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A macroscopic traffic model for traffic flow
harmonization
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Abstract

Traffic flow will harmonize to forward conditions. The time and distance required for harmonization can have a
significant effect on the traffic density behavior. The flow can evolve into clusters of vehicles or become uniform
depending on parameters such as safe time headway and safe distance headway. In this paper, a new model is
presented to provide a realistic characterization of traffic behavior during the harmonization period. Results are
presented for a discontinuous density distribution on a circular road which shows that this model produces more
realistic traffic behavior than other models in the literature.

Keywords: Macroscopic traffic model, Reaction distance, Reaction time, Safe distance headway, Safe time headway,
Traffic flow, Roe decomposition

1 Introduction
This paper considers the behavior of vehicles as they
harmonize to forward traffic conditions. The time for traf-
fic harmonization is based on the front traffic stimuli, i.e.
the time to react and align (harmonize) to the forward
traffic. The time required to react is known as the reaction
time, and the time for traffic alignment (harmonization) is
known as the transition time [1]. The reaction distance is
the distance travelled during the reaction time, while the
transition distance is the distance covered during the
transition time. The sum of the transition and reaction
times is known as the safe time headway. This is the time
required for the safe adjustment of velocity. The distance
travelled during the safe time is known as the safe
distance headway.
Drivers adjust their velocity when a change in traffic flow

is observed in an effort to achieve the equilibrium velocity
distribution. This distribution depends on the traffic density
as well as driver behavior and road characteristics, and will
result in a homogeneous traffic flow [2]. This flow will
evolve into clusters with a large safe distance headway and
small safe time headway. Conversely, a small safe distance
headway and large safe time headway will produce a more
uniform flow. The goal of this paper is to develop a simple,

realistic model to characterize the traffic flow. This will lead
to better control of traffic behavior to mitigate congestion,
reduce pollution levels, and improve public safety. These
models can also be employed for automatic control of traf-
fic flow to reduce travel time.
The main types of traffic models are macroscopic,

mesoscopic and microscopic. Macroscopic models consider
the aggregate behavior of traffic flow while microscopic
models consider the interaction of individual vehicles.
These models include parameters such as driver behavior,
vehicle locations, distance headways, time headways, and
the velocity and acceleration of individual vehicles. Meso-
scopic models share the properties of macroscopic and
microscopic traffic models. These models characterize the
influence of vehicles in close proximity and then approxi-
mate the cumulative temporal and spatial traffic behavior
[3]. Macroscopic traffic models are typically employed due
to their low complexity.
Newel proposed a microscopic traffic model and

acknowledged for the first time that the distance head-
ways varies during traffic harmonization [4], but the
variable distances between vehicles were not explained
[5]. The General Motors model indicates that the
distance headway between vehicles increases with
velocity. However, this model ignores the variable
distances between vehicles at slow speeds [6, 7]. Gipps
characterized variable distance headways using a safety
rule [8]. According to this model, the distance headways
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between vehicles should be sufficient to decelerate and
harmonize speeds. However, the behavior of the driver
population on the distance headway was not considered.
Wiedemann proposed a psychophysical model to
characterize individual driver behavior based on con-
scious and unconscious reaction and perception [9].
Drivers unconsciously harmonize small changes in speed
for small distance headways, so the reaction of these
drivers is slow. Conversely, with large distance headways,
drivers consciously harmonize speeds with large reactions
and perceptions. The limitations of the Wiedemann model
are the constant ranges for perception and reaction which
actually vary depending on the speed harmonization [10].
Driver behavior varies with ethnicity, gender, age,

psychology and intoxication level. People in the age
groups 18–25, 25–55 and 55+ have different cognitive
and physical behavior and thus also different driving be-
havior [11]. Cognitive and physical behavior decline with
age which increases the probability of accidents. The
crash rate between ages 35–64 is three times less than at
65+ [12]. Older people can have difficulties moving their
heads sideways to scan the traffic flow and there can be
memory issues. Thus, reaction to changing conditions
can be sluggish and is a major cause of accidents at in-
tersections [11, 13]. Young drivers often exhibit limited
horizontal road scanning behavior which is similar to
the sluggish behavior of intoxicated drivers [14]. Drugs
and alcohol change thought processes and typically lead
to slow driving behavior. In 1972, teenagers in the US
were five times more likely to die in a traffic accident
than people in the 35–64 age group. Experienced drivers
have a wide horizontal traffic scanning behavior. Thus,
they quickly recognize changes in speed and density and
so take less time to perceive and react than inexperi-
enced drivers. Existing microscopic models do not
characterize differences in driving behavior. To more ac-
curately characterize traffic flow harmonization (align-
ment), a model is required which captures the effect of
driver behavior [5]. This behavior can be characterized
for specific groups such as intoxicated drivers, old and
young drivers, and considering ethnicity and experience.
One of the most popular macroscopic traffic flow

