
Solving geoinformatics parametric polynomial systems using

the improved Dixon resultant

Robert H. Lewis, Béla Paláncz, Joseph Awange

Fordham University, New York, NY 10458, USA

Budapest University of Technology, Hungary

Curtin University, Perth, Australia

Abstract

Improvements in computational and observational technologies in geoinformatics,

e.g., the use of laser scanners that produce huge point cloud data sets, or the prolif-

eration of global navigation satellite systems (GNSS) and unmanned aircraft vehicles

(UAVs), have brought with them the challenges of handling and processing this “big

data”. These call for improvement or development of better processing algorithms.

One way to do that is integration of symbolically presolved sub-algorithms to speed

up computations.

Using examples of interest from real geoinformatic problems, we will discuss the

Dixon-EDF resultant as an improved resultant method for the symbolic solution

of parametric polynomial systems. We will briefly describe the method itself, then

discuss geoinformatics problems arising in minimum distance mapping (MDM), pa-

rameter transformations, and pose estimation essential for resection. Dixon-EDF

is then compared to older notions of “Dixon resultant”, and to several respected

implementations of Gröbner bases algorithms on several systems. The improved al-

gorithm, Dixon-EDF, is found to be greatly superior, usually by orders of magnitude,

in both CPU usage and RAM usage. It can solve geoinformatics problems on which

the other methods fail, making symbolic solution of parametric systems feasible for

many problems.

Keywords: parametric polynomial system, resultant, Dixon, determinant, symbolic

computing, Gröbner basis, big data.

1

1 Introduction

In geoinformatics, a brach of science that deals with the collection and analysis of

spatial data, solving polynomial systems of equations is a recurring task. In geodesy,

for example, most problems utilize polynomials as mathematical tools for finding

unknown parameters such as positions of stations. The global navigation satellite

system (GNSS) for instance requires solution of a system of polynomial equations to

give not only the correct position of points on the surface of the Earth and in space,

see, e.g., [1],[3],[5],[32], but also to transform coordinates from the GNSS systems to

local systems and vice versa (e.g., [4],[7]). For instance, local coordinates may be

known, but measurements are given in the GNSS system whose coordinates are in

a global system (e.g., World Geodetic System 1984 - WGS 84 - for the US based

global positioning system GPS). In such a case, coordinates in both local and global

systems would be used to obtain the transformation parameters, which are later used

to transform measured coordinates from one system to another. Equations relating

coordinates in the systems and the required transformation parameters are usually of

polynomial type (e.g., [7],[8]). Photogrammetry and remote sensing also encounter

polynomials in solving the camera or sensor orientation problem in what is known as

the pose estimation problem, see e.g., [21], [29], while in computer vision and medical

sciences, polynomials play a key role in determining image orientations among others

[22], [26], [28], [34], [38]. Polynomial equations, therefore, arise frequently not only

in geoinformatics, but in all of applied mathematics (e.g., Lewis [9], [25], [27]) and

are vital tools in day to day operations.

In the last decade, geoinformatics has experienced a revolution in technology.

Observation tools have improved and significantly increased in use. For example, in

geodesy, whereas previously the US-based GPS dominated positioning from space,

the world is now inundated with other positioning systems, such as the improved

Russian based GLONAS, the Chinese Beidou, and the European Galileo (see, de-

tails of these systems in [1]). Photogrammetry and remote sensing have seen the

rapid emergence of unmanned aircraft vehicles (UAVs) and laser scanning, which

offer improved products compared to the traditional aerial photogrammetry (e.g.,

[17]). Computer vision is being revolutionized by improvements in computer and in-

formation technology (IT), see e.g., [12]. These revolutions have brought with them

not only the challenge of handling huge data sets, in what is currently known as big

2

data, but also that of processing the data. Processing data calls for efficient algo-

rithms that would not only be fast (in terms of optimizing the computation time)

but also be robust (capable of managing outliers in data, see e.g., [2]). Between the

huge observations and the required solutions, polynomial equations often stand as

the required mathematical models.

Geoinformatics approaches for dealing with polynomial equations have largely

been through numerical iterations due to the difficulty in solving polynomial systems

[19]. Often, the equations are linearized using Taylor series expansion and least

squares [5]. Other numerical methods may also be used, e.g., [11], [36]. In the

last decade, however, closed form or symbolic solutions have been proposed by [4],

[33], [20] among others as alternatives to iterative numerical approaches. Symbolic

methods have the advantage of not requiring initial values, which are often not known,

and can lead to lack of convergence of iterative procedures in some cases, e.g., [7].

Among symbolic methods, the improved Dixon approach proposed by Lewis et al

[20], [25] has strong advantages [25]. In light of the challenges brought about by

the big data era, and in order to keep improving algorithms for geoinformatics tasks,

this contribution extends the Dixon resultant method in several ways, including early

detection of factors, EDF.

The advantages of the Dixon-EDF approach in comparison to other methods,

e.g. [32], for solving geoinformatic problems of polynomial nature include working

with reduced dimension matrices to compute the solutions, and also the fact that the

solutions often appear early in the computational process without the need for the

program to run to the end. For example, in the case of the determined GNSS prob-

lem, we have four unknowns and sixteen parameters. The homotopy approach of [31]

requires numerical integration, which has round off errors. To avoid these round off

errors, high precision integration with numerical inverse should be used. Employing

parallel computations to try to circumvent the problem using homotopy results in

considerably long computation time. However, using the proposed parametric so-

lution (i,e., Dixon-EDF) avoids this problem. Dixon-EDF thus could provide faster

determined solutions that could be used by the Gauss-Jacobi combinatorial approach

of [6] to solve the GNSS overdetermined problem.

To understand how the method works, the concept of systems of polynomial

equations and how to solve them is expounded below.

