Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Zatiketa (matematika)

Artikulu hau eragiketa matematikoari buruzkoa da; beste esanahietarako, ikus «Zatiketa».

Matematikan, zatiketa zenbaki bat, zatikizuna izenekoa, zatitzaile izena duen beste zenbaki batez zenbat aldiz edo zenbat zatitan parti daitekeen ematen duen eragiketa aritmetikoa da. Zatiketaren emaitza zatidura da. Adibidez, 8 zenbakia (zatikizuna) 2 zenbakiaz (zatitzailea) 4 zatitan partitzen denez, zatiketaren emaitza edo zatidura 4 dela esaten da. a zenbakiaren (zatikizuna) zatiketa b (zatitzailea) zenbaki batez honela adierazten da:

Arestiko adierazpena honela irakurtzen da: a zati b.

Lerro bakar batean idatz daitekeela abantaila duen beste idazkera batzuk dira honakoak: edo .

Horrela adibidez:

Zatiketa praktikan

aldatu
 
20 kopurua (zatikizuna) 4 zatitan (zatitzailea) egiten bada, 5 (zatidura) kopuruko multzoak sortzen dira: 20 zati 4 berdin 5.

Matematika zatiketa non-nahi agertzen den eragiketa da, baina eguneroko bizitzan hainbat erabilera du zatiketak. Adibidez:

  • banaketa bat egin behar denean, guztizko bat pertsona zenbaiten artean banatu behar denean esaterako, bakoitzari eman beharrekoa kalkulatzeko zatiketa egin behar da; adibidez, 20 goxoki 4 haurren artean banatu behar badira,
 

eman behar zaio bakoitzari;


  • banaketa egitean, guztizko batetik zati jakin bat banatzen hasten bada, guztira zenbat zati suertatuko diren kalkulatzeko zatiketa egin behar da: adibidez, 200 eurotik egunero 10 euro hasten bada xahutzen, azkenean
 

20 egunetarako dirua izango da.

Hondarra

aldatu

Batzuetan, zatiketa ez da zehatza eta orduan hondar bat sortzen da. Adibidez, 8:3=2 (gehi 2ko hondarra), 8 zenbakia 3 zenbakiaz bi zati egin daitezkeelako (6 osatuz guztira) eta hondarra 2 izanik. Kasu hauetan honela adieraz daiteke emaitza:

  edo  

Zatiketarako metodoa

aldatu

Zatiketa-algoritmoak oinarrizko zatiketa zenbaiten emaitzak buruz jakitea eskatzen du. Biderketa-taula jakitea nahikoa da horretarako: adibidez, 3×4=12; beraz, 12:3=4 eta 12:4=3.

Algoritmoa adibide batez garatuko da. Egin beharrekoa zatiketa 948:32 da.

  • Zatikizunaren eta zatitzailearen lehenengo zifrak hartu eta zatitu egiten dira: 9:3=3.
  • Emaitza zatitzaileaz biderkatzen da: 3×32=96
  • 96 emaitza (bi zifra dira), zatikizunaren lehenengo bi zifrekin erkatzen da. Handiagoa bada, lehenengo zatiduraren aurreko zifra hartzen da. Txikiagoa bada, bera gordetzen da. Adibidean: 94<96. Beraz, hasierako 3 ordez, 2 hartzen da eta zatiduraren lehenengo zifra moduan jartzen da.
  • 2×32=64 zatikizunaren lehenengo bi zifren azpian jartzen da eta bien arteko kenketa egiten da: 94-64=30.
  • Zatikizunaren hurrengo zifra jaisten da: 8, 308 osatuz.
  • Zatikizun berria 308 balitz bezala jokatzen da orain.
  • 3:3=1
  • 1×32=32
  • 32<30
  • 1 zifraren aurrekoa hartzen da: 9 (kontuz, 1 denean ez da 0 hartzen, 9 baizik) eta zatiduraren bigarren zifra moduan jartzen da: 29.
  • 9×32=288
  • 288 azpian jarri eta 308-288=20
  • ezin da zifra gehiagorik jaitsi eta beraz, zatiketa algoritmoa bukatu egin da: 948:32=29, hondarra 20 izanik. Honela ere adieraz daiteke emaitza: 948=32×29+20.
 

 

   
 
 
 

Ikus, gainera

aldatu

Kanpo estekak

aldatu