models is the two equation model developed by Payne
[15] and Whitham [16] which is known as the Payne-
Whitham (PW) model. The first equation is based on
the continuity equation for the conservation of vehicles
on a road, while the second models the acceleration be-
havior of traffic based on driver anticipation and relax-
ation. Driver anticipation results from the presumption
of changes in the forward traffic density, while relaxation
is the tendency to adjust velocity based on traffic condi-
tions. The relaxation time can be considered the transi-
tion time. The PW model is based on the assumption
that vehicles on a road have similar behavior. Smooth

traffic velocities and density distributions are employed
[17], and alignment (harmonization) occurs with a con-
stant velocity [18]. Unfortunately, this results in unrealis-
tic velocity and density behavior [19]. Zhang improved
the PW model using the fact that driver anticipation
cannot be constant [20], and considered that drivers
harmonize their speeds based on the density distribu-
tion. However, this model can produce unrealistic results
in some traffic flow situations.
Khan and Gulliver [21] improved the PW model using

the fact that driver anticipation is based on the velocity
of the forward traffic, so that traffic behavior depends on
the velocity during transitions. It was shown that this
model provides more realistic traffic flow and density
than the PW model. The sensitivity of traffic is the rate
at which alignment occurs. The limitation of the Khan-
Gulliver (KG) model is that this sensitivity depends only
on the relaxation time τ. For high velocities, τ is small,
so traffic alignment can occur too quickly, whereas with
low velocities, τ is large so alignment can be very slow.
As a consequence, this model does not have sufficient
flexibility to properly characterize traffic behavior.
In this paper, a new model is proposed to provide

more realistic traffic behavior ranging from vehicle
clusters to a uniform flow. Transitions in the flow occur
when vehicles enter or leave at connecting roads, or
when there are obstructions or bottlenecks on the road.
The resulting harmonization is affected by the flow
behavior and safe velocity given by

υs ¼ ds

ts
ð1Þ

where ds is the safe distance headway and ts is the safe
time headway. The traffic density distribution has a
greater variance at lower safe velocities [21], and
changes in this distribution during alignment depend on
the velocity adjustments required to adapt to the equilib-
rium velocity distribution. In the proposed model, a par-
ameter is introduced to regulate traffic flow behavior so
these adjustments are appropriate. With a large regula-
tion value, the flow evolves into a large number of small
clusters. Conversely, the traffic flow is more uniform
with a small value. This value can be extended to in-
corporate driving behavior due to factors such as intoxi-
cation, experience, ethnicity, and age, to accurately
model traffic behavior. It can also be employed for traffic
during adverse weather and congestion, and movement
in clusters. The effect of this parameter is examined in
Section IV.
The remainder of this paper is organized as follows. Sec-

tion II presents the KG, Zhang and proposed models. In
Section III, the well-known Roe decomposition technique
is used to implement these models, and performance
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results are presented for a circular road in Section IV. Fi-
nally, some concluding remarks are given in Section V.

2 Traffic flow models
The KG model [21] was developed to characterize traffic
flow behavior according to forward velocity conditions.
The KG model in conservation form is given by

ρt þ ρυð Þx ¼ 0 ð2Þ

ρυð Þt þ
ρυð Þ2
ρ

þ υ2 ρð Þ−υ2
2dtr

� �
ρ

 !
x

¼ ρ
υ ρð Þ−υ

τ

� �
; ð3Þ

where the subscripts t and x denote temporal and spatial
derivatives, respectively. ρ and υ are the traffic density and
average velocity, respectively, so that ρυ is the flow. υ(ρ) is
the equilibrium velocity distribution and dtr is the transi-
tion distance. A large average velocity results in a small
relaxation time and thus the alignment (harmonization)
can be too fast and produce unrealistic behavior.
The source term in (3) is

ρ
υ ρð Þ−υ

τ

� �
; ð4Þ

which indicates that traffic alignment (harmonization)
occurs according to the difference between the average
velocity and the equilibrium velocity distribution. In
reality, alignment is faster at higher velocities, so it
should not be a function of only this difference. After
harmonization, the source term is zero, i.e. υ = υ(ρ), and
the traffic flow is smooth. The sensitivity of this term is
given by

ζ1 ¼
1
τ
; ð5Þ

and this determines how quickly harmonization occurs
given the other parameters in (4). Thus, it can have a
significant effect on traffic behavior. However, ζ1 only
depends on the relaxation time τ, which may not be
sufficient to produce appropriate traffic behavior.
The following traffic model based on the forward

traffic stimuli was presented in [21]

ρt þ ρ
υ ρð Þ2−υ2

2υs

 ! !
x

¼ 0: ð6Þ

This model has been used to characterize traffic behav-
ior during transitions as well as when the flow is smooth.
The right-hand side (RHS) of (6) is zero because the traffic
is considered to be on a long infinite road with no transi-
tions due to the ingress or egress of vehicles to the flow.
The anticipation term of this model

