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Abstract

Based on the recent theoretical development for formation control of multiple fully actuated agents with an elliptical shape in
Do (2011), this paper develops distributed controllers that force a group of N underactuated ships with limited communication
ranges to perform a desired formation, and guarantee no collisions between any ships in the group. The ships are first fitted to
elliptical disks for solving collision avoidance. A coordinate transformation is then proposed to introduce an additional control
input, which overcomes difficulties caused by underactuation and off-diagonal terms in the system matrices. The control design
relies on potential functions with the separation condition between elliptical disks and the smooth or p-times differentiable step

functions embedded in.

Keywords: Underactuated ships, formation control, elliptical disks, collision avoidance, potential functions

1. Introduction

Formation control of a group of underactuated ships is a
hard and challenging problem due to difficulties in controlling
each single ship while requiring to perform cooperative tasks
for the group. The reader is referred to Do and Pan (2009)
and references therein for various control methods for single
underactuated ships. There are several approaches mentioned
below to formation control design for underactuated ships.

The leader-follower approach plus the Lyapunov and slid-
ing mode methods were used in Lapierre et al. (2003), Fahimi
(2007), Schoerling et al. (2010), Cui et al. (2010) to design co-
operative controllers for a group of underactuated vessels. A
combination of line-of-sight path-following and nonlinear syn-
chronization strategies was studied in Borhaug et al. (2006),
Borhaug et al. (2010) to make a group of underactuated ves-
sels asymptotically follow a given straight-line path with a
given forward speed profile. In Dong and Farrell (2008), see
also Dong and Farrell (2009), nontrivial coordinate changes,
graph theory, and stability theory of linear time-varying sys-
tems were used to design cooperative control laws for under-
actuated vessels to perform a geometric pattern.

In the above papers, collision avoidance between vessels
was not considered even though a collision between vessels
can cause a catastrophic failure. Embedding a collision avoid-
ance algorithm in a formation control design for underactuated
ships is difficult due to the stability problem of zero dynamics
of the un-actuated degree of freedom. Moreover, ships usually
have a long and narrow shape. Fitting them to circular disks
results in a problem of the large conservative area defined as
the difference between the areas enclosed by the circle and the
ellipse. Using the result in Section 1 in Do (2011), it can be
shown that the conservative area is proportional to square of
the difference between the length and the width of the ship. In
addition, an elliptical fitting covers a circular one by setting the
semi-axes of the bounding ellipse equal, but not vice versa.
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Figure 1: Comparison of sway distance when bounding ships by a) elliptical
disks and b) circular disks

In practice, there are cases where it is necessary to navi-
gate a group of underactuated ships moving in a formation that
requires the distance in the sway direction between the ships
in the group as short as possible. An example is a refueling
scenario between two ships. As illustrated in Figure 1, when
bounding each ship with a long and narrow shape by an el-
liptical disk the distance d, (in the sway direction between two
ships) is much shorter than the distance d. when bounding each
ship by a circular disk.

In comparison with formation control of fully actuated
agents with an elliptical shape in Do (2011), formation con-
trol design for elliptical ships is difficult due to the underactu-
ation problem. It is not straightforward to combine the tech-
niques developed for stabilization and trajectory tracking con-
trol of underactuated ships in Do and Pan (2009) and refer-
ences therein with the formation control design method in Do
(2011) to design a formation control system for underactuated
ships. This is due to the fact that the techniques in Do and
Pan (2009) and references therein use the heading angle as an
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immediate control to control the sway displacement. Conse-
quently, it is not an easy task to embed the collision avoidance
in a proper potential function for formation control design, see
also Do (2008) for a discussion where formation control of
mobile robots was addressed.
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Figure 2: Two elliptical disks and their coordinates

The aforementioned observations motivate contributions of
this paper on design of formation control algorithms for un-
deractuated ships with an elliptical shape and limited commu-
nication ranges. The paper’s contributions include: 1) a way
to embed the condition for separation between two elliptical
disks proposed in Do (2011) in a new potential function for
deriving formation control algorithms, see Section 4.1; 2) a
design of formation controller, see Section 4; and 3) stability
analysis of critical points of the closed loop system, see Ap-
pendix Appendix A.

2. Preliminaries

2.1. Separation condition between two elliptical disks

This section presents a condition for separation of two ellip-
tical disks applicable for embedding collision avoidance in the
formation control design later.

