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Robust Design for Amplify-and-Forward MIMO
Relay Systems with Direct Link and Imperfect

Channel Information
Zhiqiang He, Member, IEEE, Weipeng Jiang, and Yue Rong, Senior Member, IEEE

Abstract—In this paper, we propose statistically robust design
for multiple-input multiple-output (MIMO) relay systems with
the direct source-destination link and imperfect channel state in-
formation (CSI). The minimum mean-squared error (MMSE) of
the signal waveform estimation at the destination node is adopted
as the design criterion. We develop two iterative methods to
solve the nonconvex joint source, relay, and receiver optimization
problem. In particular, we derive the structure of the optimal
relay precoding matrix and show the effect of CSI mismatch on
the structure of the optimal robust source and relay matrices.
The proposed algorithms generalize the transceiver design of
MIMO relay systems with the direct link to the practical scenario
of imperfect CSI knowledge. Simulation results demonstrate an
improved performance of the proposed algorithms with respect
to the conventional methods at various levels of CSI mismatch.

Index Terms—MIMO relay, robust, channel state information,
direct link.

I. INTRODUCTION

As a promising technique to improve the reliability and
coverage of wireless communication systems, multiple-input
multiple-output (MIMO) relay communication has attracted
much research interest in recent years [1]. The relay precoding
matrix maximizing the source-destination mutual information
(MI) of a two-hop MIMO relay system has been developed
in [2] and [3]. In [4], the relay precoding matrix that mini-
mizes the mean-squared error (MSE) of the signal waveform
estimation was proposed. In [5], a unified framework has
been established to optimize the source and relay precoding
matrices of linear nonregenerative MIMO relay systems with
a broad class of commonly used objective functions.

In the works [4] and [5], the direct source-destination link
has been ignored. However, the direct link provides valuable
spatial diversity, and thus, should be properly considered in
the MIMO relay system design. Suboptimal structures of
the relay precoding matrix have been derived in [2] and
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[3] where the direct link is considered. In [6], joint source
and relay matrices optimization in the presence of the direct
link has been proposed based on the linear minimum MSE
(MMSE) receiver. In [7] and [8], source and relay precoding
matrices design with the direct link based on Tomlinson-
Harashima precoder and diagonalization of the MSE matrix
has been studied, respectively. Closed-form designs of the
relay precoding matrix have been proposed in [7] and [9].

In the algorithms developed in [6]-[9], the instantaneous
channel state information (CSI) of all hops is needed at the
node which carries out the optimization procedure. However,
in real relay communication systems, the true CSI is unknown,
and therefore, has to be estimated. There is always mismatch
between the true and the estimated CSI due to channel noise,
quantization errors, and outdated channel estimates. Obvi-
ously, the performance of the algorithms developed in [6]-[9]
will degrade in the presence of such CSI mismatch. MMSE-
based optimal relay precoding matrix and destination receiving
matrix for a two-hop MIMO relay system have been developed
in [10] taking into account the CSI mismatch. The source
and relay matrices optimization under CSI mismatch has been
investigated in [11] and [12] based on the MMSE criterion.
For multi-hop MIMO relay systems, the robust transceiver
design has been studied in [13] and [14]. In [15], robust
source and relay matrices have been developed considering
a broad class of frequently used objective functions in MIMO
system design. While the robust MIMO relay design in [10]-
[15] ignored the direct link, in [16], the robust source and
relay matrices have been developed considering the direct
link and using a Tomlinson-Harashima precoder. Due to their
advantages in extending the system coverage and enhancing
the transmission reliability, relay techniques are considered in
modern communication standards such as the LTE-Advanced
and WiMax [17]-[19].

In this paper, we investigate statistically robust transceiver
design for two-hop MIMO relay problems with the direct
source-destination link. The MMSE of the signal waveform
estimation at the destination node is adopted as our design cri-
terion. The true CSI of each hop is modeled as a Gaussian ran-
dom matrix with the estimated CSI as the mean value and the
well-known Kronecker model is adopted for the covariance of
the CSI mismatch [10]-[16]. Since the robust source and relay
matrices design problem is nonconvex with matrix variables,
a globally optimal solution is computationally intractable. To
overcome this difficulty, we develop two iterative methods to
obtain locally optimal solutions to the original optimization
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problem by converting it to an equivalent nonrobust MIMO
relay design problem with equivalent channel, source, relay,
and receiver matrices.

We first develop a Tri-Step method where the source, relay,
and receiver matrices are optimized iteratively through solving
convex sub-problems. In particular, we derive the structure of
the optimal relay precoding matrix and show the effect of
CSI mismatch on the structure of the optimal robust source
and relay matrices. Moreover, the power allocation at the
source and relay nodes is optimally distributed against the
CSI mismatch. Then we propose a Bi-Step algorithm where
the optimal receiver matrix is substituted into the objective
function to obtain an optimization problem only with the
source and relay matrices.

Interestingly, the computational complexity of the robust
MIMO relay design is in the same order as the nonrobust
approach in [6]. Moreover, when the exact CSI is available,
the solution of the robust relay design is the same as that in
[6]. Therefore, this paper generalizes the MIMO relay design
with the direct link to the practical scenario of imperfect CSI
knowledge.

The rest of this paper is organized as follows. In Section II,
the model of a two-hop linear nonregenerative MIMO relay
communication system considering the CSI mismatch and
the direct source-destination link is introduced. The robust
source and relay matrices design algorithms are developed
in Section III. In Section IV, we show numerical examples
to demonstrate the improved robustness of the proposed ap-
proaches against the CSI mismatch. Conclusions are drawn in
Section V.

