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Abstract—Goal: the objective of this study was to de-
velop a method to identify respiratory phases (i.e., inhale or
exhale) of seismocardiogram (SCG) cycles. An SCG signal
is obtained by placing an accelerometer on the sternum to
capture cardiac vibrations. Methods: SCGs from 19 healthy
subjects were collected, preprocessed, segmented, and la-
beled. To extract the most important features, each SCG
cycle was divided to equal-sized bins in time and frequency
domains, and the average value of each bin was defined
as a feature. Support vector machines was employed for
feature selection and identification. The features were se-
lected based on the total accuracy. The identification was
performed in two scenarios: leave-one-subject-out (LOSO),
and subject-specific (SS). Results: time-domain features re-
sulted in better performance. The time-domain features that
had higher accuracies included the characteristic points
correlated with aortic-valve opening, aortic-valve closure,
and the length of cardiac cycle. The average total identifi-
cation accuracies were 88.1% and 95.4% for LOSO and SS
scenarios, respectively. Conclusion: the proposed method
was an efficient, reliable, and accurate approach to iden-
tify the respiratory phases of SCG cycles. Significance: The
results obtained from this study can be employed to en-
hance the extraction of clinically valuable information such
as systolic time intervals.

Index Terms—Respiratory phase identification, seismo-
cardiogram (SCG), support vector machine (SVM), systolic
time intervals (STI).

|. INTRODUCTION

ARDIAC activities create vibrations that are transmit-
C ted to the chest wall. Such vibrations can be captured
noninvasively by placing an accelerometer on the sternum.
The captured signal is called seismocardiogram (SCG) [1]-[3].

Manuscript received August 2, 2016; revised September 23, 2016; ac-
cepted October 18, 2016. Date of publication October 26, 2016; date of
current version July 15, 2017. This work was supported in part by the In-
dustrial R&D Fellowship of Natural Sciences and Engineering Research
Council of Canada. Asterisk indicates corresponding author.

*V. Zakeri was with the Heart Force Medical Inc., Vancouver, BC V6C
3P6, Canada. He is now with the Department of Mechanical Engineering,
University of British Columbia, Vancouver, BC V6T 1Z4, Canada (e-mail:
vahid.zakeri@mech.ubc.ca).

A. Akhbardeh is with the School of Medicine, Johns Hopkins Univer-
sity.

N. Alamdari, R. Fazel-Rezai, and K. Tavakolian are with the Depart-
ment of Electrical Engineering, University of North Dakota.

M. Paukkunen is with the Department of Electrical Engineering and
Automation, Aalto University.

Digital Object Identifier 10.1109/TBME.2016.2621037

The availability of modern, high-quality, and inexpensive ac-
celerometers combined with improving low-cost computational
power allows SCG to be recorded and analyzed quickly and
efficiently [4].

Analyzing SCG has revealed valuable clinical information
about cardiac activities such as myocardial contractility and
systolic time intervals (STI). Myocardial contractility, which in-
dicates the ability of heart muscles to contract, can be invasively
assessed by using catheters to measure the pressure change in
the left ventricle [4]. SCG can be used for noninvasive assess-
ment of myocardial contractility [3], [5], [6]. Moreover, STI
provide a quantitative estimation for left ventricle performance
in the presence of cardiovascular disorders [7].

Crow et al. compared SCG with echocardiography (Echo),
cardiology’s gold standard, and indicated specific SCG points
that could be used for estimating STI. They concluded that
because of the consistency between SCG and Echo points, they
were equally accurate in measuring STI [8]. SCG has been used
in recent studies to extract different STI such as pre-ejection
period, left ventricular ejection time, and electromechanical
systole (QS2) [6], [9]-[13].

In addition to cardiac information, SCG contains respiratory
information, as it can capture the movements of the chest due
to respiratory expansion and contraction of lungs [14]. As a
result, SCG can also be employed in respiratory assessment.
For instance, it has been used for estimating respiratory rate
[15] and screening for sleep apnea [16].