Lemma 2.1. Consider two elliptical disks i and j, of which
bounding ellipses have semi-axes of (a;,b;) and (aj,b;), are
centered at (x;,y;) and (xj,y;), and have heading angles of ¢;
and ¢;, respectively, see Figure 2. Define the generalized dis-
tance A;j between the elliptical disks i and j as

1 _ -
Ajj = \/ 510y + 10 lP), M
where p;; = [X;; yi;1”,
Kij COS(CL/l‘j) Kij Sin(aij)
ai(kij + @3 bilkij +a3)
Qij = Kij sin(a/,-j) Kij COS(O’ij) ’ )

a,-(K,-j + B?) bi(Kij + Z)?)

and k;j is the unigue solution of the following equation:

~

ki \2 b$:: \2
Flkij) o= (2L ) 4 (22) — 1 <o 3)
J ~2 2

Kij + aj Kij + bj

All the variables aj, bj, X;j, yij, Xij, Jij, and «;; are given by:

a;=1/\Ta, by =1/T),
[ % ]_[ —cos(a;)  —gsin(a;)) }_“
= ijs

Yij Lsin(a;))  —g-cos(ai)) “)

B 2T Tia + T21T2)
@;j = 2 arctan 5 3 > > |-
T+ Ty + T, + Ty,
with
T, = (T}, + T3)) cos* () + (T11 T1z + Ty Taa)X
sinQaij) + (T2, + T2,) sin®(a;)),
Ty = (T}, + T3y sin*(@i)) = (T1i Tiz + To Ta)X
sin(2a;;) + (T3, +T3) COSz(aij),
Tyi = §cos(¢i), Tio =~ sin(@y),
T21 = Z—; Sil’l((ﬁ,’j), T22 = z—;COS((b,‘j),
=yi—Yyj $ij = ¢i — b,
[, ¥ij1" = Rilxij, vij1",

®)

Xij = Xi = Xjs Yij

where R; = —R™'(¢;) with R(e) the rotational matrix of . The
matrix Qj; and the vector pj; are defined accordingly. The two
elliptical disks are separated if

A,’j > 1. (6)

Proof. See Do (2011).

2.2. p-times differentiable step function

This section defines and constructs p-times differentiable or
smooth step functions. These functions are to be embedded
into a potential function to avoid discontinuities in the control
law due to the ships’ communication limited ranges.

Definition 2.1. A scalar function h(x, a,b) is said to be a p-
times differentiable step function if it has the properties:

1) h(x,a,b) =0, VY x € (—o0,al],

2) h(x,a,b) =1, ¥ x € [b, ),

3)0 < h(x,a,b) <1, YxE€(a,b),

4) h(x,a,b) is p times differentiable,

)

where p is a positive integer, x € R, and a and b are constants
such that a < b. Moreover, if the function h(x, a, b) is infinite
times differentiable with respect to x, then it is said to be a
smooth step function.

Lemma 2.2. Let the scalar function h(x, a, b) be defined as
[ f@-af-1dr
fab fa—-a)f- T)d‘("

with a and b constants such that a < b, and the function f(y)
defined as

f=0ify<0, f) =g ify>0, )

where the function g(y) has the following properties

h(x,a,b) = 3

a) gt—a)gb—-1)>0, Vte(ab),

b) g(y) is p times differentiable, (10)

¢) lim

=0,k=1,...,p—-1,
y_,0+ ayk p



with p a positive integer. Then h(x,a,b) is a p-times differ-
entiable step function. Moreover, if g(y) in (9) is replaced by
gy) = e ' then h(x, a, b) is a smooth step function.

Proof. See Do (2007).
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where nf = [x} y] zpj.‘]T denotes the ship position (x},y})

and yaw angle ¢ coordinated in the earth-fixed frame; v; =
[u; v; r;]T denotes the ship velocities coordinated in the body-
fixed frame; d; = [dy; d» dx;]7 denotes external constant
forces due to wind and ocean currents coordinated in the earth-
fixed frame; 1; = [1,; O 7,]7 denotes the surge force 7,;, and
the yaw moment 7,;; and

dii 0 0

.
JW;) Z[ I;(:Z;) 021X1 ], Divpy=—| 0 dy dn |,
0 dani di
my;; O 0 0 0 a3
M= 0 myp myg [,Cv)=| O 0 i |,
0 ma3; may —ci3i —¢3i 0
(12)
with
myy; = m; — Xy, My = m; — Yy, Moz = mixe — Yy,
ma3; = Ij — Nii, C13i = —mogivi — Moaifi, C23i = Myl
dii = —(Xui + Xuuili), daoi = —(Yi + Yipilvil + YipilriD),

dozi = =Yy + Y)yilvil + Yjrilril), dzoi = —(Nyi + Njypilvil+
Niilril), dszi = =(Nyi + Nyprilvil + Nygrilril).
(13)

In (13), m; is the mass of the ship; ; is the ship’s inertia about
the Z?-axis of the body-fixed frame; x;i is the X7-coordinate
of the ship center of gravity in the body-fixed frame; the other
symbols are hydrodynamic derivatives, SNAME (1950).