3

2 Symbolic versus Numeric Solution

In this work we emphasize symbolic solution over numeric solution. Basically, a

numeric (or numerical) method is one that could be done with a simple hand-held

calculator, using basic arithmetic, square roots, trigonometry functions, logarithms,

and exponentials. Depending on the task, one may have to press the calculator

buttons thousands (or even millions) of times, but theoretically a person with a

calculator and some paper could implement a numerical method. When finished, the

paper would be full of arithmetic.

A symbolic method involves algebra. It is a method that if a person implemented,

would involve algebraic or higher rational thought. A person implementing a symbolic

method will rarely need to reach for a calculator. When finished, there may be some

numbers, but the paper would be full of variables like x, y, z.

Quadratic equations are a familiar topic from high school. An engineering appli-

cation may need to solve the equation f(x) = x2 + 3x − 2 = 0. With a hand-held

calculator, one could simply do “intelligent guessing.” Let’s guess, say, x = 1. Plug it

into f(x), find that f(1) is positive. Therefore, 1 is too big. Now try x = 0; that’s too

small. Go back and forth; stop when satisfied with the accuracy. It doesn’t take long

to get x = 0.56155, which might well be considered accurate enough. Furthermore,

it is easy to write a computer program to implement this idea. That’s a numeric

method.

But there is another solution, which the numeric method missed, namely−3.56155.

Even worse, if one were to continue this method on many problems, one would soon

notice that some equations don’t seem to have solutions, such as x2 − 2x + 4 = 0.

A great deal of effort could be expended in arithmetic until finally giving up and

finding no solution.

The problem is cured by learning algebra and the symbolic method that yields

the quadratic formula. Given ax2 + bx+ c = 0 the solution is

−b±
√
b2 − 4ac

2a

Note that this formula solves all quadratic equations at once because it uses the

symbolic names a, b, c (later termed parameters). It is now immediately obvious why

some problems have no solution: it happens precisely when b2 − 4ac < 0. Symbolic

methods lead to insight.

4

In the previous example, x2 + 3x − 2 = 0, we see that the two roots are exactly

(−3 ±
√

17)/2. In this expression there is no approximation whatever. Should a

decimal answer correct to, say, 16 digits be desired for the engineering problem, that

would be trivially obtained on any modern computer.

There is more. Not only does the symbolic method concisely represent all so-

lutions, it invites the question, can we define a new kind of number in which the

negative under the square root may be allowed? The symbolic solution leads to a

new concept, that of complex numbers!

Symbolic methods may be hard to develop, and they may be difficult for a com-

puter to implement, but they are always desirable. Fortunately, we are not forced into

a strict either/or dichotomy. There are symbolic-numeric hybrids using the strengths

of both ideas.

Most researchers instinctively desire symbolic methods, postponing numeric cal-

culations as long possible. Of course, eventually most solutions will involve numerical

results, just as in our hypothetical example of the quadratic equation.

3 Polynomial Systems

“Solve a system of polynomial equations” means different things to different people.

Everyone will agree that we take a collection of multivariate polynomials, set each

to 0, and search for the common roots.

For us in this paper, we have a ground ring K of numerical coefficients, variables

x1, x2, . . . , xn, and parameters a1, a2, . . . , am, so mathematically we are working in

a ring of polynomials K[a1, . . . , am, x1, x2, . . . , xn] [13]. K is primarily Q, the field

of rational numbers. It is often a useful tool to work over a finite field K, such as

Z/p for p “large”, say 40000 to 231. We are not interested in cryptography, in which

K = Z/2. We want our “numbers” to be exactly represented in the computer; we

don’t want to work with “reals” or “floats” that have round-off problems (until late

in the process when data is plugged in).

To emphasize, it is important to understand the difference between variables,

parameters, and numerical coefficients. For example, recall that the equation of a

standard parabola with vertex at the origin and focus p is 4py = x2. In this paper, all

our equations have right hand side = 0, so we would write it as 4py−x2 = 0, and then

5

we often don’t bother to write the 0. The two variables are x and y, the parameter

is p, and the numerical coefficients are 4 and −1. The (numerical) coefficients are in

the ring of integers, Z. We could have written it as py − 1
4x

2. Then the coefficients

are in Q. A polynomial equation with coefficients in Q can always be converted to

one in Z by multiplying through by the least common multiple of the denominators,

so the distinction between Z and Q is not important.

As stated above, we are not interested in purely numerical solution. We pursue

symbolic solution as long as possible. We typically have n equations in n variables

x1, x2, . . . , xn and some parameters. Usually 3 ≤ n ≤ 15. There are always parame-

ters. Ideally, the system is neither under- nor over-determined. This is not a restric-

tion since underdetermined systems occurring frequently in geodesy can be easily

transformed into determined systems by considering them as optimization problems,

or by transforming them into combinatorial sets of deterministic systems (see section

7).

In this work, “solve the system” means to eliminate all but one of the variables.

We are then left with one equation in one variable and the parameters – the resultant.

The theory of resultants goes back to Bezout around 1760. Other important names

in the subject are Cayley, Sylvester, Macaulay, and Dixon [13], [37], [14]. If desired,

numerical values for the parameters can then be substituted into the resultant, and

the variable obtained numerically. If desired, to get numerical values for all the

variables we could run this method in parallel independently on different processors

and then test all combinations of values for each variable. In most cases, this last

step is very fast. But often the resultant is really the desired solution already.

The Bezout-Dixon method produces a matrix whose determinant is a multiple of

the resultant. Dixon-EDF [25] is a way to compute the resultant without finding the

entire determinant. Often the determinant is too large to compute, but it has many

factors and so the resultant is much smaller than the determinant. The other factors

are called spurious. Often the resultant occurs with multiplicity. We detect these

polynomial factors “early,” hence EDF = Early Detection of Factors. The output of

the algorithm is a list of polynomials whose product is the determinant. Interesting

problems tend to have many factors. There is no guarantee that this will always

work better than a standard determinant method. However, on many real problems

from interesting applications, it does very well [26], [27], [28].