ρ
υ2 ρð Þ−υ2

2υs

� �
; ð7Þ

characterizes the driver presumption of changes in the
forward traffic. With this model, traffic alignment
(harmonization) is a quadratic function of velocity. Fur-
ther, the sensitivity of (7) is

ζ2 ¼
1
2υs

; ð8Þ

so it is also a function of the safe distance headway and
safe time headway, and alignment occurs according to
the inverse of the safe velocity.
In this paper, a new model is proposed for transition

harmonization in a traffic flow by characterizing the
driver response using (7). If the equilibrium velocity υ(ρ)
is greater than the average velocity υ there is acceler-
ation and alignment will occur at a velocity greater than
υ. Conversely, if υ(ρ) is smaller than υ there is deceler-
ation, and alignment will occur at a velocity smaller than
υ. This can be characterized by the numerator of (7).
Further, alignment (harmonization) depends on the
physiological and psychological response of the drivers.
This behavior can be characterized by modifying the de-
nominator of (7). Thus, the number 2 in (7) is replaced
with a flow regulation value b. A small value of b will
produce a more uniform flow, while a large value will re-
sult in clustered traffic. The new source term is then

ρ
υ2 ρð Þ−υ2

b
ds

ts

0
BB@

1
CCA: ð9Þ

The safe distance headway consists of the reaction
distance dr and transition distance dtr so that

ζ3 ¼
1

b
ds

ts

: ð10Þ

The psychological response of a driver is characterized by
the transition distance, and the physiological response by
the reaction distance. A sluggish driver responds slowly and
takes more time to perceive and process forward traffic
conditions. Thus, they will have large reaction and transi-
tion distances to align to the traffic. Examples of sluggish
drivers are intoxicated or distracted drivers, old and new
drivers, and drivers affected by fatigue [22, 23]. The
reaction time in a fatigued state has been shown to be 17%
longer than in an alert state, and the increase in reaction
time is greater for females than males [24]. Further, old
drivers have longer reaction times than young drivers. For a
sluggish driver, b should be large. Conversely, excited or
aggressive drivers such as commercial or teenage drivers
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will have a small reaction time and corresponding small
transition distance [18], so b should be small.
Replacing the source term in (3) of the KG model with

(9) gives

ρυð Þt þ
ρυð Þ2
ρ

þ υ2 ρð Þ−υ2
2dtr

� �
ρ

 !
x

¼ ρ
υ2 ρð Þ−υ2

bυs

� �
:

ð11Þ
for the new model, while (2) is not changed. The PW
model is given by [15, 16, 21]

ρt þ ρυð Þx ¼ 0

ρυt þ ρυυx þ ρC2
0ρx ¼ ρ

υ ρð Þ−υ
τ

;
ð12Þ

where C0 is the velocity constant which characterizes
driver response. According to this model, driver
response does not depend on the traffic conditions and
is a constant. The relaxation term of the PW model is
the same as that in the KG model, as shown in Table 1.
Several models have been proposed for υ(ρ) [25], but the
most commonly employed is the Greenshields model
which is given by [26]

υ ρð Þ ¼ υm 1−
ρ
ρm

� �
; ð13Þ

where ρm and ρ are the maximum and average traffic
densities, respectively, and υm is the maximum velocity
on the road. Therefore, this model is employed here.
The Zhang model is given by [20]

ρt þ ρυð Þx ¼ 0

ρυt þ ρυυx þ
ρ ∂v ρð Þ

∂ρ

� �2
ρ

ρx ¼ ρ
υ ρð Þ−υ

τ
;

The relaxation term is the same as the PW and KG
models, as shown in Table 1. With this model, the driver
response depends on the traffic density. The next section
presents Roe’s decomposition technique which is used to
implement the KG, PW, Zhang, and proposed models.

3 Roe decomposition
The KG, PW, Zhang and proposed models are discretized
using the decomposition technique developed by Roe [27]
to evaluate their performance. This technique can be used
to approximate the nonlinear system of equations

Gt þ f Gð Þx ¼ S Gð Þ; ð14Þ
where G is the vector of data variables, f(G) is the vector
of functions of these variables, and S(G) is the vector of
source terms. The subscripts t and x denote partial de-
rivatives with respect to time and distance, respectively.
Equation (14) is then given by