3.2. Transformation of ship dynamics

We combine the coordinate change on page 168 in Do and
Pan (2009) to get around the difficulty caused by the term m,3;
and the transverse function approach in Morin and Samson
(2003) to create an additional control input for solving the un-
deractuated problem, see also Do (2010). We introduce the
coordinate change:

X; + g cos(;)

Xi _
yi || o +esin(y))
110! = (//;k - fél'(a[)3

Vi =V + &ty

Sii(ay) ]

+ R [ Jailai)

(14)

where g; = my3;/mo;, fil(a;), I = 1,2,3, are to be determined
later. With (14), the ship’s dynamics (11) is rewritten as:

Xio|_ 4| i —V; sin(y;) PN I T D)
[ Vi ]_ Al[ @ ]+[ Vi cos(y;) TR (w’)[ Fita) |~
— fr(apay),
Yi=ri— f3,(az)a,,
1
Ui = @Qui+ —Tyu + _(dll COS(W ) + d21 Sln(l// ))
myy 1
Vi =@y t+ _l‘pri + _(_dli sin(y?) + dy; cos(¥})),
nyo; myo;
i = i+ ety + oy sin(u}) = doycos(u) + A”’ dsi,
(15)

where «; is referred to as an additional control, and

cos(;) fidan _ )
H sin(y?) } R(‘/’i)[ f;/,'(ai) ”’ A; = mpimszz; — M3,

ma; myi ,  dii
+ -

Pui = — Vil T+ —1; — Ui,
miy; miy; miyi
_omyy dy; dsi
Qyi = ——— Wity — —Vi — — I,
myy; map; myy;

2
_ MMy — My, mi1iMma3; — Mp3;Mmoy;
Pri = ——————uU;jV; + uiri=

Ai Ai (16)
%(dﬂlrl + d321V1) + (d231r1 + d221V1)

1 i

and fl(a;) = 55‘;'&63), [ =1,2,3and R'(y;) = 0Rff) We now
choose f;; such that f;; are bounded, differentiable and make

the matrix A; invertible for all 7 € R and @; € R as

sin(f3;) — c0s(f3)
f31 f21 = g; sin (a 1) f3i P a7

Sfii = € sin(a;)
i = e cos(ay),

where the constants €; and e; are chosen such that ¢; > 0,
ei = €1, and 0 < €; < 5. With the choice of f; in (17), a
calculation shows that |f};| < €, |fal < €, |f3i]l < €; and
det(A;) < —E“(l —cos(€;)), Y a; € R. Due to the ¥;-dynamics
in (15), the constants €; need to satisfy an additional condition
to prevent instability of the ¥;-dynamics. This will be detailed
after the formation control is designed.

3.3. Bounding the ship by an elliptical disk

From (14) and (17), a
calculation shows that %

lICxi = x5 yi = )N <

, / 2, 2
&+ A€+ 6

i — ¥)] < e
(18)

Therefore, we can bound
the ship by an elliptical
disk with a heading an-
gle of ¢; and the center
at the point O; coordinated at (x;, y;), see Figure 3. The semi-
axes, a; and b;, of the bounding elliptical disk can be calcu-
lated from the ship’s length, width, the point O} coordinated at
(x7,y7) and the heading angle ¢ using the bounds (18).

Figure 4: Formation setup.



3.4. Formation control objective

To design a formation controller, there is a need of speci-
fying a common goal for the ships, some communication be-
tween them, and their initial position and orientation. Hence,
the following assumption is imposed on the reference trajecto-
ries, communication, and initial conditions between the ships:

Assumption 3.1.

1) The reference trajectory, mu(sia) = [Xia(Sia) Yia(sia)
Via(si)l', i = 1,...,N with siq the parameter of Nia(sia), for
each ship i, i € N, has bounded derivatives and satisfies

Ajja > 1, (19)

where A;jq is given in (1) with 1; and n; replaced by 1,4 and
njq, respectively, and siq = $jq.

2) The ships i and j have circular communication areas cen-
tered at the points O; and Oj, and with radii of R; and R}, see
Figure 4. The radii R; and R; satisfy the condition

Al > 1, (20)

where A;jg is the greatest lower bound of A;j when the ships i
and j are within their communication ranges, i.e.,

Alle =inf(A;j)) st yij € R, X, + 7, = min(R}, R3), o
Y@, )eN,j#i.

3) The ship i broadcasts n; and 1;4 in its communication
area. Moreover, the ship i can receive n; and 11,4 broadcasted
by other ships j, j €N, j # i if the points O; of these ships are
in the communication area of the ship i.

4) At the initial time ty > O, all the ships are sufficiently far
away from each other, i.e., they satisfy the condition:

Aij(to) > 1, (22)
where A;j(ty) is given in (1) with 1; = 1;(to) and 17; = 11;(1p).