II. SYSTEM MODEL

We consider a three-node two-hop MIMO communication
system as shown in Fig. 1. The source node (node 1) transmits
information to the destination node (node 3) with the aid
of a relay node (node 2). The ith node is equipped with
Ni, i = 1, 2, 3, antennas. Using a half-duplex relay, the
communication process is completed in two time slots. During
the first time slot, the source node transmits a linearly precoded
signal vector

xs = F1s (1)

to both the relay node and the destination node, where s is
the Nb × 1 (Nb ≤ min(N1, N2, N3)) source signal vector and
F1 is the N1 × Nb source precoding matrix. The received
signal vectors at the relay node and the destination node can
be written as

yr =H1xs + nr (2)
yd1 =H3xs + nd1 (3)

where H1 is the N2 × N1 MIMO fading channel matrix
between the source and relay nodes, H3 is the N3×N1 MIMO
fading channel matrix between the source and destination
nodes, nr is the N2 × 1 noise vector at the relay node, and
nd1 is the N3 × 1 noise vector at the destination node at time
slot one.

1N

2N

3NSource

Relay

Destination

1H

2H

3H

Fig. 1. A two-hop relay communication system.

During the second time slot, the source node keeps silent,
and the relay node linearly precodes yr as

xr = F2yr (4)

and forwards xr to the destination node, where F2 is the N2×
N2 relay precoding matrix. The received signal vector at the
destination node is given by

yd2 = H2xr + nd2 (5)

where H2 is the N3 × N2 MIMO fading channel matrix
between the relay and destination nodes and nd2 is the N3×1
noise vector at the destination node at time slot two.

Combining (1)-(5), the received signals at the destination
node over two consecutive time slots can be written as

y=

[
yd2

yd1

]
=

[
H2F2H1

H3

]
F1s+

[
H2F2nr + nd2

nd1

]
=Gs+ v (6)

where G is the 2N3 × Nb equivalent MIMO channel matrix
between the source and destination nodes, v is the 2N3 × 1
equivalent noise vector at the destination node, and they are
given respectively by

G ,
[
H2F2H1F1

H3F1

]
, v ,

[
H2F2nr + nd2

nd1

]
. (7)

We assume that all noises are independent and identically
distributed (i.i.d.) additive white Gaussian noise (AWGN)
with zero mean and unit variance, and Hi, i = 1, 2, 3, are
independent.

In the case of CSI mismatch1, the true channel matrices can
be modeled as the well-known Gaussian-Kronecker model in
[10]-[16]

Hi ∼ CN (H̄i,Θi ⊗Φi), i = 1, 2, 3 (8)

where H̄i is the estimated channel matrix, Θi and Φi denote
the covariance matrix of channel estimation error seen from

1Such CSI mismatch may be introduced by channel estimation and/or
outdated channel estimates. Channel estimation procedures/algorithms for
MIMO relay systems have been studied, for example in [20] and [21].
However, channel estimation is not the focus of this work.
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the transmitter side and the receiver side, respectively, and ⊗
stands for the matrix Kronecker product. From (8), we have
Hi = H̄i +AΦiHwiA

H
Θi
, i = 1, 2, 3, where AΦiA

H
Φi

= Φi,
AΘi

AH
Θi

= ΘT
i , Hwi

is a Gaussian random matrix with i.i.d.
zero mean and unit variance entries and is the unknown part
in the CSI mismatch. Here, (·)T and (·)H stand for the matrix
(vector) transpose and Hermitian transpose, respectively. The
dimensions of Θ1 and Θ3 are N1 × N1, Θ2 and Φ1 have
a dimension of N2 × N2, while Φ2 and Φ3 are N3 × N3

matrices.
Using a linear receiver, the estimated source signal vector

at the destination node is given by

ŝ = WHy (9)

where W is the 2N3 ×Nb receiver weight matrix. From (6)
and (9), the MSE matrix of the signal waveform estimation at
the destination node is a function of W, F1, F2 as

E(W,F1,F2)

=E
[
(ŝ− s)(ŝ− s)H

]
= (WHG− INb

)(WHG− INb
)H +WHCvW

=WHAW −WHG−GHW + INb
(10)

where E[·] stands for the statistical expectation with respect
to signal and noise, Im denotes an m × m identity matrix,
A = GGH +Cv, and

Cv = E[vvH ] =

[
H2F2F

H
2 HH

2 +IN3 0
0 IN3

]
(11)

is the noise covariance matrix. To obtain (10), we assume that
E[ssH ] = INb

.
Since the exact CSI is not available at all nodes, there can

be a great performance degradation if the estimated channel
matrices are simply used to optimize (10), due to the mismatch
between Hj and H̄i, i = 1, 2, 3. Taking the CSI mismatch into
account, we consider the statistical expectation of E, which is
given by

EH [E(W,F1,F2)] = WHĀW −WHḠ− ḠHW + INb

(12)
where EH [·] stands for the statistical expectation with respect
to the channel matrices, Ā , EH [A], and Ḡ , EH [G].

Since H1 and H2 are independent, from (7) and (8), we
have

Ḡ=

[
EH2 [H2]F2EH1 [H1]F1

EH3 [H3]F1

]
=

[
H̄2F2H̄1F1

H̄3F1

]
Ā= ḠḠH + C̄v +R (13)

where

C̄v =

[
H̄2F2F

H
2 H̄H

2 +IN3 0
0 IN3

]
R=

[
α1H̄2F2Φ1F

H
2 H̄H

2 +α2Φ2 0
0 α3Φ3

]
. (14)

The proof of (13) and the definition of α1, α2, and α3 in (14)
are given in Appendix A.

