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We briefly review the concept and properties of the THick Gaseous Electron Multiplier (THGEM); it is a

robust, high-gain gaseous electron multiplier, manufactured economically by standard printed-circuit

drilling and etching technology. Its operation and structure resemble that of gaseous electron

multiplier’s (GEM’s) but with 5–20-fold expanded dimensions. The millimeter-scale hole-size results in

good electron transport and in large avalanche-multiplication factors, e.g. reaching 107 in double-

THGEM cascaded single-photoelectron detectors. The multiplier’s material, parameters and shape can

be application-tailored; it can operate practically in any counting gas, including noble gases, over a

pressure range spanning from 1 mbar to several bars; its operation at cryogenic (LAr) conditions was

recently demonstrated. The high gain, sub-millimeter spatial resolution, high counting-rate capability,

good timing properties and the possibility of industrial production capability of large-area robust

detectors, pave ways towards a broad spectrum of potential applications; some are discussed here in

brief.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Gaseous avalanche radiation-imaging detectors have been
subject to intensive developments over the past decades. The
so-called micropattern detectors, produced by different micro-
lithographic techniques provide localization resolutions in the
few-tens of micrometers range, approaching that of silicon
trackers [1]. The most advanced operative micropattern detectors
are cascaded gaseous electron multipliers (GEM) [2,3] and the
Micromegas [4,5]. Within the broad family of micropattern gas
detectors, the THick GEM (THGEM) is one of the most recent
developments [6]; it is attracting significant attention due to its
simplicity and robustness. The THGEM has a hole-structure
similar to the GEM, but with about 5–20-fold expanded dimen-
sions (Fig. 1). It is manufactured economically by mechanically
drilling sub-millimeter diameter (d) holes, spaced by a fraction of
a mm (a) in a thin (t, generally a fraction of a mm) printed-circuit
board (PCB), followed by Cu-etching of the hole’s rim (typically
0.1 mm). In addition to the standard etching using photolitho-
graphic masks (e.g. our THGEMs were manufactured by this
process by Print Electronics Inc., Israel. www.print-e.co.il), a
simpler mask-less etching technique was recently proposed and is
ll rights reserved.
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under investigations [7]. The etched rim reduces edge discharges,
resulting in over 10-fold higher gains than without a rim (Fig. 2);
e.g. the ‘‘optimized GEM’’ [8] or ‘‘LEM’’ [9] have no rims.

Two or more THGEM elements can be cascaded, to provide
higher gains or increase operation stability. THGEMs may be
fabricated out of various PCB materials—e.g. FR-4, G-10, Kevlar,
Cirlex (polyimide with low natural radioactivity [10]), Teflon, etc.
Due to their mechanical robustness, THGEM-based detectors may
be constructed with very large area and their implementation
does not require any particular mechanical supports.

In this work we briefly review the operation principle of
THGEM detectors and their properties. Details can be found in
previous articles [11–15] and theses [16,17]. Some recent results
on time resolution and operation in noble gases as well as
potential applications are briefly discussed.
2. THGEM operation and properties

2.1. General

The THGEM’s operation principle is basically the same as that
of the GEM: an electric potential is applied between the electrodes
and creates a strong dipole electric field within the holes,
protruding also into the adjacent volume. This particular shape
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Fig. 1. Photograph of a typical THGEM electrode; the one shown has a hole-

diameter of d ¼ 0.4 mm with 0.1 mm etched rim, spaced by a ¼ 1 mm. The

thickness is t ¼ 0.5 mm.
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Fig. 2. Maximum attainable gain vs. rim size. Detector parameters: t ¼ 0.4 mm;

a ¼ 1 mm; d ¼ 0.3 mm.
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Fig. 3. Schematic view of a double-THGEM soft X-ray detector; the same

configuration is adequate for particle tracking and timing.

1400
101

102

103

104

105

G
ai

n

Double-THGEM
Single-THGEM

55Fe 5.9 keV x-rays

Ar/CH4 (95:5) 1 bar

0
100

101

102

103

104

105

106

G
ai

n

6

5

4

3
2

1

Ne

Ar

Ar/5%Xe XeAr

Double THGEM

Kr

106

1600 1800 2000 2200
ΔVTHGEM [V]

400 800 1200 1600
ΔVTHGEM [V]

1 bar

Fig. 4. Gain curves with 5.9 keV X-rays. (a) In single- and double-THGEM

(t ¼ 0.8 mm, d ¼ 0.6 mm, a ¼ 1 mm) in 1 bar Ar/5%CH4 and (b) in double-THGEM

in noble gases at 1 bar. In (a), except for Ar curve (3), measured in gas-flow mode

(not purified), all other data were measured with getter-purified gases [18].
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of the field is responsible for an efficient focusing of ionization
electrons into the holes and their multiplication by a gas
avalanche process. The electron collection is more effective than
in GEM because the THGEM’s hole-diameter is larger than the
electron’s transverse diffusion range when approaching the hole.
The efficient collection and transmission of electrons offers the
possibility to use several THGEM elements in cascade. This leads
to higher detector gains at lower voltage bias per single THGEM
element and thus to higher operation stability. This is important
when the detected radiation has a large dynamic range in primary
ionization density (e.g. neutrons, radioactive background, etc.).
The THGEM can efficiently detect radiation-induced electrons,
either deposited in the gas or emitted from a solid converter.
While the former is important for particle tracking, X-ray imaging
(Fig. 3), etc., the latter has important applications in single-photon
[13] and neutron imaging.