6

Gröbner Bases are well known [13], [37]. Briefly, just as a basis is a good, efficient

set of vectors to generate a set of vectors forming a vector space, a Gröbner basis is a

good, efficient set of polynomials to generate a set of polynomials that form an ideal.

The concept has a wide range of many applications, only one of which is solving

systems of polynomial equations.

Let us emphasize a key difference between resultant solutions and Gröbner bases

solutions. The resultant of a system of n polynomials in n variables is a single

polynomial in one variable (and, usually, parameters). A Gröbner basis used this

way yields a number of polynomials in triangular form. That is, the first polynomial

contains only one variable (and the parameters), the second has two variables, etc.

It seems reasonable that the Gröbner basis is more “complete”, and may well take

longer to compute. However, often one or two resultants are not only sufficient, they

are exactly what is desired – the other variables are mere artifacts. In any event,

one may compute the resultants for different desired variables in parallel on different

machines. This is a huge advantage.

Over the last fifteen years we have noticed again and again that when engineers,

scientists, and most mathematicians want to solve a polynomial system, they want

a symbolic solution. They try Gröbner bases, usually in either Maple, Mathematica,

or Magma. Many times, the program crashes or the user gives up after many hours.

Almost always these systems would be enormously easier to solve with Dixon-EDF.

We do not know of any examples of the type of problem described here where Gröbner

bases are better than Dixon-EDF.

There is a further advantage to Dixon-EDF. We are computing the determinant

of a matrix (or factors thereof). There are many ways to do that. That is a very

well-studied field. Basically Dixon-EDF is a modified and adaptive row and column

reduction. But one can easily examine the state of the computation and interrupt

it part way to switch to another method. As we will see below, it is often useful to

switch to the Gentleman-Johnson idea of expansion by minors with storage of minors

[18].

Computations in this paper were run on an Intel Imac at 2.3 ghz with 16 gigabytes

of RAM, and on faster Linux servers with 130 gig. Dixon-EDF was run in Fermat

[23]. Some Fermat code for Dixon-EDF is at [24]. Some of the commands used

in Mathematica, Magma, and Maple are in an appendix. Maple has some built-in

7

triangularize and Gröbner bases routines, as well as the FGb package of Faugere

[15]. FGb is usually superior and the others were not often used here. The Maple

FGb commands were explained to us by J.C. Faugere [16]. The way to use Magma

was specified by Magma programmer Allan Steel [35]. We also use Mathematica for

some examples. Mathematica is the only well known large system that has any Dixon

resultant utility. It is a package one must download and install. It implements some

of the KSY idea (see next section) but not Dixon-EDF.

4 Brief Explanation of Dixon-EDF

This has been published in, e.g., [25], [27].

Given n equations in n variables x1, x2, . . . the Bezout-Dixon method is a two

step process.

• Using n− 1 dummy variables b1, b2, . . . create an n× n matrix M , set p = its

determinant Det[M] divided by q = (x1 − b1)(x2 − b2) . . . (xn−1 − bn−1). p is

called the Dixon polynomial. (Det[M] is always divisible by q.)

• Extract coefficients of p relative to monomials of x1, x2, . . . , xn−1 and mono-

mials of b1, b2, . . . and put them into a second matrix M2. The basic idea is

that the coefficient relative to xi
rbj

s goes into M2[k,m] where k depends on

xi
r and m depends on bj

s. Each entry M2[k,m] is a polynomial in xn and the

parameters.

When n = 2, M2 is square, and it is easy to predict the dimensions of M2. The

resultant is Det[M2], the determinant of M2. When n = 3, Dixon [14] proved that

in a certain ideal situation, M2 is square and the resultant is Det[M2]. However

that ideal situation never arises in real problems. When n > 2 often Det[M2] is

identically 0 and therefore worthless. Even worse, especially for n > 3, usually M2

is not a square matrix, and then the entire concept seems to break down. There the

idea languished for many years. In 1994 Kapur, Saxena and Yang [20] (KSY) revived

it by showing that the resultant is a factor of ANY maximal minor of M2. Their

proof was incomplete and was finished by Buse, Elkadi and Mourrain [10].

Continuing then,

8

• Extract a maximal minor from M2. This is actually quite easy to do. Reduce

the computations modulo a large prime, say p > 40000. Set M3 equal to M2

with xn and all the parameters replaced with random primes less than p.

• Row (or column) normalize M3 keeping a record of all row and column swaps

made. This is very easy and fast.

• The previous step ends with a maximal minor. Use the same recorded list of

rows and columns to extract a maximal minor of M2. We call this final matrix

M4.

• M4 contains polynomials in the parameters and the one remaining variable.

The resultant is a factor of Det[M4] – probably a small factor.

Remark One: The last few steps are a probabilistic algorithm. There is an ex-

tremely minute chance the chosen prime p or the substitution values will be unlucky

in that the rank of M3 is less than the rank of M2. With a little bit of care, this

never happens in practice.

Remark Two: This will not work if the system is under-determinded (Buse et.

al.). The method will proceed and an M4 chosen, but the final answer will probably

be bogus.

Except for the probabilistic part and the minors extraction, the algorithm so

far could be called Dixon-KSY, Dixon as modified by Kapur, Saxena, and Yang.

Unfortunately, the method is still often infeasible because Det[M4] can be a gigantic

polynomial that might not fit into the RAM of the machine, even if it could be

computed.

To continue,

• We wish to avoid simply computing the determinant of M4. Instead we begin

to column normalize the matrix M4.

• To avoid creating large messy denominators (rational functions) we pull out

denominators from each row as soon as they arise. Also we factor out gcds

(greatest common divisor) whenever possible from the numerators in each row

and column.