Formation Control Objective 3.1. Under Assumption 3.1,
design the control inputs t,; and t,; for each ship i such that the
trajectory 1); tracks the reference trajectory 1;y while avoids
collisions with all other ships. In addition, siy and $iq of Mg
are to approach the common reference trajectory parameter
Soaq and its rate $,q, i.e.,

lim (:6) = 0ia(@): (s1a(0) = 50a(0)): B1a(0) = $0a(1))) = 0,
Aij(t) > 1LY, ) eNi # jt > 19 > 0.
(23)

4. Formation Control Design

The system (15) is of a strict feedback form. Therefore, we
will apply Lyapunov’s method and the backstepping technique
Krstic et al. (1995) to design the controls 7,; and 7,;.

4.1. Stage I
Define the following errors
Uie = Ui — W yi,

(24)

Tie =T — Wy,

where @,; and @,; are the virtual controls of u; and r;, respec-
tively. This stage designs @,;, @,;, and &; to achieve the task
of trajectory tracking and collision avoidance. As motivated

by the work in Do (2011), we consider the following potential
function:

N
o1= ) (i +B). (25)
i=1

The goal function vy; for the ship i puts penalty on the track-
ing errors between 1; and 1;4, and is chosen as:

i = 0.5(p;i — pia)” Ki(pi — pia) + 0.5k (Y — ria)*,  (26)

where p; = [x; yi17, pia = [xiq yia]”, and K| is a 2 x 2 diagonal
positive definite matrix and k; is a positive constant.

The collision avoidance function f3; prevents collisions be-
tween the ship i and other ships, and is chosen as:

1
Bi=75 D B 27)

JeN;

where N; is the set that contains all the ships in the group ex-
cept for the ship i. The pairwise collision avoidance function
Bi; between the ships i and j is a function of y;;, with y;; given
by
2
xij = 0.5( (A2 + & - Vi+ ), (28)

where € is a positive constant, and has the properties:

D Bij=0, B; =0, B; =0,V xij € [min(x]jg, Xija)> ©0)s
2) ﬁl] > 07 ﬂllj < O7v Xij € (07 min(X:"}R’/\/ijd)):
3 1' I — N 1' / —_ .
) XI}TOBU “ XI}TOBU *
4) Bi; is at least three times differentiable,
5) Bij < pijs B3l < paijs B < p3ijs Y O < xij < pajs

(29)
for all (i,j) € Nand i # j, where 8, = $4; g/ = "df
ij ij

Hiij,! = 1,...,4 are positive constants; and y;;s and X?}R are y;;
given in (28) with A;; replaced by A,;; and A;']fR, respectively.

Remark 4.1. Properties 1) - 3) imply that B; is positive defi-
nite, is equal to zero when n; — 1,4 = 0, and is equal to infinity
when a collision between the ship i and any other ships occurs.
Also, Property 1) ensures that the collision avoidance between
the ships i and j is only taken into account when they are in
their communication areas. Properties 3) and 5) are used to
prove stability of the closed loop system. Property 4) allows us
to use control design and stability analysis for continuous sys-
tems found in Khalil (2002) to handle the collision avoidance
problem under the ships’ limited communication ranges.

Based on the p-times differentiable step function in Section
2.2, we can find many functions that satisfy all properties listed
in (29). As an example, we will use the following function g;;
in the rest of the paper:

Bij = kij(1 = hij(xij, aij, bij) [ xij (30)

where k;; is a positive constant, y;; is given by (28) and
hij(xij, aij, bij) is a p-times differentiable step function with
p > 3 and the function g(y) taken as g(y) = y”. The constants
a;j and b;; are chosen such that

0 < ajj < bij < Xija — Hijas (31)



where ;4 is a positive constant.

To design the virtual controls @,; and @,; and the additional
control ¢;, we differentiate both sides of (25) along the solu-
tions of (24) and the first three equations of (15) to obtain

N
= Z [ Kl(Pz pzd) + ZBJIF’J ( ; Uje ;iwm +

i= J#
R’ (y) [ ?i (Fie + @y — f3,00) + [ ;ficzlsn(%f)) } —Pid)+
(k2(d/t l//zd) + Zﬁj,'—*u (rze + @, — f:g’,‘d’[ - (j/id) + Qidsid],

JEI

(32)

where we dropped the argument ¢; of f;; and f;;, and

ajky \2 (b \
F,‘j = ") + ~ >
Kij +a; Kl»j-i-b.
OFi\-100:;  (OF;
ool (2) L (22
j = (Qijpij) (QJ oy ) oy 6171,
00;; _ OF;;\' 00;; i (33)
(szl’u) (a d ij ( J) jpl] J)
l//z] aKlj aKlj al/’z]
;= (- G;R] +G;RY), E;; = (G;Spi; + H;j — H),
7 r / — ’
Qig = Zﬁﬂ u Xia yid] + Zﬂji‘:‘iﬂ/’id’

J# J#I

: — |01 _ X = Oxia s _ Oy
with § = [ 10] p,j—p Pj Xy = g Via = a—u,and

v = ‘;‘f—"’ Note that
Lemma 2.1 in Do (201 1).