The results of systematic studies of THGEM-based detectors,
operating at atmospheric and low gas pressures, have been
extensively reported in Refs. [11,12]. The role of various geome-
trical and operational parameters, optimal conditions for reaching
full single-photoelectron detection efficiency and maximal elec-
tron transport were established. The last two prerequisites are
particularly important for applications necessitating efficient
photon-counting and -imaging with solid photocathodes, as in
Cherenkov Ring Imaging detectors (RICH). It was found that due to
the large hole size, efficient electron transport and negligible
photon- and ion-feedback, the THGEM has stable operation in a
large variety of gas mixtures, including noble gases. High
attainable gains, 4104 and 4106, were reached with single
photoelectrons in single- and in double-THGEM detectors,
respectively, at 1 atm of Ar/5%CH4 and Ar/30%CO2, thus assuring
good sensitivity for single-photon detection. [11,13]. The same
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Fig. 5. Schematic view of a double-THGEM with a reflective CsI photocathode

deposited on the top one. Photoelectrons are efficiently focused into THGEM1 and

multiplied in two steps.
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Fig. 6. Time resolution (RMS) vs. number of photoelectrons recorded with a pulsed

UV lamp in a reflective double-THGEM gaseous photomultiplier with CsI

photocathode of Fig. 5.
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detectors yielded gains of 4103 and 4104 in single- and double-
THGEM arrangements, respectively, with few-hundred primary
electrons induced by 5.9 keV X-rays in 1 atm Ar/5%CH4 [14]
(Fig. 4a). In this gas the THGEM reached counting-rate capabilities
41 MHz/mm2 at effective gains of �104 [11].

The localization resolution was studied with a 10�10 cm2

double-THGEM detector irradiated with 8 keV X-rays. It comprised
two THGEM electrodes of t ¼ 0.4 mm, d ¼ 0.5 mm and a ¼ 1 mm,
coupled to a resistive anode; the latter broadened the induced
signals, to match the 2 mm pitch of the X–Y delay-line readout
electrode placed behind it. Localization resolutions of �0.7 FWHM
(smaller than the hole-pitch) were reached in 1 bar Ar/5%CH4 at a
gain of 104; the gain variation was of 10% FWHM over the whole
surface [14].

2.2. Noble gases and low temperatures

Gains above 104 were recently measured at room temperature
in a double-THGEM with 5.9 keV X-rays in 1 bar Ar, Kr, Xe, Ne and
Ar/5%Xe (Fig. 4b) [18]; gains 4103 were also reached in some of
these gases at 2–3-fold higher pressures [18,19]. The energy
resolution dependence on various parameters (gas type, pressure,
electrode’s geometry and electric fields) was studied in detail in
noble gases, yielding in some configurations values below 20%
FWHM for 5.9 keV X-rays [18].

Recent studies indicated that double-THGEM detectors oper-
ated in two-phase liquid Ar could reach gains of �104 [20]. The
successful operation of THGEM detectors in cryogenic conditions
was also reported in Refs. [21,22]. Slower signal development
compared to that in cascaded-GEM multipliers was observed in
the two-phase operation mode; it permitted noise reduction by
pulse-shape analysis and thus lower detection thresholds [20].

2.3. Rim effects and stability

As discussed above and shown in Fig. 2, the size of the etched
rim around the THGEM holes, is essential for reducing signifi-
cantly discharge-occurrence probability; this permitted operation
at higher permissible voltages and hence at higher detector gains.
The relationship between maximum gain vs. rim-size was
investigated with a 3�3 cm2 double-THGEM, made from standard
FR-4 PCB material, operating in Ar/5%CH4 at atmospheric pressure
(setup shown in Fig. 3). It was irradiated with a collimated
(1 mm2) 55Fe X-ray beam. The maximum attainable gain was
defined as the one at which micro-discharges were not observed
for at least 20 s. The maximum attainable gain increased
practically exponentially with the rim-size (Fig. 2). This effect,
as well as the gain stability in time, is due to a combination of
several factors: electric field distribution outside the hole,
charging up of the insulator, type of material, quality of hole’s
wall-surface, the surface-quality of the Cu-edge, etc. The charging
up of the insulator also depends on gain and counting rate.
Preliminary results indicated that gain-stabilization with time
occurs within a few hours [15]. The matter is being thoroughly
investigated in cooperation with CERN and INFN-Trieste within
the CERN-RD51 collaboration.

2.4. Time resolution

The time resolution of a double-THGEM operating in 1 bar Ar/
5%CH4 at room temperature was measured with UV photons
(pulsed UV lamp) and with minimum ionizing charged particles
(MIPs).