9

• We keep track of all denominators and gcds so discovered, and we divide out

common factors in the denominator list and the numerator list. In the end, the

denominator list must be all 1s. The product of the numerator list is Det[M4].

• This can work efficiently because Det[M4] usually has many factors. This is a

bad way to compute the determinant of a random matrix. But random matrices

are seldom of interest.

There are subtleties and variations that can have significant impact on execution

time: trying to select the “best” maximal minor by some heuristic, such as total

number of terms; the order of the variables; the pivot strategy during the matrix

normalization; running the entire algorithm first over Z/p; not running all the way

to completion, as the answer may already be in the numerator list.

Here is a simple example. Given initially

M0 =

 9 2

4 4

 numerators: denominators:

We factor a 2 out of the second column, then a 2 from the second row. Thus:

M0 =

 9 1

2 1

 numerators: 2, 2 denominators:

Note that 9 × 4 − 2 × 4 = 2 × 2 × (9 × 1 − 2 × 1). We change the second row by

subtracting 2/9 of the first:

M0 =

 9 1

0 7/9

 numerators: 2, 2 denominators:

We pull out the denominator 9 from the second row, and factor out 9 from the first

column:

M0 =

 1 1

0 7

 numerators: 2, 2, 9 denominators: 9

Note that 9× 7/9− 1× 0 = (2× 2× 9)/9× (1× 7− 1× 0).

We “clean up” by dividing out the common factor of 9 from the numerator and

denominator lists; any 1 that occurs may be erased and the list compacted. Since the

10

first column is cannonically simple, we are finished with one step of the algorithm,

and have produced a one-smaller M1 for the next step.

M1 =
[

7
]

numerators: 2, 2 denominators: 1

The algorithm terminates by pulling out the 7:

numerators: 2, 2, 7 denominators: 1

At the end: three numerators, one denominator (= 1). As expected (since the original

matrix contained all integers) the denominator list is trivial. The product of all the

entries in the numerator list is the determinant, but we never needed to deal with

any number larger than 9.

In the following sections some geodetic problems are solved with the method to

illustrate its power and efficiency. The ground ring K = Q in all cases. Actually, all

numerical coefficients are in fact integers.

5 Minimum Distance Mapping

The revolution brought about by positioning using global navigation satellite systems

(GNSS) in geodesy has necessitated a fresh look at the mathematics underpinning it.

This is because GNSS measures on the topographical surface, while the measurements

are referred to a mathematical figure approximating the earth, the ellipsoid. The

projection of points from the topographical surface to their equivalent on the reference

ellipsoid thus remains a fundamental task in geodesy (see e.g. Awange and Palancz

2016 [7]). For planets similar to the Earth, Awange and Palancz (2016) point to the

biaxial ellipsoid, i.e., “ellipsoid of revolution” as the best approximation. In section

5.1, we show how a topographical point can be mapped to a standard ellipsoid, while

in section 5.2 we illustrate the mapping to any ellipsoid or 3D conic.

5.1 Mapping of topographical point to standard ellipsoid

Given a standard position ellipsoid x2/a2 + y2/b2 + z2/c2 − 1 = 0 and a point

U = (u, v, w), compute the point X = (x, y, z) on the ellipsoid closest to the point

U . The ellipsoid equation has three variables x, y, z and three parameters a, b, c.

We can easily derive equations using partial derivatives to find the minimum

distance (alternatively, one can use Lagrange multipliers). Think of z as a function

11

Figure 1: Given u, v, w find x, y, z for a standard ellipsoid.

of x and y. Let D be the square of the distance between the points U and X. Set

the partial derivatives ∂D/∂x, ∂D/∂y equal to 0. We must add two more variables

to stand for ∂z/∂x, ∂z/∂y; we use dzx, dzy. There are six parameters a, b, c, u, v, w.

The five equations (set each expression to 0) are

x2/a2 + y2/b2 + z2/c2 − 1

x/a2 + z/c2 dzx

y/b2 + z/c2 dzy

(x− u) + (z − w)dzx

(y − v) + (z − w)dzy

The new variables dzx, dzy are artifacts: we don’t care about them. We want to

know just x, y, z. One advantage of resultants is that you can’t tell a Gröbner basis

algorithm not to bother with some of the variables.

This is a fairly easy problem for several methods. The resultant has 66 terms and

is degree 6 in x. With Dixon: 0.038 seconds, 22 meg RAM, with Magma: 1 second,

100 meg. Similar results were obtained with Maple and Mathematica. But we can

say more: the coefficient of x6 is

b2c2 − 2abc2 + a2c2 − 2ab2c+ 4a2bc− 2a3c+ a2b2 − 2a3b+ a4.

This factors as (a− c)2(a− b)2, so we learn that if b = a or c = a there is a simpler

solution. In fact, if c = a the resultant drops to degree 4. As is often the case, a

symbolic method leads to insight!

12

5.2 Mapping of a point to any 3D conic

Here (Figure 2) is the image for a general ellipsoid arbitrarily oriented in space, but

we could have any 3D conic.

Figure 2: Given u, v, w find x, y, z for an arbitrary ellipsoid.

The equation for an arbitrary 3D conic is

ax2 + by2 + cz2 + dxy + exz + fyz + gx+ hy + iz + j = 0.

Given point (u, v, w), compute point (x, y, z) with shortest distance. This is much

more difficult than the standard position ellipsoid in the previous section. We have

again three variables x, y, z, but now 13 parameters a, b, c, . . . , u, v, w. There are two

good ways to set up the equations for this problem. First, it is well known that the

gradient grad(x, y, z) is normal to the surface. It is obvious that the line of minimal

length is normal to the surface at (x, y, z) and passes through (u, v, w). Therefore,

there is a real number A such that A times grad(x, y, z) is exactly the line segment

connecting (x, y, z) to (u, v, w). This leads to four equations in the variables x, y, z, A.