However, respiration affects SCG signals. Tavakolian et al.
indicated that SCG cycles corresponding to inhale and exhale
phases of respiration have different morphologies. This finding
was used to improve the signal averaging [17]. In another study,
Pandia et al. extracted specific respiration-dependent features
of SCG including amplitude and timing changes within and
between heartbeats [14].

Considering the respiratory effects on morphology, ampli-
tude, and timing of SCG signals, relevant cardiac information
such as STI can be significantly different in different respiration
phases. That is, SCG beat-to-beat cycles corresponding to in-
hale are different from those corresponding to exhale, as shown
in Fig. 1. Therefore, it is necessary to differentiate SCG cycles
based on their position in the respiratory phases.

The focus of this study was to develop an algorithm that
can identify the respiratory phases of SCG cycles without an
independent recording of the respiration signal, as this imposes
extra complexity and cost.

0018-9294 © 2016 Canadian Crown Copyright
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Fig. 1. SCG cyclesininhale (top) and exhale (bottom) phases obtained

from one subject.

There exist a body of work using electrocardiogram (ECG)
or SCG to extract respiratory information such as respiration
rate, but none of them have investigated the phase identification
of cardiac cycles [18]-[21]. The closest work to this study was
done by Alamdari et al., in which an envelope detection method
was employed on SCG to derive the respiration signal [22].
The respiratory phases of SCG cycles were identified using
the derived respiration signal. Such analysis involved delays
between the derived signal and the measured respiratory belt
signal. Moreover, prior knowledge was needed as to whether to
choose the upper or the lower envelope of SCG signal.

In another work, Pandia et al. performed a frequency domain
analysis on SCG in the range 0-100 Hz [23]. They subdivided
this range into 5 and 10 Hz frequency bins and indicated a sta-
tistically significant difference between the power of inspiratory
and expiratory SCG cycles in 10-40 Hz range. Despite the re-
sults, no classification or identification among SCG cycles was
conducted in their study.

This paper presents a novel method for identifying the respira-
tory phases of SCG cycles. Our approach is based on machine-
learning techniques [24]; a preliminary version of the study
has been reported [25]. Section II outlines the methodology,
Section III shows the results, Section IV contains discussions,
and Section V provides conclusions.

II. METHODOLOGY
A. Data Collection and Preprocessing

Ethics approval was given by Aalto University, Finland for
this study, and consent was received from 20 healthy male sub-
jects with no known history of cardiovascular or pulmonary
diseases (age: 24.8 £ 3.09 years; height: 180.6 £ 5.10 cm;
weight: 78.9 £ 9.05 kg). The trial was performed twice for each
subject, and each trial took about 10 min with 1000-Hz sampling
frequency (total 40 trials).

A respiration belt sensor (BN-RESP-XDCR, BIOPAC Sys-
tems Inc., Goleta, CA, USA) was used to measure the respiration
signal (effort). The belt sensor was tightened around the chest
to record breathing properly. A three-component accelerometer
(SCA610-C21HI1A, VTI Technologies, Vantaa, Finland) was
mounted on the sternum using double-sided adhesive tape along
the x-, y-, and z-axes. The accelerometer sensor was placed about
one centimeter above the xyphoid process.

The rated frequency response of the accelerometers was
50 4+ 30 Hz. The input range was £+ 1 g. The accelerome-
ter was separately measured at the manufacturer’s laboratory
and was shown to have a cutoff frequency (- 3 dB) at 46 Hz.
To reduce high-frequency noise and provide antialias filtering,
the accelerometer output was fed through an eigth-order Bessel
low-pass filter before analog-to-digital conversion.

The ECG, SCG, and respiratory signals were all measured
simultaneously at 1000 Hz, while the subjects were in the resting
supine position. In this study, only the z-axis component was
considered for investigations.

The quality of measured signals was inspected; the data of
one subject as well as one single trial of three subjects were
discarded. In total, 35 remaining recordings were normalized to
zero mean and unit variance.