The detector assembled for UV-photon studies (Fig. 5) had a CsI
photocathode, either evaporated on a transparent quartz plate
installed at a 3 mm distance from the first THGEM (semi-
transparent photocathode), or evaporated directly onto the top
surface of the first THGEM (reflective photocathode). Absorbers
were used to adjust the number of incident photons per pulse.
Both configurations yielded rather similar gain and time-resolu-
tion results [17].

Fig. 6 depicts the time resolution measured with a reflective
photocathode (Fig. 5). It varied between 8 and 1 ns (RMS) for 1 to
�100 photoelectrons per UV-pulse. The time resolution for 1000-
photoelectron pulses was about 0.5 ns (RMS) [17].

The improved time-resolution with the number of photoelec-
trons results from measuring the ‘‘first-arriving photoelectron’’
(among those photo-produced at different locations on the
photocathode’s surface or arriving at different times due to
diffusion [17]) and from improved signal-to-noise ratio.

Measurements with MIPs were done while converting radia-
tion in a 3 mm drift gap (Fig. 3). The THGEM’s time-pulses were
measured against scintillators, either with 106Ru beta-electrons or
with cosmic rays. Both MIPs yielded similar time-resolution
values (Fig. 7) of the order of 10 ns (RMS). The tail in the time
distribution is due to the statistical pulse-height distribution of
single ionization-electron pulses, affecting the trigger electronics.
Note that we obtained, with the same setup and electronics, very
similar tail-shape and resolution (7–8 ns RMS) were observed



ARTICLE IN PRESS

100
0

100

200

300

400

Cosmic Rays 

C
ou

nt
s

Time [ns]

Ar/CH4 (95:5) 1 bar

points
excluded
from fit

σ = 9.82 ns

150 200 250 300

Fig. 7. Time resolution of a double THGEM (of Fig. 3) measured with cosmic rays.

Fig. 8. A double-THGEM gaseous photon detector for RICH. The mesh defines a

small reversed drift-field above the photocathode, repelling a major fraction of

ionization electrons; the photoelectron collection efficiency is very little affected.
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with a standard triple-GEM detector. More details are given in
Ref. [17].
3. THGEM potential applications

The robustness, simplicity and properties of the THGEM and
the possibility of industrial production capability of large-area
detectors, pave ways towards a broad spectrum of potential
applications. These could rely on THGEM’s single-electron
sensitivity, moderate (sub-mm) localization resolution, timing in
the 10 ns range, high-rate capability, low-temperature and broad
pressure-range (mbar to few bar) operation.

Particle- and astroparticle-physics applications could encom-
pass: tracking at moderate resolutions (e.g. large-area muon- or
cosmic-ray detectors), sampling-elements for calorimeters, large-
volume TPCs for rare events, single-photon detectors for RICH, etc.
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Large-area THGEM UV-photon detectors with reflective CsI
photocathodes [11,13] (Fig. 5) would have some advantages over
cascaded-GEM ones [23,24]; e.g. the better electron collection and
transport between cascaded elements results in a lower gain
required at each single-multiplier step or, alternatively, fewer
cascaded elements for an equal total gain. Like in reflective-GEM
photomultipliers, a small reversed drift field above the photo-
cathode reduces significantly the detector’s sensitivity to charged
particles (Fig. 8) [23,25].

The high electric fields at the THGEM’s photocathode surface
(between holes), reaching values of a few kV/cm, even at low
THGEM potentials, (Fig. 9) assure good photoelectron extraction.
The latter results in reasonably good effective-QE values [26] also
in noble-gas mixtures (Fig. 10) [27,28].

The operation of THGEMs in noble gases has potential
applications in gas-scintillation radiation detectors, two-phase
(Fig. 11) and noble-liquid cryogenic detectors for rare events and
for Gamma imaging. Cryogenic gaseous UV-photomultipliers with
THGEM-coated CsI photocathodes are under development for
scintillation-light recording in some of these applications. This
should pave ways towards development of novel large-mass
detectors, having high sensitivity to rare events, with low-
radioactivity background (e.g. compared with photomultiplier
tubes), and low-energy threshold—at moderate costs. Potential
applications are in the fields of neutrino, double-beta decay and
dark-matter physics.

Other fields in which THGEM detectors are under R&D are: soft
X-ray imaging (Fig. 3), thermal- and fast-neutron imaging with
adequate converters coupled to the multiplier or deposited on its
surface (similar to Fig. 5), etc.

Last but not least is the resistance to damaging discharges, e.g.
in cases of single-electron (photoelectron) or low-ionization
(MIPs) detection accompanied occasionally by heavily ionizing
background. Laboratory studies proved the THGEM to be robust
and very resistant to sparks, compared to GEM.

A REsistive THGEM (RETHGEM) [28] was recently introduced,
in an attempt to conceive a spark-immune multiplier. In the
RETHGEM the Cu-clad (Fig. 1) is replaced by a resistive coating e.g.
resistive Kapton, silk-screen-printed surface, etc. Like other
detectors with resistive surfaces (e.g. RPCs) it has an improved
resistance to discharges, but at the expense of lower counting-rate
capability—of the order of 10–100 Hz/mm2. GainsX105 were
reached in different gases in double-RETHGEM coupled to a CsI
photocathode [28].
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