Secondly, the minimization problem can be set up as a classical Lagrange multi-

pliers problem. This adds one variable λ and gives four equations. It turns out this

yields the same set of equations as before, so we will use it.

This problem is much harder than the previous: solving for x with Dixon-EDF

takes 12 seconds, 270 meg RAM. The answer has 38984 terms, degree 6. However,

13

with Magma the program was killed after 24 hours using 24 gig RAM. With Maple

FGb, success was obtained after 5.8 hours and 52 gig RAM. Mathematica was killed

after seven hours and 1.5 gig RAM.

But we can say more. The coefficient of x6 has two factors, one is

af2 − def + be2 + cd2 − 4abc

If this were 0, the resultant simplifies.

To finish the problem, one would similarly compute the resultants for y and z.

Or, by symmetry, one could note that those resultants are the same as the one for x

with a simple permutation of parameters. In any event, take the three resultants one

by one, substitute in numerical values for the parameters, use standard one-variable

solvers, and produce up to six real number possibilities for each variable. Test up to

63 combinations for the minimal distance.

This is an interesting problem that is worth further discussion. The four equations

are

cz2 + fyz + exz + iz + by2 + dxy + hy + ax2 + gx+ j,

ezλ+ dyλ+ 2axλ+ gλ+ 2x− 2u,

fzλ+ 2byλ+ dxλ+ hλ+ 2y − 2v,

2czλ+ fyλ+ exλ+ iλ+ 2z − 2w

λ occurs more often than any other variable and with exponent 1 only. Based

on experience with many problems, this indicates that it will be easier to solve for λ

than the others. Indeed, Dixon-EDF solves for λ in 0.05 seconds and 1 meg RAM.

It produces two factors, of degrees 3 and 6, and 15 and 717 terms. The degree 3

factor is spurious, but to be fair, that is not obvious at this point, so we will continue

to include it. Mathematica’s Gröbner basis function takes 25.5 seconds to compute

the 717 term answer, and at least 10 meg RAM. The Dixon-KSY resultant package

in Mathematica takes about 1.2 seconds and at least 6 meg RAM, but produces a

single polynomial of 17430 terms, which is the correct answer (717 terms) times a

large spurious factor.

To continue with the two factors of degree 3 and 6, by plugging in numerical

values for the parameters and using a standard one-variable solver, one could obtain

up to nine possible real values for λ.

Next, most unusually, note that the last three equations are linear in x, y, z.

14

Therefore, one could proceed by plugging in the numerical values for the parameters

and the various values of λ from the previous paragraph, then solving the three

variable linear system very quickly with standard software. That would yield up to

nine solutions, and it would be trivial to check which is closest to (u, v, w). This is

an example of a symbolic-numeric hybrid method.

6 Datum Transformation Problems

A transformation of coordinates motivated by geodesy and photogrammetry was dis-

cussed by Awange et. al. [4], [7]. The transformation involves seven “parameters”

(variables in our terminology here) named a, b, c,X0, Y0, Z0, s1. Three points in one

coordinate system given by (Xi, Yi, Zi), i = 1, 2, 3 are being transformed into coordi-

nates (ai, bi, ci), i = 1, 2, 3 in the other system by a skew-symmetric rotation matrix,

using a, b, c, a scaling specified by s1, and a translation given by X0, Y0, Z0. The

seven equations (set each to 0) are

s1X1 − s1cY1 + s1bZ1 +X0 − a1 − cb1 + bc1,

s1cX1 + s1Y1 − s1aZ1 + Y0 + ca1 − b1 − ac1,
−s1bX1 + s1aY1 + s1Z1 + Z0 − ba1 + ab1 − c1,
s1X2 − s1cY2 + s1bZ2 +X0 − a2 − cb2 + bc2,

s1cX2 + s1Y2 − s1aZ2 + Y0 + ca2 − b2 − ac2,
−s1bX2 + s1aY2 + s1Z2 + Z0 − ba2 + ab2 − c2,
−s1bX3 + s1aY3 + s1Z3 + Z0 − ba3 + ab3 − c3
All the point coordinates are parameters (in our terminology). The paper [4]

discusses a clever way to substitute and reduce the system to four variables and four

equations. That system was then solved for s1 with Gröbner bases.

Suppose we do not see the clever substitution. Let’s try to solve the system of

seven equations. With Dixon-EDF, solving for s1, it takes 0.016 seconds and 1.6 meg

RAM. The resultant factors into two quadratic polynomials in s1 of 24 and 18 terms.

This is a surprisingly fast solution time, and the answer is surprisingly small for

a system of seven equations, even bearing in mind that all variables appear with

exponent 1. Based on our experience with many problems, this is a strong hint that

the equations can be algebraically simplified – which is indeed true as we mentioned

above.

15

Trying to solve for s1, Magma was killed after 610 minutes and 4 gig of RAM.

Maple crashed after 510 minutes and 38 gig RAM.

Solving for a different variable is harder. Notice that s1 occurs three times in each

equation, while a occurs twice in only five equations. Again based on experience with

many problems, this indicates that it will be harder to solve for a than s1. To solve

for a takes 2.8 seconds and 120 meg RAM. The answer is of degree 2 in a but has

24004 terms.

A better, more general transformation of coordinates (Xi, Yi, Zi), i = 1, 2, 3 to

(ai, bi, ci), i = 1, 2, 3 uses a different scaling factor in each dimension, so that there

are three such factors s1, s2, s3 [33]. There are then nine equations and variables.

With Dixon-EDF, the matrix M4 is 7× 7. Solving for s1 takes 20.6 seconds and 536

meg RAM. The resultant factors into one quadratic polynomial in s1 and two linear

ones, of 132, 12, and 12 terms. The linear pieces probably represent singular cases

of no real significance.

This is an example where the answer of 132 terms appears “early” by step 3 (out

of 7), after only 10 seconds and 232 meg RAM. It is also a case in which spending ten

seconds to look for the “best” maximal minor is fruitful. The matrix M2 is 31 × 8.