∂G
∂t

þ ∂ f
∂G

∂G
∂x

¼ S Gð Þ: ð15Þ

Let A(G) be the Jacobian matrix of the system. Then
(15) can be expressed as

∂G
∂t

þ A Gð Þ ∂G
∂x

¼ S Gð Þ: ð16Þ

Setting the source terms in (16) to zero gives the qua-
silinear form

∂G
∂t

þ A Gð Þ ∂G
∂x

¼ 0: ð17Þ

The data variables are density ρ and flow ρυ in the
KG, PW, Zhang and proposed models. Roe’s technique
is used to linearize the Jacobian matrix A(G) by decom-
posing it into eigenvalues and eigenvectors. This is based
on the realistic assumption that the data variables, eigen-
values and eigenvectors remain conserved for small
changes in time and distance. This technique is widely
employed because it is able to capture the effects of
abrupt changes in the data variables.
Consider a road divided into M equidistant segments

and N equal duration time steps. The total length is xM so
a road segment has length δx = xM/M, and the total time
period is tN so a time step is δt = tN/N. The Jacobian
matrix is approximated for road segments ðxi þ δx

2 ; xi−
δx
2 Þ.

This matrix is determined for all M segments in every
time interval (tn + 1, tn), where tn + 1 − tn = δt.
Let ΔG be a small change in the data variables G and

Δf the corresponding change in the functions of these
variables. Further, let Gi be the average value of the data
variables in the ith segment. The change in flux at the
boundary between the ith and (i + 1)th segments is

Δ f iþ1
2
¼ A Giþ1

2

� �
ΔG; ð18Þ

where AðGiþ1
2
Þ is the Jacobian matrix at the segment

boundary, and Giþ1
2
is the vector of data variables at the

boundary obtained using Roe’s technique. The flux

Table 1 Traffic model comparison

Term KG model PW model Proposed model Zhang model

Anticipation ρ ∂
∂x ðυ

2ðρÞ−υ2
2dtr

Þρx ρC2
0ρx ρ ∂

∂x ðυ
2ðρÞ−υ2
2dtr

Þρx ðρ∂vðρÞ∂ρ Þ2

ρ ρx

Relaxation ρ υðρÞ−υ
τ ρ υðρÞ−υ

τ ρðυ2ðρÞ−υ2bυs
Þ ρ υðρÞ−υ

τ
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approximates the change in traffic density and flow at
the segment boundary. We have that AðGiþ1

2
Þ ¼ eΛe−1 ,

where Λ is a diagonal matrix of the eigenvalues [λ1, λ2,
⋯, λp] of the Jacobian matrix and e is the corresponding
eigenvector matrix. From [28], the eigenvalues should be
positive so that

Δ f iþ1
2
¼ e Λj je−1 Giþ1−Gið Þ; ð19Þ

where the approximation ΔG = (Gi + 1 −Gi) is used. The
flux at the boundary between segments i and i + 1 at
time n is then approximated by

f niþ1
2
Gn

i ;G
n
iþ1

� � ¼ 1
2

f Gn
i

� �þ f Gn
iþ1

� �� �
−
1
2
Δ f iþ1

2
;

ð20Þ
where f ðGn

i Þ and f ðGn
iþ1Þ denote the values of the

functions of the data variables in road segments i and
i + 1 respectively, at time n. Substituting (19) into (20)
gives

f niþ1
2
Gn

i ;G
n
iþ1

� � ¼ 1
2

f Gn
i

� �þ f Gn
iþ1

� �� �
−
1
2
e Λj je−1 Gn

iþ1−G
n
i

� �
:

ð21Þ

This approximates the change in density and flow
without considering the source.
For the source decomposition of the KG model in (3),

the PW model [15, 20] in (12) and the Zhang model in
(14), we have

S1 Gn
i

� � ¼ ρni
υ ρni
� �

−υni
τ

� �
; ð22Þ

and for the proposed model in (11)

S2 Gn
i

� � ¼ ρni
υ2 ρni
� �

− υni
� �2

bυs

 !
: ð23Þ

The updated data variables for the KG, PW, Zhang
and proposed models are

Gnþ1
i ¼ Gn

i −
δt
δx

 
f niþδ

2
− f niþδx

2

!
þ δtSyðGn

i Þ; y ¼ 1; 2: ð24Þ

Both the KG and proposed models have the same ex-
pressions on the left-hand side (LHS) as shown in (3)
and (11). Therefore, the Jacobian matrix A(G) is the
same for these models and results in the same eigen-
values and eigenvectors, and also average velocity and
density. A(G) as well as the corresponding eigenvalues
and eigenvectors, average density and velocity for the
KG model were derived in [21]. Assuming the right
hand side (RHS) of the KG and proposed models are in
quasilinear form, traffic flow alignment (harmonization)

is not considered so that SyðGÞ ¼ ð00Þ . Then (24) takes
the form

G ¼ ρ
ρυ

� �
; f Gð Þ ¼ f 1

f 2

� �
¼ ρυ

ρυð Þ2
ρ

þ υ2 ρð Þ−υ2
2dtr

ρ

0
BBB@

1
CCCA and Sy Gð Þ ¼ 0

0

� �
:

ð25Þ

The LHS of (3) and (11) is approximated using the

Jacobian matrix ðGÞ ¼ ∂ f
∂G , which is obtained from

(25).