From (32), we design the virtual controls @w,; and @,;, and
the additional control ¢; as follows

f’ is always nonzero, see Proof of

[ @i ] _ Ai_l( — 1 D(Qy) — [V sin(y}) v;x

@;
coswI” = RWlfi full (—e10@) + i) + Bia)e O

@y = _CICD(QI,/I,') + félat + l?bida

where ¢ is a positive constant, and

Qi = Ki(pi— pa) + ) Bl Qu, = koW = Wia) + ) .

JEI J#L

(35)

The vector function ®(L,,;) = [P(Q,;) P(Qp)]” with Q,,; =

[Q1,; Qopi]”. The function (x) satisfies
) 0] < My, DO) =0, xD(x) > 0 if x %0,
2) O(-x) = —D(x), (x = [P(x) = O(y)] = 0, (36)
D(x) ID(x) o0(x)|
3 | . < M| S| < =2 =,

for all x € R,y € R, where M, M,, M5 are positive constants.
The update law, §;4, is designed as:

Sia = hxijs aija, bija)(=kia(Sia = Soa) + Sod), 37

where k;; is a positive constant, and s;;(fg) = S,q(to);

h(xij, bij. X?}’R) is a p-times differentiable step function with
p = 3. The constants a;js and b; ;4 are chosen as

ajja = bij, bija < min(X?fR,Xijd), (38)

where b;; is given in (31), and)(l]‘fR is y;; given in (28) with A;;
replaced by its least upper bound value, A, ‘r» When the ships i
and j are in their communication ranges, i.e.,

Al = sup(Ay) s.t. yij € R, X, + 3}, = min(R, R3).  (39)

The choice (38) results in 5] /(xi;, bij,)(f‘fR) =0= Qusiy =
0, and ensures that (A, a;jq4, b;j4) tends to 1 when y;; tends to
bjjq, which is smaller than y;;s. This means that s;; and $;4 are
to approach s,; and $,, as required.

Remark 4.2. In (35), Q,; and Qy, consist of the gradient of
v; responsible for trajectory tracking plus the gradient of B;
responsible for collision avoidance tasks. Moreover, @,;, @
and &; are differentiable and depend on only n;, 3,4, and 1,
1jq of other ships j if these ships j are communicating with the
ship i due to Property 1) of B;; in (29).

Substituting (34) and (37) into (32) gives

N

= -1 QT ®(Q,) — c1Q,, D(Q,)+
;[ ==y )’ 152y 14 (40)

QL Ailuie 01" + QLR Wl fir ful” + Qu)ricl.

4.2. Stage Il

In this stage, we design the actual controls 7,; and 7,;. Since
d; is unknown, we apply Lemma 3.1 in Do (2010) to (11) to
estimate the disturbance vector d; as follows:

d; =& + Ko J T (WM,
& =~ K& — Koi(JTWHMw; + T M(M; ' < (41)

(=Civi)v;i = Dy + 1) + Kot T (W) M),

where Kj; is a positive definite matrix. The above disturbance
observer results in the observer error dynamics d;, = —Ko;d,.,

where dj, = [dyj. doie d3ic]” = d; — d;. To design 7,; and 7,7, we
consider the following Lyapunov function candidate

N
o=@+ Z uy +rs, (42)
im1

By differentiating both sides of (42) along the solutions of (24),
(15) and (34), the controls 7,; and 7,; are chosen as:

1 .
Tui = mlli( — Coltje — ﬂTiAi[l 01" - [Qﬁui + ——(dy; cos(y})+
mii

0 ui . 0 ui\T . 0 ui\T ..
dy; sin(y))) —( z; ) pi— (%) id —(%) Pia—
awui . awui awm awm 6wui
aa, Vi a; i — T Wia — P Wia — a7, (‘Pvi"‘
myy  =dusin@y) +dycosW))\ <o (0w
Eh‘ it ma; ) JEZN:(( op; ) el
613',”‘

Oa; @+ i)idle%)])’