B. Annotation, Segmentation, and Labeling

The respiration signals were examined manually to find the
peaks of inhale and exhale phases. The peak of inhale (exhale)
was the moment at which the inhale (exhale) ended and the
exhale (inhale) phase started (see Fig. 2). Such peaks did not
necessarily correspond to respiration’s maxima and minima as
Fig. 2 indicates (existence of multiple local maxima and min-
ima). Therefore, a simple peak-finding algorithm was not suffi-
cient, and visual inspection was needed. This task and its valida-
tion were performed by two experts independently to minimize
the possible annotation errors.

After annotation, segmentation and labeling were undertaken.
In these stages, SCGs were segmented into beat-to- beat cycles
using the R-peaks of ECG signals. The Pan—Tompkins algorithm
was used to detect the R-peaks of ECG [26]. Each SCG cycle
was defined as the interval between two consecutive R-peaks
shifted to the left (delayed) by 0.2 s and was labeled as either
inhale (I) or exhale (E), based on the position of their R-peak
in the respiratory cycle. The total SCG cycles were 20 373, of
which, 8604 cycles were labeled as I, and 11766 were labeled
as E.
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C. Time and Frequency Feature Extraction, and Feature
Selection

As previously mentioned, the goal was to identify the respi-
ratory phases by analyzing the SCG cycles. Our method started
with extracting informative features from time- and frequency-
domain representations of SCG cycles to facilitate respiratory
phase identification.

In order to have comparable features in the time domain, the
number of data points in each SCG cycle was set to a fixed
value. In this study, the fixed value was set at 2048, which was
greater than the maximum number of data points in all cycles.
To reach 2048, sufficient data points, whose value was equal
to the cycle’s arithmetic mean (mean-padding), were added to
the end of each cycle. It should be mentioned that interpolation
and extrapolation were avoided, because they would change the
timings between the data points of each cycle. Such timings are
correlated with cardiac events (e.g., STI), and so are vital to be
left unchanged.

After the mean-padding, each SCG cycle in the time domain
was divided into 512 equal-sized bins. As a result, each bin had
four data points. The arithmetic mean of the data in each bin was
computed and is referred to as the time-domain feature in this
study. The resolution of these features in the time was 0.004 s
(every 0.004 s a time-domain features was extracted).

To extract the frequency-domain features, each SCG cycle
was transformed to the frequency-domain using fast Fourier
transform (FFT). The first 512 FFT coefficients corresponded
to the frequency range 0-500 Hz (this range was based on the
sampling frequency of 1000 Hz, and the Shannon-Nyquist the-
orem [27]). These 512 coefficients obtained from each cycle are
frequency-domain features. The resolution of these features in
the frequency is 295 ~ 0.98 (every 0.98 Hz a frequency-domain
features was extracted).

After extracting the time- and frequency-domain features,
feature selection was done in order to select the most promi-
nent features in identifying the respiratory phase. In this in-
vestigation, we used support vector machine (SVM), a pow-
erful machine-learning algorithm for identification. SVM has
been widely used for analyzing biomedical signals such as heart
murmurs identification [28], [29], reducing false alarms during
arrhythmia [30], and monitoring dental operations [31].

SVM is originally a binary identifier, which separates the
data of two categories by a hyperplane found through solving
a convex max—min optimization problem [32]. In order to use
SVM, two steps of training and testing should be followed. In
the training step, SVM uses a selective set of data (training) to
develop a model. Then, in the testing step, another set of data
(testing) is used to evaluate the performance of the developed
model. For this study, there was no overlap between training
and testing data.

If the data cannot be separated by a hyperplane in the original
space, SVM transforms the data to a higher dimension using
a kernel function in order to facilitate their separation. In this
paper, a radial basis function (RBF) was employed as the ker-
nel, as described by K (X; . X;) = exp(—7X; — X;?)y > 0,
where X is the input vector and +y is a hyperparameter that can

modify the results. SVM with RBF kernel has another hyperpa-
rameter C that controls how much misclassification is acceptable
in the training stage [32]. The values of these hyperparameters
were obtained using a grid search method with a fivefold cross
validation [33].