It can be seen from (12) that the CSI mismatch is considered
by (14). If the perfect CSI is available, i.e., H̄i = Hi and

Θi = 0, i = 1, 2, 3, from (14) and (62), there is αi = 0,
i = 1, 2, 3, and R = 0, then the MSE matrix (12) becomes
(10). Therefore, (12) generalizes the MSE matrix from the
perfect CSI case to the practical scenario with CSI mismatch.

From (1) and (4), the transmission power consumed by the
source node and the relay node can be written as tr(F1F

H
1 )

and tr(F2(H1F1F
H
1 HH

1 +IN2)F
H
2 ), respectively, where tr(·)

denotes the matrix trace. However, since the true H1 is
unknown, we consider the averaged transmission power at the
relay node, which is given by

EH

[
tr(F2(H1F1F

H
1 HH

1 + IN2)F
H
2 )

]
= tr(F2(H̄1F1F

H
1 H̄H

1 + α1Φ1 + IN2)F
H
2 ). (15)

From (12) and (15), the robust source, relay, and destination
matrices optimization problem can be written as

min
W,F1,F2

tr(EH [E(W,F1,F2)]) (16)

s.t. tr(F2(H̄1F1F
H
1 H̄H

1 + α1Φ1 + IN2)F
H
2 ) ≤ P2 (17)

tr(F1F
H
1 ) ≤ P1 (18)

where P1 and P2 are the transmission power available at the
source node and the relay node, respectively. The problem
(16)-(18) is nonconvex with matrix variables. Moreover, due
to the direct link, this problem is much more challenging to
solve than the problem in [15].

III. PROPOSED ROBUST MIMO RELAY DESIGN
ALGORITHMS

In this section, we develop two iterative algorithms namely
the Tri-Step and the Bi-Step algorithms to optimize the source,
relay, and receiver matrices. In the Tri-Step algorithm, the
source, relay, and receiver matrices are optimized iteratively
through solving convex sub-problems. For the Bi-Step al-
gorithm, the optimal receiver matrix is substituted into the
objective function, so we obtain an optimization problem only
with the source and relay matrices. Then, the source and relay
matrices are optimized alternatingly and the receiver matrix is
calculated after the convergence of the algorithm.

By introducing P1 , α1Φ1 + IN2 , P2 , α2Φ2 + IN3 , and
P3 , α3Φ3 + IN3 , (12) can be rewritten as

EH [E(W,F1,F2)]

=
[
WH

1 WH
2

]
ZMZ

[
W1

W2

]
−
[
WH

1 WH
2

]
ZZ−1Ḡ

−ḠHZ−1Z

[
W1

W2

]
+ INb

(19)

where Z , bd
(
P

1
2
2 ,P

1
2
3

)
, W1 and W2 contain the first and

the last N3 rows of W, respectively, and M is given by (20)
shown at the bottom of the next page. Here bd(·) stands for a
block diagonal matrix and (·)−1 denotes the matrix inversion.

By introducing W̃H
1 , WH

1 P
1
2
2 , W̃H

2 , WH
2 P

1
2
3 , H̃i ,

P
− 1

2
i H̄i, i = 1, 2, 3, and F̃2 , F2P

1
2
1 , (19) can be rewritten
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as

EH [E(W̃,F1, F̃2)]

=
[
W̃H

1 W̃H
2

]
(G̃G̃H + C̃v)

[
W̃1

W̃2

]
−
[
W̃H

1 W̃H
2

]
G̃− G̃H

[
W̃1

W̃2

]
+ INb

= (W̃HG̃− INb
)(W̃HG̃− INb

)H + W̃HC̃vW̃ (21)

where

G̃ =

[
H̃2F̃2H̃1F1

H̃3F1

]
, W̃ =

[
W̃1

W̃2

]
C̃v =

[
H̃2F̃2F̃

H
2 H̃H

2 +IN3 0
0 IN3

]
.

Using (21), the optimization problem (16)-(18) can be
equivalently rewritten as

min
W̃,F1,F̃2

tr(EH [E(W̃,F1, F̃2)]) (22)

s.t. tr(F̃2(H̃1F1F
H
1 H̃H

1 + IN2)F̃
H
2 ) ≤ P2 (23)

tr(F1F
H
1 ) ≤ P1 (24)

where the variable substitution of W̃ and F̃2 is used to rewrite
the power constraint (17) at the relay node to obtain (23).
It is worth noting that the robust precoding matrices design
problem (16)-(18) for MIMO relay systems with imperfect
CSI is converted to the problem (22)-(24) for an equivalent
MIMO relay system with direct link and perfect CSI, where
the channel matrices are H̃i, i = 1, 2, 3, the source precoding
matrix is F1, the relay precoding matrix is F̃2, and the receiver
matrix is W̃.

A. The Tri-Step Algorithm

The problem (22)-(24) is nonconvex with matrix variables
and the globally optimal solution is difficult to obtain. In the
following, we develop a Tri-Step iterative approach to solve
the problem (22)-(24). Firstly, with given F1 and F̃2, the
weight matrix W̃ minimizing (22) is the famous Wiener filter
[23] (MMSE receiver) given by

W̃ = (G̃G̃H + C̃v)
−1G̃. (25)

Secondly, with given W̃ and F1, F̃2 can be updated by
solving the following problem

min
F̃2

tr((H̆2F̃2H̆1−Π)(H̆2F̃2H̆1−Π)H+H̆2F̃2F̃
H
2 H̆H

2 )(26)

s.t. tr(F̃2(H̆1H̆
H
1 + IN2)F̃

H
2 ) ≤ P2 (27)

where H̆1 , H̃1F1, H̆2 , W̃H
1 H̃2, Π , INb

− W̃H
2 H̃3F1.