A; ,
Ty = —( — Cotje — (Q,T,,-R Wlfii Hul” + Q«p,-) - [¢;—i+
myo;
mozi ~ . N . Moo ~ 0w i\T .
Ti(dli sin(y;) — da;i cos(y;)) + Tid&' - ( 6p,-l> i—
(3wri)7 _— (awri)T..l B 6wrid' B 0w, - 3wri¢'
opa’ 7 Nop) T by T ow T O
0w,; .. 0w, My3; —d); sin(y?)
- Y- —_(%i i+ ———
Wig ov; My, ma;
dy; cos(y?) dwu\T . dwy .  Ow
W)‘Z(( apj) Pf*%“f*a—%‘”f)])’

JeN;
(43)

where c¢; is a positive constant. With the choice of 7,; and 7,;
given in (43), the derivative of ¢, is

N
=) [ — QT D(Q,) — €19y, DQy,) — ot — o+
P
ﬁie auiﬁie i 6riﬂie
uie( ! - i_ 2 )_rie(miﬁ%e"' zv_. L):I3
my; 0V my; A; 0v; maoy;
(44)

where ?1;, = dije cos(Y}) + daje SINW), Daje = —dyje SINQY;) +
ie COS(Y?), D3ie = dije SINWYY) —d3;e cOS(Y7), and we have used
¢y in (40). The formation control design has been completed
and results in the closed loop system:

pi = —c1®(Qy) + Ai[uie 01" + R W) fii il Tie + Pias

gi = —c1O(Qy,) + rie + Yig,

3 ie 8 ui 9 ie
e = ~Cotte — QA1 O] + e - Z7u Zke

myy; 0V my;
) myithie 0w, D3 T T
e = —Colie — ———— + ———— — QU R W) fii il — Ly,
i cof, A pra— B Wl fii fail o
d;, = —Koid,,

. mo3; 1 o .
Vi = v + —— @ + —— (=dy; sin(Y}) + d; cos(y¥))),
my; myp;

(45)

for all i € N. We now present the main result of our paper in
the following theorem.

Theorem 4.1. Under Assumption 3.1, the controls t,; and T,;
given in (43) together with the disturbance observer given in
(41) for the ship i solve the formation control objective as long
as the design constants €;,1 = 1,2,3 are chosen such that

Yiwi  my; €+ e ei(dy; +442)
— —Aoi,
my;  Mmy; det(A;) det(A;) (46)
€, >0, & =¢€; 0<e&; <nr/2,
where Ay; is a positive constant, A; is defined in (16), and
Avi = CleiYpil + Vil + 1Vil)/m22i, 47

i = (EN il + & Yipil + [Yipsil) + 1Yl /1224

with g; given just below (14). In particular, there are no col-
lisions between any ships for all t > ty > 0, the closed loop
system (45) is forward complete, and the ships’ trajectories
track their reference trajectories in the sense of (23).

Proof. See Appendix A.

5. Simulation results
We simulate formation tracking control of a group of N =

7 identical underactuated container ships, with a length of
230.66 m and a beam of 32 m. The non-dimensional pa-
rameters of the ship taken from Perez and Blanke (2002) are
(multiplied by 107): m; = 750.81, x,; = —200, I; = 43.25,

Xu = —124.4, Y, = —878, Y;; = —48.1, Ny = =30, X,; = —226.5,
}(\UW[ = —64.4, YV,‘ = —725, YMV[ = —58015, erlvi = —11927,
Y, = 1182, Yyi = 4094, Yy = 0, N,y = =300, Ny = —712.9,

Nippi = =174.7, N,; = 0, Nyyi = =778.8, Nyyyi = 0.

The ships are initially positioned uniformly on a circle with
a radius of R, = 6, the same heading of 1.8, and zero veloc-
ities. We choose d; = [my1; may; ma3;]” for all i € N, and
Pia = Poa(sia) + li, Yig = arctan(y,,/x] ), where pou(sia) =
[Xoa(sia) Yoa(si)l”, X,y = 522,37, = 22 and sia(to) = 0. The
reference vectors I; and p,,(s;s) are chosen such that we per-
form both linear and circular formations. In particular, for the
non-dimensional time ¢ < 5 we choose I; = [0 — 1.25( — 1)]7
and p,q = [sis 017 and 5,4 = 5, i.e., the reference trajectory
Doa 18 a straight-line. For the non-dimensional time ¢ > 5,
we take I; = —1.25( — 1)[-cos(sig) cos(siz + 7/2)]" and
Poa = 10[sin(s;g) cos(si)]” and 5,4 = 5, i.e., the reference
trajectory p,q is a circle with a radius of 10.

To satisfy the conditions (19), (22), (31), (38), and (46), the
control design constants are chosen as €); = &; = 0.2, &; =
0.1, R, =3,a; =1, b; = 03, K; = diag(0.2,0.2), k, = 0.2,
Cc1 = 10, Cy) = 5, kid = 2, kij = 5, ajj = 0, b,‘j = 025, ajjd = 03,
bija = 0.35, and Ky; = diag(3, 3, 3).