To select the most prominent features, all cycles from all sub-
jects were considered, and an SVM model was developed for
each individual feature, in both time and frequency domains.
The software package LIBSVM in a MATLAB platform was
employed in developing the models [34]. Half of the data were
randomly selected for training (uniform distribution), and the
other half used for testing. The random training/testing proce-
dure was iterated 100 times, and the total accuracy was obtained
for each individual time and frequency feature. The total accu-
racy is the ratio of the number of correctly identified cycles
to the total number of cycles (presented as a percentage). This
analysis indicated which time or frequency domain features had
higher accuracy in identifying the respiratory phase.

The next step in our analysis was to select the number of
features that could reach the highest accuracy when combined
together as the feature vector. To do this analysis, time and fre-
quency features were considered separately and together (time
frequency). These were sorted from the greatest to the smallest
total accuracy. Starting from the highest accuracy feature, addi-
tional features were added one by one to form feature vectors
each with a continually increasing number of features. For each
feature vector, the data were randomly divided into 50% train-
ing and 50% testing groups (uniform distribution). The effect of
each number of features in identifying the respiratory phases of
SCG cycles was investigated using the SVM model with RBF
kernel. The random training/testing procedure was iterated 100
times, and the total accuracy of each number of features was
obtained.

D. Respiratory Phase Identification

After selecting the prominent features, the respiratory phase
identification of SCG cycles was investigated in two training-
testing scenarios: leave-one-subject-out (LOSO) and subject-
specific (SS). In the LOSO scenario, the training data were
selected from all subjects except the test subject (TS). In this
scenario, no data from the TS were used in the training. As it
was mentioned in Section II-A, two recordings were available
for each subject. In the SS scenario, the training data were
selected similar to LOSO, except that one recording from the
TS was also considered. The testing data in this scenario were
the other recording. There was no overlap between the training
and testing data in either of these scenarios.

A model selection procedure was employed to choose the best
model for identification. The candidate models were SVM with
different nonlinear kernels, including second-order polynomial
(quadratic), third-order polynomial (cubic), RBF with v = #
(medium Gaussian), and RBF with v = ﬁ (course Gaussian),
where P is the number of features.

In the LOSO scenario, each candidate model was trained with
two training schemes. LOSO-Train-Scheme 1 included all SCG
cycles available in the training data. To explain LOSO-Train-
Scheme 2, we need to first define the “transition cycle”.
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Fig. 3. Block diagram of the proposed method for identification of the
respiratory phases of SCG cycles.

For each SCG signal, the i;, cycle (SCG;) is a “transition
cycle” if,

SCG,_1 = Inhale & SCG; = Inhale & SCG;; = Exhale,

or

SCG,_1 = Exhale and SCG; = Exhale and SCG; . ; = Inhale,
where i = 2, 3,4, ..., n-1, and n is the total number of cycles
in the SCG signal. In addition, “SCG; = Inhale” indicates that
the respiratory phase of SCG; is inhale (a similar interpretation
applies to the rest of aforesaid equations).

In this definition, SCG; is called the “transition-cycle” be-
cause the respiration phase changes in the next cycle (SCG; . 1).
For LOSO-Train-Scheme 2, among the training data, only the
SCG cycles just before the transition-cycles (SCG;_;) were
selected.

Since each of the SVM models were trained in two schemes,
there were a total of eight candidate models for the LOSO
scenario.

In the SS scenario, there were three training schemes: SS-
Train-Scheme 1, SS-Train-Scheme 2, and SS-Train-Scheme 3.
The first two schemes were similar to LOSO-Train-Scheme 1
and LOSO-Train-Scheme 2, respectively. SS-Train-Scheme 3
included only the SCG cycles of the TS’s recorded trial. There
were a total of 12 candidate models for the SS scenario.

