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Abstract

A statistical framework for spatiotemporal modelling should ideally be able to assimilate
different types of data from different of sources. Gaussian processes are commonly
used tool for interpolating values across time and space domains. In this thesis we
work on extending the Gaussian processes framework to deal with diverse noise model
assumptions. We present a model based on a hybrid approach that combines some
of the features of the discriminative and generative perspectives, allowing continuous
dimensionality reduction of hybrid discrete-continuous data, discriminative classification
with missing inputs and manifold learning informed by class labels.

We present an application of malaria density modelling across Uganda using
administrative records. This disease represents a threat for approximately 3.3 billion
people around the globe. The analysis of malaria based on the records available faces
two main complications: noise induced by a highly variable rate of reporting health
facilities; and lack of comparability across time, due to changes in districts delimitation.
We define a Gaussian process model able to assimilate this features in the data and
provide an insight on the generating process behind the records.

Finally, a method to monitor malaria case-counts is proposed. We use vector-valued
covariance kernels to analyze the time series components individually. The short term
variations of the infection are divided into four cyclical phases. The graphical tool
provided can help quick response planning and resources allocation.
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Chapter 1

Time, Space and Uncertainty

Imagine a couple of dancers whose movements blend with the background music in
a bar. The synchrony of the couple’s motion with the rhythm of the music allows
the spectators to anticipate their actions across the dancing floor. The immediate
future of the couple’s performance seems to be declared beforehand, in the same way a
rolling ball communicates its new direction at every moment1. This is the essence of
spatiotemporal modelling, where patterns are sought in the past and across space to
understand the present better at different places and, maybe, have a glimpse into the
future.

But patterns are a vague idea, they are just a structure in the perception of the
observer. They are not really out there in the world, they are an imprint in the
subjective experience of an individual. Yet, patterns are an echo of the world that
sometimes carries a meaning. They can be the key of an answer to a why? Or to a how?
The perceptual organization is part of our learning engine that helps turning plain data
into knowledge (Wagemans et al., 2012). The whole and the sum of the parts are two
different objects we learn from. We try to understand the part-features by studying the
whole-features as much as the other way around. In this regard, the field of statistics
looks for comprehensive structures that describe the data (Cressie and Wikle, 2011).
It provides a principled learning mechanism that minimizes the subjectivity of the
perceptual experience. The field of machine learning, on the other hand, is devoted to
provide automated methods for pattern recognition and data analysis (Murphy, 2012).
This means to endow a machine with the skill of perceptual organization, so that it
can emulate our learning process.

1This example, perfect for motivating a discussion about space and time modelling, was originally
used by Bergson (1889) in his doctoral thesis, translated to English as Time and Free Will: An Essay
on the Immediate Data of Consciousness.
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Statistics and machine learning share a common ground in which both attempt
to provide answers with respect to our surrounding. Both build models as a tool
for understanding a world where uncertainty is ubiquitous, starting for the data we
collect. Our imperfect knowledge of reality, the reason for the world to look to us as
random and sometimes even chaotic, has found a place within these models in the
form of stochastic components (Chilès and Delfiner, 2009). These models have evolved,
and keep evolving, to reflect our better understanding of the world, as well as our
better understanding of our own epistemic uncertainty. The story of this evolution
is interesting by itself, for it is a memoire of how scientists from distant places have
contributed, across generations, to a common goal: tell how and, if possible, tell why.

1.1 Notes on the Evolution of Time Series Models

The structure dependency of a time series usually identified through patterns such as
trends2, cyclic effects3 or irregular fluctuations4. A not uncommon approach for time
series analysis is to decompose the observed variation of the series into signals that
represent these patterns (Baxter and King, 1999; Cleveland and Tiao, 1976; Hyvärinen
and Oja, 2000). Early models assumed that time series were either deterministic or
at most disturbed by a single stochastic element, which accounted for the residual
variation and had no significance in the structure of the series (Schuster, 1898). The
idea of stochastic time processes with a more complex dependence structure was
pioneered by Yule (1927) and Slutzky (1927), in their formulation of the autoregressive
(AR) and moving average (MA) models. Both authors assumed a time series to be
generated by uncorrelated random shocks with zero mean and constant variance5.

Since an early stage, most of the time series literature has been developed within
the scope the stationary theory of statistics. Given the difficulty of ensuring identical
conditions for an ensemble of observations across time, stationarity becomes desirable
as it provides a theoretical framework where all instants in a time series are practically
equivalent6. The link between stationarity and stochastic time models was pointed out

2A trend represents the observed long term change in the mean of the series.
3Cyclic effects are variations around the trend. When these variations are regular and occur in

annual periods, they are usually called seasonal effect.
4This fluctuations are a residual variation that do not correspond to the previous cases and might

or might not be random.
5AR models assume that a stochastic process can be explained as a linear combination of previous

realizations of the process plus a random shock. Meanwhile, MA models assume that the current
observation of the process can be obtained by regressing over past random shocks.

6 A strictly stationary process is characterized for having a distribution invariant under arbitrary
time shifts. A less restrictive kind of stationarity, known as weak or second order stationarity, only
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by Wold (1938)7. From Wold’s decomposition theorem, it follows that AR processes
can also be expressed as MA processes. The duality between AR and MA processes
can be exploited by combining both into a single one, know as autoregressive moving
average (ARMA) model. The advantage being that the resulting model can sometimes
describe a time series with fewer parameters than the ones needed by a single AR or
MA (Chatfield, 2013).

The general theory of reproducing kernel Hilbert spaces (RKHS) arose in the early
1940s (Aronszajn, 1943), and soon was started to be used by probabilists to study the
structure of time series (Karhunen, 1947; Loève, 1948). Later, Parzen (1959, 1961,
1970) showed how RKHS is a natural setting for solving inference problems in time
series.

Before the seventies, model selection was strongly dependent on expert criteria, as
no algorithm was able to specify a model uniquely (De Gooijer and Hyndman, 2006).
Box and Jenkins (1976) presented a principled and unifying framework, which allowed
model identification, parameter estimation and diagnostic checking. Although they
mainly focused on discrete time series with evenly spaced observations, their work
contributed to the widespread use of time series techniques. Their framework can
also be applied to some non-stationary time series by considering, as Yaglom (1955)
did, processes whose differences are stationary. This way, the autoregressive integrated
moving average8 (ARIMA) model allows working with series with changing means due
to trends or seasonal patterns9. Impulse-response models for open loop systems10, can
be defined by incorporating a transfer function in the ARIMA framework. For dealing
with systems where variables interrelation defines a closed loop11, a generalization to the
multivariate case of the ARIMA framework can also be defined following Quenouille

requires a process to have a mean and covariance functions that do not depend on time shifts (Grigoriu,
2002).

7Wold’s decomposition theorem states that a zero mean and second order stationary process can
be decomposed as a deterministic time series plus a weighted sum of random uncorrelated time series.

8Broadly speaking, a stationary series is generated after differentiating, up to some order k, a
non-stationary series and then applying an ARMA model to the new series. The term integrated
means that the new series has to be added up to represent the original non-stationary series.

9More specifically, series with cyclic patterns require a seasonal ARIMA model. Although this is a
more complex model than ARIMA, it is built using the same principles.

10Systems where a variable X has an effect on a variable Y , but not vice versa. In these systems X
is regarded as input and Y is regarded as output.

11Two variables Y and X are in a closed loop when they affect each other. This is as opposed to an
open loop or impulse-response system, where an input X has an effect on an output Y , but there is
no feedback from Y to X. For closed loop systems the terms input and output are not appropriate
anymore.
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(1957). In practice, this generalization consists of re-expressing the ARIMA-type
models in vector notation12, leading to models known as VAR, VARMA or VARIMA.

Different extensions were proposed in the forthcoming years. For example, extensions
that deal not only with non-stationarity due to the mean, but also due to a changing
variance (Bollerslev, 1986; Engle, 1982)13. This is a fruitful field that has kept evolving
since its very beginning. There are still problems to be solved and areas where
methodologies available can be improved. One particularly interesting is an efficient
integration of space and time modelling able to deal the computational limitations
when using large data sets (Särkkä et al., 2013).

1.2 Notes on the Evolution of Geostatistics

There was a time when geography, following a regional approach, was mostly focused on
describing and inventorying the characteristics of a place. A theoretical framework that
included statistical inference was yet to arise during the quantitative revolution14 in the
1950s and 1960s (Barnes, 2001; Burton, 1963). The statistical methods known by the
geographer’s of the first half of the XX century, were usually preceded by the mantra
independent and identically distributed, and therefore were of little use in a field where
spatial closeness tends to be opposed to independence and data are rarely obtained
under identical conditions. Although spatial dependence was not disregarded by the
statisticians of the time (Fisher, 1935), the development of a framework analogue
to time series, which was already in progress, was constrained by the theoretical
differences, and the mathematical complexities involved, between dependence in time
and dependence in space (Whittle, 1954).

Matheron (1962, 1963) and Gandin (1963), independently, were the first to develop
a best linear unbiased predictor for spatial modelling (Cressie, 1990), in terms of
the optimal prediction theory developed by Wold (1938), Kolmogorov (1941) and
Wiener (1942)15. The use of Kriging, as Matheron defined the predictor, became the
characteristic feature of a new field known as geostatistics, concerned with continuous
spatial variation.

12The interpretations of this generalization has a deeper meaning than just a re-expression. This
topic will be further discussed later.

13The topic of heteroscedasticity will be discussed in this thesis, but not under the same approach
of ARCH and GARCH models.

14The quantitative revolution is identified as a period of rapid transformation of the discipline due
to its mathematization.

15Masani (1966) presents a brief, but detailed narration of how these authors contributed to
prediction theory.
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Within spatial statistics literature, geostatistical methods have traditionally been
related to data observed at a set of spatial locations indexed in a continuous space16.
This is as opposed to lattice methods and point pattern methods. The former related to
data observed on a fixed set locations (not necessarily a regular grid) and the later used
for data associated to a point process17. Lattices that represent spatial data aggregated
by regions are often modelled as Markov Random Fields (Besag et al., 1991). A few
examples of models to handle point patterns are presented in Appendix C.

Diggle et al. (2013) take a different approach and consider that distinctions based
on data formats are not always appropriate. They argue that the main theoretical
distinction within spatial statistics is the continuity or non-continuity of the process
being modelled. The model-based approach (Diggle et al., 1998) has become the current
paradigm for modelling variability and quantifying uncertainty: a hierarchical thinking
that explicitly assumes a stochastic model, but also acknowledges a different uncertainty
in the data and in the parameters of the process (Cressie and Wikle, 2011).

1.3 Structure Dependence and RKHS

The structure dependence is a cornerstone in stochastic modelling. While time series
focuses on a dependence that is unidimensional and unidirectional, geostatistics deals
with a multidimensional phenomenon that occurs in every direction. Despite these
differences, the concepts of correlation or covariance are robust enough to provide
a dependence model for both cases. Both Kriging and ARIMA models generate an
interpolation function based on a covariance (or variogram) model derived from the
data. It is often the case, in these areas, that correlation functions are not used to
describe the association between different variables, as in the approach of Galton (1886)
and Pearson (1920), but to describe the similarity of the values taken by the same
variable across a domain. Hence the term autocorrelation is usually preferred18.

RKHS draw a correspondence between a positive kernel and a Hilbert space of
functions, through a series of so called representation theorems. This space, where the
closeness of a function f to a function g means that the values of f(x) are close to
the values of g(x), provides enough tools for doing inference with stochastic processes.

16In other words, if ys is a data point observed at location s, then s ∈ Rq, for some q ∈ N.
17Point patters are used when the question of interest is the location of the events, rather than the

intensity of a function across space.
18The term autocorrelation has been part of the standard jargon in the time series literature for

long (see the translated work of Slutzky (1927), for example). In geostatistics, concepts like variogram
or correlogram are commonly used instead (Cressie, 1992). The term spatial autocorrelation was first
introduced in the late 1960s by Cliff and Ord (1969).
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A key point in the intersection between RKHS and statistical theory is a theorem
by Loève (1948) that links the class of positive functions to the class of covariance
functions. This theorem opens the door for translating stochastic problems into
functional ones (Berlinet and Thomas-Agnan, 2004). Following this path, Parzen
(1959) exploited Mercer and Karhunen representation theorems (Karhunen, 1947; Riesz
and Sz-Nagy, 1955) to define formal solutions to best linear prediction problems for
stochastic processes.

Based on the bijection defined by RKHS, kernel functions enable to analyze non-
linear patterns by embedding an inference problem into an abstract space with a
convenient structure, so that it can be linearized. But this is not the only advantage
of kernel-based learning methods. They also allow working with high-dimensional
data at a low computational cost19 without compromising the representation power
(Shawe-Taylor and Cristianini, 2004).

1.4 The Gaussian Measure

When it comes to studying uncertainty, the Gaussian distribution is one of the most used
distributions. Simplicity in its definition and convenience of its analytical properties
can, of course, be on the list of reasons for assuming a process to be Gaussian. But
the reason behind its widespread use goes beyond the fact that it is a relatively easy
distribution to use. Gaussian distributions tend to arise naturally in some physically
meaningful mathematical situations (Sudakov, 1993). As an example, consider the
central limit theorem and its extensions to the infinite dimensional case.

Among the nice properties of the Gaussian distributions, they are completely
defined by their first two moments. Moreover, centered Gaussian distributions are
uniquely defined by their covariance. As Abrahamsen (1997) puts it, the study of
Gaussian processes (GP) is in many ways the study of covariance functions. But if
a covariance function fully characterizes a Gaussian process, then a kernel does it as
well20. Thus, there is even a bijection between RKHS and Gaussian processes (Berlinet
and Thomas-Agnan, 2004; Hein and Bousquet, 2004). As a result, the use of a Gaussian

19The computational advantage of kernel methods comes, in part, from relying on algorithms that
only use inner products between inputs rather than the actual inputs. Shawe-Taylor and Cristianini
(2004) also identify the modularity or re-usability of the learning algorithms as a computational
advantage. Despite this, computational cost can still be an important constraint to consider. This
topic will be discussed further in this thesis.

20This follows from the link between kernels and positive functions discussed before.
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measure turns out to be the natural approach for studying the class of functions in the
RKHS that best represent the phenomena studied in this work.

1.5 About this Thesis

The research presented in this work has the purpose of developing new machine
learning tools, within the Gaussian Processes framework, for modelling spatiotemporal
phenomena. We are particularly interested in methods that help studying malaria
infections across population. This thesis is, in part, the result of a joint project
with Makerere University, in Uganda, with the goal of modelling malaria spread and
its relation with different environmental variables in that country. The needs and
challenges of such an enterprise involve integrating different sources of information;
being able to handle large scale data sets; and modelling non-Gaussian phenomena.

The structure of the work presented here is as follows. In Chapter 2, we present
a review of the Gaussian process framework, with an emphasis on vector-valued
regression, sparse approximations and approximate inference. The study of these topics
is motivated by the needs and challenges mentioned above. In Chapter 3, we propose
a sparse variant of the expectation propagation algorithm, which allows extending
the sparse variational framework to non-Gaussian data. Departing from the results
of Chapter 3, in Chapter 4, we explore a way to assimilate different data types and
use dimensionality reduction to analyze data. We devote Chapter 5 to the study of
malaria infections in Uganda. We apply the theoretical framework discussed in the
previous chapters to the records of the Health Management Information System of
Uganda. In Chapter 6, a monitoring system of malaria infection is proposed. Finally,
in Chapter 7, we conclude with some final remarks and considerations for future work.

Chapters 3 and 4 are based on Andrade-Pacheco et al. (2014). Chapters 5 and 6
are based on Andrade-Pacheco et al. (2014) and Mubangizi et al. (2014). Chapter 7 is
based on Andrade-Pacheco et al. (2015).



Chapter 2

Gaussian Processes

Gaussian processes provide a robust framework for probabilistic modelling. Their
simplicity for doing inference has made of them one of the dominant methods for
regression within the field of machine learning. They are commonly applied to impulse-
response problems, but can also be extended to problems where the interrelation
between different variables describes a closed loop. This feature is, indeed, desired for
spatiotemporal modelling of multiple variables.

This flexibility does not come without a price. Computing scaling with large data
sets has proved to be a strong limitation for GP models (Snelson and Ghahramani,
2006a). This problem is exacerbated when using intrinsic correlations for multiple
variables. Different sparse approximation methods have been proposed to overcome
this constraint, speed up the learning process and reduce the memory storage demands.

Non-Gaussian observation models can still be combined with a Gaussian latent
variable and therefore managed under the GP framework (Neal, 1998). Whilst many
phenomena can be satisfyingly modelled by assuming a Gaussian likelihood, this
assumption cannot be sustained for many patterns of our surrounding reality. For
example, continuity and symmetry assumptions are not always easy to justify when
studying point patterns. In such cases, the multidimensional integration needed to
compute the posterior distribution is intractable, and approximations are needed
(Bishop, 2006). State of the art GP models with non-Gaussian likelihoods rely on a
Markov chain Monte Carlo (MCMC) implementation (Adams et al., 2009a; Betancourt
and Girolami, 2013; Knorr-Held and Rue, 2002; Korattikara et al., 2013), which can
be strongly demanding in computing resources as well as time consuming. As an
alternative to MCMC methods, the GP framework is equipped with approximate
inference techniques which can be faster than MCMC and do not compromise the
model’s performance. Variational Bayes approximation (Hinton and van Camp, 1993;
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Palmer et al., 2005) defines a lower bound to the model evidence or marginal likelihood
py, by finding an approximation qy that minimizes the Kullback-Leibler divergence
between both, i.e., KL (qy∥py) (see Appendix A.1). Expectation Propagation (Minka,
2001; Seeger, 2005) follows a similar approach to variational Bayes, but it is not defined
as a lower bound, as it rather defines partial approximations using KL (py∥qy) (the other
way around from variational Bayes). Laplace Approximation (Williams and Barber,
1998) defines a Gaussian approximation based on the second order Taylor expansion
around the posterior’s mode (see Appendix A.2). In a more recent development,
the integrated nested Laplace approximation computes a set of marginal posterior
approximations by making use of the Laplace approximation in a stepwise approach
(Rue et al., 2009).

In this chapter we will provide a formal introduction to Gaussian processes, followed
by how they can be extended for multivariate cases using multiple output kernels.
We will review a few sparse approximation methods. At last, a brief exposition of
the expectation propagation algorithm will be presented. We first present a formal
definition of some concepts that will be constantly used along our exposition.

2.1 Definitions

Definition 1 (Hilbert space) A complete inner product space is called a Hilbert space.

Definition 2 (Scalar kernel) A function K : S × S → C, where S is a non-empty
abstract set, is a reproducing kernel of the Hilbert space H if and only if

i) ∀t ∈ S, K(·, t) ∈ H;

ii) ∀t ∈ S and ∀φ ∈ H, < φ,K(·, t) >= φ(t).

Since we will be only working with processes in the real domain, from now on we
will assume that K : S × S → R, with S ⊆ Rq for some q ∈ N.

Definition 3 (Symmetric kernel) A kernel K : S × S → R is said to be symmetric if
K(xi,xj) = K(xj,xi), for xi,xj ∈ S.

Definition 4 (Positive semidefinite kernel) A kernel K : S × S → R is said to be
positive semidefinite if the Gram matrix K =

[
K(xi,xj)

]
is positive semidefinite.

Definition 5 (Covariance kernel) We say that K : S × S → R is a covariance kernel
if it is continuous, symmetric and positive semidefinite.
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Definition 6 (Gaussian process) A stochastic process (fs)s∈S is said to be Gaussian if
any finite linear combination of the real variables f = (fs1 , . . . , fsn)⊤, si ∈ S, is a real
Gaussian random variable.

We will denote a Gaussian process as (fs) ∼ GP(M, K), where M is a mean
function and K is a covariance kernel function.

2.2 Gaussian Process Regression for Real-Valued
Functions

Suppose we have a set of observations {(xi, yi)| xi ∈ Rq, yi ∈ R, i = 1, . . . , n}, where
xi is regarded as the inputs of the output yi, and we are interested in learning the
functional relation between both. Hereafter, n will represent the number of observations
and superindex q the dimensionality of each input. When convenient, a matrix notation
X ∈ Rn×q and y ∈ Rn will be used to represent the data instances.

In standard the regression case within the GP framework, the probability of an
unknown function f : Rq → R is estimated from an observed data set. Since f is not
observed, but is just an abstraction of the relation between inputs and outputs, its
hypothetical realizations f = (fx1 , . . . , fxn)⊤ are regarded as latent variables. Usually,
the elements of the set {yi} are assumed to be noisy realizations of f , such that

yi = fxi
+ ϵi, (2.1)

where (fxi
) ∼ GP (M, K) and ϵi ∼ N (0, σ2). Then, applying Bayes theorem, the

posterior distribution of f is computed as

p(f |y,X) = p(f |X)p(y|f ,X)
p(y|X) . (2.2)

From the Gaussian assumption of the terms in the r.h.s. of equation (2.1), it follows
that the likelihood term p(y|f ,X) and thus the posterior p(f |y,X) are also Gaussian.
For such a model, p(f |y,X) has a simple analytical formulation, whose first and second
moments are functions of the mean and covariance of the prior and the likelihood.
Moreover, output predictions at a new input position x∗ are computed consistently
with the training data, through the predictive density p(y∗|x∗,y,X). The mean and
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variance of the predictive distribution are computed as

⟨y∗|x∗,y,X⟩ = M(x∗) + k∗f
(
Kff + σ2I

)−1
(y − M(X)), (2.3)

var (y∗|x∗,y,X) = k∗∗ − k∗f
(
Kff + σ2I

)−1
kf∗ + σ2, (2.4)

where k∗∗ = K(x∗,x∗), kf∗ = k⊤
∗f = K(X,x∗) and Kff = K(X,X). The font styles

used to represent the evaluations of the kernel covariance function have the intention
to emphasize the difference between the dimensions in each case (k∗∗ ∈ R, kf∗ ∈ Rn×1

and Kff ∈ Rn×n). The shape of the mean function can also be parametrized and learnt
from the data (Blight and Ott, 1975; O’Hagan and Kingman, 1978). However, in this
work a simpler approach will be taken and it will be assumed M(x) = 0 ∀x. This
assumption does not necessarily have a negative impact in the performance of the
model. The posterior mean is still defined using all the information provided in the
training phase1.