It has many maximal minors of size 7 × 7, and some not only take longer to work

with EDF, but the process finishes with spurious factors that play no role in the real

solution.

Trying to solve for s1, Magma crashed after 173 minutes and 104 gig of RAM.

Maple was killed after 300 minutes and 26 gig RAM.

7 Helmert Transforms

The 2D Helmert transformation [7] with parameters s and Ω is X

Y

 = s

cos(Ω) − sin(Ω)

sin(Ω) cos(Ω)

 x

y


or more simply substituting α and β X

Y

 =

α −β
β α

 x

y


(Note that if α and β are known we can easily deduce s and Ω.)

16

Let us suppose that we have measurements for three corresponding data pairs

(xi, yi) → (Xi, Yi), i = a, b, c, respectively. We require the least squares estimates of

the transformation parameters α and β, and simultaneously the adjustment of the

coordinates xa, xb, xc, Xa, Xb, and Xc. Applying the two equations of the transfor-

mation for each of the three point-pairs with the adjusted values, we get six equations

(set each to 0):

α(xa + dxa)− βya − (Xa + dXa),

β(xa + dxa) + αya − Ya,
α(xb + dxb)− βyb − (Xb + dXb),

β(xb + dxb) + αyb − Yb,
α(xc + dxc)− βyc − (Xc + dXc),

β(xc + dxc) + αyc − Yc
In these six equations there are eight unknowns, the adjustments dxa, dxb, dxc, dXa,

dXb, dXc and the two parameters α, β. This underdetermined system can be trans-

formed into a constrained minimization problem formulated with Lagrange multipli-

ers λ1, . . . , λ6. The goal is to minimize dx2a + dx2b + dx2c + dX2
a + dX2

b + dX2
c . The

variables λ1, . . . , λ6 are artifacts.

The condition for the existence of the optimum yields the following fourteen

polynomial equations (set each to 0):

2dxa + αλ1 + βλ2, 2dxb + αλ3 + βλ4,

2dxc + αλ5 + βλ6, 2dXa − λ1, 2dXb − λ3,
2dXc − λ5, (dxa + xa)λ1 + yaλ2 + (dxb + xb)λ3 + ybλ4 + (dxc + xc)λ5 + ycλ6,

−yaλ1 + (dxa + xa)λ2 − ybλ3 + (dxb + xb)λ4 − ycλ5 + (dxc + xc)λ6,

−dXa −Xa + (dxa + xa)α− yaβ, −Ya + yaα+ (dxa + xa)β,

−dXb −Xb + (dxb + xb)α− ybβ, −Yb + ybα+ (dxb + xb)β,

−dXc −Xc + (dxc + xc)α− ycβ, −Yc + ycα+ (dxc + xc)β

Some of the equations are very small and therefore some variables could be solved

in terms of others. However, Dixon-EDF has no trouble solving this system of four-

teen equations symbolically. Solving for α produces a resultant of 57707 terms, takes

32 seconds and 387 megabytes; the answer for β has 34843 terms, takes 11 seconds

and 226 megabytes. α and β occur in the equations more often than the other vari-

ables, so it is not surprising that solving for, say dxa, is much harder. The resultant

has 202620 terms, takes 18 minutes and 2.7 gigabytes.

17

Two frequently used ideas sped up the last computation. First, a minute was

spent looking for better maximal minors. With different maximal minors, we have

observed running times three times longer. Secondly, the EDF computation was run

modulo the prime 44449, a randomly chosen “large” prime. This speeds up all nu-

merical computations. Without it, running over the ring of integers Z, intermediate

numerical coefficients routinely grow to 20 digits. The disadvantage of running mod-

ulo a prime is that the answer may not be correct over Z, which of course is what

the user wants. For example, a certain correct numerical coefficient might be 44452

or 88901, which both equal 3 modulo 44449. However, in this case, and in many

others, the answer modulo the prime is in fact correct. It is easy to see this because

all numerical coefficients are less than 8000 in absolute value.

Solving for β was tried with Gröbner bases in Magma and Maple. Maple was

killed after 18 hours and 61 gigabytes of RAM. Magma was killed after 24 hours and

14 gigabytes of RAM.

8 Pose Estimation

Pose estimation in photogrammetric or laser scanning concerns the determination of

the position and orientation of the aerial camera (or laser scanner) during photogra-

phy (i.e., photogrammetric resection, Awange and Palancz 2016 [7]). We illustrate

in this section how Dixon-EDF can be used to rapidly solve this problem.

Suppose we have a quadrilateral ABCE; it does not have to be planar. The

distances between each pair of vertices are known. The object moves. We observe it

from point P , noting the angles spanned by each pair of vertices. The classic four

point pose problem is to deduce the distances X1, X2, X3, X4.

There are four variables X1, X2, X3, X4. The parameters are AB,BC, CE, AE,

AC,BE and cosines p, q, r, s, t, u (see below). An overdetermined system results from

applying the law of cosines to each triangle having vertex P (see Figure 4).

Using three equations including the diagonals AC or BE gives an easy system of

equations, solvable by many means. For example, one could use the equations

X2
1 +X2

2 −X1X2r − |AB|2 = 0

X2
2 +X2

4 −X2X4u− |BE|2 = 0

X2
1 +X2

4 −X1X4s− |AE|2 = 0

18

Figure 3: Viewing four points on an object

Figure 4: Equations from law of cosines, angles p, q, r, s, t, u

and solve for X1, X2 or X4.

But suppose the object could be flexible! Then we have to use only the out-

side edges; diagonal distances might change. We now need four equations and four

variables.

Maple and Magma both fail on this. FGb was killed after 25 hours, exhausting

62 gig of RAM. Magma crashed after 308 minutes, 8.2 gig.