For each scenario, the candidate models predicted the labels
of the testing data. The number of transition-cycles (NTC) was

TABLE |
DEFINITIONS OF STATISTICAL MEASURES

Target Inhale Accuracy = 100 (Number of correctly

identified inhale cycles/Total number of inhale cycles)

Target Exhale Accuracy = 100+ (Number of correctly

identified exhale cycles/Total number of exhale cycles)

Output Inhale Accuracy = 100+ (Number of correctly

identified inhale cycles/Total number of cycles identified as inhale)
Output Exhale Accuracy = 100% (Number of correctly

identified exhale cycles/Total number of cycles identified as exhale)
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Fig. 4. (Top): effect of number of features in time, frequency, and time-
frequency domains in identifying the respiratory phases of SCG cycles.
(Bottom): a zoomed view of the top figure. The total accuracies of time,
frequency, and time-frequency domains were ultimately decreased by
increasing the number of features, each with different rates.

computed in the predicted labels for each model. Then, the
model that had the highest NTC was selected. In the predicted
labels of the selected model, only the cycles just before the
transition-cycles were considered and their predicted labels were
reported. Fig. 3 indicates the block diagram of the proposed
method.

The performance of the proposed method in identification of
the respiratory phases of SCG cycles was described by different
statistical measures as defined in Table I. In this table, target
data (inhale/exhale) are ground-truth labels, whereas output data
(inhale/exhale) are the predictions of the selected model.

I1l. RESULTS
A. Feature Selection

Fig. 4 shows the effect of number of features in identifying the
respiratory phases of SCG cycle for time, frequency, and time-
frequency domains as described in Section II-C. According to
Fig. 4, the maximum total accuracies for time, frequency, and
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with higher total accuracies are highlighted.

TABLE Il
NUMBER OF TRANSITION CYCLES FOR DIFFERENT MODELS IN LOSO
SCENARIO OBTAINED FOR ONE SUBJECT

LOSO*-Train-Scheme 1 LOSO*-Train-Scheme 2

Cu® MGY CG* Qu° Cu¢ MG! CG*

279 208 328

QuP
308 156

NTC! 319 363 180

&: Leave one subject out
b-e.. Quadratic, Cubic, Medium Gaussian, Course Gaussian
f: Number of transition cycles

time-frequency domains were 93%, 89.8%, and 91.2%, obtained
for 176, 108, and 88 selected features, respectively. The bottom
plot of Fig. 4 is a zoomed view of the top plot. As we can see, the
total accuracies of time, frequency, and time-frequency domains
were ultimately decreased by increasing the number of features,
each with different rates.

Based on this analysis, the maximum total accuracy was ob-
tained for the selected features in the time domain. Fig. 5 high-
lights the time-domain features with higher total accuracies on
SCG cycles in the inhale and exhale phases obtained from one
subject.

B. LOSO Scenario

The respiratory phases of SCG cycles were identified in the
LOSO scenario as described in Section II-D. Table II indicates
the NTC of different models in this scenario obtained for one
of the subjects. As Table II shows, the highest NTC was for
the medium Gaussian model in LOSO-Train-Scheme 2; there-
fore, this model was selected. In the predicted labels of the
selected model, only the cycles just before the transition cy-
cles were considered for identification. The total accuracy of

this identification for this particular subject was 91.2%. The
same procedure was conducted for all subjects, and the results
are shown in Table III. In this table, the average, median, and
standard deviation of different statistical measures over all sub-
jects are presented. For example, considering the total accuracy,
the average, median, and standard deviation were 88.1%, 91.2%,
and 11% respectively.

C. SS Scenario

The respiratory phases of SCG cycles were identified in the
SS scenario. Table IV indicates NTC for different models in
this scenario obtained for one recording. As Table IV shows,
the highest NTC was obtained by course Gaussian model in the
SS-Train-Scheme 1. This model was selected for the recording,
and the total accuracy was 97.8%. Also, as can be seen, the NTC
was 0 for medium Gaussian model in the SS-Train-Scheme 3,
which indicates that the predicated labels were all the same and
no transitions were occurred (the model was biased).