As mentioned before, an essential part of GP models is the covariance function. The
kernel family can be sometimes defined a priori, depending on the characteristics of the
process being modelled, but the parameters of the kernel (hyperparameters) should be
learnt from the data as long as possible. This is usually done via hierarchical inference
(Gelman et al., 2013). The approach followed here is to select the hyperparameters by
maximizing the marginal likelihood p(y|X).

2.3 Gaussian Process Regression for Vector-Valued
Functions

The use of real-valued random functions, although simple and flexible, can be inadequate
or restrictive in some applications. For example, if the object of study is a motorcycle
moving along a racing circuit, we might be interested in modelling variations in 2 (or
3) coordinate axis, as well as the lean angle. Of course, we could use an independent
real-valued GP for each variable we track, but any relation between them would be
neglected, and thus our correlation model would be flawed. Another example is studying
the patterns of the kick drum and bass guitar in a rock song. Some studio-producing
techniques exploit the relation between the frequencies of these instruments in order

1In some applications it might be adequate to use a mean function different from zero. For example,
when modelling supernova light curves, Kim et al. (2013) avoid using a zero mean to prevent zero flux
expectations in temporal regions with no data.
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to enhance the sound2. The later example is case of multiple task learning, where
the pattern of each instrument is a different task to learn. The first example can be
thought as combination of multiple output learning and multiple task learning. The
movement across each coordinate axis can be easily thought to be monitored by the
same device (e.g., GPS), and so we have a function that is producing multiple outputs.
However, the lean angle could be monitored by a different device and it could even be
sampled at different time-points than the location3.

Both kind of problems can be represented as a closed loop system, where none of
the variables tracked is the input of one another, but they present some (symmetric)
relation. In time series literature, this kind of problems are commonly treated in the
family of VAR models (Quenouille, 1957), while in geostatistics literature co-Kriging
generalizations are used (Matheron, 1982; Myers, 1982). The approach is similar in
both cases, generalize the concepts of stationary random functions to the vector-valued
case (Yaglom, 1986a,b).

Let h be a function that takes values in some d-dimensional Euclidean space Y.
The realizations of h can be thought as composed of the realization of d real-valued
functions, each one related to a different output (task); i.e., hx = (f 1

x, . . . , f
d
x)⊤ for

f i
x : Rq → R and x ∈ Rq. The corresponding mean vector and covariance matrix are

given by

⟨hx⟩ =
(
⟨f 1

x⟩, . . . , ⟨fd
x⟩
)⊤
, (2.5)[

cov(hx, hz)ij

]
=
[

cov(f i
x, f

j
z)
]
. (2.6)

The diagonal elements of the correlation matrix
[

cov(hx, hz)ii

]
are just the covari-

ance functions of the real-valued components. More interesting are the non-diagonal
elements, which represent the cross-covariance functions between components. For
multiple task learning problems the cross-covariance functions allow learning one pro-
cess, which might be difficult or expensive to track, from another one, whose samples
are more abundant or cheaper.

A formal generalization of learning theory with RKHS of vector-valued functions
has been studied by Micchelli and Pontil (2004, 2005) and Baldassarre et al. (2012).
It turns out that if Y ⊆ Rd, then the space of bounded linear operators B(Y), where

2Among the common tricks, they lower the bass when the kick drum attacks or add a pitched
decay to the drum impulse or add a submix of both instruments to the overall song to ensure their
sounds are tightened.

3The terms multiple output and multiple task learning belong to the statistical learning theory,
but are equivalent to the isotopic and heterotopic concepts defined by Matheron (1982), when he
introduced the coregionalization model for geostatistics.
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the corresponding kernels take values, is the space of d× d matrices. This is analogue,
and in fact equivalent, to the covariance function as defined in Equation (2.6). Álvarez
et al. (2012) present a review of separable kernels that can be expressed as a sums
of products between kernels for the input space Rq and kernels for the index set of
output (task) components J = {1, . . . , d}. We will follow this kernel construction. Let
K : Rq × Rq → R and B : J × J → R be kernels for the input space and for the
index set, respectively, then a separable multi-output kernel Γ : Rq × Rq → Rd×d can
be formulated as

Γ(x, z) =
[
K(x, z) ×B(i, j)

]
= K(x, z) × B,

(2.7)

where
B =

[
B(i, j)

]
, (2.8)

for i, j ∈ J . In this formulation, kernel K has the same interpretation as any kernel
on the input space of real-valued functions. In contrast, kernel B (and therefore the
matrix B) is interpreted as an encoder of the interactions among outputs (tasks). In
geostatistics, a multivariate spatial dependence assumed to have an structure as in
equation (2.7) is said to be intrinsically coregionalized (Helterbrand and Cressie, 1994).
In such context, B is also known as coregionalization matrix.

Different encoders can be combined with kernels on the input space to construct
flexible models. This gives rise to the linear coregionalization models (LCM), which
use kernels defined as a linear combination of intrinsic kernels such that

Γ(x, z) =
Q∑

i=1
Ki(x, z) × Bi, (2.9)

for some Q ∈ N.
Hein and Bousquet (2004) showed that any kernel Γ : S × S → Rd×d can be

seen as a scalar kernel Γ′ : (S,J ) × (S,J ) → R. Therefore, if we increase the input
dimensionality to include the task index, an equivalent model to (2.9) is given by

Γ′
(
(x⊤, ȷ(x))⊤, (z⊤, ȷ(z))⊤

)
=

Q∑
i=1

Ki(x, z) ×Bi(ȷ(x), ȷ(z)), (2.10)

for ȷ(x), ȷ(z) ∈ J .
Two final considerations are worth mentioning before moving to the next topic.

First, an intrinsic covariance kernel (equation (2.7)) such that B = I can be thought
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of equivalent to fitting d independent real-valued GPs. Indeed, each GP would be
independent, however the learning process would not. If we fitted d independent
regression models, there would be d sets of hyperparameters to be learnt. In a model
like (2.7) there is only one set of hyperparameters shared across all the data sets. A
second consideration is related to the size of the covariance matrices used by these
models. If each tasks has ni training points, then the gram matrix of the kernel is of
size (∑d

i=1 ni)×(∑d
i=1 ni). Roughly speaking, the size of the covariance matrix increases

quadratically in the number of outputs. This leads us directly into the next section,
where we will talk about how the size of the covariance matrix can result prohibiting
for the application of Gaussian processes, and what alternatives can be implemented.

2.4 Sparse Approximations for Gaussian Process
Regression

The computation of the predictive mean and predictive variance, in Equations (2.3)
and (2.4), requires computing the matrix (Kff + σ2I)−1. Inverting a matrix is an
operation usually recommended to avoid unless it is absolutely necessary (Higham,
2002). Unfortunately, this is one of those cases when it is needed to compute an
inverse. For this framework to be feasible for large data sets, the burden of storing
large matrices (O(n2)) and inverting them (O(n3)) has to be reduced in some way.

Sparse Gaussian processes are low rank approximations based on a small set of
inducing latent variables u = (uz1 , . . . , uzm)⊤, associated to a set of inducing inputs
Z = (z1, . . . , zm)⊤, where Z and X belong to the same domain and m < n (Lawrence,
2007; Quiñonero Candela and Rasmussen, 2005; Seeger et al., 2003; Snelson and
Ghahramani, 2006b; Titsias, 2009). Rather than computing the covariance between
any pair of variables fxi

and fxj
, sparse approximations induce their relation through

their dependence on the elements of u. Thus the computation of an n× n covariance
matrix is no longer needed. The storage demands and computational complexity are
reduced even when computing a predictive distribution. The relation between the
latent variables f and f∗ (associated to a new set of inputs X∗) is also a generalization
of their dependence on u. In this section we will present some of the popular sparse
models in the literature. The exposition is based mainly in the work of Quiñonero
Candela and Rasmussen (2005) and Titsias (2009). For simplicity, we will assume
real-valued functions only, rather than the vector valued case.
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2.4.1 Exact Conditionals

Suppose a set of inducing inputs Z and the corresponding latent variables u is given.
The exact expression for the conditionals of f and f∗ on the inducing variables and all
the input locations are the following

p(f |u,X ) = N (KfuK−1
uuu,Kff − Qff), (2.11)

p(f∗|u,X ) = N (K∗uK−1
uuu,K∗∗ − Q∗∗); (2.12)

where X ⊆ {Z,X,X∗} is the corresponding subset of inputs to each conditional,
Kfu = K⊤

uf = K(X,Z), Kuu = K(Z,Z), Ku∗ = K⊤
∗u = K(Z,X∗), K∗∗ = K(X∗,X∗),

Qff = KfuK−1
uuKuf , and Q∗∗ = K∗uK−1

uuKu∗. The introduction of the inducing latent
variables provides no benefit, if the exact model is used. Once the inducing latent
variables are marginalized out for making output predictions, we will have exact
predictive distribution with mean and variance given by Equations (2.3) and (2.4).
However, as it will be exposed next, if the dependence on u does not use the full
covariance structure, but an approximation, a reduction in the storage demand and
complexity can be achieved.

2.4.2 Deterministic Training Conditional Approximation (DTC)

This model assumes a deterministic conditional approximation for the training set, but
uses the exact conditional for the test set. The used conditionals are given by

q(f |u,X ) = N (KfuK−1
uuu,0), (2.13)

q(f∗|u,X ) = p(f∗|u,X ). (2.14)

When the conditionals above are assumed, the joint prior distribution of (f , f∗)⊤

implied by the model is

q(f , f∗|X ) = N

0,

 Qff Q∗f

Qf∗ K∗∗

 . (2.15)

The posterior distribution of f∗, once the latent variables u have been marginalized
out, is

q(f∗|y,X ) = N
(

Q∗f
(
Qff + σ2I

)−1
y,K∗∗ − Q∗f

(
Qff + σ2I

)−1
Qf∗

)
. (2.16)
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All data instances are still used in this model. Yet this approximation achieves
a computational complexity of O(nm2), by using the low rank matrix Qff instead of
Kff . Notice, however, that the entries of the covariance matrix depend on the type
of instance and not only on the distance between inputs4. This means that the usual
rules of marginalization of a collection of Gaussian variables are not followed. Thus,
the initial definition of a Gaussian process (Definition 6) is not satisfied.

2.4.3 Fully Independent Training Conditional Approximation
(FITC)

In this approximation, all test points are considered conditionally independent from
each other. However the assumed variance of each one is the variance of the exact
model. The conditional distribution for the test set is

q(f |u,X ) = N (KfuK−1
uuu,Dff), (2.17)

where Dff = diag (Kff − Qff).
The conditional distribution for the test data can be defined in two ways. Either

case affects the nature of the approximation, but not the complexity, which is also
O(nm2).

1. Exact test conditional:

q(f∗|u,X ) = p(f∗|u,X ), (2.18)

which implies the following joint prior:

q(f , f∗|X ) = N

0,

 Qff + Dff Q∗f

Qf∗ K∗∗

 . (2.19)

2. Independent test conditional:

q(f∗|u,X ) = N (K∗uK−1
uuu,D∗∗), (2.20)

4 The prior covariances used depend on whether the data instances are considered as part of the
training or test set.
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which implies the following prior:

q(f , f∗|X ) = N

0,

 Qff + Dff Q∗f

Qf∗ Q∗∗ + D∗∗

 . (2.21)

In the first case, the covariance entries shown in Equation (2.19)) depend on the
type of instance (training or test). Hence, the model does not have a consistent
joint Gaussian distribution, just like in DTC approximation. Nevertheless, if the test
data is a single point, the exact test conditional and the independent test conditional
are equivalent (see Equation (2.21)). In both cases the model has a consistent joint
Gaussian distribution. The posterior distribution for a single point f∗ is expressed as

q(f∗|y,X ) = N
(

Q∗f
(
Qff + Dff + σ2I

)−1
y,K∗∗ − Q∗f

(
Qff + Dff + σ2I

)−1
Qf∗

)
.

(2.22)

2.4.4 Selection of the Inducing Inputs

The performance of a sparse model is strongly dependent on the selection of the
inducing inputs Z. If they are constrained to be part of the training set (i.e., zi ∈ X),
choosing them becomes a combinatorial optimization problem. Nevertheless, their
selection can be turned into a simpler continuous optimization problem if the elements
zi are allowed to be any point in Rq. In this case, the inducing set can be found by
maximizing the marginal likelihood with respect to Z. An advantage of proceeding
in this way is that the model hyperparameters can be learnt at the same time as the
inducing inputs. For the models described above, the marginal log-likelihood can be
formulated as

log q(y|X ) = log
∫∫

p(y|f ,X )q(f |u,X )p(u|X )dudf

= log
∫
p(y|f ,X )q(f |X )df

= −1
2 log(2π) − 1

2 log |Qf ,f + Λ| − 1
2y⊤(Qf ,f + Λ)−1y,

(2.23)

where the shape of Λ depends on the type of approximation, so that

ΛDT C = σ2I, (2.24)
ΛF IT C = diag (Kff − Qff) + σ2I. (2.25)
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2.4.5 Probabilistic Variational Sparse GP Approximation

Titsias (2009) introduced a variational method that jointly selects the inducing inputs
and the hyperparameters by maximizing a lower bound to the exact marginal likelihood.
A rigorous lower bound on the marginal log-likelihood allows joint optimization of the
inducing inputs and hyperparameters without overfitting. This model approximates
the true predictive distribution given by

p(y∗|y,X ) =
∫
p(y∗|f ,X )p(f |y,X )df

=
∫∫

p(y∗|u, f ,X )p(f |u,y,X )p(u|y,X )dudf ,
(2.26)

with an approximation defined as

q(y∗|X ) =
∫
p(y∗|u,X )ϕ(u)du ≜

∫
q(y∗,u|X )du, (2.27)

where ϕ(u) is a free variational Gaussian distribution N (u|m,C).
The selection of the parameters m and C, as well as the inducing set u, is done

by minimizing KL (p(f |u,X )ϕ(u)∥p(f ,u|y,X )), which, following Appendix A.1, is
equivalent to maximizing the lower bound

LT (u, ϕ) =
∫
p(f |u,X )ϕ(u) log p(y|f ,X )p(u|X )

ϕ(u) dfdu. (2.28)

The distribution ϕ̂ that maximizes LT (u, ϕ) has parameters m̂ and Ĉ, expressed
as

m̂ = σ−2K−1
uuΣ̂

−1
Kuf y, (2.29)

Ĉ = KuuΣ̂
−1

Kuu; (2.30)

where
Σ̂ = Kuu + σ−2Kuf Kfu. (2.31)

After optimization w.r.t. ϕ, the expression of the lower bound is the following

LT = log N (y|0, σ2I + Qff) − 1
2σ2 tr (Kff − Qff) . (2.32)

The shape of the bound LT has exactly the shape of the marginal likelihood in
DTC, but with an additional trace term. This additional term is interpreted as a
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correction term on the DTC approximation that penalizes the likelihood depending on
how different the approximation from the true variance is.

The predictive distribution of a new observation y∗ is expressed as

q(y∗|y,X ) = N (y∗|k∗uK−1
uum̂, k∗∗ − k∗uK−1

uuku∗ + k∗uK−1
uuĈK−1

uuku∗). (2.33)

So far we have talked about learning multiple processes within the GP framework
and the complexities involved with large covariance matrices. Another important point
to consider in this review is that spatiotemporal processes in nature cannot always
be thought of as Gaussian. The next section is motivated by the need to implement
models with non-Gaussian noise. We will revisit the expectation propagation algorithm
for doing approximate inference.

2.5 Approximate Inference with EP

Non-Gaussian likelihoods can also be modelled within the GP framework, if they are
assumed to be a convenient function over the latent variables g(fxi

). For example, in
binary classification, where we take yi ∈ {0, 1}, the realizations of a Gaussian process
are normally mapped through a squashing function g : R 7→ (0, 1) to provide a set of
probabilities {πi = g(fxi

)|i = 1, . . . , n}, which can then be used as parameters of a
Bernoulli likelihood p(yi|fxi

) = πyi
i (1 − πi)1−yi . This is an analogue approach to the

one followed by generalized linear models in a parametric setting (see appendix B).
Such a non-linear transformation over fxi

renders exact inference in the resulting
model intractable. This led Barber and Williams (1997) to consider the Laplace
approximation (Appendix A.2) and Gibbs and MacKay (2000) to adopt a variational
lower bound from Jaakkola and Jordan (1996)5 to make progress. The more standard
variational approach (often known as variational inference), based on minimizing the
Kullback-Leibler divergence between an approximation and the true posterior density
(Appendix A.1), has also been proposed for non-Gaussian data. Seeger (2004) considered
this approximation for classification and Tipping and Lawrence (2003) extended the
relevance vector machine6 to heavy tailed data. However, as shown empirically by Kuss
and Rasmussen (2005), for the case of classification, standard application of variational
inference to sub-Gaussian likelihoods can lead to very poor approximations of the

5This variational lower bound exploited the log-convexity of a sigmoidal squashing function, but
does not follow the standard approach to variational inference.

6A sparse Bayesian regression model that can also be expressed as a GP with a degenerate
covariance.
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marginal likelihood. Instead, the expectation propagation algorithm (Minka, 2001;
Opper and Winther, 2000) is generally preferred. Both EP and its variants have been
applied to likelihoods that allow semi-supervised learning (Lawrence and Jordan, 2005),
ordinal regression (Chu and Ghahramani, 2005) and binary classification (Kuss and
Rasmussen, 2005). However, its application in the context of heavy tailed likelihoods
is generally more involved (Jylänki et al., 2011).

2.5.1 Standard EP with Site Gaussian Approximations

For Gaussian process models, EP combines a Gaussian prior p(f |X) with a set of site
approximations to the likelihood7 {ℓi(fxi

) ≈ p(yi|fxi
)|i = 1, . . . , n}. This results in an

approximation to the posterior density of f given by

q(f |y,X) = 1
ZEP

p(f |X)
n∏

i=1
ℓi(fxi

), (2.34)

where ZEP is the normalizing constant of q(f |y,X) (see Williams and Rasmussen (2006)
for notation).

Let the factors ℓi in Equation (2.34) be un-normalized Gaussians up to a constant
Z̃i, with parameters µ̃i and σ̃2

i . We can write them as ℓi(fxi
) = ℓi(fxi

|µ̃i, σ̃
2
i , Z̃i) ≜

Z̃iN (fxi
|µ̃i, σ̃

2
i ). Overall, these factors are combined to provide a Gaussian-like approx-

imation to the likelihood
p(y|f) ≈ Z̃ × N (f |µ̃, Σ̃), (2.35)

for some constant Z̃.
To ease notation, while explaining EP algorithm, the site approximations will

be reparametrized to use the natural parameters {τ̃i, ν̃i}, rather than the moment
parameters {µ̃i, σ̃

2
i }. We will use N (fxi

|θ̃i) instead of N (fxi
|µ̃i, σ̃

2
i ), where θ̃i = (τ̃i, ν̃i)⊤,

τ̃i = σ̃−2
i and ν̃i = σ̃−2

i µ̃i.
The parameters {Z̃i, θ̃i} are adjusted through an iterative approach, usually starting

with ℓi(fxi
|Z̃i, θ̃i) = 1 ∀ i, until convergence is achieved (Seeger, 2005). In each step,

factor ℓi(fxi
|Z̃i, θ̃i) in q(f |y,X) is updated, while fixing ℓj(fxj

|Z̃j, θ̃j) ∀j ̸= i, in order
to make the global approximation q(f |y,X) as close as possible to a distribution given
by

q̂(f |y,X) ∝ p(yi|fxi
)p(f |X)

∏
j ̸=i

ℓj(fxj
|Z̃j, θ̃j). (2.36)

7EP can be defined in a more general way, but we will only use this definition for simplicity.
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In other words, ℓi(fxi
|Z̃i, θ̃i) is forced to behave as close as possible to p(yi|fxi

) in
q̂(f |y,X). Thus, each step consists of solving

argmin
ℓi(fxi |Z̃i,θ̃i)

KL (q̂(f |y,X)∥q(f |y,X)) . (2.37)

Since q(f |y,X) is Gaussian, the previous KL divergence is minimized when the first
and second moments of both distributions match (Kuss and Rasmussen, 2005), i.e.,
when

⟨(f ,ff⊤)⊤⟩q̂ = ⟨(f ,ff⊤)⊤⟩q. (2.38)

Expectations in the equation above involve integrating over fxj
, for j = 1, . . . , n.

Since only the i-th likelihood factor in q(f |y,X) is being modified and it is independent
from the rest, it is easier to marginalize and work just on fxi

. In fact, the marginals
for j ̸= i are the same in q̂(f |y,X) and q(f |y,X).