Several snapshots of the ships and their trajectories in xy-
plane are plotted in Figure 5. The little dark color circular
disk indicates the head of the ship. The representative distance
X = (HjeN,j;tiXij)l/% is plotted in the 1% sub-figure of Fig-
ure 6. It is seen that X;‘kj > 0, ie., x;j > 0, hence A;; > 1
for all (i, j) € N,i # j implying no collision between any
ships. The tracking errors [x, y, A 7} — 1iq are plotted
in the 2", 3, 4™ sub-figure of Figure 6. The control inputs
Ty = [Tul 5 ey TMN]T, T, = [Tr] 5 eees TrN]T, and ¢ = [d] 5 ey dN]T
are plotted in the 5%, 6%, 7% sub-figure of Figure 6. It is
noted that the tracking errors converge to a ball centered at
the origin instead of zero since our proposed formation con-
troller solved the practical formation control problem, see the
coordinate transformation (14). High frequency oscillations in
the controls 7,;, 7,;, and the additional control &; during the
transient (non-dimensional) time can be reduced by tuning the
control gains K, k», ¢, ¢2, €1;, €;, and e3; with a tradeoff of
larger tracking errors and longer transient response time. From
Figure 5, it can be seen that when the lateral distance between
ships is small, the proposed formation controller forces the
ships to turn their heading a (plus or minus) small angle and to
move in the surge direction backward or forward at the same
time, i.e., the ships move in a zigzag way, to prevent collision
between them.

Finally, it should be stressed that if one uses a circular disk
to bound the ship in this simulation, the radius of the bounding
circle must not be less than a; = 1. Consequently, no desired
formation as the one in the above simulation can be achieved
because ||; — I;_1]| = 1.25, which is smaller than a; + a;_; = 2,
foralli=2,...,N.

6. Conclusions

The keys to success of the proposed formation control de-
sign included the separation condition for ellipses, the coordi-
nate changes, and the potential functions. An extension of the
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proposed formation control design in this paper to provide a
formation control system for a group of underactuated under-
water vehicles is under consideration.
Appendix A. Proof of Theorem 4.1

1) Proof of complete forwardness of the closed loop system:
Consider the Lyapunov function candidate

N

N
|4 =9011+%;dédie+022(,/1+\7?—l)

i=1

(A.1)

where o1 and o, are positive constants to be chosen later.
Differentiating (A.1) using (44) and (45) results in

_ a'ZD'ri 1921'6 )]_
A; ©O may

ul ul 1 Yivi  mp;
(o] Zd,?;K(),'d,'g + O'QZ —[(ﬂ + i)(
pr part [‘—)_2 +1 Mpp; My
L+ 10 150 + 442:)
det(A,) det(A,)

AOi] + A2i|q)(Q.//i)|2 + A3i||(1)(9pi)||2 + A4iu,~zg + ASirjzg’

(A.2)

-2 -1:2 )
)Ivilv, + Yyimyn Vi + A+

where A;; and Ay; are defined in (47), and A;,[ =0,--- ,5 are
nonnegative constants. With ¢;,i = 1 — 3 in (46), a calculation
shows from (A.2) that W; < Cy with Cy a nonnegative bounded
constant, i.e., (45) is forward complete.

2) Proof of no collisions: We consider the function W, =
o+ % Zf\; I dl.Ted,-e whose derivative along the solutions of
(45) satisfies W, < -w with w = ¥, [clﬂgitl)(ﬂpi) +
€182, 0(Qy,) + c;uize + oy, + c’glldieHZ], where ¢; = ¢ — ¢,
5 = 1 Amin(Ko;) — 1/€ with Apin (Ko;) the minimum eigenvalue
of Ky;, and € a positive constant. Picking € and o7} such that
the constants ¢; and ¢} are strictly positive, we have W, < 0.
Hence W,(1) < Wy(ty) for all t > 1y > 0. From the condition
(22) and Property 3) of §;;, we have W»(#y) is bounded by a
positive constant. Boundedness of W, (#,) implies that of W, (z).
As aresult, 8;;(x;;(t)) must be smaller than some positive con-
stant for all # > #o > 0. From properties of §;;, x;j(t) > 0 or
A;j(t) > 1, i.e., there are no collisions between any ships for
all t > 79 > 0. Moreover, W)(f) < Wy(#) also implies that
[|lm; — miqll is bounded. _