The same procedure was conducted for all recordings, and
the results are shown in Table V. In this table, the average,
median, and standard deviation of different statistical measures
over all recordings are presented. For example, considering the
total accuracy, the average, median, and standard deviation were
95.4%, 97.4%, and 7.1%, respectively.

IV. DISCUSSIONS
A. Data Collection

We used a respiration belt sensor to measure the respiration
effort. To assess respiration, spirometer or impedance pneumo-
graph are more widely used (gold standard) than a respiration
belt. However, in this study, the collected belt signal was not
used to assess respiration (e.g., finding apnea or breathing rate)
but to label the SCG cycles into inhale and exhale. For this label-
ing purpose, the belt signal was accurate, reliable, and suitable.

Also, the frequency components of SCG that are correlated
with respiration are mostly located in lower frequency ranges
(10-40 Hz) as shown in [23]. Therefore, the accelerometer’s
frequency response did not affect the quality or the repeatability
of our data in this study.

B. Feature Selection

The results of feature selection indicated that time features
had higher accuracy compared to frequency and time-frequency
features (see Fig. 4). Also, as the bottom plot of Fig. 4 shows,
by adding more features, the total accuracies were first raised to
a maximum value and then eventually decreased. This behav-
ior sometimes is referred to as “peaking phenomenon” in the
literature [35]. In our analysis, utilizing more features first in-
creased the separation among inhale and exhale data; however,
ultimately, because of the limited dataset size, the added features
performed similarly to noise and reduced the accuracies.

Also, as seen in the bottom plot of Fig. 4, the decrement
rates were different for time, frequency, and time-frequency
domains. The reason for such a difference should be probably
sought in the values of these features. The time-domain features
were mostly nonzero, because the mean of each SCG cycle
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DIFFERENT STATISTICAL MEASURES OBTAINED IN LOSO SCENARIO AVERAGED OVER ALL SUBJECTS

TABLE I

Target Inhale Acc.®  Target Exhale Acc.*  Output Inhale Acc.®  Output Exhale Acc.*  Total Acc.*
Average 90.4% 87.7% 85.4% 91.4% 88.1%
Median 96.1% 88.5% 86.3% 97.1% 91.2%
Standard Deviation 14.2% 10.6% 13.8% 15.1% 11%
&1 Accuracy
TABLE IV

NUMBER OF TRANSITION CYCLES FOR DIFFERENT MODELS IN SS SCENARIO OBTAINED FOR ONE RECORD

SS2-Train-Scheme 1

SS2-Train-Scheme 2

SS2-Train-Scheme 3

Qb Cu¢ MG! CcGe Qub Ccu¢ MG! CGe Qub  Ccu¢ MGY CGe
NTCf 135 146 174 225 151 156 198 158 15 85 0 65
: Subject specific
b-¢: Quadratic, Cubic, Medium Gaussian, Course Gaussian
.. Number of transition cycles
TABLE V

DIFFERENT STATISTICAL MEASURES OBTAINED IN SS SCENARIO AVERAGED OVER ALL RECORDINGS

Target Inhale Acc.®  Target Exhale Acc.?  Output Inhale Acc.®  Output Exhale Acc.*  Total Acc.*
Average 96.3% 93.8% 91.6% 98.3% 95.4%
Median 100% 95.8% 95.9% 100% 97.4%
Standard Deviation 10.4% 8.8% 12.6% 3% 7.1%

&: Accuracy

was generally not zero. In contrast, frequency-domain features
were almost zero for frequencies greater than 100 Hz. These
zero-valued features did not have information for identification
of inhale and exhale and, therefore, reduced the total accuracies
of frequency and time-frequency domains at a faster rate as
compared to the time-domain features.