Let the cavity distribution have the form

q−i(fxi
) ∝

∫
p(f |X)

∏
j ̸=i

ℓj(fxj
|Z̃i, θ̃j)dfxj

. (2.39)

If q(f |y,X) has Gaussian marginals N (fxi
|θi), then q−i(fxi

) = N (fxi
|θ−i), with

θ−i = θi − θ̃i. Therefore, we have that

ℓi(fxi
|Z̃i, θ̃i)q−i(fxi

) = Z̃iN (fxi
|θ̃i)N (fxi

|θ−i)
∝ Z̃iN (fxi

|θ̃i + θ−i).
(2.40)

For Equation (2.38) to be satisfied, we need the moments of the distribution
shown en Equation (2.40) be equal to the moments of p(yi|fxi

)q−i(fxi
). Lets call these

moments θ̂i. Then, it is needed that θ̂i = θ̃i + θ−i, and the new natural parameters
uθ̃i are calculated as

uθ̃i = θ̂i − θ−i. (2.41)

In addition, to have a normalized global approximation and since q̂(f |y,X) is
un-normalized, it is required that the zero-th moments match in both distributions.
This means that the normalizing constant Z̃i is chosen so that∫

p(yi|fxi
)q−i(fxi

)dfxi
=
∫
ℓi(fxi

|Z̃i, θ̃i)q−i(fxi
)dfxi

. (2.42)
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Once convergence has been achieved, the marginal log-likelihood approximation is
calculated according to

log p(y) ≈ logZEP = log
∫
p(f |X)

n∏
i=1

ℓi(fxi
|Z̃i, θ̃i)df

= log
∫

N (f |θ0)
n∏

i=1
N (fxi

|θ̃i)Z̃idf

= log
∫

N (f |θ0)N (f |θ̃)
n∏

i=1
Z̃idf

= log
∫

N (f |θ0 + θ̃)Z−1
0

n∏
i=1

Z̃idf

= logZ−1
0 +

n∑
i=1

log Z̃i,

(2.43)

where θ0 are the parameters of the prior distribution and Z−1
0 is the normalizing

constant of N (f |θ0 + θ̃).

2.5.2 EP-FITC

In the standard EP algorithm, global approximation parameters are calculated as
θ = θ0 + θ̃. This simple expression (in natural parameters), implies the inversion
of an n × n matrix for calculating the new variance (moment parameters). Naish-
Guzman and Holden (2008) introduced an sparse approach for EP, based on the FITC
approximation, which reduces complexity to O (nm2). This approximation works under
the same principles of the standard EP. Sparsity is achieved by substituting p(f |X)
in equation (2.34) with its FITC approximation (see in equation (2.17)). Not only
the posterior distribution is computed in a cheaper way with this approach, also the
computing complexity when calculating the predictive distribution is reduced.

In the standard EP, the predictive distribution for a new observation y∗ is estimated
as

p(y∗|y,X ) =
∫
p(y∗|f∗,X )p(f∗|y,X )df∗

=
∫
p(y∗|f∗,X )

∫
p(f∗|f ,X )p(f |y,X )dfdf∗

≈
∫
p(y∗|f∗,X )

∫
p(f∗|f ,X )q(f |y,X )dfdf∗,

(2.44)
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where q(f |y,X ) is the EP approximation. Under the EP-FITC approach the predictive
distribution is estimated as

p(y∗|y,X ) =
∫
p(y∗|f∗,X )p(f∗|y,X )df∗

≈
∫
p(y∗|f∗,X )

∫
p(f∗|u,X )q(u|y,X )dudf∗

≈
∫
p(y∗|f∗,X )

∫
p(f∗|u,X )

∫
q(u|f ,X )q(f |y,X )dfdudf∗,

(2.45)

where

q(f |y,X ) ≡ sparse EP approximation to p(f |y,X ),
q(u|f ,X ) ∝ q(f |u,X )p(u|X ),
q(f |u,X ) ≡ FITC training conditional, and
(uz) ∼ GP .

(2.46)

2.6 Final Comments

In this chapter we have reviewed different types of models, each one focused on
solving a particular problem: vector-valued models for handling multiple outputs;
sparse approximations for dealing with large data sets; and approximate inference for
estimating non-tractable posterior distributions. All these models have been discussed
by separate. In the next chapter, we will work approaches for combining these methods.
We will propose a sparse variant of the EP algorithm and compare it with other
methods. In Chapter 4, we will move forward and explore possible extensions of this
new algorithm in a dimensionality reduction context.



Chapter 3

Variational Inference and EP

The study of spatiotemporal processes requires modelling assumptions beyond the
Gaussian noise. In some cases, the variable to measure can be discrete or be constrained
to a specific range of values. In other cases, instead of measuring the level of a variable,
there might be a need for estimating the probability of an event’s occurrence across
time and space. The last describes a point process, which turns out to be essential to
the field of spatial statistics (Diggle, 2003; Møller and Waagepetersen, 2007). We will
not provide a thorough discussion on Poisson processes, as it would deviate us from
the main topic. Instead, in Appendix, C we provide an introduction to these processes
and show alternatives to implement them with the aid of a GP.

In Chapter 2, we reviewed approximation methods for large data sets (Section 2.4)
and approximation methods for non-Gaussian data (Section 2.5). It is desirable to
integrate both types of approximation into a single one. In this chapter, we move
towards this goal: a single approximation method able to handle large data sets and
non-Gaussian likelihoods. The need for an approximation comes from the fact that, in
general, Bayesian inference is analytically intractable when using transformations on a
Gaussian process to handle models of the type of GLM (Appendix B), like Poisson
processes (Adams et al., 2009b).

3.1 Variational Lower Bound Recap

As we saw in Section 2.4, Titsias (2009) introduced a variational approximation to the
regression problem that resulted in the lower bound formulated in Equation (2.32),
repeated here

LT = log N
(
y|0,Qff + σ2I

)
− 1

2σ2 tr (Kff − Qff) . (3.1)
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The first term in the r.h.s. of Equation (3.1) corresponds to the DTC likelihood
approximation, where all the uncertainty is derived from the inducing latent variables
u and propagated through K(·,u). The second term is a regularizer that penalizes
using Qff instead of Kff , depending on how much their diagonals differ from each other.
Large values of tr (Kff − Qff) have to be compensated with a large variance or with
kernel hyperparameters that give smooth functions. This means that this trace term is
preventing overfitting. Notice also that if Qff and Kff were the same, the exact model
would be recovered.

The variational lower bound LT is analytically tractable as long as a Gaussian
likelihood is used. A different assumption would require an approximation, but then
the complexity of the learning algorithm could be bounded by the complexity of the
approximation if it is higher than O(nm2). Our interest now is to extend the sparse
variational regression model to the case of non-Gaussian likelihoods. We are also
interested in an EP-type approximation due to its empirically proved performance
(Kuss and Rasmussen, 2005; Vanhatalo et al., 2010). Although the sparse variant
EP-FITC (Section 2.5.2) has the same complexity of the variational approach, it is
not compatible with our goal, for it is not based on a lower bound to the marginal
likelihood. In the next section, we will derive a variant of the EP algorithm based
on the DTC approximation. Later on, we will show how this algorithm fits into the
variational framework.

3.2 EP-DTC

To combine the EP approximation with the variational lower bound in equation (3.1),
we first propose a derivation of the EP algorithm based on the DTC approximation
(see Equation (2.13)). We refer to this algorithm as EP-DTC. Let the dependence of f
on the inducing inputs u be defined deterministically according to

f = KfuK−1
uuu, (3.2)

where p(u|Z) = N (u|0,Kuu). From this assumption, it follows that the marginal
distribution of f , which will be used as our prior information, is given by

q(f |X) = N (f |0,Qff). (3.3)

As in standard EP (Section 2.5.1), the site approximations to the likelihood factors
{ℓi(fxi

) ≈ p(yi|fxi
)|i = 1, . . . , n} are un-normalized Gaussians with moment parameters
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µ̃i and σ̃2
i . Thus, the overall likelihood approximation is given by

p(y|f) ≈ Z̃ × N (f |µ̃, Σ̃), (3.4)

for some constant Z̃.
The gain of the sparse approximation depends on formulating the computation of

the posterior moments µ and Σ in an efficient way. We will make these computations
depend on the inversion of a m × m covariance matrix, rather than on one of size
n× n, for m < n. It can be proved1 that the combination of the prior distribution in
Equation (3.3) with the likelihood in Equation (3.4) yields a posterior distribution of f
with parameters

µ = Σ
(
Σ̃−1

µ̃
)
, (3.5)

Σ =
(
Q−1

ff + Σ̃−1)−1
. (3.6)

Now, by applying the matrix inversion lemma, the posterior variance is computed with
a computational complexity of O(m2n) as follows

Σ =
((

KfuK−1
uuKuf

)−1
+ Σ̃−1

)−1

= Σ̃ − Σ̃
(
KfuK−1

uuKuf + Σ̃
)−1

Σ̃

= Kfu
(
Kuu + Kuf Σ̃

−1Kfu
)−1

Kuf

= Kfu(LL⊤)−1Kuf ,

(3.7)

where L ∈ Rm×m is the Cholesky decomposition of Kuu + Kuf Σ̃
−1Kfu.

In our sparse formulation, the procedure for updating the parameters of the site
approximations remains the same as in standard EP. What changes is the computation
of the posterior parameters, which now depends on the factorization of the covariance
matrix given in Equation (3.7). As in Section 2.5.1, to simplify the notation we will
explain these updates based on the natural parameters {τ̃i, ν̃i}, rather than on the
moment parameters {µ̃i, σ̃

2
i }. Suppose that, after updating the i-th site approximation,

1This is consequence of the fact that both the prior and the likelihood approximation have a
Gaussian shape.
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the natural parameters change by ∆τ̃i and ∆ν̃i. Let

E = Σ̃−1 + ∆τ̃ieie⊤
i , (3.8)

E−1 = Σ̃ − τ̃ 2
i ∆τ̃i

1 + τ̃i∆τ̃i

eie⊤
i , (3.9)

where ei is the i-th canonical basis vector of Rn. Then, the updates of the posterior
variance can be computed as

uΣ =
((

KfuK−1
uuKuf

)−1
+ E

)−1

= Kfu(Kuu + Kuf EKfu)−1Kuf

= Kfu
(
LL⊤ + ki∆τ̃ik⊤

i Kfu
)−1

Kuf

= Kfu
(

uL uL⊤
)−1

Kuf ,

(3.10)

where ki is the i-th column of Kuf and uL is the Cholesky decomposition of LL⊤ +
ki∆τ̃ik⊤

i Kfu. Finally, the update of µ is be computed as

uµ = uΣ
(
Σ−1µ+ ∆ν̃iei

)
= uΣ

((
uΣ−1 − ∆τ̃ieie⊤

i

)
µ+ ∆ν̃i

)
= µ+ uΣ (∆ν̃i − ∆τ̃iµi) ei

= µ+ (∆ν̃i − ∆τ̃iµi) usi,

(3.11)

where usi is the i-th column of uΣ.
The derivation of this algorithm is analogue to EP-FITC (Naish-Guzman and

Holden, 2008). However, we expect EP-DTC to be less competitive than the former.
The reasons being the same as why FITC performs better that DTC (Snelson and
Ghahramani, 2006a). In addition, EP-DTC tends to be less stable due to the compar-
atively weaker diagonal of the covariance matrix2. Nevertheless, our initial interest
was not just to derive a formulation equivalent to DTC, but to extend the variational
framework with a non-Gaussian approximation. In the next section we address this
task.

2Remember that FITC uses the diagonal values of the actual covariance matrix Kff , while in DTC
the diagonal values of the covariance matrix are estimated using KfuK−1

uuKuf + σ2I.
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3.3 EP in a Lower Bound Approximation

Assume we already have an optimal EP-DTC approximation of the form of equation
(3.4). Following Titsias (2009) in using Jensen’s inequality to define a lower bound on
the logarithm of p(y|X), we see that

log p(y|X) = log
∫∫

p(y|f)p(f |u,X )p(u|X )ϕ(u)
ϕ(u)dfdu

≥
∫∫

p(f |u,X )ϕ(u) log p(y|f)p(u|X )
ϕ(u) dfdu. (3.12)

Replacing p(y|f) with the site approximations from EP-DTC, in (3.12), leads to

log p(y|X) ≳
∫∫

p(f |u,X )ϕ(u) log Z̃N (f |µ̃, Σ̃)p(u|X )
ϕ(u) dfdu

≳
∫
ϕ(u)

(
H + log Z̃p(u|X )

ϕ(u)

)
du, (3.13)

where
H =

∫
p(f |u,X ) log Z̃N (f |µ̃, Σ̃)df . (3.14)

Now, let α = KfuK−1
uuu. H can be re-expressed as

H = −n

2 log 2π − 1
2 |Σ̃| −

∫
p(f |u,X )(f − µ̃)⊤Σ̃−1(f − µ̃)df +

n∑
i=1

log Z̃i

= −N

2 log 2π − 1
2 |Σ̃| − 1

2 tr
(
(αα⊤ − 2µ̃α⊤ + µ̃µ̃⊤)Σ̃−1)

− 1
2 tr

(
(Kff − Qff)Σ̃−1)+

n∑
i=1

log Z̃i

= log N (µ̃|α, Σ̃) − 1
2 tr

(
(Kff − Qff)Σ̃−1)+

n∑
i=1

log Z̃i.

(3.15)
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Using (3.15) in (3.13), and reversing Jensen’s inequality, in Equation (3.12), leads
to the definition of the lower bound on log p(y|X)

LE = log
∫

N (µ̃|α, Σ̃)p(u|X)du − 1
2 tr

(
(Kff − Qff)Σ̃−1)+ Z̃

= log N (µ̃|0,Qff + Σ̃) − 1
2 tr

(
(Kff − Qff)Σ̃−1)+ Z̃

≲ log p(y|X).

(3.16)

Notice that LE has the same shape of the lower bound LT (equation (3.1)), only
rather than being weighted by the noise variance from the process, the elements of
the trace are now weighted by the variances from the site approximations. The trace
term in Equation (3.16) forces Qff to be closer to Kff , preventing overfitting and also
adding more stability to the computations.

We now compare the quality of the new bound LE with EP-FITC. We applied
both approximations to a set of classification benchmarks (12 data sets: two from
Ripley’s collection3 and 10 from Gunnar Rätsch’s benchmarks4). Table 3.1 shows the
error and negative log-probabilities obtained with each model. The number of inducing
inputs used was the same for both models in each case. The covariance functions
were all taken to be an exponentiated quadratic or RBF with white noise. The values
in the table correspond to the average results of 10 folds over the data (except for
the synthetic data set, which is already divided into test and training sets). In the
case of the crabs data set, we randomly created 10 test/train partitions of size 80/120
ensuring that each training set had equal number of observations per class. Rätsch’s
benchmark contains 100 training and test splits per data set. In these experiments, we
worked with 10 splits randomly chosen. Hyperparameters and inducing inputs were
optimized jointly by scale conjugate gradients. For each split, we tried three different
initializations and retained the model with the highest marginal likelihood for testing.
Both models exhibited a similar performance, with EP-FITC being marginally better.

3.4 Log-Gaussian Cox Process with EP

As we have mentioned, we are particularly interested in exploring ways of extending our
modelling framework with the tools needed to handle different kind of spatiotemporal

3 http://www.stats.ox.ac.uk/pub/PRNN/.
4 http://theoval.cmp.uea.ac.uk/~gcc/matlab.

http://www.stats.ox.ac.uk/pub/PRNN/
http://theoval.cmp.uea.ac.uk/~gcc/matlab
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EP-FITC Var EP-DTC
data set q m train/test error nlp error nlp

synthetic 2 4 250/1000 0.0910 0.2595 0.0930 0.2618
crabs 5 10 80/120 0.0450 0.2493 0.0458 0.2943
banana 2 20 400/4900 0.1092 0.2535 0.1083 0.2543
breast-cancer 9 2 200/77 0.2610 0.5242 0.2805 0.5363
diabetes 8 2 468/300 0.2273 0.4789 0.2290 0.4922
flare-solar 9 3 666/400 0.3410 0.5932 0.3250 0.5959
german 20 4 700/300 0.2470 0.4985 0.2637 0.5114
heart 13 2 170/100 0.1600 0.4003 0.1610 0.4221
thyroid 5 6 140/75 0.0560 0.2087 0.0560 0.2164
titanic 3 2 150/2051 0.2373 0.5180 0.2368 0.5274
two-norm 20 2 400/7000 0.0239 0.1273 0.0241 0.1682
waveform 21 10 400/4600 0.0966 0.2406 0.0995 0.2682

Table 3.1 Sparse binary classification models comparison. EP-FITC approximation
is compared with variational EP-DTC across different data sets. For each data set,
columns q and m show the input dimensionality and the number of inducing inputs
used. Column train/test shows the number of instances in each of the training and
test sets. The error corresponds to the ratio of misclassified instances in the test set.
Column nlp shows the negative log-probability of the test instances.

processes. Due to its relevance in the field of spatial statistics, we present here an
example of a Poisson process fitted using the variational EP-DTC approximation.

Consider an inhomogeneous Poisson process (see Appendix C.2) on a domain S,
parametrized by a rate λ : S → R+. The number of events within a region B ⊂ S
has a Poisson distribution with parameter λB =

∫
B λ(s)ds. Once we know the shape

of λ(·) across the space S, we can characterize the whole process. We cannot model
λ(·) as a GP due to the restriction of it being positive. However, we can define it as
a transformation over (fs) ∼ GP. For example, if f : S → R, then exp(f) : S → R+.
This transformation is what makes Bayesian inference intractable, and it is precisely
why we resort to an approximation. We generated a toy data set of 130 points that
represents the observations of a count process. In Figure 3.1, we compare the model
fit of a GP regression model (Gaussian noise assumption) and Poisson model using
the standard EP algorithm, and a Poisson process using the variational EP-DTC
approximation with 7 inducing inputs. A clear flaw of the GP regression model (top
image) is that its predictions allow the process to be negative, which is not consistent
with the process that generated the data. The Poisson model provides a more realistic
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behaviour of the predictions. The model fit is not very different when using EP (central
image) or the variational EP-DTC algorithms. The former presents closer predictions
to the data points, but the later can be improved by increasing the number of inducing
inputs.

Table 3.2 compares the fit of these three models to the data, based on a 5-fold cross-
validation (see Appendix D for more details on cross-validation), and the execution time
required by each one. The results show that, provided we can ignore the positiveness and
non-continuity of the data, the regression model has the highest predictive probabilities5,
followed by the EP model and at last the variational EP-DTC model. In applications
where either discreteness or positiveness cannot be disregarded, the comparison of
the regression model using predictive probabilities is not valid. If the assumptions of
the model ignore what is known about the data, the resulting predictive probabilities
would lack of meaning.

Execution times are not a minor factor to consider, specially when the differences
between the three methods are in terms of orders of magnitude6. Although the EP
approximation provides the most accurate model, considering model assumptions and
CV score, it is also the slowest of the three algorithms. Var EP-DTC is computed much
faster than EP, at the expense of lower predictive probabilities. The fastest method,
due to its analytical solution, is the regression model. The last makes, once more, the
regression model an appealing alternative for using, if possible. In the light of the
execution cost and the data fit, we have to ponder the importance of our estimates
being discrete and positive. We have to ponder how much we gain or lose in terms
model and predictions accuracy. For instance, it is known that Poisson(λ) → N (λ, λ),
when λ → ∞. Which means that the Gaussian assumption, and therefore the regression
model, can be considered as valid when modelling large counts7.

5Since the regression model uses a continuous observation model, its predictive probabilities
were computed as F (yi + .5|y−i, X) − F (yi − .5|y−i, X), where F is the corresponding cumulative
distribution function.

6The execution times reported are not an absolute measure. There might be faster implementations
of the algorithms than the ones we used.

7Also notice that the farther the counts are from zero, the smallest the probability assigned to
negative outputs in a regression model. In this scenario, the positiveness assumption can be considered
as satisfied.
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Fig. 3.1 Poisson regression with EP. Top panel shows the model fit using standard
GP regression model. Middle panel shows a Poisson model using EP approximation.
Bottom panel shows a Poisson model using variational EP-DTC. The dots show the
observed data. The grey area represents the 95% credibility interval and the vertical
lines indicate the optimized inducing input locations.
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Model CV time

Regression -255.16 0.2274
EP -301.96 318.6685
Var EP-DTC -331.68 64.2066

Table 3.2 Algorithms for modelling count data (regression, EP and Var EP-DTC).
For each algorithm, the table shows the 5-fold cross-validation results (CV) and the
execution time measured in seconds.

3.5 Final Comments

We have introduced a sparse approximate inference method able to handle non-Gaussian
data. In the comparisons presented, our approximation has similar results to the EP-
FITC approximation. The potential of this model has not been fully explored so
far. As we will show in the next chapter, this model can be used to assimilate
high-dimensional data with different noise sources and analyze it with dimensionality
reduction techniques.

We will start by showing how it is possible to extend the variational bound in
Equation (3.16) to handle uncertainty on the inputs of the Gaussian process. Girard
et al. (2003) and Girard and Murray-Smith (2005) are able to work with noisy inputs
in the predictions of a GP regression model, by propagating the uncertainty through
the covariance. We additionally use variational inference to approximate the marginal
likelihood and incorporate uncertain inputs in the training procedure. This makes
possible, within our framework, to handle uncertain inputs in classification models and
to construct hybrid continuous-discrete dimensionality reduction models.



Chapter 4

Hybrid Discriminative-Generative
Approach

Urtasun and Darrell (2007) proposed a GP classification method that uses latent
variable models trained with discriminative priors over the latent space. Their model
uses a discriminative approach in the latent space, but preserves the generalization
properties of a generative model. Inspired by this work, in this chapter, we work towards
extending the Gaussian process classification to allow propagation of a generative
model through the conditional distribution. This is achieved through a marriage of
expectation propagation (Minka, 2001; Opper and Winther, 2000) with the variational
approximations of Titsias (2009) and Titsias and Lawrence (2010). The resulting
framework allows us to deal with mixed discrete-continuous data. We apply it to
classification with missing and uncertain inputs, visualization of hybrid binary and
continuous data and joint manifold modelling of labelled data.