Using the Lagrange multiplier method, we can solve the
problem (26)-(27) and obtain F̃2 as

F̃2 = H̆H
2 (H̆2H̆

H
2 + µINb

)−1ΠH̆H
1 (H̆1H̆

H
1 + IN2)

−1 (28)

where µ ≥ 0 is the Lagrangian multiplier and can be found
from the following complementary slackness condition

µ(tr(F̃2(H̆1H̆
H
1 + IN2)F̃

H
2 )− P2) = 0. (29)

Assuming that µ = 0, from (28) we have

F̃2 = H̆H
2 (H̆2H̆

H
2 )−1ΠH̆H

1 (H̆1H̆
H
1 + IN2)

−1. (30)

If F̃2 in (30) satisfies the power constraint (27), then (30) is
the solution to the problem (26)-(27). Otherwise, there must
be µ > 0 such that

tr(F̃2(H̆1H̆
H
1 + IN2)F̃

H
2 ) = P2. (31)

In this case, µ can be obtained by substituting (28) into (31)
and solving the following nonlinear equation

tr(H̆H
2 (H̆2H̆

H
2 + µINb

)−1ΠH̆H
1 (H̆1H̆

H
1 + IN2)

−1

×H̆1Π
H(H̆2H̆

H
2 + µINb

)−1H̆2) = P2. (32)

By introducing the singular value decomposition (SVD) of
H̆2 = U2Λ2V

H
2 , we obtain from (32) that

tr(Λ2(Λ
2
2 + µINb

)−1UH
2 ΠH̆H

1 (H̆1H̆
H
1 + IN2)

−1

×H̆1Π
HU2(Λ

2
2 + µINb

)−1Λ2) = P2. (33)

Denoting Γ , UH
2 ΠH̆H

1 (H̆1H̆
H
1 + IN2)

−1H̆1Π
HU2, (33)

can be equivalently written as

Nb∑
i=1

λ2
i γi

(λ2
i + µ)

2 = P2 (34)

where λi and γi are the ith main diagonal elements of
Λ2 and Γ respectively. Since the left-hand side of (34) is
monotonically decreasing with respect to µ, the bisection
method [24] can be applied to solve (34) to obtain µ.

Thirdly, with given W̃ and F̃2, we show that the problem
(22)-(24) can be cast as a quadratically constrained quadratic
programming (QCQP) problem [24] to optimize F1. By intro-
ducing D1 , W̃H

1 H̃2F̃2H̃1 + W̃H
2 H̃3, (22) can be rewritten

as

tr
(
(W̃H

1 H̃2F̃2H̃1F1 + W̃H
2 H̃3F1 − INb

)(W̃H
1 H̃2F̃2H̃1F1

+W̃H
2 H̃3F1 − INb

)H
)
+ t1

= tr((D1F1 − INb
)(D1F1 − INb

)H) + t1

= tr(D1F1F
H
1 DH

1 )−tr(D1F1)−tr(FH
1 DH

1 ) + t2 (35)

where t1 , tr(W̃HC̃vW̃) and t2 , t1 +Nb.
Using the identity of tr(CTD) = (vec(C))T vec(D) and

vec(CD) = (I⊗C)vec(D) [25], where vec(X) stands for a
column vector obtained by stacking all columns of X on top
of each other, we have

tr(D1F1F
H
1 DH

1 ) = (vec(F1))
H
vec(DH

1 D1F1)

= fH1 (IN1⊗(DH
1 D1))f1

M =

[
P

− 1
2

2 H̄2F2P
1
2
1 (P

− 1
2

1 H̄1F1F
H
1 H̄H

1 P
− 1

2
1 + IN2)P

1
2
1 F

H
2 H̄H

2 P
− 1

2
2 + IN3 P

− 1
2

2 H̄2F2H̄1F1F
H
1 H̄H

3 P
− 1

2
3

P
− 1

2
3 H̄3F1F

H
1 H̄H

1 FH
2 H̄H

2 P
− 1

2
2 P

− 1
2

3 H̄3F1F
H
1 H̄H

3 P
− 1

2
3 + IN3

]
(20)
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where f1 , vec(F1). Then (35) can be rewritten as

fH1 (IN1⊗(DH
1 D1))f1−(vec(DH

1 ))Hf1−fH1 vec(DH
1 ) + t2

= fH1 Υ1f1 − dH
1 f1 − fH1 d1 + t2

= (fH1 Υ
1
2
1 − dH

1 Υ
− 1

2
1 )(Υ

1
2
1 f1 −Υ

− 1
2

1 d1) + t3 (36)

where t3 , t2 − dH
1 Υ−1

1 d1, Υ1 , IN1
⊗(DH

1 D1), and d1 ,
vec(DH

1 ). Note that we can ignore t3 while optimizing f1 with
given W̃ and F̃2, since it does not depend on the optimization
variable f1. By introducing D2 , F̃2H̃1, the relay transmit
power constraint in (23) can be rewritten as

tr(D2F1F
H
1 DH

2 ) + tr(F̃2F̃
H
2 )

= fH1 (IN1⊗ (DH
2 D2)f1 + tr(F̃2F̃

H
2 )

= fH1 Υ2f1 + tr(F̃2F̃
H
2 ) ≤ P2 (37)

where Υ2 , IN1⊗(DH
2 D2). Using (35) and (37), the problem

(22)-(24) can be equivalently rewritten as the following QCQP
problem

min
f1

(fH1 Υ
1
2
1 − dH

1 Υ
− 1

2
1 )(Υ

1
2
1 f1 −Υ

− 1
2

1 d1) (38)

s.t. fH1 Υ2f1 ≤ P̄2 (39)
fH1 f1 ≤ P1 (40)

where P̄2 , P2 − tr(F̃2F̃
H
2 ). The problem (38)-(40) can

be efficiently solved by the disciplined convex programming
toolbox CVX [26].

