Models of geomagnetic reversals as a stochastic or gamma renewal process have generally been test... more Models of geomagnetic reversals as a stochastic or gamma renewal process have generally been tested for the Heirtzler et al. [1] magnetic polarity time scale which has subsequently been superseded. Examination of newer time scales shows that the mean reversal frequency is dominated in the Cenozoic and Late Cretaceous by a linearly increasing trend on which a rhythmic fluctuation is superposed. Subdivision into two periods of stationary behavior is no longer warranted. The distribution of polarity intervals is visibly not Poissonian but lacks short intervals. The LaBrecque et al. [2] polarity time scale shows the positions of 57 small-wavelength marine magnetic anomalies which may represent short polarity chrons. After adding these short events the distribution of all polarity intervals in the age range 0–40 Myr is stationary and does not differ significantly from a Poisson distribution. A strong asymmetry develops in which normal polarity chrons are Poisson distributed but reversed polarity chrons are gamma distributed with indexk = 2. This asymmetry is of opposite sense to previous suggestions and results from the unequal distribution of the short polarity chrons which are predominantly of positive polarity and concentrated in the Late Cenozoic. If short-wavelength anomalies arise from polarity chrons, the geomagnetic field may be more stable in one polarity than the other. Alternative explanations of the origin of short-wavelength marine magnetic anomalies cast doubt on the inclusion of them as polarity chrons, however. The observed behavior of reversal frequency suggests that core processes governing geomagnetic reversals possess a long-term memory.
One hundred million years of geomagnetic polarity history William Lowrie Institut für Geophysik, ... more One hundred million years of geomagnetic polarity history William Lowrie Institut für Geophysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland Walter Alvarez Department of Geology and Geophysics, University of California, Berkeley, California 94720 ABSTRACT Since ...
Downloaded from gsabulletin.gsapubs.org on 13 July 2009 368 ARTHUR AND FISCHER ,-400 TRICARINATA ... more Downloaded from gsabulletin.gsapubs.org on 13 July 2009 368 ARTHUR AND FISCHER ,-400 TRICARINATA G. CALCARATA 250 -300 200 Figure 1. Generalized stratigraphie section, Gubbio. Planktic foraminiferal zonation and Cretaceous stage boundaries by Premoli ...
Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evid... more Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.
Models of geomagnetic reversals as a stochastic or gamma renewal process have generally been test... more Models of geomagnetic reversals as a stochastic or gamma renewal process have generally been tested for the Heirtzler et al. [1] magnetic polarity time scale which has subsequently been superseded. Examination of newer time scales shows that the mean reversal frequency is dominated in the Cenozoic and Late Cretaceous by a linearly increasing trend on which a rhythmic fluctuation is superposed. Subdivision into two periods of stationary behavior is no longer warranted. The distribution of polarity intervals is visibly not Poissonian but lacks short intervals. The LaBrecque et al. [2] polarity time scale shows the positions of 57 small-wavelength marine magnetic anomalies which may represent short polarity chrons. After adding these short events the distribution of all polarity intervals in the age range 0–40 Myr is stationary and does not differ significantly from a Poisson distribution. A strong asymmetry develops in which normal polarity chrons are Poisson distributed but reversed polarity chrons are gamma distributed with indexk = 2. This asymmetry is of opposite sense to previous suggestions and results from the unequal distribution of the short polarity chrons which are predominantly of positive polarity and concentrated in the Late Cenozoic. If short-wavelength anomalies arise from polarity chrons, the geomagnetic field may be more stable in one polarity than the other. Alternative explanations of the origin of short-wavelength marine magnetic anomalies cast doubt on the inclusion of them as polarity chrons, however. The observed behavior of reversal frequency suggests that core processes governing geomagnetic reversals possess a long-term memory.
One hundred million years of geomagnetic polarity history William Lowrie Institut für Geophysik, ... more One hundred million years of geomagnetic polarity history William Lowrie Institut für Geophysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland Walter Alvarez Department of Geology and Geophysics, University of California, Berkeley, California 94720 ABSTRACT Since ...
Downloaded from gsabulletin.gsapubs.org on 13 July 2009 368 ARTHUR AND FISCHER ,-400 TRICARINATA ... more Downloaded from gsabulletin.gsapubs.org on 13 July 2009 368 ARTHUR AND FISCHER ,-400 TRICARINATA G. CALCARATA 250 -300 200 Figure 1. Generalized stratigraphie section, Gubbio. Planktic foraminiferal zonation and Cretaceous stage boundaries by Premoli ...
Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evid... more Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.
Uploads
Papers by William Lowrie