Non-Gaussian data has already been considered in the context of continuous latent
variables. The bound of Jaakkola and Jordan (1996) was applied to unsupervised
learning by Tipping (1999) for the principal component analysis (PCA) of binary
data (see also Lee and Sompolinsky (1999); Schein et al. (2003)). These models are
related to GP models due to the shared challenge of combining a Gaussian prior with
a non-Gaussian likelihood. This arises due to the duality between the latent variables
(in this case, equivalent to the inputs X) and desired principal subspace generated
by the mapping W ∈ Rp×q in PCA. By associating the j-th column of the mapping
matrix wj with the j-th output dimension of the data yj, the associated mapping
of the latent variables can be expressed as yj = Xwj. Factors wj are induced to be
jointly Gaussian distributed, as in a GP, by defining the usual spherical Gaussian prior
independently over the latent variables xij ∼ N (0, 1). Indeed, marginalizing wj with
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a Gaussian prior leads directly to a GP with a linear covariance function. This was
the relation exploited by Lawrence (2005) to generalize PCA in the Gaussian process
latent variable model (GP-LVM).

4.1 Discriminative and Generative Models

Discriminative models or regression models estimate a conditional density p(y|X), so
that for any given x∗ the probability of a new output y∗ is known. Generative models,
consist of estimating the joint distribution between response and latent predictors
p(y,X). The use of the term latent predictors is due to the training of these models
does not rely on a pairing of desired outputs and inputs. Dimensionality reduction
techniques are an example of generative models, where for a given data set Y ∈ Rn×p a
lower dimensional representation of latent variables X ∈ Rn×q (for q < p) is constructed.

Gaussian processes have been reformulated as a generative model known as the
Gaussian process latent variable model (Lawrence, 2005). In this model, a GP provides
a probabilistic mapping between X and Y. As initial assumption, GP-LVM considers
the dimensions of Y to be independent conditioned on the features. Then p(Y|X) can
be written as

p(Y|X) =
p∏

j=1
p(yj|X), (4.1)

where yj represents the j-th column of Y. The exact marginal likelihood of the data
can then be computed as the expectation of discriminative models for each dimension;
this is

p(Y) =
∫
p(Y,X)dX

=
p∏

j=1

∫
p(yj|X)p(X)dX

=
p∏

j=1
⟨p(yj|X)⟩p(X).

(4.2)

Difficulty in computing such expectations arises from X being non-linear inside
p(yj|X). In the original paper, the latent variables X were optimized by maximum
likelihood. Later, Titsias and Lawrence (2010) showed that they can be approximately
marginalized through a collapsed variational approach (Hensman et al., 2012), analogue
to the sparse variational approximation (see Section 2.4). They introduced the factorized
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variational distribution
q(X) =

n∏
i=1

N (xi|µi,Si), (4.3)

where {Si|i = 1, . . . , n} are diagonal matrices. A lower bound on log p(Y) is defined
using (4.3), and ϕ(·) is determined through a mean field approach. This allows the
uncertainty in the latent space to be incorporated in the model and the underlying
dimensionality to be determined. Damianou et al. (2012) developed the manifold
relevance determination (MRD) as a means to determine the latent dimensionality in
the context of multi-view learning. In their approach, latent variables are automatically
allocated to the relevant views. As a result, some latent dimensions are shared across
the views, whilst other are private to a particular one. So far, however, this model has
only been applicable to Gaussian data. Here, we extend their approach to non-Gaussian
data. The resulting framework allows a range of model extensions including:

1. Classification with uncertain inputs.

2. Dimensionality reduction of non-Gaussian data.

3. Joint modelling of binary labels alongside a data set to form a discriminative
latent variable model.

4.2 Hybrid Model

Lasserre et al. (2006) present a general framework for discriminative training of gener-
ative models, that relies on a model formulation with an additional set of parameters1.
We follow a similar approach, by using a variational formulation. So far, we have
assumed that we are given a full set of input-output pairs for each data point (xi, yi).
The advantage of extending the variational formulation with EP is that we can now con-
sider distributions over xi, which allows inference with uncertain inputs and multi-view
learning for hybrid data sets. We will assume that we have a Gaussian approximation
to the posterior density q(X) (equation (4.3)) in place of X.

Following Titsias and Lawrence (2010) and putting together Equations (4.2) and
(4.3), leads to the lower bound

log p(Y) ≥
q∑

j=1
⟨log p(yj|X)⟩q(X) − KL (q(X)∥p(X)) . (4.4)

1Additional to the parameters of the discriminative and generative models.
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Given an EP approximation, as in Equation (3.4), and following a procedure similar
to the one in Section 3.3 (equations (3.12) to (3.16)), the following inequality arises

⟨log p(yj|X)⟩q(X) ≳ ⟨log⟨(N (µ̃j|αj, Σ̃j))⟩p(uj |X)⟩q(X)

− 1
2 tr

(
⟨Kff − Qff⟩q(X)Σ̃

−1)+ log Z̃.
(4.5)

It follows that a lower bound on the log-marginal likelihood can be computed as

LH = log N
(
µ̃|0,Ψ⊤

1 K−1
uuΨ1 + Λ + Σ̃

)
− ψ̃0

+ tr
(
K−1

uuΨ̃2
)

− KL (q(X)∥p(X)) + log Z̃

≲ log p(Y),

(4.6)

where ψ̃0 = tr
(
Σ̃−1⟨Kff⟩q(X)

)
, Ψ1 = ⟨Kuf ⟩q(X), Ψ̃2 = ⟨Kuf Σ̃

−1Kfu⟩q(X), and Λ is a
diagonal matrix such that Λii = tr

(
Ψ̃2(i)K−1

uu

)
− Ψ⊤

1(i)K−1
uuΨ1(i). The subindex (i)

means that we are only taking the i-th column of the corresponding matrix.
Notice that LH has no longer the form of the DTC approximation. Instead, its

form is closer to the FITC approximation2, as it uses a covariance matrix that can be
expressed as the sum of a diagonal and a non-diagonal matrices. An EP algorithm
can be implemented for this new covariance form. Updates computation in this new
algorithm resemble those of EP-FITC (Naish-Guzman and Holden, 2008), but the
origin of the terms in the covariance is conceptually different.

4.2.1 Structure of the Posterior Moments

Analogue to the formulation of EP-DTC, but using a covariance matrix as in Equation
(4.6), we start with a prior covariance of the form N (0, Ψ̂⊤

R⊤RΨ̂+L̂), where L̂ ∈ Rn×n

is a diagonal matrix, R is the Cholesky decomposition of K−1
uu and Ψ̂ ∈ Rm×n. From

the combination of this prior with an EP posterior approximation N (µ̃, Σ̃), we obtain
a posterior mean and covariance of the form

µ = Σ
(
Σ̃−1

µ̃
)
, (4.7)

Σ =
(

Σ̃−1 +
(

Ψ̂
⊤

R⊤RΨ̂ + L̂
)−1

)−1

. (4.8)

2The marginal likelihood in the FITC approximation is given by N (y|0, Qff + diag (Kff − Qff ) +
σ2I).
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As we will see next, the covariance structure in the prior will be kept in the posterior.
By applying the matrix inversion lemma to Equation (4.8), Σ can be re-expressed as

Σ =
(

Σ̃−1 + L̂−1 − L̂−1Ψ̂R⊤
(

RΨ̂
⊤

L̂−1Ψ̂R⊤ + I
)−1

RΨ̂
⊤

L̂−1
)−1

. (4.9)

After applying a second time the matrix inversion lemma, to get rid of the negative
exponent in Equation (4.9), we find that

Σ = uΨ̂ uR⊤
uR uΨ̂

⊤ + uL̂⊤, (4.10)

for some suitable uΨ̂, uR and uL̂.
Due to the structure of the covariance matrix, the posterior mean µ will also

preserve a structure of the form

µ = ω + Ψ̂γ, (4.11)

for some ω ∈ Rn and γ ∈ Rm. Notice that substituting (4.10) into (4.7), leads to

µ = uω + uΨ̂ uγ, (4.12)

for some vectors uω and uγ.

4.2.2 Update Computations

Equations (4.7) to (4.12), show the structure of the posterior mean and covariance.
Based on these structures, we will now explain the low-rank update computations
when changing an EP site approximation. Let the posterior mean and covariance be
given by

µ = ω + Ψ̂γ, (4.13)
Σ = Ψ̂R⊤RΨ̂⊤ + L̂, (4.14)

and suppose that at the i-th iteration the natural parameters of the likelihood ap-
proximation are increased by ∆ν̃i and ∆τ̃i. Then, the new posterior covariance and
posterior mean can be computed by updating each one of their components as follows

uL̂ = L̂ − ∆τ̃iλ̂
2
ii

1 + ∆τ̃iλ̂ii

eie⊤
i , (4.15)
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uΨ̂ = Ψ̂ − ∆τ̃iλ̂ii

1 + ∆τ̃iλ̂ii

eiψ̂i, (4.16)

δi = ∆τ̃i

1 + ∆τ̃isii

, (4.17)

uR = chol
(

R⊤
(

I − Rψ̂iδiψ̂
⊤
i R⊤

)
R
)
, (4.18)

uω = ω + (∆ν̃i − ∆τ̃iωi)λ̂ii

1 + ∆τ̃iλ̂ii

ei, (4.19)

uγ = uΨ̂γ + uΨ̂
(
(∆ν̃i − ∆τ̃iµ̃i) uR⊤

uR uψ̂i

)
, (4.20)

where L̂ = [λ̂ii], ψ̂i is the i-th column of Ψ̂ and ei is the i-th canonical basis vector of
Rn.

In the next sections, we consider applications of our model in three different domains:
classification with uncertain inputs, dimensionality reduction of non-Gaussian data
and classification using a hybrid discriminative-generative approach.

4.3 Classification With Uncertain Inputs

In probabilistic classification, we are not only interested in the class estimates, but also
in a measure of the uncertainty about our predictions. If we are aware that there is
uncertainty associated to the inputs on which the classification is based, it makes sense
to incorporate this uncertainty in our predictions. Even if the class predictions do not
change, credibility intervals may. In this section we present a couple of examples to
illustrate how our framework handles such uncertainty.

4.3.1 Toy Example

In Figure 4.1, we show how the decision boundary in a classification model is affected by
the increase in the inputs uncertainty. We considered an artificial binary classification
problem. For an asymmetric increase in the uncertainty (Figure 4.1a), where only
the inputs of one class become more uncertain, the decision boundary becomes more
tightly wrapped around the inputs with less uncertainty. In contrast, when uncertainty
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(a) Asymmetric uncertainty. The uncertainty increase on the inputs of one class only,
from left to right, causes the decision boundary to shrink around the class with less
uncertainty.
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(b) Symmetric uncertainty. The uncertainty increase on the inputs of both classes, from
left to right, causes a smoothing out of the decision surface.

Fig. 4.1 Classification with uncertain inputs. Class elements are distinguished by color
and marker shape. The shaded ellipses represent 95% credibility intervals for each
uncertain input. The contour lines represent the probabilities (bold line 0.5, light lines
0.4 and 0.6) of the points belonging to the orange class.

increases in both sets of input variables (Figure 4.1b) the decision boundary becomes
much smoother overall.

4.3.2 Olivetti Face Data Set

Suppose we have a trained classifier for which the test point x∗ has missing components.
A simple solution would be to replace the missing values with the corresponding means
from the training data. Our framework allows us to extend this idea by replacing
the missing data with a Gaussian distribution, whose mean and variance matches the
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Without uncertainty With uncertainty
error nlp error nlp

No missing data 0.0200 21.0248
50% of pixels randomly missing 0.1650 94.8951 0.1650 73.5056
Half of face occluded 0.1650 69.1357 0.1650 67.0423

Table 4.1 Olivetti faces classification. Two models, one without input uncertainty
and one with input uncertainty, are compared. The decision boundary is defined at a
mean probability estimate of 0.5. The classification error is the same in both models,
which means that, in this example, there is no difference in the decisions made. What
changes is the negative log-probability (nlp). When input uncertainty is acknowledged,
confidence in the estimates are reduced.

training data. We applied this idea using the Olivetti face data set3 to predict whether
or not a person is wearing glasses. We took a random 50/50 split to train two models:
a standard GP-EP and a hybrid discriminative-generative model. On the test data,
to simulate missing values, we removed a varying portion of pixels from the images
(Figure 4.2). We then computed the class probability estimates of both models. As the
proportion of missing values increases, the hybrid model becomes less certain and begin
to converge towards the prior probability of an individual wearing glasses (about 30%).
In contrast, the standard model just becomes certain that the image is a face with
no glasses. Table 4.1 shows a comparison of the errors and negative log-probabilities
obtained after introducing uncertainty.

4.4 Dimensionality Reduction of Non-Gaussian Data

Manifold learning techniques model a high dimensional process, by encoding its
dominant sources of variation in a latent process of lower dimensionality. Commonly,
a Gaussian noise model is assumed, for example, in the probabilistic PCA and the
Bayesian GP-LVM. By integrating EP to the GP variational framework, it is possible
apply dimensionality reduction techniques on data with non-Gaussian noise. We applied
our model on the zoo data set4, where 101 animals from 7 categories (mammal, bird,
fish, etc.) are described by 15 boolean attributes and 1 numerical attribute. The hybrid
approach can model each attribute with a different noise model. We used a Bernoulli

3 http://www.cs.nyu.edu/~roweis/data.html.
4 http://archive.ics.uci.edu/ml/datasets/Zoo.

http://www.cs.nyu.edu/~roweis/data.html
http://archive.ics.uci.edu/ml/datasets/Zoo
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Fig. 4.3 Three dimensional representation of the zoo data set. The actual labels, unseen
by the algorithm, are represented by different colors and bullets: mammals (blue
hexagons), birds (green stars), reptiles (red squares), fish (cyan circles), amphibians
(purple diamonds), insects (olive-green triangles) and crustaceans (black triangles).

and a Gaussian likelihoods for the boolean and numerical attributes, respectively.
Figure 4.3 shows the latent representation of the data.

4.5 Discriminative Latent Variable Model

The manifold relevance determination approach of Damianou et al. (2012) considers
multiple views of the same data set, allowing each view to be associated with private
and shared portions of the latent space. We can construct a discriminative latent
variable model, which includes class labels and data points as different views. We
considered the 3s and 5s from the USPS digits database. In Figure 4.4, we show an
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Fig. 4.4 Lower dimensional representation of the USPS digits. The blue and red points
represent the examples of 3s and 5s, respectively, in the training set. The shaded
ellipses represent the uncertainty of the latent variables. The black and white colors
represent the test points (3s and 5s respectively) mapped to the learnt manifold. The
contour lines represent the probability of an instance being five.

example where we used 50 observations to train the model and learn a 2-dimensional
latent space. Notice that the discrimination occurs across the first latent dimension,
whilst the second latent dimension is used to represent non-discriminative variation in
the data. The figure shows the position of 100 unlabelled test data points mapped into
the latent space alongside the locations of the training data.

4.6 Performance Against Generative Approach

We next followed Urtasun and Darrell (2007) in fitting a discriminative manifold model
to labelled training sets of varying sizes. The error rates of the resulting models on
100 test points are shown in Figure 4.5a. Our results are similar to those presented by
Urtasun and Darrell (2007). Our data set partitions differ and our error appears to
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Fig. 4.5 Error rates as the data set size increases. Top panel shows the classification
error rates on the USPS digits when using the hybrid model. Bottom panel shows the
corresponding error rates when using standard EP-GP classification. Bar and whisker
plots summarize 40 different subsampled training sets.



4.7 Final Comments 46

share the same form, but be worse overall. However, when we compared to standard
EP-GP (Figure 4.5b), our performance was significantly worse. This contrasts to
the results in Urtasun and Darrell (2007), who found standard GP classification
underperforms on this data set. In our experience, standard EP-GP classification
can perform badly when the initialization is poor and random restarts are not tried.
This can explain the discrepancy between our results and theirs. To achieve similar
results to EP-GP classification (and therefore exploit the advantages of the hybrid
discriminative-generative model) we believe that our generative model needs to be
more representative of the underlying data. One possible way in which this could be
achieved would be through use of the deep GP formalism of Damianou and Lawrence
(2013).

4.7 Final Comments

We have developed a framework for building hybrid discriminative-generative models
with GP, by combining the EP approximation with a variational bound on the marginal
likelihood. This required the development of a new sparse EP algorithm able to
incorporate estimates of inputs uncertainty into the routine. These allowed us to
incorporate discriminative Gaussian processes into a probabilistic model such as the
Bayesian GP-LVM.

We have shown how the addition of inputs uncertainty leads to well behaved
algorithms, in particular, when training on data where such uncertainty is class-
dependent and when predicting using missing inputs. We are able to use these
techniques to apply the Bayesian GP-LVM on non-Gaussian data and make continuous
latent representations of mixed data types. The performance against generative
approach is not as good as originally thought. More work in this area is needed to
improve the lower dimensional representation of the data. However this is a line of
research that diverts from our original one.

In the next chapter, we will revert to the traditional approach to dealing with the
data. The chapter will be focused on using the techniques studied so far for modelling
health facility records of malaria in Uganda.



Chapter 5

On the Challenges of Assimilating
Data

So far, the discussion about the GP framework and the new methods introduced has
been mainly theoretical. Different experiments have been presented, but their aim
has been to show the properties of the methods proposed. The examples shown have
been tailored for the techniques reviewed. The interest behind this line of research
and the reason for using the modelling framework discussed has a practical goal:
develop spatiotemporal modelling tools that help understanding malaria spreading
across Uganda.

In this chapter, we apply the GP framework and the techniques reviewed previously
to model data from the Health Management Information System (HMIS). We do not
use data from ad-hoc surveys; but administrative records created with a different
purpose than defining inputs for a statistical model. This brings the benefit of having
plenty of data, but as we will see, this also brings some challenges that need to be
faced when defining a probabilistic model.

We start the chapter with a brief introduction on malaria: how it is spread, why it
is a disease that matters to some populations and why spatiotemporal models are an
adequate tool for analyzing it. Then we discuss the data features used in this project
and some of the challenges we face when using it. We will see how these challenges
impose a turning point in the methodological approach used. We then define a model
for the disease case-counts that assimilates the data characteristics we have observed.
Finally, we try to improve our model performance by incorporating environmental data
into the learning routine.
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5.1 About Malaria

The interaction between human beings and malarial parasites is very old. The footprints
of malaria can be observed in different moments in the history of civilization and it
is likely that there are even some footprints in the history of our genetic evolution.
Carter and Mendis (2002) discuss how some human populations might have evolved,
preferring certain polymorphisms, depending on the resistance to some malaria effects.
Although the moment in which this disease started infecting humans is still an open
question (Escalante et al., 1995; Liu et al., 2010), evidence points out that human
populations have been stalked by malaria, at least, since the dawn of agriculture (Joy
et al., 2003).

It was not until the end of the XIX century when it was finally understood that it
is a parasitic disease and that it is transmitted to humans by mosquitoes (Cox, 2010).
The bite of the female Anopheles, seeking blood to complete its own reproductive
cycle, is an essential step in the reproduction of the malarial parasite. It is due to this
furtive vector and to the complex life cycle of the parasite that malaria has been such
a burden and difficult to eradicate.

More than a century after discovering its transmission mechanism, malaria has been
successfully eradicated from different regions of world (Trigg and Kondrachine, 1998).
However, it is still endemic in 100 countries and represents a threat for 3.3 billion people
approximately (World Health Organization and others, 2014). In Uganda, malaria
is among the leading causes of morbidity and mortality (World Health Organization,
2015). Hospital data from 2010 and 2011 show that malaria was responsible for 22% of
morbidity cases and 21% of deaths. The percentage of hospital deaths went up to 27%
when considering only children under five (Ministry of Health, Health Systems 20/20,
and Makerere University School of Public Health, 2012).

Different types of interventions can be carried on to prevent and treat malaria, such
as vector or larva control, chemoprevention for vulnerable groups, or timely treatment
(World Health Organization and others, 2014). The success of such interventions
depend on how well the disease can be anticipated and how fast the population reacts
to it. In this regard, mathematical modelling can be a strong ally for decision-making
and health services planning.
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5.2 Modelling When and Where

The life cycle of malarial parasites cannot be completed in regions that are not suitable
for mosquitoes breeding. This makes malaria a geographic phenomenon where factors
like altitude, temperature or lack of water are critical (Bailey, 1982). With this in
mind, a wide range of mathematical models have been proposed in recent years for
trying to unravel the dynamics between the environment and the biology of malaria
(Smith et al., 2012). Reinerand et al. (2013) identify 388 different mechanistic models of
mosquito-borne pathogen transmission published between 1970 and 2010. A common
idea across these models has been the incorporation of temperature as a driving pattern
of transmission, and in some cases, other details of mosquito and larval ecology. There
has also been an interest in modelling the pathogen infection in host, by including
concepts such as super infection1 (Portugal et al., 2011) or immunity (Good and Doolan,
1999). Reinerand et al. (2013) considers spatial heterogeneity and temporal variation
as an unrepresented theme in the literature.

Spatiotemporal modelling for mapping and prediction of infection dynamics is a
challenging problem. First of all, because of the costs and difficulties of gathering
data. Second, because of the challenges of developing a sound theoretical model that
agrees with the data observed. Gaussian processes are a standard tool for the spatial
analysis of disease risk (Gosoniu et al., 2006; Kleinschmidt et al., 2000; Quinn et al.,
2011). This provides an elegant non-parametric method for using distance information
to make estimates of risk across a spatial field. Recent advances in inducing variable
approximations have made the Gaussian process framework more practical (Álvarez
and Lawrence, 2011; Vanhatalo, 2006).

5.3 About HMIS Data

The main source of information used in this project are the malaria case-counts records
provided by the Epidemiology and Surveillance Unit from the HMIS, in Uganda. The
HMIS is a reporting tool of the country with the function of providing information
regarding the Health Sector, as a means to support planning and decision-making.
Information systems are crucial for the health authorities of any country. Its benefits
will strongly depend on the quality of the data provided, as well as on the capacity of the
decision makers of responding to what the system reports (World Health Organization,
2010, 2011).

1An infection that occurs on top of an earlier infection.
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The HMIS was initiated in 1997, as a replacement of the former Health Information
System (HIS). The HIS was designed in 1985 to capture data about some health
services and morbidity for some diseases, however, it was later realized that it was
leaving out important health-management information such as infrastructure, drug
management and medical equipment availability, among others (Kintu et al., 2005).