The time-domain features with higher total accuracies were
located in certain regions of the SCG cycle as Fig. 5 shows.
Prior research has correlated cardiac events such as aortic-valve
opening (AO) and aortic-valve closure (AC) to particular char-
acteristic points on SCG [6], [8], [36]. By comparing the results
depicted in Fig. 5 to these characteristic points, AO (the peak
roughly between 0.2 and 0.3 s) and AC (the peak just before 0.6
s) are within the highlighted regions in Fig. 5. Another region is
located after AC, in which different morphologies can be seen
for inhale and exhale. The last region is particularly interesting
since it is located roughly at the end of the cycle for the inhale
phase (before start of the mean-padding), but on a region before
the end of the cycle for the exhale. Generally, the length of SCG
cycles in the exhale phase is longer than the ones in the inhale
before mean-padding. Therefore, this last region is associated
with the length of SCG cycle or the instantaneous heart rate.

It should be mentioned that differences in the individual in-
stantaneous heart rate values may cause the allocation of any
given feature of the SCG cycle into different bins for different
subjects. This could be the case particularly for the SCG fea-
tures occurring at the end of the systolic period and during the
diastolic period of the cardiac cycle. This aspect may introduce
unwanted noise in the identification procedure. To reduce the

effect of this aspect, the length of all cycles were equalized
before feature extraction using mean-padding as explained in
Section II-C. Also, the proposed method involved using SVM
with nonlinear kernels that transformed the data to a higher di-
mension to facilitate their separation. Therefore, the bins of one
SCG cycle did not necessarily compare with the corresponding
bins in another cycle for phase identification.

C. Respiratory Phase Identification

The selected time features were used in LOSO and SS scenar-
i0s. In LOSO, no information from the TS was used in training.
However, in SS, one recording from the TS was used in train-
ing. As Tables III and V show, all the statistical measures of
this scenario were improved compared to LOSO. For instance,
the average total accuracy was increased from 88.1% (LOSO)
to 95.4% (SS). This improvement was expected as SS could
be “adjusted” accordingly with each individual subject. On the
other hand, to train SS, the TS recording should be labeled
as either inhale or exhale. To do this labeling, one simultane-
ous recording of SCG and respiration signal is needed. Such
a recording can be then employed for phase identification of
other SCGs that do not have respiration signals (SS scenario).
Obviously, if no simultaneous recording of SCG and respiration
signal is available, LOSO should be employed.

As observed, LOSO and SS scenarios identified the phase of
only SCG cycles just before the transition cycles and not all
cycles. Such identification cannot be considered as a limitation,
as long as there exist enough SCG cycles to extract pertinent
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information. For instance, in a prior study to analyze respiratory
variations, the SCG signal was first subdivided into consecutive
frames. Then for each frame, only the SCG cycles corresponded
to the highest (exhale) and the lowest (inhale) S1 heart sound
were considered for analysis [23]. Also, there is a consensus that
around ten cardiac cycles are sufficient for reliably deriving STI
[71 [37]. In our study, the number of identified cycles for each
subject was more than 10 in both inhale and exhale phases. How-
ever, if the number of cycles is not sufficient to derive a specific
cardiac parameter, the length of recording should be increased.

V. CONCLUSION

In this study, we developed a machine-learning method
to identify the respiratory phases of SCG cycles. To select
features, SCG cycles were assessed in time, frequency, and
time-frequency domains. Time-domain features indicated
higher total accuracies compared to other features. The time
features with higher total accuracies included the characteristic
points AO, AC, and the length of cardiac cycle (instantaneous
heart rate). The performance of the developed method was
evaluated in two training-testing scenarios: LOSO and SS. The
average total identification accuracies of these scenarios were
88.1% (LOSO) and 95.4% (SS). The SS scenario resulted in
better accuracies, because it could be adjusted accordingly with
each individual subject.

The proposed method showed to be an efficient, reliable, and
accurate approach to identify the respiratory phases of SCG cy-
cles. The results obtained in this study establish a solid ground
for future investigations to improve measurement of hemody-
namic parameters, such as STIL.
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