TABLE I
PROCEDURE OF THE TRI-STEP ALGORITHM

1) Initialize the algorithm with F
(0)
1 =

√
P1/Nb[INb

,0]T and F̃
(0)
2 =√

P2/tr
(
H̃1F

(0)
1

(
F

(0)
1

)H
H̃H

1 + IN2

)
IN2 ; Set n = 0.

2) Update W̃(n) using F̃
(n)
2 and F

(n)
1 as (25).

3) Update F̃
(n+1)
2 using W̃(n) and F

(n)
1 as (28).

4) Update F
(n+1)
1 using W̃(n) and F̃

(n+1)
2 by solving the problem

(38)-(40).
5) if

(
mse

(n)
1 − mse

(n+1)
1

)
/mse

(n)
1 < ε, iteration ends; otherwise go

to step (2).

The procedure of applying the Tri-Step iterative algorithm
to solve the problem (22)-(24) is listed in Table I, where the
superscript (n) denotes the number of iterations, ε is a small
positive number close to zero, and mse

(n)
1 stands for the value

of (22) at the nth iteration.

B. The Bi-Step Algorithm

By substituting (25) back into (21), we have

E0(F1, F̃2) = INb
− G̃H

(
G̃G̃H + C̃v

)−1
G̃ (41)

where E0 stands for the MSE matrix when a linear MMSE
receiver is used at the destination. Interestingly, (41) can be
viewed as the minimum MSE matrix for an equivalent two-
hop MIMO relay system with channels H̃i, i = 1, 2, 3, which
are exactly known, F1 is used as the source precoding matrix,
and F̃2 is chosen as the relay precoding matrix.

The source and relay matrices optimization problem can be
written as

min
F1,F̃2

tr(E0(F1, F̃2)) (42)

s.t. tr(F̃2(H̃1F1F
H
1 H̃H

1 + IN2)F̃
H
2 ) ≤ P2 (43)

tr(F1F
H
1 ) ≤ P1. (44)

The problem (42)-(44) is nonconvex with matrix variables
and the globally optimal solution is difficult to obtain. In
the following, we develop an iterative approach to solve the
problem (42)-(44).

It can be shown similar to [9] that for given source precod-
ing matrix F1, the optimal F̃2 as the solution to the problem
(42)-(44) has the structure of

F̃2 = TL (45)

where T is an N2 ×Nb matrix that remains to be optimized,
and

L = (H̆H
1 H̆1+Q)−1H̆H

1 , Q = H̆H
3 H̆3+INb

, H̆3 = H̃3F1.

Let us introduce a positive semi-definite (PSD) matrix Ω =
L(H̆1Q

−1H̆H
1 + IN2)L

H and its eigenvalue decomposition
(EVD) Ω = UωΛωU

H
ω , where Λω is the diagonal eigenvalue

matrix with eigenvalues λω,k, k = 1, · · · , Nb, arranged in
descending order. Let us also introduce the EVD of H̃H

2 H̃2 =
UhΛhU

H
h , where Λh is the diagonal eigenvalue matrix with

eigenvalues λh,k, k = 1, · · · , N2, arranged in descending
order.

Based on the result in [9], T has the structure of

T = Uh,1∆UH
ω (46)

where Uh,1 contains the leftmost Nb columns of Uh, ∆ is a
diagonal matrix and the solution to the following problem

min
∆

tr
((

∆HΛh,1∆+Λ−1
ω

)−1
)

(47)

s.t. tr(∆Rω∆
H) ≤ P2. (48)

Here Rω , UH
ω L(H̆1H̆

H
1 + IN2)L

HUω and Λh,1 contains
the largest Nb diagonal elements of Λh. The problem (47)-(48)
can be efficiently solved by the Lagrange multiplier method
as

|δk|2 =
1

λω,kλh,k

√
λ2
ω,kλh,k

γRk
− 1

+

, k = 1, · · · , Nb

where δk is the ith main diagonal element of ∆, (x)+ ,
max(x, 0), Rk , [Rω]k,k, and γ > 0 is the Lagrangian
multiplier and the solution to the following nonlinear equation

Nb∑
k=1

Rk

λω,kλh,k

√
λ2
ω,kλh,k

γRk
− 1

+

= P2.
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TABLE II
PROCEDURE OF THE BI-STEP ALGORITHM

1) Initialize the algorithm with F
(0)
1 =

√
P1/Nb[INb

,0]T . Set n = 0.
2) Update F̃

(n+1)
2 using F

(n)
1 based on (45) and (46) by solving the

problem (47)-(48).
3) Update F

(n+1)
1 using F̃

(n+1)
2 by solving the problem (53)-(56).

4) if
(
mse

(n)
2 − mse

(n+1)
2

)
/mse

(n)
2 < ε, iteration ends; otherwise go

to step (2).