A recent assessment from WHO, concludes that HIMS is producing data of good
quality at a national level (World Health Organization and Uganda Ministry of Health,
2011). At a district level, it points out the following remarks:

• “Completeness of district reporting is poor in 9% of districts and completeness
of health facility reporting is problematic for one-third of the districts;

• Accuracy of reporting is only partly adequate, with 18% of the district reports
zero or missing, 7% of the districts having extreme outliers, and 9% of the districts
having major differences between the annual total and the sum of the monthly
reports;

• District population projections for the denominators in 2010/2011 are estimated
to be off by more than one-third for 22% of districts.”

In addition to these remarks, through personal conversations with the health
authorities, we found out that malaria records in HMIS correspond to people being
treated for malaria, and not diagnosed with a specific test. Such tests are not part of
routine mechanism, and therefore the records are very likely to be over-diagnosed by
diseases with similar symptoms (Amexo et al., 2004; Castellani, 1907).

Due to the creation of new districts and changes in the boundaries of the existing
ones, district-level data is not entirely consistent over this period. In 2003, there where
only 56 districts, while today there are 112. Figure 5.1 shows a comparison between
the district-limit definition in 2003 and today.

We had access to weekly information aggregated at a district level. No access to
data at a hospital level or information specific to the individuals, such as age or gender,
was possible. We analyzed data between January 2003 and July 2014.

5.4 Variation Sources in Malaria Records

In an ideal situation, with perfect health records, there would not be misreported cases
of malaria or false positives/negatives. The only variation in the number of people
reported to be infected would be originated by the actual evolution of the disease
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(a) 2003 (b) 2015

Fig. 5.1 District boundaries in Uganda. The administrative delimitation of 2003 (left
panel) consisted of 56 districts. Today’s delimitation (right panel) consists of 112
districts.

case-counts. In practice, it is common to have records where variation comes from
different sources, including changes in the reporting methodology or errors. Each of
these sources has a particular way of disturbing the observed process. For example,
it can be assumed that the natural variation in the case-counts of malaria is smooth
across time; that changes in methodology affect in the form of bias2; and that errors
are uncorrelated. Modelling all observed variation as part of the same source would
not provide a good understanding of the phenomena. On the contrary, the conclusions
drawn from such a model could just be misleading. An initial challenge is to understand
the data and to identify where the main variation comes from.

As it was said before, we understand the part-properties by looking at the whole-
properties and vice versa. Through the contrast between these two comes the iden-
tification of outliers and changes in the structure of the series. Figure 5.2 shows an
example of the malaria records in Apac and Kotido districts. Marked with circles
are observations that seem to behave in a different way than the rest. In the case of
Apac, one could hypothesize that such outliers are in fact human errors, possibly an
extra zero was added by accident. Kotido does not present observations with such
extreme values, however there are a few that under some criterion can be thought of
as being the result of a source of variation different from the infection process. HMIS

2For example, think of a bias induced due to a specific diagnostic procedure or due to a limited
health service coverage in the population.
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data is initially collected by hospitals or medical facilities, and then these records are
aggregated per district. The creation of new districts by splitting the already existing
ones has a clear effect in the structure of the series. The vertical red lines in the figures
show the time points when the districts were split and part of its previous medical
facilities started reporting independently as another district3.

Another source of noise identified in the data is the inconsistency in the number of
health facilities reporting. For each of the weekly counts of malaria per district, the
HMIS database presents the total number facilities in the district and the number of
reporting ones. Figure 5.3 shows a comparison of the malaria cases reported and the
number of health facilities per observation in Arua and Iganga districts. The similarity
of the trends, specially after 2009, indicates a strong effect of the misreporting facilities
in the case-counts of malaria observed. This is, indeed, valuable information for
understanding the database, unfortunately there is no information about the size of
the facilities or their location that allows a more detailed inspection.

The analysis of the split districts (parent and children) aggregated provides some
insight into the reporting process. Figure 5.4 shows the aggregated values of facilities
and disease cases in Arua and Iganga, according to their definition in 2003. The
cases of malaria registered have, in general, increased over the years (except when the
number of reporting facilities is low). Before jumping to the conclusion of a worsen
of the disease rate, it is important to notice the increment in the total number of
facilities reporting. This suggest a larger base population where the disease is being
diagnosed, which could mean that, rather than an increase of the infection, there is an
improvement in the coverage of the health services. Another example of a significant
change in the reporting process is exhibited in the left panel of figure 5.4a. Between
2007 and 2011, some of the facilities from Arua started reporting to Maracha, but it
seems that later some of those started reporting back to Arua. This switch of reporting
units is also evident in the disease case-counts reported in both districts. For example,
see the drop-off of the disease trend in figure 5.3a. It is also interesting to notice that
the effect of the district splitting is not eliminated by aggregating them. For example,
Iganga presents an escalated increment in the number of facilities and in the malaria
cases, after each splitting.

3This date does not correspond to the moment when the district was created, but just when its
first records in the HMIS appeared. Before this point, it is not always clear when the records of the
parent district stop containing records corresponding to the new district.
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5.5 The Practical Limitations Imposed by the Data

The characteristics of the data analyzed have different implications on the modelling
tools used. The aggregation at district level makes difficult the use of point patterns to
study the malaria case-counts across space. The study of continuous spatial variation
with the methods presented, in earlier chapters, is prevented by having data associated
to very large polygons (districts). For this reason, our analysis will be focused only on
the temporal variation of the number of malaria cases4.

We have also discussed the costs associated to the implementation of approximate
inference methods, in particular EP. In terms of training speed and predictive accuracy,
we did not observe that EP-type methods outperform standard GP regression models.
Considering, in addition, that we are interested in modelling 112 districts across many
years, in this Chapter we find more convenient to put aside this technique. The different
sources of variation and the several inconsistencies found in the data, forces us to think
carefully about the noise model definition. Therefore, the approach we use will have to
be different from what we have done previously.

5.6 A Model for HMIS Data

For doing inference on the HMIS data, we need to assimilate its different sources of
variation. From the exploratory analysis of Section 5.4, we know that a model of HMIS
data should be able to explain the disease case-counts in terms of its evolution in time
and the number of facilities reporting. It should also be able to handle outliers or
possible errors in the reporting process (see Figures 5.2a and 5.2b). The construction
of such a model consists, first of all, of defining a sensible rule about how data observed
is being corrupted from its original generator process. The last is a noise model that
links the observations with the process described by the latent function. It is also
needed to define a rule about how the different observations are related and the way in
which variables like time or number of reporting facilities affect the disease case-counts.

An important factor to consider are the different boundaries definitions from 2003
until today. These changes might have an impact in the variation of the data observed
(see Figures 5.3a and 5.3b). To simplify things, we will start analyzing the information
of the districts within splitting periods, rather than across them. That means that we

4Markov Random Fields are commonly used when modelling data aggregated in polygons (Besag
et al., 1991), however their use at this stage would deviate us from the framework we have been using
so far.
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will work with 168 virtual districts instead of 112. In a later stage of the analysis, we
will work on a way to harmonize the data series.

5.6.1 Model Selection Criteria

Models are defined based on the characteristics of the process they represent. This
way, some models are preferred over others simply because they represent better some
assumptions about the data. Still it is common to end up with different choices, all
of them reasonably valid. The task is then to decide which model is more convenient.
When it is about choosing the parameters within a model, marginal likelihood optimiza-
tion is among the preferred criteria. Selection between noise or covariance structures
involves comparing models with different sets of parameters, and so marginal likelihood
maximization is not a robust enough criterion for defining which model provides a
better fit to the data. But it is not only a matter about fitting the observed data. The
model should be able to provide insight about what has not been observed. Within the
several ways of comparing and selecting models (see Vehtari et al. (2012) for a thorough
review on the topic), out of sample cross-validation (CV) is a natural way of estimating
the prediction error of a model (see Appendix D). Alternative methods are usually
preferred to CV, as it involves the cost of re-fitting the model in the different training
sets. However, in the case of leave-one-out cross-validation (LOO-CV) in GP regression
models and EP approximations there are almost no computations required beyond
the ones already carried on while fitting the model (Vehtari et al., 2014; Williams
and Rasmussen, 2006). The cost is negligible. It is not the same situation for sparse
approximations, as all the data points are encoded in the covariance matrix. It is not
clear how to compute LOO-CV without re-fitting the model. When comparing sparse
models, 5-fold cross-validation was used.

5.6.2 Noise Model Selection

The case-counts of malaria are a discrete and non-negative number. But given the
large counts we are dealing with, we know that they can be safely represented with
a Gaussian distribution. As we saw in Section 3.4, this turns out to be convenient
as the log Gaussian Cox model involves a high execution cost versus a standard GP
regression. An alternative, not discussed before, that ensures a positive distribution
of the data is to assume a log-Gaussian distribution. Such a model can be worked
out simply by using a Gaussian model on the logarithm of the data. In general, there
could be a problem if there are observations with value zero, as the logarithm is only
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defined for positive numbers. However, this is not the case here. We prefer to use this
model over the Gaussian model to ensure positive estimates. For completeness, we
present in Appendix E.1 a comparison of both models (Gaussian and log-Gaussian)
using leave-one-out cross-validation. Given the difference in the data scales of each
model (one is the transformed space of the other), to compare their predictive densities
it is needed to rescale them with the Jacobian of the transformation (Gelman et al.,
2014). We fitted models for data of 23 districts5. The predictive probabilities are not
consistently higher for any of both models, and in a few cases they have similar values.

The model we will use for the HMIS data is given by

log yi = fxi
+ ϵi + ζi, (5.1)

where (fxi
) ∼ GP; ϵi ∼ N (0, σ2

ϵ ) is a noise term with homogeneous variance across
observations; and ζi represents other sources of variation observed in the data and not
explained by the previous terms (e.g., reporting errors).

The implications of working in the log-scale deserves special attention. The inter-
action of latent functions can be performed in the form of kernel additions or kernel
products. The addition in the log-space represents a multiplicative effect in the original
space. A multiplicative effect in the log-space, on the other hand, does not have a clear
interpretation in the original space.

5.6.3 Kernel Selection

The structure dependence of the model is given by the kernel function used. By
choosing to use a particular kernel, we are introducing into the model our beliefs about
the process that generates the data. Our initial assumption about the infection process
of malaria is that it evolves with some degree of smoothness across time. We need a
kernel such that the closer the observations in time, the more similar values of the
function it encodes. The Matérn kernel satisfies this condition, as it defines dependence
through the distance between points with some exponential decay. It is defined as

K(xi,xj) = 21−νσ2

Γ(ν)


√

2ν|xi − xj|
ℓ

ν

Kν


√

2ν|xi − xj|
ℓ

 , (5.2)

where ν, ℓ ∈ R+ and Kν is a modified Bessel function of order ν (Abramowitz and
Stegun, 1972). The parameter ν controls the smoothness of the process, so that the

5We used a Matérn-3/2 kernel and only considered time as input.
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larger the values of ν, the smoother the process. The formulation of the Matérn kernel
in Equation (5.2) simplifies when ν is half integer. For example, the Matérn kernel
with ν = 3/2 (Mat-3/2) is defined as

K(xi,xj) = σ2

1 +

√
3|xi − xj|

ℓ

 exp
−

√
3|xi − xj|

ℓ

 , (5.3)

and the functions it describes are only once differentiable. In the limit, when ν → ∞,
the Matérn kernel approaches the exponentiated quadratic kernel or RBF, which is
given by

K(xi,xj) = σ2 exp
(

−|xi − xj|2

2ℓ2

)
, (5.4)

and describes a function that is infinitely differentiable. Due to the noise of the HMIS
data, a Mat-3/2 kernel seems more appropriate as initial assumption. Yet, we reckon
any kernel in the Matérn family, including the exponentiated quadratic, would provide
a sound model. In Appendix E.2.1 we show a comparison of the cross-validation
results when using either a Mat-3/2 or RBF kernels. In general the Matérn kernel was
preferred over the RBF kernel. For each district, the kernel with the highest LOO-CV
predictive probabilities was used to model the data along this section of the chapter.

In addition to the smoothness across time, it seems sensible to think that the number
of health facilities reporting has an effect on the case-counts of malaria observed. We
also have seen some evidence of this above (Figure 5.3). We can define a linear relation
between the variables using a kernel defined as

K(xi,xj) = α|xi − xj|2, (5.5)

for some α ∈ R+.
Both kernels, the one to model the process across time and the one to model the

dependence on health facilities, can be integrated as multiplicative effects. We define a
multiplicative model by doing an orthogonal sum of both kernels6.

Despite the evidence of the relation between the number of health facilities reporting
and the number of malaria cases in some districts, we have to be aware that this might
not be true for all districts in the country7. Even if there is a relation between these two

6Since each kernel works on a different dimension, the orthogonal sum yields a new kernel in two
dimensions.

7There are many reasons why this can be the case. For example, the number of health facilities
reporting might have errors; or the health facilities provide service to a very different number of
patients so that the single number of facilities is not enough as explanatory variable.
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variables, the linear kernel might not encode it properly. We have to decide whether
adding the linear kernel benefits the model fit or not. Each district has its own specific
characteristics and we are trying to be general enough to handle all of them. We
compared a GP model using only a kernel to model time dependence with another
that also considers a linear kernel on the number of health facilities reporting. We
used LOO-CV to compare their predictive accuracy and choose the one with higher
results. Appendix E.2.2 shows the results of this comparison. As an example, Figures
5.5 and 5.6 show the model fit to Kween and Ngora districts. In both districts, it is
clear how the linear kernel helps correcting the effect of non-reporting facilities, which
otherwise could be seen as a rapid drop in the malaria case-counts.

5.6.4 Outlier Detection

We have discussed in Section 5.4 that there might be some reporting errors in the
HMIS database. To include these errors explicitly in Equation (5.1), we re-formulate it
as

log yi = fxi
+ ζi + ϵi, (5.6)

where fxi
is a function of time ti and the number of reporting health facilities ri, so

that (fxi
) ∼ GP with xi = (ti, ri); ζi ∼ N (0, σ2

ζi
) is an error in the reporting process

independent and with heterogeneous variance across observations; and ϵi ∼ N (0, σ2
ϵ )

is a noise term with homogeneous variance across observations that accounts for the
residual variability in the model. At this stage we are still focused on modelling HMIS
data between splitting points of the districts. Later on, when we try to harmonize the
whole time series, a new term for dealing with this source of variation will be needed
in Equation (5.6).

We expect reporting errors to occur only in some observations, and these being
characterized by ϵi + ζi >> ϵi (see the observations marked with circles in Figure 5.2).
If we assume that

zi = (log yi, ri)⊤ − (log yi−1, ri−1)⊤ ∼ N (µ̇, Σ̇), (5.7)

for some µ̇ and Σ̇, as the reporting errors are sparse, any point that contains a term
ζi ̸= 0 will be unlikely under N (µ̇, Σ̇)8. The parameters µ̇ and Σ̇ can be learnt by
Bayesian inference. The conjugate priors for this problem are an inverse-Whishart for

8We use a bivariate Gaussian that includes the reporting facilities because of the influence of this
variable on the case-counts of malaria reported. An alternative would be to use a univariate Gaussian
for z̃i = yi/ri − yi−1/ri−1.
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Fig. 5.5 Kernel selection for Kween district. Top left panel shows the number of malaria
cases (log) against the number of reporting facilities. The vertical lines represent a 95%
credibility interval for each data point. Top right panel shows the model fitted to the
data (log) against time. Assuming a constant number of reporting facilities, the shaded
area shows to the 95% credibility interval and the lines show random realizations of
the latent function learnt. Bottom left panel shows the leave-one-out log-probabilities
for each data point in each of the models compared.

Σ̇ and a Gaussian for µ̇|Σ̇. The predictive distribution of zi is then Student-t (Gelman
et al., 2014). Figure 5.8 shows this approach applied to Kalungu and Gomba districts.
The dashed lines in the middle plots show the original time series, and the red lines
show the time series once the unlikely observations have been removed. The criteria



5.6 A Model for HMIS Data 62

0 2 4 6 8 10 12
reporting facilities

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

m
al

ar
ia

 c
as

es
 (l

og
)

Aug 2010

Feb 2011

Aug 2011

Feb 2012

Aug 2012

Feb 2013

Aug 2013

Feb 2014
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

m
al

ar
ia

 c
as

es
 (l

og
)

Health facilities = 8

12 10 8 6 4 2 0 2
logp(yi |X,y−i)

0

20

40

60

80

100

120

140

co
un

ts

Mat-3/2 + Linear
LOO-CV = -39.08
Mat-3/2
LOO-CV = -84.17

Ngora

Fig. 5.6 Kernel selection for Ngora district. Top left panel shows the number of malaria
cases (log) against the number of reporting facilities. The vertical lines represent a 95%
credibility interval for each data point. Top right panel shows the model fitted to the
data (log) against time. Assuming a constant number of reporting facilities, the shaded
area shows to the 95% credibility interval and the lines show random realizations of
the latent function learnt. Bottom left panel shows the leave-one-out log-probabilities
for each data point in each of the models compared.

to define unlikely was to be outside the (rotated) ellipse A centered on µ̇ and with
semi-axis defined 3 × Σ̇11 and 3 × Σ̇22.

We are not interested in modelling data points affected by ζi, as it is just unstruc-
tured noise and it is not related with the actual disease. But at the same time, we are
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Fig. 5.7 Identification of potential errors in Kalungu. Top left panel shows the joint
distribution of changes in malaria cases vs changes in reporting facilities. Bottom panel
compares the HMIS data (dashed line) with the filtered data (solid line).

not willing to remove points without being confident of them being errors. It is a good
practice not to do so, since if we remove a point that is not an error, we are limiting
the learning of our model. A further inspection of these potential errors is needed to
provide us a better understanding and confidence about the overall data consistency.
Should the points outside the ellipse A be indeed atypical values in the time series, an
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Fig. 5.8 Identification of potential errors in Gomba. Top left panel shows the joint
distribution of changes in malaria cases vs changes in reporting facilities. Bottom panel
compares the HMIS data (dashed line) with the filtered data (solid line).

homogeneous model like
log yi = fxi

+ ϵi (5.8)

would be outperformed by a model like

log yi = fxi
+ ϵiI{zi∈A} + δiI{zi /∈A}, (5.9)
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where δi ∼ N (0, σ2
δi

) has heterogeneous variance across observations, such that σ2
δi
> σ2

ϵ ;
and I are index variables that make sure ϵi and δi are applied only when zi ∈ A and
zi /∈ A, respectively. The equivalence of this model with (5.1) becomes clear if we
note that δi = ζi + ϵi. Some heteroscedastic models learn a functional form of the
noise term across the input space S (Goldberg et al., 1998; Lázaro-Gredilla and Titsias,
2011; Tolvanen et al., 2014; Wu et al., 2014). However this is not the approach needed
at this point. The noise term considered here is unstructured. Model (5.9) assumes
homogeneity in all observations but a few, which have already been identified. The
intention behind this approach is to have a flexible model allowed to weight differently
some training instances. An example is shown in Figure 5.9. When the same noise
variance is used across all observations, the GP fitted tries to yield trajectories that are
equally close to each data point. When different noise variances are used, the model
fits better those observations with the smaller noise. The trajectories yielded in the
heteroscedastic model can go farther from (or even ignore) those observations with
very large noise variance.

For each district, we compared models (5.8) and (5.9) using LOO-CV. Figures 5.10
and 5.11 show the models fitted for Nwoya and Bukwo districts. When adding an
extra-parameter σ2

δi
for each potential outlier yi, the overall variance σ2

ϵ , used in most
of the observations, has the opportunity to decrease in comparison to its value in the
homogeneous model. The last means that the credibility interval for the non-outliers
can shrink and thus reduce the uncertainty in the process. In general, adding an extra
noise parameter for the atypical values increased the LOO-CV predictive probabilities.
The results of every model fitted are presented in Appendix E.3.

5.6.5 Harmonization Across Different District Definitions

Some districts data have a structure that complicates comparability across time (see
Figures 5.3a and 5.3b). On one hand the reporting facilities decrease each time the
district is split. On the other hand, some reporting facilities are added to each new
district. If we add up the information of the current districts and compare it to the
parent district, we will see a dramatic increase in the infections. We hypothesize that
the observed increment in the disease is artificial and it is due to an improvement in
the health coverage when adding new facilities to the system9. The challenge now is to

9Proving an underestimation of malaria case-counts due to health coverage limitations in early
periods goes beyond the goal of this work, as it would require information from other sources we do
not have access to.
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Fig. 5.9 Homoscedastic and heteroscedastic regression (toy example). Top panel shows
the GP fit using the same noise variance for all observations. Bottom panel shows
the GP fit using different noise variances for 4 observations. The dots indicate the
observed points; the vertical lines show the predictive interval for the outputs; and the
wiggling lines are random realizations of the latent function learnt.
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Fig. 5.10 Heteroscedastic model for Nwoya. Top panels show the number of malaria
cases (log) vs time (left) and number of health facilities reporting (right). The vertical
lines represent a 95% credibility interval predicted for each data point. Bottom left
panel shows different simulations (lines) of the latent variable assuming a constant
number of health facilities. The shaded are corresponds to the 95% credibility intervals
of the reported data.
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Fig. 5.11 Heteroscedastic model for Bukwo. Top panels show the number of malaria
cases (log) vs time (left) and number of health facilities reporting (right). The vertical
lines represent a 95% credibility interval predicted for each data point. Bottom left
panel shows different simulations (lines) of the latent variable assuming a constant
number of health facilities. The shaded are corresponds to the 95% credibility intervals
of the reported data.
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make data comparable across time. We propose a model, robust enough, to be used
across the changes in the geoadministrative framework of the country.