The Jacobian matrix AðGÞ ¼ ∂ f
∂G from (25) is

A Gð Þ ¼ 0

−υ2 þ υ2 ρð Þ−υ2
2dtr

� � 1
2υ

0
BB@

1
CCA: ð26Þ

The eigenvalues obtained from (26) in Appendix A are

λ1;2 ¼ υ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 ρð Þ−υ2
2dtr

� �s
: ð27Þ

These show that when a transition occurs, the velocity
changes according to the equilibrium velocity distribu-
tion and the average velocity.
For a traffic flow to be strictly hyperbolic, the eigen-

vectors must be distinct and real [29]. The eigenvectors
corresponding to the eigenvalues in (27) are distinct and
real when the equilibrium velocity is greater than the
average velocity, i.e.

υ ρiþ1
2

� �
> υiþ1

2
:

Conversely, the eigenvectors are imaginary when

υ ρiþ1
2

� �
< υiþ1

2
;

so to maintain the hyperbolic property for the proposed
model, the absolute value of the numerator under the
radical sign in (27) is employed, which gives

λ1;2 ¼ υiþ1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 ρiþ1

2

� �
−υ2iþ1

2

			 			
2dtr

vuut
: ð28Þ

The corresponding eigenvectors of the KG and pro-
posed models are
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e1;2 ¼ 1

υiþ1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 ρiþ1

2

� �
−υ2iþ1

2

			 			
2dtr

vuut

0
BBBBBB@

1
CCCCCCA
: ð29Þ

The eigenvalues and eigenvectors, average density and
velocity for the PW model were derived in [18]. The
eigenvalues are

λ1;2 ¼ υiþ1
2
� C0; ð30Þ

where C0 is the velocity constant. This shows that
traffic velocity alignment is at a constant rate C0

during transitions. The corresponding eigenvectors
are

e1;2 ¼ 1
υiþ1

2
� C0

 !
: ð31Þ

The average velocity at the boundary of segments i
and i + 1 for the KG, PW and proposed models is

υiþ1
2
¼ υiþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
ρi þ 1

p þ υi
ffiffiffiffi
ρi

pffiffiffiffiffiffiffiffiffiffiffiffi
ρi þ 1

p þ ffiffiffiffi
ρi

p : ð32Þ

The average density for these models at the boundary
of segments i and i + 1 is given by the geometric mean
of the densities in these segments

ρiþ1
2
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ρiþ1ρi
p

: ð33Þ

The eigenvalues for the Zhang model [25] are

λ1 ¼ υiþ1
2
; ð34Þ

and

λ2 ¼ υiþ1
2
þ ρv ρð Þρ; ð35Þ

where the subscript ρ presents the derivative of the equi-
librium velocity distribution with respect to density. The
corresponding eigenvectors are

e1 ¼ 1

υiþ1
2
−v ρiþ1

2

� �
−ρiþ1

2
v ρiþ1

2

� �
ρ

0
B@

1
CA; ð36Þ

e2 ¼ 1

υiþ1
2
−v ρiþ1

2

� �
0
@

1
A: ð37Þ

The average density ρiþ1
2
of the Zhang model at the seg-

ment boundary is the same as for the KG, PW and pro-
posed models given in (33). The average velocity viþ1

2
at

the boundary of segments i and i + 1 for the Zhang model
is given in Appendix B.

A. Entropy Fix

Entropy fix is applied to Roe’s technique to smooth
any discontinuities at the segment boundaries. The
Jacobian matrix AðGiþ1

2
Þ is decomposed into its eigen-

values and eigenvectors to approximate the flux in the
road segments (21). The Jacobian matrix for the road
segments is then replaced with the entropy fix solution
given by

e Λj je−1;
where jΛj ¼ ½λ̂1; λ̂2;⋯; λ̂k ;⋯; λ̂n� is a diagonal matrix
which is a function of the eigenvalues λk of the Jacobian
matrix, and e is the corresponding eigenvector matrix.
The Harten and Hayman entropy fix scheme [30] is
employed here so that

λ̂k ¼ δ̂k if λkj j < δ̂k
λkj j if λkj j≥ δ̂k



ð38Þ

with

δ̂k ¼ max 0; λiþ1
2
−λi; λiþ1−λiþ1

2

� �
: ð39Þ

This ensures that the λ̂k are not negative and similar at
the segment boundaries. The Jacobian matrix e|Λ|e−1 for
the proposed, KG and Zhang models are given in
Appendix C. The corresponding flux is obtained from (21)
using f(Gi) and f(Gi+ 1) and substituting e|Λ|e−1 for AðGiþ1

2
Þ

, the updated data variables, ρ and ρυ, are then obtained at
time n using (24).