Dixon-EDF finishes in 36 secs, 275 meg RAM. However, the resultant can be

computed in less than one second by the variation of EDF in which we run EDF to a

certain point (in this case after the third row) and then use Gentleman-Johnson [18]

to compute the determinant of the remaining 9× 9 matrix. This is a good example

of the enormous flexibility of Dixon-EDF, in which the user is in control throughout

the process. The resultant for X1 has 24068 terms.

19

The analogous problem with a five-sided figure, using only the outside edges, is

also solvable by Dixon by a two step process. We now have variablesX1, X2, X3, X4, X5

and five equations. Use four of them to eliminate all variables but X1, X2. That takes

144 seconds. Then take that resultant (47295 terms) and the remaining fifth equation

and eliminate X2. That takes 4 hours. The final answer has 37291784 terms.

9 Conclusions

This study sought to improve the traditional Dixon resultant applicable to geoinfor-

matics by introducing the new Dixon-EDF approach. Compared to earlier versions

of “Dixon resultant,” Dixon-EDF has two key advantages:

• It does not matter that the Dixon matrix, here called M2, could be non-square

or have determinant identically 0. We easily extract a maximal minor, M4.

• It does not matter that Det[M4] could be an enormous polynomial of billions

of terms. We usually do not compute the entire determinant, we compute a

list of factors.

• Furthermore, the resultant may appear “early” in the list of factors, and the

process can be stopped.

We found great success in applying Dixon-EDF to polynomial systems arising in

important applications. Dixon-EDF succeeds on many other systems [9], [26], [27],

[30], [31]. Maple failed repeatedly with several implementations of Gröbner bases,

as does Magma. Some of the systems above were also tried in Mathematica and

failed. However, experienced users can sometimes find solutions with some systems

with Gröbner bases, choosing properly the elimination order of variables.

In summary,

• Dixon-EDF is a powerful tool for symbolic solution of systems of multivariate

equations.

• Dixon-EDF succeeds where other methods fail. It is usually orders of magnitude

more effective, at least on systems with parameters.

20

• The mathematics involved in Dixon-EDF is at the undergraduate level. It is

much easier to understand than Gröbner bases.

• As we saw in the datum transformation problem (section 6), if a system of

equations admits useful algebraic simplifications, Dixon-EDF can indicate that

by completing very quickly.

• Dixon-EDF challenges the user’s creativity. There are many variations and

options.

21

10 Appendix

The Maple-FGb commands for the pose example:

Maple 2015 (X86 64 LINUX)

Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2015

> with(FGb):

p := 0;

v1 := [x2, x3, x4];

v2 := [x1, b1,b2,b3,b4,c12,c23,c34,c41];

sys := [x1^2 + x2^2 - c12*x1*x2 - b1, x2^2 + x3^2 - c23*x2*x3 - b2,

x3^2 + x4^2 - c34*x3*x4 - b3, x4^2 + x1^2 - c41*x4*x1 - b4];

> ll1:=fgb_gbasis_elim(sys, p,v1,v2,{"step"=8,"verb"=3,"index"=40000000});

Magma commands for the pose example:

Magma V2.21-8 Thu Dec 10 2015 13:26:28 on ace-math01 [Seed = 2343837211]

Type ? for help. Type <Ctrl>-D to quit.

Q:=RationalField();

F<b1,b2,b3,b4,c12,c23,c34,c41> := FunctionField(Q,8);

R<x1,x2,x3,x4> := PolynomialRing(F,4, "elim", [2,3,4]);

I := Ideal ([x1^2 + x2^2 - c12*x1*x2 - b1, x2^2 + x3^2 - c23*x2*x3 - b2,

x3^2 + x4^2 - c34*x3*x4 - b3, x4^2 + x1^2 - c41*x4*x1 - b4]);

time G := GroebnerBasis(I);

Mathematica command for the general 3D conic problem, solving for x (the ei are

the four equations from above):

22

References

[1] J. Awange, GNSS environmental sensing. Springer International Publishers,

2018.

[2] Awange JL, Palancz B, Lewis R, Lovas T, Heck B, and Fukuda Y (2016) An

algebraic solution of maximum likelihood function in case of Gaussian mix-

ture distribution. Australian Journal of Earth Sciences 63(2): 193-203, doi:

10.1080/08120099.2016.1143876.

[3] J. Awange, Environmental monitoring using GNSS. Springer-Verlag. New York,

2012.

[4] J. Awange, Y. Fukuda, E. Grafarend, Exact solution of the nonlinear 7 param-

eter datum transformation by Groebner basis. Bollettino di Geodesia e Scienze

Affini (1) 2004.

[5] J. Awange, E. Grafarend, Algebraic solution of GPS pseudo-ranging equations.

GPS Solutions 5(4): 20-32, 2002.

[6] J. Awange, E. Grafarend, Nonlinear Adjustment of GPS Observations of Type

Pseudo-Ranges. GPS Solutions 5(4): 80-93, 2002.

[7] J. Awange, B. Paláncz, Geospatial Algebraic Computations, Theory and Ap-

plications. Springer-Verlag. New York, 2016.

[8] J. Awange, B. Palancz, B., R.H. Lewis, L. Vlgyesi, Mathematical Geosciences

-Hybrid Symbolic-Numeric Methods-. Springer International Publishers, 2018.

[9] Bozoki, S., Lewis, R. H. Solving the least squares method problem in the AHP

for 3×3 and 4×4 matrices. Central European Journal of Operations Research,

13(3), pp.255-270 (2005).

[10] L. Buse, M. Elkadi, and B. Mourrain, Generalized resultants over unirational

algebraic varieties. J. Symbolic Comp. 29 (2000), p. 515-526.

