the
ToT G -(‘ra _ 77) transmittance t, absorbance proLduct o and
2000 Hove [40] ¢~ lam + U heat loss coefficient U,) is determined
L
experimentally by assuming that the
efficiency n =0
k=0.0058 for lower modules, 0.012 for
_ T=T.. +k-G T =T, +0.028-G-1 '
2004 Krauter [41-43] ¢ am oo upper modules and 0.03 for usual modules
Mondol et al. _ Tamb iS given in °C, Wipeea™>1m/s with
2005,2007 T, =T,, +0.031-G-0.058 am P
[44] e constant heat loss coefficient U_
G 95 The product t o of transmittance t,
- ‘ T, =T+ G ~[5 743 8 W ] absorbance product a is taken as 0.9
2006 Duffie-Beckman NocT 430 Wepees whereas the heat loss coefficient Uy is
4] ’ (Tc. NocT ~ Tamb NocT ) (1— T ) associated with wind speed
2007 Chenni et al. T.=0943-T,, +0-028'G*1-528'Wspeed +4.3 The coefficient of heat loss U, is not taken
[14] into account.

Table 7 — Mean nominal conversion rate n, by technology [49].

Monojunction technology

Monocrystalline

Polycristalline

Amorphous thin
film

1o (%)

14.96 14.36

10.49

Table 8 — Values recommended by the NOOA (2004) for the atmospheric refraction correction [17].

B Correction factor CF
85°to 90°
>'to 85° I [581 007"  0.000086"
3600| tan(B) tan*(B) tan®(B)
-0.575°to 5° °
1—[1735"7518.2" £+103.4" 3% -12.79" 5° +0.711" ﬁ"‘]
3600
<-0.575° —-20.774"

3600

tan(B) }




Table 9 — Possible sources of data.

Type of forecast Very short-term/Grid management Utility Applications
Approached based Sky camera Sensor network Satellite NWP
on
Temporal resolution Seconds-minutes Minutes Minutes-hours Day-days

Used to assess the
cloud coverage and
for cloud
classification

Comments
reference  to

approach

As the only direct mean of
measurement, often used as a | the
assess
precision of a forecasting

Used to assess
cloud
the | coverage

Forecast of atmospheric
conditions (ambient temperature,
wind speed), useful for PV
models

Table 10 — Approximate heights of Cloud Levels.

Level Polar Region Temperate Region Tropical Region
High Clouds 10,000-25,000 feet (3-8 km) 16,500-40,000 Feet (5-13 km) 20,000-60,000 feet (6-18 km)
Middle Clouds 6,500-13,000 feet (2-4 km) 6,500-23,000 feet (2-7 km) 6,500-25,000 feet (2-8 km)
Low Clouds Surface-6,500 feet (0-2 km) Surface-6,500 feet (0-2 km) Surface-6,500 feet (0-2 km)

Table 11 — Cloud Classification for PV forecasting purposes.

# Cloud Classification Level of the cloud Altitude range of obstruction
1 Clear Sky (Cl) Not applicable Not applicable
2 Cumulus (Cu) Low Up to 6,500ft/2,000m
3 Stratocumulus (Sc) Low Up to 6,500ft/2,000m
4 Stratus-altostratus (St-As) Middle - Low Up to 20,000ft/6,100m
5 Cirrocumulus-altocumulus (Cc-Ac) Middle - High From 6,500ft/2,000m
6 Cirrus-cirrostratus (Ci-Cs) High Above 20,0001t/6,100m
7 Cumulonimbus-nimbostratus (Cb-Ns) Low-middle-high Very low base below 6,500ft / 2,000m and
high top potentially above 20,000ft / 6,100m

Table 12 — Cloud classification by altitude of top and optical thickness.

50
Cirrus Cirrostratus Deep Convection
Cloud 440
Top .
Altocumulus Altostratus Nimbostratus
Pressure
(mb) 680
Cumulus Stratocumulus Stratus
0 3.6 23 379

Optical thickness




Table 13 — Relevant features to process images from sky cameras based on the works of Heinle (2010) [24] and Katzanzidis (2012)

[25].
Type of Name Expression Comment
Feature
l N-1
Mean (R) Mg = N Pri
i=0
e Useful to define the
Mean (B) M; = N Ps.i average tonal values
i=0
1 N-1
Mean (G) Mg =72 Pa;
N =
1 N 2
iati SDg =, |—— -M
Spectral Standard Deviation (B) B N-_1 & (ps. B)
3
1 NA =M .
Skewness (B) SK, = — Z Ps B These_features.glve
N 5\ SDg some information
about the tonal
Difference (R-G) Dpe =My —Mg variations
Difference (R-B) D =My —M
Difference (G-B) Dgs =Mg —My
G-1G-1 ( This  shows the
n :
ocef1,1] homogeneity of
Energy (B a=0 b=0 -
oy ) monochromatic
level differences
G-1G-1 This measures how
ENTB :ZZ oce[1,1] a b IOgZ( occ[l :L](a b)) random the
Entropy (B) a=0 b=0 )
monochromatic
level differences are
Textural G116 1 This measures local
Dcc[l-ll(a’b) variations of
Contrast (B) a=0 b:O )
monochromatic
level differences
gisin a,b) This measures how
e=2 m[\a] 0 similar  neighbor
Homogeneity (B) as0b=0 pixels are in terms
of  monochromatic
levels.
N _ This is a measure of
CC = cloudy_ pixels th loud
=N e average clou
Total Cloud N
Cloud Cover (R,G,B) cover, useful to
Cover T
distinguish
stratiform clouds
Table 14 — Additional relevant image processing parameters [25].
Criterion Tier 1 Tier 2 Tier 3
Solar Zenith Angle ¢, (degrees) <40 40-65 >65
Fraction of Cloud Coverage (octas) <3 3-6 7-8
Visible Fraction of the Solar Disk (%) <20 20-80 >80
Table 15 — Additional sub-classes [25].
Cloud Class St-As Cb-Ns Cu Cc-Ac Sc Ci-Cs Cl
Number of sub-classes 4 6 8 9 10 12 1




Table 16 — Simple weather classification based on a textual forecast [48].

Key word Classification
Clear
Fair Sunny
Slightly overcast
Heavily overcast Cloudy
Cloudy
Rain/Snow Rainy
Fog/Mist Foggy




Highlights

Highlights of this article:

Very-short term photovoltaic (PV) power forecasting to manage grid stability and planning
charges and discharges of an energy storage unit (ESU).

Analysis of the tools and approaches used in the reference field of wind power forecasting.
Introduction to the forecasting horizons and approaches that may similarly be applied to PV
power forecasting.

Review of some statistical methods that are relevant to PV forecasting.

Case study comparing statistical and physical approaches.

PV cell modelling including cell temperature modelling.

Irradiance forecasting in clear sky conditions and considering the cloud coverage.

Cloud coverage modelling and image processing for cloud classification.

Weather classification method to forecast PV power output a day ahead.

Comparison of the various sources of input data and methods for very short-term PV power
output forecasting.