Now we start to optimize the source precoding matrix F1.
Using the matrix inversion lemma, (41) can be rewritten as

E0(F1, F̃2)

=
(
INb

+ G̃HC̃−1
v G̃

)−1

=
(
INb

+ FH
1 H̃H

3 H̃3F1 + FH
1 H̃H

1 F̃H
2 H̃H

2

×(H̃2F̃2F̃
H
2 H̃H

2 + IN3
)−1H̃2F̃2H̃1F1

)−1

. (49)

From (49), for given relay precoding matrix F̃2, F1 is opti-
mized by solving the following problem

min
F1

tr([INb
+ FH

1 ΨF1]
−1) (50)

s.t. tr(F̃2H̃1F1F
H
1 H̃H

1 F̃H
2 ) ≤ P̄2 (51)

tr(F1F
H
1 ) ≤ P1 (52)

where

Ψ , H̃H
3 H̃3 + H̃H

1 F̃H
2 H̃H

2 (H̃2F̃2F̃
H
2 H̃H

2 +IN3)
−1H̃2F̃2H̃1.

Let us define B , F1F
H
1 and introduce a PSD matrix X

with X ≽
(
IN1 +Ψ

1
2BΨ

1
2

)−1

, where A ≽ B means A−B

is a PSD matrix. The problem (50)-(52) can be equivalently
converted to the following convex semi-definite programming
(SDP) problem by using the Schur complement

min
X,B

tr(X) (53)

s.t.

(
X IN1

IN1 IN1+Ψ
1
2BΨ

1
2

)
≽ 0 (54)

tr(F̃2H̃1BH̃H
1 F̃H

2 ) ≤ P̄2 (55)
tr(B) ≤ P1, B ≽ 0. (56)

The problem (53)-(56) can be efficiently solved by the interior-
point method [24]. Using the EVD of B = UbΛbU

H
b , we have

F1 = UbΛ
1
2

b .
The procedure of using the Bi-Step iterative algorithm to

solve the problem (42)-(44) is listed in Table II, where mse
(n)
2

stands for the value of (42) at the nth iteration.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed
robust source and relay precoding matrices through numerical
simulations. The estimated channel matrices H̄1, H̄2, and
H̄3 have i.i.d. complex Gaussian entries with zero-mean and
variances of σ2

1 , σ2
2 , and σ2

3 , respectively. All noises are
i.i.d. AWGN with zero mean and unit variance. Following
[10], we define SNR1 = σ2

1P1/N2, SNR2 = σ2
2P2/N3, and

SNR3 = σ2
3P1/N3 as the signal-to-noise ratio (SNR) for the

source-relay, relay-destination, and source-destination links,
respectively.

We simulate a MIMO relay system where the channel
estimation error at the transmitter side is uncorrelated, i.e.,
Θ1 = Θ3 = σ2

eIN1 and Θ2 = σ2
eIN2 , where σ2

e measures
the variance of the channel estimation error. We obtain from
(62) that for this case, α1 = α3 = σ2

etr(F1F
H
1 ) and α2 =

σ2
etr(F2(H̄1F1F

H
1 H̄H

1 + α1Φ1 + IN2)F
H
2 ). It can be shown

similar to [15] that tr(E0(F1, F̃2)) decreases with respect to
α1, α2, and α3. Therefore, considering the power constraints
(17) and (18), the optimal solution occurs at α1 = α3 = σ2

eP1

and α2 = σ2
eP2.

For simplicity, in all simulation examples, we set Nb =
Ni = 4, i = 1, 2, 3. The covariance matrix of channel
estimation error at the receiver side is set as

Φ1 =


1 ϕ1 ϕ

2
1 ϕ

3
1

ϕ1 1 ϕ1 ϕ
2
1

ϕ2
1 ϕ1 1 ϕ1

ϕ3
1 ϕ

2
1 ϕ1 1

 , Φ2 = Φ3 =


1 ϕ2 ϕ

2
2 ϕ

3
2

ϕ2 1 ϕ2 ϕ
2
2

ϕ2
2 ϕ2 1 ϕ2

ϕ3
2 ϕ

2
2 ϕ2 1

 .

In the simulations, we choose ϕ1 = ϕ2 = 0.45.
We compare the performance of the following six systems:

(1) The nonrobust transceiver scheme with the direct link in
[8] (referred to as the NRb-DL algorithm); (2) The robust
transceiver design without the direct link in [10] (referred to
as the Rb-NDL algorithm); (3) The proposed robust design
using the Tri-Step algorithm; (4) The proposed robust design
with the Bi-Step algorithm; (5) The Tri-Step algorithm with
the exact CSI knowledge; (6) The Bi-Step algorithm with the
exact CSI knowledge. For the robust design, the initialization
of the Tri-Step and Bi-Step algorithms is listed in Table I and
Table II, respectively2. All simulation results are averaged over
1000 independent realizations of the true channel matrices.
QPSK constellations are used to modulate the source symbols.
We set SNR1 = SNR2 = SNR and SNR3 = SNR − ∆SNR

in the unit of dB, where ∆SNR denotes the attenuation
of the direct link. For both the proposed Tri-Step and Bi-
Step algorithms, unless explicitly mentioned, the convergence
criterion is chosen as ε = 0.01.