A trivial model that explains the data of a district A just as a constant mean plus
noise, i.e.,

yAi = γA + ϵAi, (5.10)

can be defined as a GP with a kernel of the form

K(xi,xj) = γ2
A. (5.11)

Suppose that at some point A is split into A′ and B, and that these two new districts
are modelled in a similar way to (5.10). If there are no biases in the measurements of
any of the districts, such that ⟨ϵ·i⟩ = 0 for all them, then it should be satisfied that

γA = γA′ + γB. (5.12)

This restriction in the mean parameters of the districts, can be worked out using
a vector valued Gaussian process. Let yi = (yAi, yA′i, yBi)⊤, the corresponding kernel
that satisfies the properties we ask for is defined as

Γ(xi,xj) =
[
γȷ(i)γȷ(j)

]
, (5.13)

where ȷ(·) is an index associated to any of the districts. Using the same principle, we
can build a nested-mean kernel of a set of districts with a more involved tree structure,
such as Masaka or Mbarara, which were split more than once.

In the context we are dealing with, we know there are biases in the measurements.
To model this bias while keeping ⟨ϵ·i⟩ = 0, we add an additional term τ = (τA, τA′ , τB)⊤

to (5.10) as follows

Γ(xi,xj) =
[
γȷ(i)γȷ(j) + τ 2

ȷ(i)I{ȷ(i)=ȷ(j)}
]
. (5.14)

The second term in the r.h.s. of (5.14) is added only when computed across data points
of the same district. This is needed as the bias is related to the conditions specific to
a particular district definition. For this exercise, we will assume that the main cause
of bias is an incomplete health coverage in the earlier periods, so that the current
observations have no bias, this is τ ′

A = 0 and τB = 0.
Everything seems reasonable, except for the fact that so far we have been working

on the log-space. An easy way of incorporating this vector-valued component with the
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real-valued models constructed before is by defining

log yi = β + hxi
+ ϵi, (5.15)

where β = .5 log(γ2 + τ 2), for γ = (γA, γA′ , γB), and hxi
= (fA

xi
, fA′

xi
, fB

xi
)⊤ is a vector-

valued Gaussian process. The term ϵi = (ϵAi, ϵA′i, ϵB)⊤ in (5.15), is modelled in a
similar way as we have proceeded so far, along this chapter.

The kernel of each component f ∗
xi

is defined in the same way it was done for the
single-district models (see Equation (5.8)). Let KA, KA′ and KB be the corresponding
kernels used for each district. All three kernels are easily embedded in (5.15) with a
linear coregionalization kernel of the form

Γ(xi,xj) = KA(xi,xj) × e1e⊤
1 +KA′(xi,xj) × e2e⊤

2 +KB(xi,xj) × e3e⊤
3 , (5.16)

where ei is the i-th canonical basis vector of R3.
The more districts we handle within the same vector-valued process, the larger the

computational burden. Here is where the use of sparse approximations becomes a great
ally and helps overcoming the restrictions of large data sets. Nevertheless, up to this
point we have been able to handle the computational costs using the full covariance
and there has not been a need to use any approximation.

Figures 5.12 and 5.13, show two examples of how series are harmonized using
the method proposed. In addition to the nested-mean kernel, the estimated data
assumes a constant number of reporting facilities within each period. The estimated
bias correction shown in the bottom left panel, correspond to the difference between
the estimated mean of model (5.15) and the mean yield by the nested-mean kernel.

5.7 Addition of Environmental Variables

We have discussed how malaria has a strong link with the environment. If we could
unravel this link and embed it into our model, we would be able to improve our
characterization of the disease and even develop better tools for forecasting. In this
last section of the chapter, we investigate if the addition of environmental data benefits
our uncertainty measurement about HMIS data. We will use NDVI as a surrogate
variable for the environmental conditions.

NDVI is computed from satellite images with a high spatial resolution. On the
contrary, the spatial resolution of HMIS data is very poor, as it is aggregated at a
district level. This restricts our analysis to be focused mainly on time, rather than
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Fig. 5.12 Series harmonization of Mpigi, Butambala and Gomba. Upper left panel shows
the observed data. Upper right panel shows the estimated mean after harmonizing the
series. Bottom left panel shows the bias correction used on the previous definitions of
Mpigi. Bottom right panel shows the districts location.



5.7 Addition of Environmental Variables 72

2005
2007

2009
2011

2013
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

m
al

ar
ia

 c
as

es
 re

po
rt

ed

Kotido
Kaabong
Abim

2005
2007

2009
2011

2013
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

m
al

ar
ia

 c
as

es
 e

st
im

at
ed

Kotido
Kaabong
Abim

Ko
tid

o-
1

Ko
tid

o-
20

500

1000

1500

2000

2500

3000

bi
as

 c
or

re
ct

io
n

30 31 32 33 34 35

1

0

1

2

3

4

Kotido
Kaabong
Abim

Fig. 5.13 Series harmonization of Kotido, Kaabong and Abim. Upper left panel shows
the observed data. Upper right panel shows the estimated mean after harmonizing the
series. Bottom left panel shows the bias correction used on the previous definitions of
Kotido. Bottom right panel shows the districts location.
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on time and space. From January 2008 to December 2012, we computed an average
NDVI index for each district by weighting the pixel values across space according
to the population estimates. Population estimates per pixel were obtained from the
WorldPop project. A lag of two months on NDVI was used for associating it with
HMIS (Ceccato et al., 2007; Haque et al., 2010). Only HMIS data produced under the
current district framework was used.

There are different ways in which we can model the relation between HMIS and
NDVI. We define and compare two approaches for doing it. As a benchmark or base
model, let the disease case-counts yH in a district be modelled as

log yH
i = fH

xi
+ ϵH

i , (5.17)

where fH
xi

is a GP. Similar to Section 5.6.4, we use a kernel function that takes time
and the number of reporting facilities as inputs in the following way

K(0)(xi,xj) = Kt(ti, tj) +Kr(ri, rj), (5.18)

where Kt is an RBF kernel10 and Kr is a linear kernel.

5.7.1 NDVI as Input

Equations (5.17) and (5.18) define an open loop system in which the number of malaria
patients is explained by time and number of reporting facilities. The input dimension
of such a model is easily expanded by adding a third kernel Kω that takes NDVI values
as inputs. Since HMIS and NDVI data are not observed at the same time points, we
first need to estimate NDVI data at the HMIS time points and then use these estimates
as inputs. Let’s start by defining a GP regression model for NDVI as follows

− log 1 − yE
i

1 + yE
i

= fE
xi

+ ϵE
i , (5.19)

where yE
i are NDVI data points and fE

x has a kernel Ke(ti, tj). The transformation in
the l.h.s. of Equation (5.19) is used to expand the NDVI range values from (−1, 1) to
(−∞,∞), so that a Gaussian likelihood can be used.

10The decision to use an RBF kernel instead of a Matérn, as we had been doing for most districts,
is a matter of practicality. In the software used, the regression model with uncertain inputs, needed
in this section, is only implemented when using RBF kernels.
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Model (5.19) provides a set of interpolation points ω̂i that match the time points
of HMIS data and can be used as inputs in the kernel function

K(1)(x∗
i ,x∗

j ) = Kt(ti, tj) +Kr(ri, rj) +Kω(ω̂i, ω̂j), (5.20)

for x∗
i = (ti, ri, ω̂i).

It is important to notice that we are using NDVI estimates as inputs. We should
be careful not to dismiss the uncertainty of these estimates, and propagate it across
the estimates of malaria. As discussed in the previous chapter, input uncertainty is
easily handled within the GP variational framework, where we use a distribution q(x∗

i )
over the inputs.

5.7.2 HMIS and NDVI in a Vector-Valued GP

The middle step in which NDVI points are interpolated, to be later used as inputs, can
be avoided if, instead of increasing the input dimensionality of yH , we use a multi-task
setting that relates yH and yE. In this system, the relation between the outputs yH and
yE is analyzed directly through a vector-valued GP with the following kernel function

Γ(2)(xi,xj) = Kt(ti, tj) × e1e⊤
1 +Kr(ri, rj) × e2e⊤

2 +Kt′(ti, tj) × B, (5.21)

where ei is the i-th canonical basis vector of R2 and B ∈ R2×2 is a positive definite
matrix. Notice that kernels Kt and Kr are private to yH , while Kt′ is shared across
both outputs and weighted by the coregionalization matrix. To ensure B is positive
definite, and thus a valid kernel, we define it as

B = ww⊤ + κI, (5.22)

where w and κ are vectors in R2 and I is the identity matrix in R2×2.

5.7.3 Approaches Comparison

By no means the models described by the kernels (5.20) and (5.21) are equivalent. One
represents an open loop system and the other a closed loop system. In the latter, both
HMIS and NDVI are explained using the available information from the other variable.
This means that NDVI estimates will depend on HMIS estimates. In the open loop
system, it is only HMIS estimates that can be affected by NDVI.
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For every district, we compared the performance of these models using 5-fold cross-
validation11. The kernel in Equation (5.20) was used in a sparse variational regression,
where the number of inducing inputs was one third of the total of observations12. The
open loop system’s CV scores tend to be worse than the benchmark ones. The closed
loop systems performance is in general similar to the benchmark, with just a few cases
being better. Figure 5.14 shows a comparison based on the CV scores.

We searched for a pattern in those cases where the closed loop system model
outperforms the benchmark. We looked for features that could tell why NDVI benefits
HMIS prediction in some districts and not in others. No conclusive results were
found. For instance, we found no relation between the districts location or elevation
with the model’s performance when including NDVI13 (see Figures 5.15 and 5.16).
Disappointingly, the explanation is somewhere else. If the differences in the CV scores
with respect to the benchmark is indeed related to the contribution of NDVI data,
we should expect to see a relation between these differences and the values of the
coregionalization matrix. In particular with the statistic

ρ = B01√
B00B11

. (5.23)

Figure 5.17 shows a plot of the CV differences (closed loop - benchmark) vs ρ. High
difference values do not match high ρ values. In fact, the relation is the opposite. Values
of ρ close to one are associated to differences close to zero and the largest differences
are associated to values of ρ close to zero. In coregionalized regression problems, ρ ≈ 0
means independence across outputs. The conclusion is that the improvement in the
model fit does not come from adding NDVI information, but simply from using and
additional kernel Kt′ . Figure 5.18 shows a comparison of HMIS and NDVI series,
for those districts with the largest CV differences. In all of these cases, there is no
correlation between HMIS and NDVI.

We modified the base model by adding a second kernel for time Kt′(ti, tj) and
compared it to the base and closed loop models. As it is shown in Figure 5.19, the
results between the closed loop model and the modified base model have very similar

11We do not use LOO-CV due to the difficulty of computing the LOO predictive probabilities when
using sparse approximations. See Appendix D.

12Since the data series are not that large, there is no need to use a very sparse model. When the
number of observations was less than 60 points, we decided to use a number of inducing inputs that
matched the number of observations.

13There have been previous efforts to understand how the relation between malaria cases and
climate is affected by spatial differences (Manh et al., 2011; Stern et al., 2011).
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Fig. 5.14 NDVI in a closed and open loop systems. Top image compares CV results
across the different approaches defined. Middle image compares CV scores per district
in the open loop system vs the benchmark model. Bottom image compares CV scores
per district in the closed loop system vs the benchmark model.
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Fig. 5.15 CV differences per district. Darkest colors correspond to higher differences
between closed loop system and the benchmark.

results. The bottom line of this similarity is that NDVI data is not helping reduce our
uncertainty about HMIS data.

5.8 Final Comments

In this chapter, we have faced some of the challenges of assimilating real data into the
model. Our approach was based on designing noise models and kernel functions that
represent an idealized generating process of the HMIS records. We also showed how
outliers can be assessed by contrasting an homoscedastic and heteroscedastic noise
models. For this task, the heteroscedastic model does not need to represent a functional
form of the variance. The underlying assumption is that large variance occurrences are
independent from each other. Variations with a functional structure were modelled by
combining different kernels.

The use of a nested-mean kernel provides promising results for harmonizing a
series under a changing framework, like the administrative borders of the districts.
Nevertheless, with the information available we have no means to verify if the backward
estimation is actually correct. It is still pending to estimate the bias associated to
the latest district framework. Also, we have not worked on the harmonization of the
number of reporting health facilities. At the moment we have just shown results using
the average number of facilities per district. We explored the benefit of incorporating
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Fig. 5.16 CV differences vs district elevation.
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Fig. 5.17 CV differences vs ρ values. Highest ρ values occur when CV is close to zero.
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Fig. 5.18 HMIS and NDVI data (standardized). The dashed lines corresponds to HMIS
data and solid lines correspond to NDVI data. The districts shown are the ones with
highest CV difference with respect to the benchmark.
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Fig. 5.19 Addition of Kt′ to the base model. Top image compares CV results across
the base model, the close loop system model and the base model modified by adding
an extra kernel. Middle image compares CV scores per district in the modified base
model vs the benchmark model. Bottom image compares CV scores per district in the
modified base model vs the closed loop system.
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environmental data to the model, to improve the estimation of malaria case-counts.
We could not find a clear pattern of association between NDVI and HMIS data. The
only improvement in the fit came from using an additional kernel in the regression
model.

In the next chapter, we will analyze more closely a covariance structure that
combines two kernels on the time input to model malaria case-counts. We will use
such kernel construction to monitor the disease dynamics in real time.



Chapter 6

Monitoring System of Malaria
Case-Counts

Interventions to prevent and treat malaria will be successful depending on how well the
disease can be anticipated and how fast the population reacts to it. We have worked
on removing noise and biases from the data observed. The motivation is to have more
accurate data, so that analysts and decision makers have a better starting point. In this
section we go forward and build a tool to aid real-time analysis of health population
across the country. The interest at this point is not forecast, but to characterize the
population health at a specific time.

We have to agree that although the work in the previous section could make data
comparable across the years and district definitions, it is still far from being an accurate
measurement of the disease in the country. We have no means of quantifying estimation
errors of malaria cases due to a lack of patient testing. We are also aware that health
coverage and the varying number of reporting units would require field surveys or a
closer work with the health authorities to be fully understood. Then the question is how
to use what we have gained so far? How to contribute given the current circumstances?

Time series analysts frequently break down a series into different components, like
trend and seasonal effects (Baxter and King, 1999; Cleveland and Tiao, 1976; Hyvärinen
and Oja, 2000). In this sense, Gaussian process (GP) models are a natural approach
for analyzing functions that represent time series. By combining different covariance
kernels (via additions, multiplications or convolutions) into a single one, a GP is able
to describe more complex functions. Each of the individual kernels contributes by
encoding a specific set of properties or pattern of the resulting function (Durrande
et al., 2013).
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We propose a monitoring system for communicable diseases based on Gaussian
processes. This methodology is able to isolate the relevant components of the time
series and study the short term variations of the disease1. The output of this system
is a graphical tool that discretizes the disease progress into four phases of simple
interpretation.

6.1 Method Used

Lets say we have data generated from the combination of two independent source
signals as the ones shown in Figure 6.1a. Usually we are not able to collect data coming
from the source signals separately. In fact, we do not even observe the combined
signal, but a corrupted version of it (see Figure 6.1b). Suppose that the smooth signal
represents a long term trend component and that the sinusoidal signal represents a
seasonal component. For an observer, the oscillations of the seasonal component masks
the behaviour of the long term trend. This might pose a difficulty if the observer wants
to know whether the trend is increasing or decreasing. In a similar way, the observer
might be interested in the seasonal component isolated from the trend. The last, is a
common practice in economics and finance, where business recession and expansion
periods are determined by analyzing the cyclic component of a set of indicators (van
Ruth et al., 2005). This way, the cyclic component tells if an indicator is above or
below its trend, and its simple differences tell if it is increasing or decreasing. We
propose a similar approach to monitor time series of disease case-counts, but in our
case, we will use a non-parametric approach.

To extract the original signals, the observed data can be modelled using a GP
with a combination of kernels, say exponentiated quadratics, one having a shorter
lengthscale than the other. Figures 6.1c and 6.1d shows a model of the combined and
independent signals. We also use a vector-valued GP to model directly the derivative of
the time series, rather than using simple differences of the observed trend. As a result,
we are able to provide uncertainty estimates about the speed of the changes around
the trend. Our approach is based on modelling linear functionals of an underlying GP
Särkkä (2011). If hx = (fx, ∂fx/∂xi)⊤, its corresponding kernel is defined as

Γ(xi,xj) =
 K(xi,xj) ∂

∂xj
K(xi,xj)

∂
∂xi
K(xi,xj) ∂2

∂xixj
K(xi,xj)

 . (6.1)

1The methodology could be used the other way around, to study long term variations after removing
the short term component.
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If K is an exponentiated quadratic kernel, the block components of the vector-valued
kernel defined in (6.1) are expressed as

K(xi,xj) = σ2 exp
(

−|xi − xj|2

2ℓ2

)
, (6.2)

∂

∂xi

K(xi,xj) = σ2 exp
(

−|xi − xj|2

2ℓ2

)(
−|xi − xj|

ℓ2

)
, (6.3)

∂

∂xixj

K(xi,xj) = σ2 exp
(

−|xi − xj|2

2ℓ2

)(
1
ℓ2 − |xi − xj|2

ℓ4

)
. (6.4)

In most multi-output problems, observations of the different outputs are needed
to learn their relation. Here, the relation between fx and its derivative is known
beforehand through the derivative of K. Thus ∂fx/∂xi can be learnt by relying entirely
on fx. For the signals described above, Figures 6.1e and 6.1f show the corresponding
derivatives computed using a kernel like (6.1). The derivatives of the long term trend
are computed with high confidence, while the derivatives of the seasonal component
have more uncertainty. The last is due to the magnitude of the seasonal component
relative to the noise magnitude.

6.2 Uganda Case

For this exposition we focus on Kabarole district, but provide snapshots of the mon-
itoring system for all the country. As we saw in Section 5, the number of reporting
hospitals is not consistent across time. This variation is prone to create artificial trends
in the observed data. Hence, the underreporting effect has to be estimated to be
removed.

For this application, we used a linear kernel to model the effect of the number of
reporting hospitals and a combination of exponentiated quadratic kernels to explain
long and short term variations of the disease across time2.

Figure 6.2a shows the trend and short term component of the number of malaria
cases. Variations of a case-counts around the trend represent short term changes in the
population health. Outbreak detection and control of non-endemic diseases take place
in this time frame. For endemic diseases, this variation can be associated to seasonal
factors (Hay et al., 1998). Quick response actions, such as distribution of medicine and
allocation of patients to health centers, have to take place in this time regime to be

2If a seasonal effect in the series was clear, we could use a periodic kernel to model better the short
term variations.
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Fig. 6.1 Series decomposition. Panel (a) shows two independent signals. Panel (b) shows
the combination of both signals (dashed line) and a distorted signal after adding some
noise (solid line). Panel (c) shows latent variable samples representing the combined
signal (thin lines). Panel (d) compares the mean estimate of each component (solid
line) with the original signals (dashed line). Panels (e) and (f) show the components
derivatives. Tangent lines to the individual components are shown in red. The solid blue
lines represent the mean estimate of the composed signal. The gray lines are random
realizations of process derivative. For comparison, the estimates of the individual
signals (dashed lines) are shown below the composed signal.
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effective. The short term variations can be classified in four phases as shown in Figure
6.2b (values are standardized). The upper left quadrant represents case-counts below
the trend, but increasing; the upper right quadrant represents an case-counts above
the trend and expanding; the bottom right quadrant represents case-counts above the
trend, but decreasing; and the bottom left quadrant represents case-counts below the
trend and decreasing.

This tracking system of short term variations is independent of the order of the
disease counts, and can be used to monitor the infection progress in different districts.
It is easy to identify districts where the disease is being controlled or where the infection
is progressing at an unusual rate. Figure 6.3 shows the monitoring system on the whole
country during 4 consecutive weeks. Those districts where the variation coefficient of
both the process and its derivative are less than 1 (meaning a weak signal vs noise)
were left in gray color.

6.3 Final Comments

We have proposed a disease monitor based on vector-valued Gaussian processes. Our
approach is able to account for uncertainty in both the level of each component and
the direction of change. The simplicity for doing inference with this model is not
compromised by the use of a vector-valued approach. The model can be benefited if
spatial information is available and encoded in the kernel function. Further research is
needed to explore the benefits of this model in practice. We expect that an analysis
from this perspective can add situational awareness and contribute to interventions
planning and resources allocation when facing infectious diseases.
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Fig. 6.2 Malaria case-counts tracker in Uganda. Panel (a) shows the long term trend
(red line) and the short term variations (blue line). Gray bullets represent the observed
records. Panel (b) shows a tracking system of the short term variations. The bullets
A-D correspond to the same time points in both panels.



6.3 Final Comments 88

2011: week 51 2011: week 52

2012: week 1 2012: week 2

Fig. 6.3 Disease monitor for all districts. Gray color means that the variation coefficient
of both the short term process and its derivative are less than 1.



Chapter 7

Conclusions

Many things were learnt along the pages of this thesis and the hours or work they
summarize. Here are listed the ones that seem to be the most relevant.

1. Covariance kernels are a well known structure able to encode non-linear patterns
into a probabilistic model. By combining different kernels, signal decomposition
can be easily handled.

2. We developed a sparse variant of the expectation propagation algorithm. This
allows modelling data with different noise assumptions with a variational sparse
approximation approach.

3. The variational method used not only grants a reduction in the computational
complexity, it also makes easy to incorporate input uncertainty into the model.

4. We developed a model that combines properties from both discriminative and
generative approaches. This hybrid model makes possible to apply Bayesian
GP-LVM on non-Gaussian data and make latent representations of mixed data
types.

5. The performance of the hybrid discriminative-generative model is highly depen-
dent on the definition of the lower dimensional representation. Better methods
for improving the learning phase of this lower representation manifold still need
to be researched.

6. When modelling malaria case-counts in Uganda, the data aggregation of the
HMIS records precluded us from incorporating the space as an input dimension
of the model. The analysis was carried on mainly with a time series approach.
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However, if spatial data were available, they could be easily integrated under the
modelling framework used.