[11] D. Bates, J. Hauenstein, A. Sommese, C. Wampler. Bertini: Software for Nu-

merical Algebraic Geometry. https://bertini.nd.edu

23

[12] N. Buch, S.A. Velastin, J. Orwell, A Review of Computer Vision Techniques for

the Analysis of Urban Traffic. IEEE Transactions on Intelligent Transportation

Systems, vol 12, Issue: 3,(2011), p. 920 - 939, doi: 10.1109/TITS.2011.2119372.

[13] D. Cox, J. Little, D. O’Shea. Using Algebraic Geometry. Graduate Texts in

Mathematics, 185. Springer-Verlag. New York, 1998.

[14] A. L. Dixon, The eliminant of three quantics in two independent variables.

Proc. London Math. Soc. 6 (1908) 468 – 478.

[15] J.-C. Faugere, A new efficient algorithm for computing Gröbner bases (F4).

Journal of Pure and Applied Algebra (Elsevier Science) 139 (1999) 61 – 88.

[16] J.-C. Faugere, personal communication, July 8, 2014.

[17] P.K. Freeman, R.S. Freeland, Agricultural UAVs in the U.S.: potential, policy,

and hype. Remote Sensing Applications: Society and Environment vol 2 (20150,

p. 35-43, doi: 10.1016/j.rsase.2015.10.002

[18] W. Gentleman and S. Johnson, The evaluation of determinants by expansion by

minors and the general problem of substitution. Mathematics of Computation,

28, (126) 1974, 543 – 548.

[19] B. Grenet, P. Koiran, N. Portier. (2010) The Multivariate Resultant is NP-hard

in Any Characteristic. In: MFCS 2010. Lecture Notes in Computer Science, vol

6281. Springer, Berlin, Heidelberg.

[20] D. Kapur, T. Saxena, and L. Yang, Algebraic and geometric reasoning using

Dixon resultants. In: Proc. of the International Symposium on Symbolic and

Algebraic Computation. A.C.M. Press (1994).

[21] Z Kukelova, M Bujnak, T Pajdla, Polynomial Eigenvalue Solu-

tions to the 5-pt and 6-pt Relative Pose Problems. - BMVC, 2008 -

cmp.felk.cvut.cz// kukelova/webthesis/publications/Kukelova-etal-BMVC-

2008.pdf [Accessed 12/1/2018]

[22] V. Lepetit, F. Moreno-Noguer, P. Fua, EPnP: An Accurate O(n) Solution to

the PnP Problem. International Journal of Computer Vision, (2009) 81: 155.

https://doi.org/10.1007/s11263-008-0152-6

24

[23] R. H. Lewis, Computer algebra system Fermat. http://home.bway.net/lewis/

[24] R. H. Lewis, Fermat code for Dixon-EDF, http://home.bway.net/lewis/dixon

[25] R. H. Lewis, Heuristics to accelerate the Dixon resultant, Mathematics and

Computers in Simulation 77, Issue 4 (2008) 400 – 407.

[26] R. Lewis and S. Bridgett, Conic tangency equations arising from Apollonius

problems in biochemistry, Mathematics and Computers in Simulation 61(2)

(2003) 101 – 114.

[27] R. H. Lewis and E. A. Coutsias, Flexibility of Bricard’s Linkages and Other

Structures via Resultants and Computer Algebra. Mathematics and Computers

in Simulation. November 2014. http://arxiv.org/abs/1408.6247

[28] R. H. Lewis and Peter Stiller, Solving the Recognition Problem for Six Lines

Using the Dixon Resultant, Mathematics and Computers in Simulation 49

(1999) p. 203 – 219.

[29] D. Nister, An efficient solution to the five-point relative pose problem. IEEE

Transactions on Pattern Analysis and Machine Intelligence 26 (2004), Issue: 6,

p. 756-770, doi: 10.1109/TPAMI.2004.17

[30] B. Paláncz, R. H. Lewis, P. Zaletnyik, and J. Awange, Computational study

of the 3D affine transformation part I. 3-point problem. March 2008. online at

http://library.wolfram. com/infocenter/MathSource/7090/

[31] B. Paláncz, J. Awange, P. Zaletnyik, and R. H. Lewis, Linear homotopy solution

of nonlinear systems of equations in geodesy, Journal of Geodesy. September

2009. http://www.springerlink.com/content/78qh80606j224341/

[32] B. Paláncz, P. Zaletnyik, J. Awange, and E. Grafarend, Dixon resultants solu-

tion of systems of geodetic polynomial equations, Journal of Geodesy. Septem-

ber 2008, vol. 82, p. 505-511.

[33] B. Paláncz, P. Zaletnyik, A symbolic solution of a 3D affine transformation.

Mathematica Journal, vol. 13, p. 1 - 15.

25

[34] S. Periaswamy, H. Farid, Medical image registration with partial data.

Medical Image Analysis, vol 10, Issue 3 (2006, p. 452-464, doi:

10.1016/j.media.2005.03.006.

[35] A. Steel, personal communications. September 2 – 7, 2015.

[36] A. J. Sommese, C. W. Wampler. The Numerical Solution of Systems of Poly-

nomials: Arising in Engineering And Science. World Scientific. London, 2005.

[37] B. Sturmfels, Solving systems of polynomial equations. CBMS Regional Con-

ference Series in Mathematics 97, American Mathematical Society, Providence,

2003.

[38] J. Ventura, C. Arth, G. Reitmayr, D. Schmalstieg, A Minimal Solution to the

Generalized Pose-and-Scale Problem, Computer Vision and Pattern Recogni-

tion (CVPR) 2014 IEEE Conference on, pp. 422-429, 2014, ISSN 1063-6919.

26

	Introduction
	Symbolic versus Numeric Solution
	Polynomial Systems
	Brief Explanation of Dixon-EDF
	Minimum Distance Mapping
	Mapping of topographical point to standard ellipsoid
	Mapping of a point to any 3D conic

	Datum Transformation Problems
	Helmert Transforms
	Pose Estimation
	Conclusions
	Appendix