In the first simulation example, we compare the bit-error-
rate (BER) performance of the six algorithms at different σ2

e

with ∆SNR = 20dB. Figs. 2-4 show the system BER versus
SNR of the algorithms tested at σ2

e = 0.1, 0.01, and 0.001,
respectively. It can be seen that

• As expected, the two algorithms with the exact CSI
knowledge have the lowest BER and the performance of
these two algorithms is invariant to σ2

e .
• Since the proposed robust Bi-Step and Tri-Step algo-

rithms consider both the CSI mismatch and the direct

2We also tried the following two initializations: (a) F1 = c1U and
F̃2 = c2U for the Tri-Step algorithm; and F1 = c1U for the Bi-Step
algorithm, where U is a 4 × 4 random unitary matrix, c1 = 0.5

√
P1, and

c2 =
√

P2/tr(H̃1F1FH
1 H̃H

1 + I4). (b) F1 = c1D and F̃2 = c2D for the
Tri-Step algorithm; and F1 = c1D for the Bi-Step algorithm, where D is a
4× 4 diagonal matrix whose main diagonal entries are [

√
2, 1,

√
0.5,

√
0.5].

We observed that initializations (a) and (b) result in almost identical BER and
MSE performance as the initialization used here.
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Fig. 2. Example 1: BER versus SNR, σ2
e = 0.1, ∆SNR = 20dB.
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Fig. 3. Example 1: BER versus SNR, σ2
e = 0.01, ∆SNR = 20dB.

link, they consistently outperform the NRb-DL and Rb-
NDL algorithms for all σ2

e tested. Moreover, their perfor-
mance approaches that of the system with the exact CSI
as σ2

e decreases.
• The BER performance of the four algorithms with CSI

mismatch improves as σ2
e decreases. In particular, the

algorithms that consider the direct link (i.e., the Bi-Step,
Tri-Step, and NRb-DL algorithms) have a larger BER
reduction than the Rb-NDL algorithm when σ2

e decreases.
This verifies the importance of considering the direct link
in the transceiver design.

• The Rb-NDL algorithm has a better BER performance
than the NRb-DL algorithm at σ2

e = 0.1, indicating the
gain of robust design. However, for σ2

e = 0.01 and 0.001,
the NRb-DL algorithm performs much better than the Rb-
NDL algorithm with increasing SNR, as the impact of the
direct link becomes larger when SNR increases.

In the second simulation example, we compare the BER
performance of the six algorithms tested at different ∆SNR

with σ2
e = 0.01. Figs. 5, 3, and 6 demonstrate the system
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Fig. 4. Example 1: BER versus SNR, σ2
e = 0.001, ∆SNR = 20dB.
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Fig. 5. Example 2: BER versus SNR, σ2
e = 0.01, ∆SNR = 10dB.
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Fig. 6. Example 2: BER versus SNR, σ2
e = 0.01, ∆SNR = 30dB.
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Fig. 7. Example 3: MSE comparison of the Tri-Step and Bi-Step algorithms,
∆SNR = 20dB.
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Fig. 8. Example 3: BER comparison of the Tri-Step and Bi-Step algorithms,
∆SNR = 20dB.

BER versus SNR of the algorithms tested with ∆SNR = 10dB,
20dB, and 30dB, respectively. We can observe that

• The proposed robust Bi-Step and Tri-Step algorithms per-
form better than the NRb-DL and Rb-NDL algorithms, as
the proposed algorithms consider both the CSI mismatch
and the direct link.

• The BER of the Rb-NDL algorithm is invariant to the
value of ∆SNR.

• The BER performance of the other five algorithms (except
the Rb-NDL algorithm) improves when ∆SNR decreases
(the strength of the direct link increases).

• The four algorithms using the mismatched CSI reach
different error floors in BER at high SNR. When the
direct link is relatively strong (i.e., ∆SNR = 10dB and
20dB), the DR-NRb algorithm performs better than the
Rb-NDL algorithm. When SNR of the direct link is low
(i.e., ∆SNR = 30dB), the robust designs have a better
BER performance.

In the third simulation example, we compare the perfor-
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Fig. 9. Example 3: BER of the Tri-Step and Bi-Step algorithms at different
number of iterations, σ2

e = 0.01, ∆SNR = 20dB.

mance of the Tri-Step and Bi-Step algorithms. Figs. 7 and 8
show the MSE and the BER of the two algorithms respectively
versus SNR at ∆SNR = 20dB and different σ2

e . It can be
seen from Fig. 7 that the Bi-Step algorithm has better MSE
performance than the Tri-Step method at different σ2

e when
ε = 0.01. However, we observe from Fig. 8 that the Tri-Step
algorithm has a better BER performance when σ2

e is small
(i.e., σ2

e = 0.001), when σ2
e becomes large (σ2

e = 0.01 and
0.1), the Bi-Step algorithm has a better BER performance than
the Tri-Step algorithm at high SNR. This can be explained
as follows. The performance of both algorithms depends on
several factors such as the initial point, the convergence
criterion, the convergence speed, and the shape of the objective
function. In the Tri-Step algorithm, both F1 and F̃2 need to be
initialized, and three matrices F1, F̃2, and W̃ are optimized in
each iteration, while for the Bi-Step algorithm, only F1 needs
to be initialized, and only two matrices F1 and F̃2 need to
be updated in each iteration. Therefore, the Bi-Step algorithm
converges faster than the Tri-Step algorithm and the former
one has a better MSE performance when ε = 0.01.