7. Learning with EP-type approximations resulted considerably slow. When fitting
a Poisson process we found more convenient to work on the log-space and use a
GP regression model. More efficient methods for implementing EP or alternative
methods for approximating such processes are needed.

8. As data collection and storage keeps improving, spatial analysis based on GIS
will require the use of more efficient techniques for handling big data. The first
step toward this direction is the assimilation of the data features into the model.
We provided models for each district definition (say local in time) with a specific
covariance structure and noise assumptions.

9. Another step towards the use of big data is the integration of different data
sources. We were able to model jointly HMIS records and NDVI information
with a vector-valued kernel. No association was found between these two sources.
Nevertheless, what was not a success in terms of modelling malaria, was indeed
a success in terms of showing the GP framework capabilities.

10. Perhaps one of the most important challenges within the field of spatiotemporal
statistics will always be to communicate with domain-oriented sciences and
planners from different sectors. We have passed the stage where we were able
to provide just a mean and variance estimate, and now are able to provide
density functions estimates. But these are complex outputs that need to be
synthesized for different users. The monitoring system proposed is a response to
such challenge.

7.1 Future Work

From the results presented in this work, we can define new routes for future work.
Three main lines of research are the ones that result more appealing to the author.

Addition of spatial dimension in HMIS data modelling. The study of
malaria in Uganda was constrained by the spatial resolution of the data. However,
other sources of information can be used for helping understand how the disease is
spreading at a local scale. Examples of these sources are population estimates, telecom
data or mosquito maps. The addition of more data sources, as well as space as an
input dimension, will make evident the need for large data methods. Quite possibly,
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beyond the sparse approximations we reviewed here. Alternative methods, for this big
data as well as approximations for non-Gaussian noise are needed.

Calibration and validation. The models defined in Chapter 5 were constructed
based on what we could observe from the data. While cross-validation methods were
used for evaluating their adequacy to the data, these methods are not useful when the
underlying assumption is that the data available is biased and the error needs to be
quantified. Such is the case for the harmonization method used. Remaining tasks are
to harmonize the number of health facilities reporting and validating the results of the
harmonization method proposed. More work has to be done to calibrate and validate
the bias or error in the administrative records.

Early warning systems for disease monitoring. The monitoring system
developed can be used for tracking other diseases apart form malaria. It might need
modifications if applied to epidemic diseases rather than endemic ones. Also, for
diseases with a clear stationary effect, periodic kernels can be used to model the
seasonal component. For the moment, we only focused on the change of the short-term
signal, however changes in the long-term signal also provides valuable information.
Future challenges involve improving this kind of early warning systems.
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Appendix A

Alternative Methods for
Approximate Inference

In this work we have chosen to use expectation propagation as approximation method
and explore ways to extend it. However, as discussed in Chapter 2, there are alternative
approximation methods. We are interested in EP, as it has proved to be effective in
some cases (Kuss and Rasmussen, 2005; Vanhatalo et al., 2010). Nevertheless, there
might be good reasons to use a different method or combine them together. For
instance, the variational framework we use, works under the principles of variational
Bayes (Hinton and van Camp, 1993; Palmer et al., 2005).

Given the importance of the variational approach to our research, we briefly present
here the core ideas behind the variational Bayes approximation. Also, we are aware that
within the spatial statistics community, Laplace approximation (or its evolution into
INLA) has received a lot of attention in recent years (Rue et al., 2009; Williams and
Barber, 1998). For this reason, we consider important to present this approximation
here as well.

A.1 Variational Bayes

Variational Bayes consists of approximating an intractable posterior distribution p(Z|X)
with a distribution q(Z). This approximation is obtained by minimizing KL (q∥p).
Tractability of q(Z) is ensured by restricting it to a specific family of distributions, for
example: a parametric distribution q(Z|ω) governed by a set of parameters ω; or a
family of distributions that can be factorized as q(Z) = ∏

qi(Zi), where Zi are disjoint
groups of the elements of Z.
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In general, KL minimization relies in the fact that any distribution p(X) can be
decomposed as

log p(X) = L(q) + KL (q∥p) , (A.1)

where

L(q) =
∫
q(Z) log p(X,Z)

q(Z) dZ, (A.2)

KL (q∥p) = −
∫
q(Z) log p(Z|X)

q(Z) dZ. (A.3)

Thus minimizing KL (q∥p) is equivalent to maximizing L(q).

A.2 Laplace Approximation

The Laplace approximation consists of approximating a posterior distribution with
a Gaussian distribution N (m,A). The parameters of the approximation are defined
according to the second order Taylor expansion over the logarithm (logit) of the
posterior distribution.

Let p(f |y) = p(y|f)p(f |X), with p(f |X) = N (0,K), then

ln p(f |y) = ln p(y|f) + ln p(f |X)

= ln p(y|f) − 1
2f⊤K−1f − 1

2 ln |K| − n

2 ln 2π.
(A.4)

Using the second order Taylor expansion of the log-posterior around its mode m, we
have that

ln p(f |y) ≈ ln p(m|f) − 1
2(m − f)⊤A−1(m − f), (A.5)

where

m = argmax
f

p(f |y), (A.6)

A = −∇∇ ln p(f |y)|f=m. (A.7)



Appendix B

Generalized Linear Models and
Gaussian Processes

When modelling spatiotemporal processes, it is usually necessary to decide on the
adequacy and implications of using non-Gaussian noise models. Despite the flexibility
of Gaussian processes, their use in a regression model implies assuming symmetry,
continuity and no bounds in the range of values of the output variable. This can be
too restrictive or not realistic for some applications. A more involved model than the
standard regression, able to guarantee a wider range of assumptions in the values of the
output, can be defined by using a GP as a latent process embedded in a non-Gaussian
process (see for example Adams et al. (2009b); Neal (1998); Williams and Barber
(1998)). For a set of input-output observations {(xi, yi)|xi ∈ Rq, i = 1, . . . , n} if the
output yi is not Gaussian, its likelihood can be modelled as

p(yi|fxi
) = g−1(fxi

), (B.1)

where g−1(·) is a monotonic differentiable function and (fxi
) ∼ GP . This approach was

introduced by Nelder and Wedderburn (1972) in a parametric formulation, known as
generalized linear models (GLM).

B.1 GLM Formulation

A GLM is characterized for having a linear predictor

ηi = w⊤
i xi, (B.2)
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for some wi ∈ Rq, such that ∃ a monotonic differentiable function g(·) that links the
linear predictor ηi with the mean of the process yi through the relation

g(⟨yi⟩) = ηi. (B.3)

The election of the link function is not uniquely defined by the distribution assumed
for yi, however its common that some distributions are assigned a particular link
function (Fahrmeir et al., 1994). For example, the Gaussian distribution is frequently
used with the identity function and the Poisson distribution is frequently used with a
logarithmic transformation.

A GLM can be implemented in a non-parametric setting with the aid of a latent
GP by letting

g(⟨yi⟩) = fxi
, (B.4)

where (fxi
) ∼ GP. This model keeps the flexibility of the Gaussian processes and at

the same time incorporates prior knowledge about the relation between the process
mean and the latent variable (Chan and Dong, 2011). Bayesian inference on Equation
(B.4) requires the computation of the posterior distribution

p(fxi
|yi) = p(fxi

)p(yi|fxi
)

p(yi)
, (B.5)

where p(yi|fxi
) is given by Equation (B.1). Notice that dependence on xi, in Equations

(B.1) and (B.5) has been omitted to simplify notation. Transformation (B.1) usually
makes the posterior distribution intractable, and approximations are needed (Adams
et al., 2009b; Barber and Williams, 1997; Gibbs and MacKay, 2000; Seeger, 2004).



Appendix C

Point Processes

Point pattern data is so common across a wide variety of fields that it would be
surprising if a textbook on spatial statistics did not dedicate a section to its study.
Beyond the use of Poisson likelihoods and binary classification problems, we do not
need to delve much into point processes along this thesis. However, we define them
formally here for completeness.

Within stochastic processes literature, Poisson processes are generally the first
stop when moving from the continuous to the discrete case. Here we present a brief
introduction and explain how they can implemented with the aid of a Gaussian process.

C.1 Point Processes Formulation

A point process is a stochastic process characterized by generating a countable set
of events {x1,x2, . . .} across a region S (Diggle, 2003). In general, the study of these
processes is based on the observed locations of an event of interest, within a bounded
region. When the space S is unidimensional, say time for instance, point processes
can be handled in three different ways (Baddeley et al., 2007): they can be studied
through the arrival times {Ti, T2, . . . |T1 < T2 < . . .}, where Ti is the time at which
event xi occurs; or through the inter-arrival times {Wi = Ti+1 − Ti}, where Wi is
the time between two consecutive events; or through a cumulative counting process
n̊(t) = ∑∞

i=1 I{Ti<t}, where I is an index function such that I : R → {0, 1}. Due
to there is no natural order in higher dimensional spaces, there is no equivalent for
inter-arrival times or cumulative counting process in that case. The alternative for
handling point processes in dimensions greater than one is through region counts nB,
where B ⊂ S is a bounded set.
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Definition 7 Let S be a complete, separable, metric space, and let {B1, . . . ,Bm|Bi ⊂
S,m ∈ N} be a collection of bounded Borel sets. A point process is a collection of
non-negative random variables {nB1 , . . . , nBm}, so that the points of the process are
those locations xi ∈ S where n{xi} > 0.

It is usually assumed that any bounded region Bi contains only a finite number of
points with probability 1. This is

p(nBi
< ∞) = 1. (C.1)

If it is also assumed that no two events are coincident, i.e.,

n{xi} ≤ 1,∀xi ∈ S, (C.2)

the process is known as simple point process. When the locations xi are associated to
a random variable mxi

, which provides more information about the event, the process
is known as a marked point process (Møller and Waagepetersen, 2007).

C.2 Poisson Process

Definition 8 Let λ : S → [0,∞) be an intensity function that is locally integrable
(i.e.,

∫
B λ(x)dx < ∞ for all bounded B ⊆ S), and let µ(B) =

∫
B λ(B)dx be an intensity

measure, such that it is locally finite (i.e., µ(B) < ∞ for bounded B ⊆ S) and diffuse
(i.e., µ({x}) = 0, for all x ∈ S). Then, a Poisson Process (nB)B⊂S defined on S with
intensity measure µ(·) and intensity function λ(·) is a point process that satisfies the
following conditions:

1. nB ∼ Poisson (µ(B)).

2. Conditional on nB, the points xi ∈ XB are iid. with density proportional to λ(xi).

We will denote a Poisson process as (nB)B⊂S ∼ PP(λ), where λ is an intensity
function.

If the intensity function is constant: λ(s) = λ ∈ R+, the Poisson process is said
to be homogeneous, otherwise it is said to be inhomogeneous. In the former, the
probability of observing any point pattern does not depend on the location of its points.
Although the homogeneous process is easy to interpret and is analytically tractable
in Bayesian computation, its assumptions are too restrictive or unrealistic for many
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applications (Møller and Waagepetersen, 2007). The inhomogeneous Poisson process,
although analytically intractable (Adams et al., 2009b), is a less restrictive alternative
in terms of modelling. Different models arise depending on the way the intensity
function is modelled. Here we present three variants:

• Cox Process: Let λ(x), with x ∈ S, be a non-negative process. A Cox Process
is a Point Process where nB|λ(x) ∼ Poisson(µ(B)). The difference between this
definition and the one given for a Poisson process above is that here λ(x) is also
stochastic.

• Log-Gaussian Cox Process: We call (nB) ∼ PP(λ) a log-Gaussian Cox
process if the intensity function is defined as log λ(x) = β⊺ϕ(x) + fx; where β is
a parameter, ϕ(·) is a basis function and (fx) ∼ GP(M, K).

• Sigmoidal Gaussian Cox Process: We call (nB) ∼ PP(λ) a sigmoidal Gaus-
sian Cox process if the intensity function is given by λ(x) = λ∗σ(fx), with
λ∗ ∈ R+, σ(z) = (1 + e−z)−1 and (fx) ∼ GP(M, K).



Appendix D

Model Validation

Once a learning model has been defined and trained, it is needed to assess its goodness
to know how adequate the model is and how reliable its results are. Among the several
methods that can be used for this purpose (see Vehtari et al. (2012)), hold-out sample
methods provide a simple and intuitive procedure. These methods consists of splitting
the data set into two disjoint sets, one used for training or fitting the model and the
other for evaluating its performance. A clear drawback of this procedure is that not all
data is being used during the learning phase. An alternative implementation of hold-out
sample validation that uses all data for training the model is k-fold cross-validation.

D.1 Cross-Validation

In k-fold cross-validation, data is split into k disjoint sets, ideally all of them of the
same size. The model is fitted k times, each time trained with the data contained in
k − 1 sets and validated with the remaining set. All data points are used for learning,
although not at the same time. The cost of implementing this validation procedure
involves training k models, which can be prohibitive in some cases.

The extreme case of k-fold cross-validation is given when the number of disjoint
sets equals the number of data points. This means that the validation sets consist of a
single observation that was left out of the training. This case of validation is know as
leave-one-out cross-validation (LOO-CV). Although it can look like the most expensive
case of cross-validation, in the case of Gaussian process models, there are almost no
additional computations beyond the learning phase (Williams and Rasmussen, 2006).

For a set of observations {X,y}, where y = (y1 . . . , yn)⊤ and yi ∼ N (µi, σ
2),

the log-predictive probability of of yi, when the model was trained only with the
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observations in y−i = {yj|j ̸= i} is given by

log p(yi|y−i,X) = −1
2 log 2πσ2

i − (yi − µi)2

2σ2
i

. (D.1)

In a Gaussian process regression, the parameters µi and σi are computed as

µi = yi − [(Kff + σ2I)−1y]ii
[(Kff + σ2I)−1]ii

, (D.2)

σ2
i = 1

[(Kff + σ2I)−1]ii
. (D.3)

The terms involved in the computation of µi and σ2
i are all computed during the

training of the model. This is why there is not additional cost in computing LOO-CV.
The predictive log-probability of the whole set is then

Ł(y,X) =
n∑

i=1
log p(yi|y−i,X). (D.4)

When using expectation propagation, LOO-CV cannot be computed using equations
(D.2) and (D.3). But still no additional computations are needed. The cavity distribu-
tion q−i(fxi

), computed for each data point, is the leave-one-out marginal posterior of
the latent variable. Hence, the approximate LOO-CV predictive probability can be
computed as

p(yi|y−i,X) =
∫
q−i(fxi

)p(yi|fxi
)dfxi

, (D.5)

which is the zero-th moment of the factor approximation ℓi(fxi
), and is already computed

when training the model (Vehtari et al., 2014).
In the sparse approximations presented in this thesis, it is not clear how to define a

shortcut for computing LOO-CV, as the matrix Qff = KfuK−1
uuKuf , used to approximate

the covariance matrix, encodes information from all data points.
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Results

E.1 Noise Model Selection

Table E.1 Noise model selection. The second column shows the number of data points
used in each district. The third and fourth columns show the LOO-CV log-predictive
probabilities of the Gaussian and log Gaussian models.

District N Gaussian log Gaussian

Adjumani 528 -374.8 -189.9
Busia 459 80.3 -108.2
Hoima 556 -485.7 -256.9
Jinja 555 65.2 67.9
Kabale 571 -473.8 -306.0
Kabarole 562 -458.9 -260.7
Kaberamaido 512 -538.5 -336.4
Kalangala 433 -543.8 -215.6
Kampala 361 48.5 29.4
Kamwenge 559 -835.2 -323.0
Kanungu 485 9.6 -153.7
Kasese 489 -120.1 -224.4
Kayunga 565 103.8 35.4
Kibaale 449 -546.7 -144.0
Kisoro 565 -194.6 42.1
Mayuge 439 -459.7 -251.2

Continued on next page
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District N Gaussian log Gaussian

Moyo 578 -348.6 -384.6
Nakasongola 487 -495.1 -117.9
Ntungamo 481 -565.7 -181.3
Rukungiri 544 -192.2 -149.3
Ssembabule 578 -313.3 -136.4
Wakiso 561 -416.3 -349.2
Yumbe 499 -545.2 -172.0

E.2 Kernel Selection

E.2.1 RBF vs Matérn-3/2

Table E.2 Kernel selection for time dependence. The consecutive numbers at the
end of the district names indicate a change in the districts delimitation. The second
column shows the number of data points en each case. The third and fourth columns
show the log LOO-CV scores for the RBF and Mat-3/2 kernels. When the number of
observations available was less than 10, no comparison was done and a Mat-3/2 kernel
was used.

District N RBF Mat-32

Alebtong 181 -102.6 -105.1
Bundibugyo-1 381 -140.8 -53.9
Bundibugyo-2 190 -67.0 -31.6
Buyende 156 -63.4 -62.0
Gomba 148 -85.4 -73.4
Jinja 555 -28.9 122.1
Kaberamaido 512 -279.2 -278.5
Kalangala 433 -193.5 -194.7
Kaliro 376 -209.5 -206.8
Kasese 489 -220.7 -209.1
Katakwi-1 145 -28.4 -26.9
Katakwi-2 295 -175.3 -171.6
Mpigi-1 349 -122.9 -121.7
Mpigi-3 163 -15.4 -15.5

Continued on next page
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District N RBF Mat-32

Serere 120 -39.1 -37.0
Yumbe 499 -246.6 -142.6
Kayunga 565 44.4 50.0
Bushenyi-1 386 -72.6 -54.4
Bushenyi-4 24 6.5 8.4
Bushenyi-5 162 -76.7 -75.3
Gulu-1 184 -101.0 -89.2
Gulu-2 198 4.2 4.7
Gulu-3 158 -133.5 -16.5
Kampala 565 -354.8 -347.2
Namayingo 98 -138.7 -139.0
Lyantonde 248 -228.7 -193.6
Nwoya 180 -114.3 -101.8
Pader-1 374 -221.2 -109.7
Pader-2 135 -89.5 -87.4
Soroti-1 361 -248.3 -233.4
Soroti-2 143 -54.8 -52.9
Abim 227 -141.9 -100.4
Arua-1 162 29.5 29.1
Arua-2 62 33.1 33.1
Arua-3 307 -217.0 -207.0
Kabarole 562 -246.3 -244.1
Mityana 391 -70.5 -69.8
Sironko-1 340 -39.3 -38.7
Sironko-2 149 -61.7 -60.9
Bukwo 396 -221.9 -220.1
Busia 459 -141.3 -85.5
Butaleja 407 104.0 112.0
Isingiro 307 -122.3 -118.6
Kyegegwa 157 -92.4 -43.7
Lamwo 181 -95.0 -94.7
Luwero-1 157 -11.8 56.5
Luwero-2 334 -67.0 -66.8
Lwengo 143 -79.7 -78.6
Mayuge 439 -245.0 -237.7

Continued on next page
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District N RBF Mat-32

Moyo 578 -384.6 -350.9
Mubende-1 157 2.4 8.5
Mubende-2 289 -62.3 -55.7
Nebbi-1 339 -159.7 -147.1
Nebbi-2 145 -37.6 -37.2
Rubirizi 161 -153.2 -153.3
Rukungiri 544 -129.0 -116.4
Adjumani 528 -191.4 -179.6
Amolatar 335 -72.0 -53.7
Amuria 386 -168.7 -176.7
Bulambuli 171 -64.3 -62.5
Ibanda 305 -99.2 -94.6
Kalungu 151 -88.4 -71.7
Kiboga-1 338 -139.0 -138.9
Kiboga-2 160 -24.1 -23.4
Koboko 306 -136.7 -90.8
Kyenjojo-1 282 -26.7 -22.1
Kyenjojo-2 195 -140.1 -83.2
Manafwa 358 -79.1 -74.5
Masindi-1 186 -69.1 -40.6
Masindi-2 187 4.2 5.2
Masindi-3 130 -56.9 18.6
Napak 174 -140.6 -119.4
Ssembabule 578 -112.3 -108.8
Iganga-1 184 -49.2 -23.7
Iganga-2 177 46.0 46.1
Iganga-3 120 -15.1 -15.0
Kibaale 449 -133.2 -137.4
Mukono-1 348 369.0 373.0
Mukono-3 133 -28.2 -25.0
Buhweju 148 -43.0 -39.0
Buvuma 127 -72.3 -71.3
Kabale 571 -304.8 -303.7
Kapchorwa-1 153 -104.5 -64.1
Kapchorwa-2 233 -119.2 -60.6

Continued on next page
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District N RBF Mat-32

Kapchorwa-3 152 -130.1 -129.6
Kween 171 -142.2 -112.8
Lira-1 138 -75.0 -74.7
Lira-2 11 -1.0 -1.0
Lira-3 203 -71.9 -38.6
Lira-5 178 -181.8 -182.2
Mitooma 115 -128.5 -123.2
Nakasongola 487 -114.2 -111.2
Namutumba 295 -25.4 -32.1
Ntoroko 177 -130.1 -117.4
Otuke 186 -139.8 -117.4
Pallisa-1 182 -34.8 -33.0
Pallisa-2 174 -0.7 -0.5
Pallisa-3 129 -86.7 -89.6
Masaka-1 323 -13.7 -9.7
Masaka-4 128 -43.6 -40.8
Agago 176 -216.2 -159.9
Bududa 364 -17.4 16.8
Buikwe 125 0.5 -1.7
Bukedea 299 -214.2 -121.9
Kamuli-1 156 -48.0 -34.5
Kamuli-2 182 -23.0 -23.3
Kamuli-3 125 -58.9 -36.4
Kanungu 485 -153.5 -141.4
Kiryandongo 179 -35.5 -36.1
Kisoro 565 50.9 53.1
Kole 156 -67.5 -67.7
Mbale-1 166 53.7 71.8
Mbale-2 31 15.4 21.1
Mbale-3 376 -203.2 -203.2
Nakaseke 380 -98.8 -101.2
Ngora 176 -120.9 -84.2
Tororo-1 166 -58.4 -37.6
Tororo-2 395 -194.2 -194.1
Zombo 172 -40.1 -38.0

Continued on next page
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District N RBF Mat-32

Amuru 374 -127.0 -49.9
Bugiri-1 329 -79.8 -55.6
Bugiri-2 141 -131.1 -130.4
Bullisa 384 -195.5 -194.0
Kotido-1 162 -131.3 -110.4
Kotido-2 31 -6.0 -6.0
Kotido-3 270 23.7 24.8
Rakai-1 201 14.8 17.0
Rakai-2 358 -173.7 -102.6
Butambala 165 -70.7 -45.6
Kaabong 317 -55.8 -55.1
Kamwenge 559 -352.1 -290.7
Kiruhura 362 -225.3 -224.3
Kitgum-1 354 -18.1 -14.7
Kitgum-2 162 -108.7 -68.0
Kyankwanzi 135 -65.6 -66.7
Maracha 263 -102.8 -84.0
Nakapiripirit-1 365 -82.0 -80.3
Nakapiripirit-2 172 -68.4 -68.3
Sheema 187 -208.4 -161.3
Amudat 108 -73.1 -73.4
Budaka 293 -119.0 -117.3
Dokolo 390 -216.1 -148.1
Hoima 556 -192.2 -189.4
Kumi-1 192 85.3 88.5
Kumi-2 179 4.6 5.5
Kumi-3 110 -58.9 -58.0
Luuka 148 -71.0 -55.9
Mbarara-1 168 -61.4 -55.7
Mbarara-4 349 -30.8 -27.6
Moroto-1 363 -200.4 -126.1
Moroto-2 156 -94.8 -94.6
Oyam 358 -243.8 -196.5
Wakiso 561 -328.3 -328.8
Apac-1 178 -75.1 -59.9

Continued on next page
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District N RBF Mat-32

Apac-2 203 122.0 117.9
Apac-3 160 -89.6 -89.6
Bukomansimbi 145 -47.3 -46.7
Kibuku 182 -111.1 -102.3
Ntungamo 481 -147.2 -143.4

E.2.2 Addition of Linear Kernel

Table E.3 Linear kernel validation. The consecutive numbers at the end of the district
names indicate a change in the districts delimitation. The second column shows the
number of data points en each case. The third column indicates the kernel choosen
to model the data, depending on the highest LOO-CV value. The fourth and fifth
columns show the log LOO-CV scores for a base model (using a single kernel either
Mat-32 or RBF) and a model that incorporates a linear kernel. When the number of
observations available was less than 10, no comparison was done and a linear kernel
was not used.