3) Equilibrium set: Integrating both sides of W, < —w yields
i~ w(tydt = Wa(te) = Wa(e0) < Wlto). Indeed, the function
w(?) is scalar, nonnegative and differentiable. Now differenti-
ating w(f) along the solutions of (45) and using Properties 2)
and 5) of §B;; given in (29) readily show that l%i < Mw(t)
with M being a positive constant. Therefore Lemma 2 in Do
(2007) results in lim,,c w(#) = 0, which implies from ex-
pressions of w(t), £,; and €, in (35), and boundedness of
ll7; — miall that im0 (Ky (pi(1) = pia()) + X i B (OT1(1)) = 0
and 1imy e (ka(Wi(t) = Yia() + ¥ i B (0Ei(1) = 0. These
limits imply that p(r) = [n] (), ...,n% ("] can tend to 5, =
(745> yg)" > since B(1) = 0 at ;= nig and ;= Rja
(see, Property 1) of g;;), or tend to a vector denoted by . =
!, ....n% 1" with ;e = [xic yic ic]” as the time goes to in-
finity, i.e., the equilibrium sets can be =; containing 7,4 or =,
containing 7.. The vector 7, is such that

Qi = (Kipi - pi) + ) BTy, =0
J#i

Q. = (ko (i — Wia) + Zﬁ_/fiaij)hzqf =0,

J#

(A.3)

for all i € N. To investigate stability properties of Z; and =,
we consider the first equation of (45), i.e.,

pi = —c1®(Q,) + pia + ¥ i,

‘ : (A4)
Ui = =1 P(Qy,) + Yia + Pyi,

where \Ilpi = A;[u;, O]T + Rz,[fll fz,-]Tr,-e and \PW = ri.. We
treat ¥,; and ¥y, as inputs to (A.4) instead of states. We now
need to prove that Z,; is locally asymptotically stable and that
&, is locally unstable.

4) Proof of E; being asymptotically stable:  Since
B ilyene = 0 and ﬁ;; _— 0, see Property 1) of the
function §;; in (29), local asymptotic stability of the equi-
librium set Z; follows from (A.4) by using the func-
tion Vo = 33N, (Vllpi — pial® + Wi —¢ig)* +1 — 1) and
1m0 (Wi (1), Pyi(H) = 0.

5) Proof of E. being unstable: Let N* be the set of the ships
such that if the ships 7 and j belong to the set N* then y;; < b;jq,
and N* be the size of N*. In N*, we have 1,y = 0. From (A.3)
we have X jen pl.TjC(Qp,-L. — Q,;.), which is expanded as:

T T
Z pijcLijpijc = Z ;i Kipija;
(i, ))eN* (i, j)eN*

(AS5)



where Lii =K, +N*(ﬁ I‘z*jc +ﬁt/lc ]u) Since ||szd|| and “pt]L”
are bounded, (A.5) indicates that limy,,,. k)-0 B —o00,
Hence there exists K; with a sufficiently small /lmax(Kl) such
that L;; is negative definite for some (i, j) with i # j. Let
N* c N* be a nonempty set such that for all (i, j) € N, i # j,
L;; is negative definite. Moreover, we define a set U such that

U={(pij.01.0)) € BJU <0, Uy <0, U3 <0, (A6)
for all (i, j) € N**,i # j, where U; = UY| (= (i — ¥i)D(Qy)),
Uz = U jene ((Qij(pij —Pijc))T(Q;jT(ﬁﬁrfj —ﬂﬁcrfj(»)Q;jl)Q_ijPij), and
Us = U(i,j)eN**((jS(pji - Pjit))T(Q;‘iT(ﬂ;jF;l - ﬁfﬂrj,c)Q;-il)Q_ﬁP/i)
where i # j, and Q;; = Q;;R;. It can be readily proved that
the set U is non-empty. In U, we consider the function

N
Vo= D \Ipy = pude+ 1+ 5 Z VWi =g +1, (A7)
(l J)EN**
whose derivative along the solutions of (A.4) satisfies
= ij — Pijc TH)['Ti' ij — Pijc
7 > Z (pij — pije) HpijTij(pi P/)_'_@(_, (AS$)
(i, j)eN** ||Pij - pijc”2 +1
T DOQ)-D(Qy))  D(Qy)-D(Qy)) _
where Hpij = dlag( 0.0, J s a0, yJ )’ Tij — Kl +
NW(B;‘M ch+ﬁljc le) Wlth'Btjc Ij ‘jc = ;’kj n:m?pijc =

(pij pl/l) ‘l’px, + N Wi—ic)¥Yyi
Since H;; is positive definite, T;; is negative definite, and
lim;_,o O.(f) = 0, Chetaev’s Theorem (Theorem 4.3 in Khalil
(2002)) implies that = is unstable. Since we have already
proved that the errors (1;(1) = 1:a(1)), (Wi (t) = ia (1)), i (1), rie(2)
and d;.(r) asymptotically converge to zero, boundedness of V;
directly follows from (A.2). [

pij|,l:,lr, and O, = 2 jen-
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