To verify our analysis, we list the average number of
iterations required by both algorithms to converge to ε = 0.01
at σ2

e = 0.01, ∆SNR = 20dB and varying SNR in Table III. It
can be seen from Table III that the Tri-Step algorithm needs
a larger number of iterations till convergence. Interestingly,
the number of iterations required by the Bi-Step algorithm
is almost invariant to the value of SNR, while the number
of iterations needed by the Tri-Step algorithm increases with
SNR. Similar results have been observed in simulation exam-
ples with different σ2

e and ∆SNR.
The BER performance of the Tri-Step and Bi-Step algo-

rithms at different number of iterations is shown in Fig. 9 for
σ2
e = 0.01 and ∆SNR = 20dB. It can be seen that the Bi-

Step algorithm converges faster than the Tri-Step algorithm,
confirming the results in Table III. For ε = 0.01, at medium
SNR range (10-20dB), the BER reduction of the Tri-Step
algorithm with iterations is larger than that of the Bi-Step
algorithm. This explains the crossover of the BER curves of
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TABLE III
AVERAGE NUMBER OF ITERATIONS REQUIRED TILL CONVERGENCE IN

THE PROPOSED ALGORITHMS

SNR1(dB) 5 10 15 20 25 30
Bi-Step (CSI mismatch) 3 3 3 4 4 4
Tri-Step (CSI mismatch) 4 6 8 10 11 11

Bi-Step (exact CSI) 3 3 4 4 4 4
Tri-Step (exact CSI) 3 5 8 12 19 25

the two algorithms in Figs. 3, 5, and 8. Interestingly, the Bi-
Step algorithm yields almost the same BER for ε = 0.01 and
ε = 0.001, while the Tri-Step algorithm has a much smaller
BER for ε = 0.001 compared with ε = 0.01, especially
at high SNR. In fact, the Tri-Step algorithm has a better
BER performance than the Bi-Step algorithm at ε = 0.001.
This is because the Bi-Step algorithm converges after several
iterations even for a smaller ε. On the other hand, the Tri-
Step algorithm has a slow convergence rate, and thus, its
BER performance improves when a smaller ε is chosen.
We have observed that if ε is small enough, the Tri-Step
algorithm always has a better BER performance than the Bi-
Step algorithm in both the perfect CSI case and the CSI
mismatch scenario.

Finally, we compare the computational complexity of the
Tri-Step and Bi-Step algorithms. For the sake of notational
simplicity, we assume Nb = Ni = N , i = 1, 2, 3. In each
iteration of the Tri-Step algorithm, the complexity order of
updating W and F2 is O(N3), which mainly involves matrix
inversion and matrix SVD. Solving the QCQP problem (38)-
(40) to update F1 has a complexity order of O(N6) [27].
Thus, the per iteration computational complexity of the Tri-
Step algorithm is O(N6). For each iteration of the Bi-Step
algorithm, the major computation task in updating F2 is
matrix EVD, which has a complexity order of O(N3). The
complexity order of updating F1 through solving the SDP
problem (53)-(56) is O(N7) [27]. Thus, the Bi-Step algorithm
has a per iteration complexity order of O(N7). Based on the
analysis above, we can see that the Bi-Step algorithm has a
higher per iteration complexity.

The overall computational complexity of the Tri-Step and
Bi-Step algorithms depends also on the number of iterations
required till convergence. From Table III, we find that for small
N (N ≤ 3) and high SNR, the Bi-Step algorithm has a smaller
overall complexity. On the other hand, when N is large and the
SNR is low, the Tri-Step algorithm has a smaller complexity.

V. CONCLUSION

We have derived the optimal structure of the relay precoding
matrix for two-hop MIMO relay systems with the direct
source-destination link and imperfect CSI. We have devel-
oped two iterative algorithms to design the statistically robust
source and relay matrices for the commonly used MMSE
criterion. Simulation results show an improved robustness
of the proposed algorithms against CSI mismatch compared
with existing approaches. Besides, the iterative algorithms
developed in this paper for single-user two-hop MIMO relay
systems can be extended to the multiple-user case in the future.
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APPENDIX A
PROOF OF (13)

From (7) we have

Ā=EH [GGH ] + EH2 [Cv]. (57)

Using (11) and the following identity from [22]

EH

[
HiXHH

i

]
= H̄iXH̄H

i + tr(XΘT
i )Φi (58)

we obtain

EH2 [Cv] =

[
EH2

[H2F2F
H
2 HH

2 ]+IN3
0

0 IN3

]
= C̄v +

[
tr(F2F

H
2 ΘT

2 )Φ2 0
0 0

]
. (59)

From (8) and (58), we obtain that

EH1,H2(H2F2H1F1F
H
1 HH

1 FH
2 HH

2 )

= EH2(H2F2EH1(H1F1F
H
1 HH

1 )FH
2 HH

2 )

= EH2(H2F2(H̄1F1F
H
1 H̄H

1 + α1Φ1)F
H
2 HH

2 )

= H̄2F2(H̄1F1F
H
1 H̄H

1 + α1Φ1)F
H
2 H̄H

2

+tr(F2(H̄1F1F
H
1 H̄H

1 + α1Φ1)F
H
2 ΘT

2 )Φ2 (60)

where α1 , tr(F1F
H
1 ΘT

1 ). From (7) and (60), we obtain that

EH [GGH ]

= EH

[[
H2F2H1F1F

H
1 HH

1 FH
2 HH

2 H2F2H1F1F
H
1 HH

3

H3F1F
H
1 HH

1 FH
2 HH

2 H3F1F
H
1 HH

3

]]
= ḠḠH +

[
α1H̄2F2Φ1F

H
2 H̄H

2 + βΦ2 0
0 α3Φ3

]
(61)

where β , tr(F2(H̄1F1F
H
1 H̄H

1 + α1Φ1)F
H
2 ΘT

2 ) and α3 ,
tr(F1F

H
1 ΘT

3 ).
Substituting (59) and (61) back into (57), we obtain (13)

with
α2 = β + tr(F2F

H
2 ΘT

2 ). (62)
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