District N Kernel choosen Base Base+Linear

Abim 227 Mat-3/2 + linear -100.4 -4.7
Adjumani 528 Mat-3/2 + linear -179.6 -114.3
Agago 176 Mat-3/2 + linear -159.9 -151.0
Alebtong 181 RBF + linear -102.6 -83.4
Amolatar 335 Mat-3/2 -53.7 -199.3
Amudat 108 RBF + linear -73.1 -71.5
Amuria 386 RBF -168.7 -192.8
Amuru 374 Mat-3/2 -49.9 -111.8
Apac-1 178 Mat-3/2 -59.9 -68.0
Apac-2 203 RBF + linear 122.0 130.4
Apac-3 160 RBF + linear -89.6 -53.1
Arua-1 162 RBF + linear 29.5 70.9
Arua-2 62 RBF + linear 33.1 35.6
Arua-3 307 Mat-3/2 + linear -207.0 -148.2
Budaka 293 Mat-3/2 + linear -117.3 -98.1
Bududa 364 Mat-3/2 16.8 -17.4
Bugiri-1 329 Mat-3/2 -55.6 -65.9

Continued on next page
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District N Kernel choosen Base Base+Linear

Bugiri-2 141 Mat-3/2 + linear -130.4 -87.1
Buhweju 148 Mat-3/2 + linear -39.0 -9.2
Buikwe 125 RBF + linear 0.5 19.0
Bukedea 299 Mat-3/2 + linear -121.9 -88.7
Bukomansimbi 145 Mat-3/2 + linear -46.7 1.8
Bukwo 396 Mat-3/2 + linear -220.1 -203.9
Bulambuli 171 Mat-3/2 + linear -62.5 -28.1
Bullisa 384 Mat-3/2 + linear -194.0 -172.8
Bundibugyo-1 381 Mat-3/2 -53.9 -107.4
Bundibugyo-2 190 Mat-3/2 + linear -31.6 -11.2
Bushenyi-1 386 Mat-3/2 + linear -54.4 -40.9
Bushenyi-4 24 Mat-3/2 8.4 2.9
Bushenyi-5 162 Mat-3/2 + linear -75.3 -25.0
Busia 459 Mat-3/2 + linear -85.5 -54.1
Butaleja 407 Mat-3/2 112.0 78.1
Butambala 165 Mat-3/2 + linear -45.6 -31.1
Buvuma 127 Mat-3/2 + linear -71.3 -70.7
Buyende 156 Mat-3/2 -62.0 -63.7
Dokolo 390 Mat-3/2 -148.1 -212.9
Gomba 148 Mat-3/2 + linear -73.4 -61.6
Gulu-1 184 Mat-3/2 + linear -89.2 -80.9
Gulu-2 198 Mat-3/2 + linear 4.7 11.3
Gulu-3 158 Mat-3/2 + linear -16.5 27.0
Hoima 556 Mat-3/2 -189.4 -199.2
Ibanda 305 Mat-3/2 + linear -94.6 -68.9
Iganga-1 184 Mat-3/2 -23.7 -37.6
Iganga-2 177 Mat-3/2 46.1 42.1
Iganga-3 120 Mat-3/2 + linear -15.0 -7.9
Isingiro 307 Mat-3/2 + linear -118.6 -90.3
Jinja 555 Mat-3/2 + linear 122.1 144.6
Kaabong 317 Mat-3/2 -55.1 -73.8
Kabale 571 Mat-3/2 + linear -303.7 -200.0
Kabarole 562 Mat-3/2 + linear -244.1 -122.9
Kaberamaido 512 Mat-3/2 -278.5 -366.8
Kalangala 433 RBF -193.5 -204.6

Continued on next page
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District N Kernel choosen Base Base+Linear

Kaliro 376 Mat-3/2 -206.8 -207.8
Kalungu 151 Mat-3/2 -71.7 -72.5
Kampala 565 Mat-3/2 + linear -347.2 -248.7
Kamuli-1 156 Mat-3/2 + linear -34.5 -12.9
Kamuli-2 182 RBF + linear -23.0 58.0
Kamuli-3 125 Mat-3/2 + linear -36.4 -19.6
Kamwenge 559 Mat-3/2 + linear -290.7 -238.8
Kanungu 485 Mat-3/2 + linear -141.4 -41.6
Kapchorwa-1 153 Mat-3/2 -64.1 -101.7
Kapchorwa-2 233 Mat-3/2 -60.6 -99.3
Kapchorwa-3 152 Mat-3/2 + linear -129.6 -125.6
Kasese 489 Mat-3/2 + linear -209.1 -123.7
Katakwi-1 145 Mat-3/2 + linear -26.9 -2.5
Katakwi-2 295 Mat-3/2 + linear -171.6 -164.6
Kayunga 565 Mat-3/2 + linear 50.0 124.7
Kibaale 449 RBF + linear -133.2 -84.2
Kiboga-1 338 Mat-3/2 + linear -138.9 -131.9
Kiboga-2 160 Mat-3/2 -23.4 -78.4
Kibuku 182 Mat-3/2 + linear -102.3 -58.2
Kiruhura 362 Mat-3/2 + linear -224.3 -198.9
Kiryandongo 179 RBF + linear -35.5 36.4
Kisoro 565 Mat-3/2 53.1 46.5
Kitgum-1 354 Mat-3/2 + linear -14.7 17.8
Kitgum-2 162 Mat-3/2 + linear -68.0 -49.5
Koboko 306 Mat-3/2 + linear -90.8 -81.0
Kole 156 RBF + linear -67.5 -40.0
Kotido-1 162 Mat-3/2 -110.4 -124.3
Kotido-2 31 Mat-3/2 + linear -6.0 -1.7
Kotido-3 270 Mat-3/2 + linear 24.8 91.2
Kumi-1 192 Mat-3/2 88.5 16.8
Kumi-2 179 Mat-3/2 + linear 5.5 10.3
Kumi-3 110 Mat-3/2 -58.0 -69.7
Kween 171 Mat-3/2 + linear -112.8 -72.0
Kyankwanzi 135 RBF + linear -65.6 -10.6
Kyegegwa 157 Mat-3/2 -43.7 -47.3

Continued on next page
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District N Kernel choosen Base Base+Linear

Kyenjojo-1 282 Mat-3/2 + linear -22.1 57.5
Kyenjojo-2 195 Mat-3/2 + linear -83.2 -22.1
Lamwo 181 Mat-3/2 + linear -94.7 -45.6
Lira-1 138 Mat-3/2 + linear -74.7 -61.3
Lira-2 11 RBF -1.0 -1.0
Lira-3 203 Mat-3/2 -38.6 -62.5
Lira-5 178 RBF + linear -181.8 -136.4
Luuka 148 Mat-3/2 + linear -55.9 -31.5
Luwero-1 157 Mat-3/2 + linear 56.5 94.1
Luwero-2 334 Mat-3/2 + linear -66.8 -27.5
Lwengo 143 Mat-3/2 -78.6 -95.7
Lyantonde 248 Mat-3/2 + linear -193.6 -160.9
Manafwa 358 Mat-3/2 + linear -74.5 -40.9
Maracha 263 Mat-3/2 + linear -84.0 -56.2
Masaka-1 323 Mat-3/2 -9.7 -10.6
Masaka-4 128 Mat-3/2 + linear -40.8 0.5
Masindi-1 186 Mat-3/2 -40.6 -48.2
Masindi-2 187 Mat-3/2 5.2 -16.4
Masindi-3 130 Mat-3/2 18.6 -15.4
Mayuge 439 Mat-3/2 + linear -237.7 -133.8
Mbale-1 166 Mat-3/2 71.8 37.0
Mbale-2 31 Mat-3/2 21.1 19.8
Mbale-3 376 RBF + linear -203.2 -141.1
Mbarara-1 168 Mat-3/2 -55.7 -57.1
Mbarara-4 349 Mat-3/2 + linear -27.6 68.1
Mitooma 115 Mat-3/2 + linear -123.2 -106.5
Mityana 391 Mat-3/2 + linear -69.8 -29.5
Moroto-1 363 Mat-3/2 -126.1 -203.8
Moroto-2 156 Mat-3/2 + linear -94.6 -80.2
Moyo 578 Mat-3/2 -350.9 -356.7
Mpigi-1 349 Mat-3/2 + linear -121.7 -84.9
Mpigi-3 163 RBF + linear -15.4 9.1
Mubende-1 157 Mat-3/2 + linear 8.5 13.1
Mubende-2 289 Mat-3/2 + linear -55.7 -2.8
Mukono-1 348 Mat-3/2 373.0 369.0

Continued on next page



E.2 Kernel Selection 123

District N Kernel choosen Base Base+Linear

Mukono-3 133 Mat-3/2 + linear -25.0 4.4
Nakapiripirit-1 365 Mat-3/2 + linear -80.3 -45.2
Nakapiripirit-2 172 Mat-3/2 -68.3 -115.4
Nakaseke 380 RBF + linear -98.8 -80.2
Nakasongola 487 Mat-3/2 + linear -111.2 -30.5
Namayingo 98 RBF + linear -138.7 -78.4
Namutumba 295 RBF + linear -25.4 44.0
Napak 174 Mat-3/2 -119.4 -140.9
Nebbi-1 339 Mat-3/2 + linear -147.1 -142.4
Nebbi-2 145 Mat-3/2 + linear -37.2 -26.0
Ngora 176 Mat-3/2 + linear -84.2 -39.1
Ntoroko 177 Mat-3/2 + linear -117.4 -106.7
Ntungamo 481 Mat-3/2 -143.4 -148.7
Nwoya 180 Mat-3/2 + linear -101.8 -87.9
Otuke 186 Mat-3/2 -117.4 -143.4
Oyam 358 Mat-3/2 + linear -196.5 -100.7
Pader-1 374 Mat-3/2 -109.7 -178.6
Pader-2 135 Mat-3/2 + linear -87.4 -77.3
Pallisa-1 182 Mat-3/2 + linear -33.0 -29.8
Pallisa-2 174 Mat-3/2 -0.5 -2.7
Pallisa-3 129 RBF + linear -86.7 -75.4
Rakai-1 201 Mat-3/2 + linear 17.0 33.7
Rakai-2 358 Mat-3/2 -102.6 -138.0
Rubirizi 161 RBF + linear -153.2 -67.9
Rukungiri 544 Mat-3/2 -116.4 -152.9
Serere 120 Mat-3/2 -37.0 -80.1
Sheema 187 Mat-3/2 -161.3 -233.4
Sironko-1 340 Mat-3/2 + linear -38.7 -19.1
Sironko-2 149 Mat-3/2 + linear -60.9 0.9
Soroti-1 361 Mat-3/2 + linear -233.4 -226.5
Soroti-2 143 Mat-3/2 -52.9 -58.9
Ssembabule 578 Mat-3/2 + linear -108.8 -18.8
Tororo-1 166 Mat-3/2 -37.6 -43.1
Tororo-2 395 Mat-3/2 + linear -194.1 -80.1
Wakiso 561 RBF + linear -328.3 -312.2
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District N Kernel choosen Base Base+Linear

Yumbe 499 Mat-3/2 -142.6 -143.5
Zombo 172 Mat-3/2 + linear -38.0 -32.0

E.3 Outlier Analysis

Table E.4 Outliers detection. The consecutive numbers at the end of the district names
indicate a change in the districts delimitation. The second column shows the number of
observations available. The third column indicate the number of outliers defined after
comparing the homoscedastic and heteroscedastic models. The last two columns show
the log LOO-CV scores for the homoscedastic and heteroscedastic models, respectively.
This outlier diagnostic was only applied when there were more than 50 observations
available, otherwise an homoscedastic model was used.

District Observations Outliers Homoscedastic Heteroscedastic

Abim 227 7 17.96 26.96
Adjumani 528 14 -9.05 71.22
Agago 176 13 -52.89 -20.00
Alebtong 181 4 -53.56 -32.52
Amolatar 335 5 -15.31 -4.85
Amudat 108 5 -44.83 -6.25
Amuria 386 6 -98.71 -18.98
Amuru 374 6 0.87 28.81
Apac-1 178 4 -14.30 22.40
Apac-2 203 3 137.54 146.96
Apac-3 160 1 -50.58 -49.42
Arua-1 162 7 86.03 99.80
Arua-2 62 – – –
Arua-3 307 11 -26.43 98.72
Budaka 293 7 -10.97 27.84
Bududa 364 7 63.15 111.46
Bugiri-1 329 14 46.71 154.84
Bugiri-2 141 6 -56.02 -35.32
Buhweju 148 1 -1.25 -0.65
Buikwe 125 1 34.89 39.46
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District Observations Outliers Homoscedastic Heteroscedastic

Bukedea 299 5 -37.84 -5.68
Bukomansimbi 145 0 4.82 4.78
Bukwo 396 14 -90.34 55.74
Bulambuli 171 2 11.85 41.10
Bullisa 384 11 -55.49 57.53
Bundibugyo-1 381 4 -11.97 17.33
Bundibugyo-2 190 3 32.18 59.96
Bushenyi-1 386 9 84.13 163.80
Bushenyi-2 2 – – –
Bushenyi-3 1 – – –
Bushenyi-4 24 – – –
Bushenyi-5 162 5 20.93 51.24
Busia 459 12 54.67 162.34
Butaleja 407 8 143.80 190.50
Butambala 165 4 12.08 42.09
Buvuma 127 2 -50.30 -40.59
Buyende 156 2 -49.69 -44.96
Dokolo 390 8 -66.73 28.80
Gomba 148 2 -13.24 23.82
Gulu-1 184 4 -24.65 5.96
Gulu-2 198 3 63.60 106.60
Gulu-3 158 3 25.43 34.70
Hoima 556 9 -104.08 -67.06
Ibanda 305 6 -18.79 21.88
Iganga-1 184 2 16.31 40.71
Iganga-2 177 – – –
Iganga-3 120 2 10.73 16.38
Isingiro 307 5 -23.93 32.36
Jinja 555 16 304.56 396.92
Kaabong 317 11 3.26 79.60
Kabale 571 11 7.20 349.37
Kabarole 562 23 40.49 150.38
Kaberamaido 512 22 -132.45 6.47
Kalangala 433 9 -121.49 -96.31
Kaliro 376 8 -153.73 -133.71
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Kalungu 151 3 -48.05 -40.84
Kampala 361 12 144.62 225.91
Kamuli-1 156 2 21.15 23.60
Kamuli-2 182 4 68.84 79.55
Kamuli-3 125 4 21.41 22.35
Kamwenge 559 11 -45.49 71.21
Kanungu 485 11 74.95 181.43
Kapchorwa-1 153 2 -39.82 -31.06
Kapchorwa-2 233 7 -23.69 17.16
Kapchorwa-3 152 10 -79.88 -56.22
Kasese 489 10 -56.41 -18.39
Katakwi-1 145 3 48.04 70.36
Katakwi-2 295 12 -87.54 2.94
Kayunga 565 5 240.02 308.93
Kibaale 449 25 97.49 334.55
Kiboga-1 338 12 8.90 196.19
Kiboga-2 160 3 -9.21 -5.49
Kibuku 182 1 -21.20 -20.71
Kiruhura 362 10 -88.23 -46.78
Kiryandongo 179 3 63.30 84.99
Kisoro 565 4 136.93 190.27
Kitgum-1 354 5 48.76 54.08
Kitgum-2 162 5 2.61 29.17
Koboko 306 4 -1.94 78.18
Kole 156 – – –
Kotido-1 162 7 -86.86 -81.35
Kotido-2 31 – – –
Kotido-3 270 12 108.67 120.49
Kumi-1 192 2 123.94 153.33
Kumi-2 179 1 80.94 90.06
Kumi-3 110 3 -44.11 -37.78
Kween 171 3 -38.31 -19.97
Kyankwanzi 135 – – –
Kyegegwa 157 0 -42.04 -42.10
Kyenjojo-1 282 1 70.44 71.60
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Kyenjojo-2 195 2 -8.39 -2.43
Lamwo 181 2 -7.75 -2.98
Lira-1 138 2 -31.88 -13.52
Lira-2 11 – – –
Lira-3 203 6 8.75 43.78
Lira-4 1 – – –
Lira-5 178 13 -66.39 -0.70
Luuka 148 – – –
Luwero-1 157 1 98.48 100.22
Luwero-2 334 5 -2.63 10.07
Lwengo 143 4 -50.92 -38.91
Lyantonde 248 11 -73.18 41.39
Manafwa 358 6 11.77 38.40
Maracha 263 5 -47.51 -16.32
Masaka-1 323 17 90.67 188.62
Masaka-2 1 – – –
Masaka-3 5 – – –
Masaka-4 128 4 28.35 45.69
Masindi-1 186 5 11.06 61.93
Masindi-2 187 3 62.15 128.82
Masindi-3 130 1 41.00 56.64
Mayuge 439 12 -40.72 -9.63
Mbale-1 166 – – –
Mbale-2 31 – – –
Mbale-3 376 18 -6.73 210.78
Mbarara-1 168 3 -3.99 61.05
Mbarara-2 1 – – –
Mbarara-3 7 – – –
Mbarara-4 349 7 98.26 134.84
Mitooma 115 2 -88.58 -78.75
Mityana 391 6 20.08 39.53
Moroto-1 363 10 -70.83 -47.69
Moroto-2 156 8 -58.97 -52.65
Moyo 578 12 -135.62 136.19
Mpigi-1 349 9 -33.20 -17.02
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Mpigi-2 5 – – –
Mpigi-3 163 2 -18.38 -15.73
Mubende-1 157 2 30.51 34.36
Mubende-2 289 3 51.79 80.48
Mukono-1 348 7 421.98 594.88
Mukono-2 6 – – –
Mukono-3 133 1 52.00 62.33
Nakapiripirit-1 365 9 35.22 81.54
Nakapiripirit-2 172 5 -47.29 -41.01
Nakaseke 380 9 22.51 104.15
Nakasongola 487 9 86.26 157.64
Namayingo 98 3 -53.51 -18.23
Namutumba 295 2 48.92 50.16
Napak 174 5 -86.76 -57.20
Nebbi-1 339 17 -16.17 148.09
Nebbi-2 145 2 -14.60 -10.14
Ngora 176 2 -29.39 -26.02
Ntoroko 177 5 -58.45 -42.64
Ntungamo 481 9 -30.54 52.82
Nwoya 180 5 -14.51 22.20
Otuke 186 5 -62.29 -12.22
Oyam 358 10 -53.71 -2.99
Pader-1 374 5 -39.81 -3.70
Pader-2 135 – – –
Pallisa-1 182 2 29.28 40.77
Pallisa-2 174 2 4.66 4.84
Pallisa-3 129 3 -46.20 -14.39
Rakai-1 201 2 42.83 43.25
Rakai-2 358 7 -38.60 15.79
Rubirizi 161 2 -44.62 -18.71
Rukungiri 544 9 -1.17 101.77
Serere 120 1 -37.07 -37.07
Sheema 187 9 -94.69 10.80
Sironko-1 340 12 73.26 141.52
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District Observations Outliers Homoscedastic Heteroscedastic

Sironko-2 149 4 49.48 75.16
Soroti-1 361 5 -83.15 72.34
Soroti-2 143 2 -40.46 -36.55
Ssembabule 578 10 99.56 221.80
Tororo-1 166 8 18.56 78.68
Tororo-2 395 11 41.89 216.43
Wakiso 561 18 -85.22 145.17
Yumbe 499 18 6.79 169.09
Zombo 172 5 2.87 24.25
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