4 Performance results
The performance of the proposed model is evaluated in
this section and compared with the KG, PW and
Zhang models over a circular road of length xM = 100 m.
A discontinuous density distribution ρ0 at t = 0 with peri-
odic boundary conditions is employed. ρ0 is shown in blue
in the figures. The Greenshields equilibrium velocity dis-
tribution given in (13) is used with υm = 34 m/s and max-
imum density ρm = 1. The safe distance headway is 28 m,
the safe time headway is ts = 1.4 s, and dtr is 20 m. For the
KG and PW models, τ = 1 s. The total simulation time for
the proposed and KG models is 30 s. The total simulation
time for the PW model is 3 s and for the Zhang model is
4 s. Based on δx = 1 m, the time step for the proposed, KG
and Zhang models is chosen as δt = 0.01 s, and the time
step for the PW model is chosen as δt = 0.006 s, to satisfy
the CFL condition [31]. The number of time steps and
road steps are 3000 and 100, respectively, for both the
proposed and KG models, while the number of time steps
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for the PW model is 500. The number of road steps and
time steps for the Zhang model are 100 and 400, respect-
ively. The flow regulation parameters considered for the
proposed model are b = 1 and 2. The simulation parame-
ters are summarized in Table 2.
Figure 1 presents the normalized traffic density with

the KG model at four different time instants. This shows
that the traffic evolves into two clusters of vehicles. At
5 s the density behavior is slightly oscillatory. However,
at 15 s the traffic density beyond 50 m has an almost
uniform level of 0.09, and there are two clusters of vehi-
cles between 0 and 50 m. The traffic density of these
clusters ranges from 0.1 to 0.21. Both clusters span a
distance of approximately 20 m. At 30 s, the traffic dens-
ity between 0 and 40 m has an almost uniform density
of 0.09, while beyond 40 m there are two clusters. The
clusters still span a distance of about 20 m, so they have
just moved over time. The first cluster has a maximum
density of 0.25 at 50 m, and the second a maximum
density of 0.2 at 78 m.

Figure 2 presents the normalized traffic density with
the proposed model and b = 1 s at four different time in-
stants. This shows that with a small value of b, the traffic
becomes quite smooth over time. At 5 s, the variation in
traffic density ranges from 0.07 to 0.17, while at 15 s this
variation is 0.1 to 0.14, and at 30 s the range is only 0.12
to 0.13. Figure 3 presents the normalized traffic density
behavior with the proposed model and b = 2 s at four
different time instants. There are larger variations in the
density than with b = 1, but smaller than with the KG
model. The traffic evolves into two clusters with a
smooth density between them. The variation in density
is between 0.09 and 0.16 at 15 s, and between 0.1 and 0.
15 at 30 s.
The traffic velocity behavior with the KG model is

given in Fig. 4 at four different time instants. The great-
est fluctuations in velocity occur at 5 s. At 15 s, the traf-
fic has a nearly uniform velocity beyond 50 m of 31 m/s.

Table 2 Simulation parameters

Name Parameter Value

road step δx 1 m

equilibrium velocity υ(ρ) Greenshields velocity
distribution

maximum velocity υm 34 m/s

time step for the KG, Zhang
and proposed models

δt 0.01 s

time step for the PW model δt 0.006 s

velocity constant C0 4.12 s

safe distance headway ds 28 m

transition distance dtr 20 m

safe time headway ts 1.4 s

safe velocity υs 28
1:4 ¼ 20 m/s

normalized maximum density ρm 1

total simulation time for the
KG and proposed models

tN 30 s

total simulation time for the
PW model

tN 3 s

total simulation time for the
Zhang model

tN 4 s

flow regulation parameter B 1, 2

relaxation time constant Τ 1 s

number of time steps for the
PW model

N 500

number of time steps for the KG
and proposed models

N 3000

number of time steps for the
Zhang model

N 400

number of road steps M 100

Fig. 1 The KG model density behavior with τ = 1 s

Fig. 2 The proposed model density behavior with b = 1
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There are two clusters of vehicles from 0 to 50 m. The
velocity in these clusters varies from 27 m/s to 30.2 m/s.
At 30 s, between 0 and 40 m the traffic has a near uni-
form velocity of 31 m/s, and the two clusters are located
beyond 40 m. The first cluster is between 40 and 70 m
and has a velocity which varies from 26 to 30.2 m/s,
while the second cluster is located between 70 and 90 m
and has a velocity which varies from 28 to 30.2 m/s.
Comparing the traffic at 15 and 30 s, the velocity in the
second cluster increases by 1 m/s, whereas the velocity
of the first cluster decreases by 2 m/s.
Figure 5 presents the velocity behavior at four different

time instants for the proposed model with b = 1. This
corresponds to the density shown in Fig. 2. At 5 s, the
variations in velocity are the greatest, ranging from 29 to
31 m/s. At 15 s, this variation is 29.5 to 31.5 m/s, while
at 30 s, the difference is less than 1 m/s. These variations
are smaller than with the KG model. Figure 6 presents

the velocity behavior at four different time instants for
the proposed model with b = 2. This corresponds to the
density shown in Fig. 3. The fluctuations in velocity are
greatest at 5 s, with a range of 28 to 31 m/s, At 15 s, the
range is 29 to 30.5 m/s, while at 30 s it is only 29 to 30.
2 m/s. Thus, the velocity fluctuations are larger than
with b = 1, but smaller than with the KG model.
The traffic flow behavior with the KG model is

presented in Fig. 7 at four different time instants. The
change in flow follows the changes in density and
velocity as it is the product of these two parameters. At
5 s, the flow is more oscillatory, whereas at 15 s the flow
evolves into two clusters between 0 and 50 m. The flow
in the first cluster varies from 6 veh/s to 3.5 veh/s, while
in the second cluster it varies from 6.0 veh/s to 2.8 veh/
s. The flow beyond 50 m aligns to a uniform level of 2.8

Fig. 3 The proposed model density behavior with b = 2

Fig. 4 The KG model velocity behavior with τ = 1 s

Fig. 5 The proposed model velocity behavior with b = 1

Fig. 6 The proposed model velocity behavior with b = 2
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veh/s. At 30 s, the two clusters have moved beyond
40 m. The flow in the first cluster now varies from 2.8
to 7.0 veh/s, while in the second cluster it varies from 3.
0 to 5.2 veh/s. The minimum flow between the clusters
is 3.0 veh/s at 65 m. In the first 40 m, the flow has an
approximately uniform level of 2.8 veh/s.
Figure 8 presents the traffic flow behavior at four dif-

ferent time instants with the proposed model and b = 1.
At 5 s, the flow varies from 2.5 to 4.5 veh/s. The max-
imum and minimum flows occur at 50 m and 40 m, re-
spectively. At 15 s, the flow varies from 3.2 to 4.2 veh/s,
which is less than at 5 s. The maximum and minimum
flows now occur at 70 m and close to 60 m, respectively.
At 30 s, the flow is only in the range 3.5 to 4.0 veh/s,
and the maximum flow occurs at 40 m. Figure 9 pre-
sents the corresponding traffic flow behavior with the

proposed model and b = 2. The behavior is more oscilla-
tory at 5 s, and the flow varies from 2.5 to 6.0 veh/s,
which is greater than with b = 1. At 15 s, the flow varies
from 3.0 to 4.5 veh/s, and it is almost the same at 30 s.
However, the locations of the maximum and minimum
traffic flows are different.
The velocity behavior on the road over a time span of

3 s with the PW model is given in Fig. 10. This shows
that the variations in velocity increase over time. In par-
ticular, the velocity exceeds 300 m/s and goes below −
200 m/s, even though the maximum and minimum vel-
ocities are 34 m/s and 0 m/s, respectively. Thus the PW
model produces unrealistic behavior. Further, the vel-
ocity is more oscillatory with the PW model than with
the proposed model. The traffic velocity behavior with
the Zhang model over a time span of 4 s is shown in Fig.

Fig. 7 The KG model flow with τ = 1 s

Fig. 8 The proposed model flow with b = 1

Fig. 9 The proposed model flow with b = 2

Fig. 10 The PW model velocity behavior
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11. The traffic velocity goes up to 140 m/s, which is
well above the maximum velocity 34 m/s. Over time,
the variations in velocity decrease. The velocity is more
oscillatory than the proposed model and is unrealistic.
The results in this section show that the flow regula-
tion parameter b in the proposed model can be used to
adjust traffic oscillations and cluster behavior. For
smaller values of b, traffic becomes more uniform.
Thus, unrealistic oscillations can be eliminated with
this parameter, and traffic behavior can be properly
characterized.

5 Conclusion
In this paper, a new model was proposed to
characterize the physiological and psychological
response of drivers to changes in the traffic flow. For
a slow response, the traffic becomes clustered, while
for a fast response the traffic flow is more uniform. A
regulation parameter was introduced to characterize
driver response to forward conditions. This allows for
more realistic traffic characterization than with other
models in the literature. With smaller values of the
regulation parameter in the proposed model, changes
in velocity are reduced and the traffic flow becomes
smooth. Pollution emissions increase with changes in
velocity, in particular carbon monoxide, nitric oxide
and hydrocarbon emissions are greater at higher vel-
ocities. However, velocities between 16.7 m/s and 22.
2 m/s result in reduced fuel consumption and

pollution [32]. Variations in velocity can be reduced
with the regulation parameter b in autonomous vehi-
cles to reduce fuel consumption and pollution. The
proposed model can help in analyzing the behavior of
autonomous vehicles. This will lead to more accurate
results which can be employed to reduce fuel con-
sumption and pollution.

6 Appendix

A: Eigenvalues λ1;2 ðEigenvaluesÞ

A Gð Þ ¼ 0

−υ2 þ υ2 ρð Þ−υ2
2dtr

� � 1
2υ

0
BB@

1
CCA: ð40Þ

At the road segment boundaries, the eigenvalues λi of
the Jacobian matrix are required to obtain the flux in
(21), and are obtained as the solution of

A Gð Þ−λIj j ¼ −λ

−υ2 þ υ2 ρð Þ−υ2
2dtr

� � 1
2υ−λ

								

								
¼ 0; ð41Þ

which gives

λ2−2υλþ υ2−
υ2 ρð Þ−υ2
2dtr

� �
¼ 0: ð42Þ

The eigenvalues are then

λ1;2 ¼
2υ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4υ2−4 υ2−

υ2 ρð Þ−υ2
2dtr

� �� �s

2

¼ υ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 ρð Þ−υ2
2dtr

� �s
:

B. Zhang Model Average Velocity
Using Roe scheme, the average velocity at the boundary
of segments i and i+ 1 for the Zhang model is

viþ1
2
¼ −bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−4ac

p

2a
ð43Þ

where

a ¼ ρiþ1
2
−ρi−1

2
;Fig. 11 The Zhang model velocity behavior
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b ¼ − ρiþ1
2
v ρiþ1

2

� �
−ρi−1

2
v ρi−1

2

� �h i
−v ρð Þ

� ρiþ1
2
−ρi−1

2

� �
−2ρiþ1

2
viþ1

2
−v ρiþ1

2

� �� �
þ 2ρi−1

2
vi−1

2
−v ρi−1

2

� �� �
;

c ¼ v ρð Þ ρiþ1
2
v ρiþ1

2

� �
−ρi−1

2
v ρi−1

2

� �h i
þ v ρð Þ

� ρiþ1
2
viþ1

2
−v ρiþ1

2

� �� �
−ρi−1

2
vi−1

2
−v ρi−1

2

� �� �� �

−
viþ1

2
−v ρiþ1

2

� �� �
ρiþ1

2

� �2
ρiþ1

2

þ v ρiþ1
2

� �
viþ1

2
−v ρiþ1

2

� �� �
ρiþ1

2

� �0
B@

1
CA

þ
vi−1

2
−v ρi−1

2

� �� �
ρi−1

2

� �2
ρi−1

2

þ v ρi−1
2

� �
vi−1

2
−v ρi−1

2

� �� �
ρi−1

2

� �0
B@

1
CA:

C. Jacobian Matrix for Entropy Fix

The Jacobian matrix e|Λ|e−1 for both the proposed
and KG models is

e Λj je−1 ¼ 1

υiþ1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 ρiþ1

2

� �
−υ2iþ1

2

			 			
2dtr

vuut
1

υiþ1
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 ρiþ1

2

� �
−υ2iþ1

2

			 			
2dtr

vuut

0
BBBBBB@

1
CCCCCCA
�

υiþ1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 ρiþ1

2

� �
−υ2iþ1

2

			 			
2dtr

vuut
							

							
0

0

υiþ1
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 ρiþ1

2

� �
−υ2iþ1

2

			 			
2dtr

vuut
							

							

0
BBBBBBBBB@

1
CCCCCCCCCA

�
υiþ1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 ρiþ1

2

� �
−υ2iþ1

2

			 			
2dtr

vuut

−υiþ1
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 ρiþ1

2

� �
−υ2iþ1

2

			 			
2dtr

vuut
−1
1

0
BBBBBB@

1
CCCCCCA
�

−1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 ρiþ1

2

� �
−υ2iþ1

2

			 			
2dtr

vuut
;

The Jacobian matrix for the PW model is

e Λj je−1 ¼ 1
υiþ1

2
þ C0

1
υiþ1

2
−C0

 !
�

υiþ1
2
þ C0

			 			
0

0

υiþ1
2
−C0

			 			
0
B@

1
CA� υiþ1

2
−C0

−υiþ1
2
−C0

−1
1

 !
� −1
2C0

;

and the Jacobian matrix for the Zhang model is

e Λj je−1 ¼ 1

υiþ1
2
−v ρiþ1

2

� �
−ρiþ1

2
v ρiþ1

2

� �
ρ

1

υiþ1
2
−v ρiþ1

2

� �
0
B@

1
CA�

υiþ1
2
−v ρiþ1

2

� �
−ρiþ1

2
v ρiþ1

2

� �
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0
0

υiþ1
2
−v ρiþ1

2

� �			 			
0
BB@

1
CCA

�
υiþ1

2
−v ρiþ1

2

� �
−υiþ1

2
þ v ρiþ1

2

� �
þ v ρiþ1

2

� �
ρ

−1
1

0
B@

1
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� 1

ρiþ1
2
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2

� �
ρ

;
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