
Proceedings of ELS 2014

7th European Lisp Symposium
May 5 – 6 2014

IRCAM, Paris, France

ISSN: 2677-3465

Preface

Message from the Programme Chair

Greetings, members of the Lisp Community.

We are a diverse community. Some have been programming in Lisp for some time, some are
just starting out, and some are even just peering in curiously from outside—including, in some
cases, family and friends.

A variety of dialects are represented as well: Common Lisp, Racket, Clojure and Emacs Lisp to
name a few about which we have papers. But we’ve invited attendance from Scheme, AutoLisp,
ISLISP, Dylan, ACL2, ECMAScript, SKILL, and Hop. Even then, I’m sure to have left some
out. The important thing is that these are all Lisp. In the work I did with language stands, I
recall John McCarthy specifically asking that ANSI and the ISO not name their work product
anything that appeared to claim the whole of the name Lisp. He wanted to reserve that for the
family of languages, which he felt should continue to freely evolve and add new members. This
gathering honors that spirit by inviting that whole extended family.

So, to all of this diverse community: Welcome!

We’re all from different backgrounds, but each brings something to contribute in terms of ex-
perience, interest, or enthusiasm. We are different, but today we’re also all equals, here to
exchange ideas and energy. In that spirit, please make sure to visit not just with old friends but
also with those you have not met, making them feel that sense of welcome so they’ll have reason
to return and you’ll have even more old friends the next time. Or, if you’re new, please don’t
be shy: Step up and introduce yourself to any among us even if we’ve slipped and forgotten to
reach out to you.

Also, please find a time during the conference to thank Didier Verna and Gérard Assayag for
acting as Local Chairs, and to thank members of the program committee for working on a
very tight time schedule to select the papers and provide excellent quality feedback to authors.
Thanks are also due to IRCAM, which has provided our intellectually stimulating venue as
well as practical logistical support. And, of course, the backbone of the conference is the ac-
tual content, so make sure to tell the invited speakers, the paper presenters, those performing
demonstrations, and those who offer lightning talks that their presence has made a difference.
As you can probably see, a lot goes into preparing a conference like this, and no one’s getting
rich off of it —– at least not in money. But your stated appreciation will go a long way toward
making the effort of all of these people seem worthwhile.

Thanks also to you for attending. This conference would be nothing without attendees. I hope
you have a great time.

Kent Pitman

ELS 2014 iii

Message from the Local Chair

Welcome to Paris!

ELS 2014 is undoubtedly one of the most successful events in the European Lisp Symposium
series, with almost 80 delegates from nearly 20 countries, including quite distant ones such as
Japan, India and the United States of America. More than just “European”, ELS is now indeed
fully international.

It is great to see such a crowd gathering in Paris, and I hope you will have a great time meet-
ing fellow lispers from all over the world, visiting the “Lambda Tower” and all the touristic
wonders Paris has to offer.

As a part-time researcher, part-time musician, I need to stress that holding the symposium at
IRCAM is also a very special pleasure for me. IRCAM is an amazing place for music research
and also a nest of hard-core lispers. We couldn’t have hoped for a better place. In that regard, I
am deeply grateful to my co-local chair, Gérard Assayag, without whom this would simply not
have been possible.

In order to organize an event like this one, many other people work in the shadows, although
shadows are crucial to make ELS a bright event. I need to extend my warmest thanks to Daniela
Becker and Sylvie Benoît, who took care of a lot of things. Like every year, our sponsors also
are of a tremendous importance, so thank you, EPITA, CNRS, UPMC, LispWorks, and Franz!

Finally, and this time, not as a local chair but as the president of the European Lisp Sympo-
sium’s steering committee, I wish to express my deepest gratitude to Kent Pitman, who ac-
cepted the role of programme chair this year, perhaps not knowing exactly what he was getting
into. . . From where I stand, working with Kent has been a very smooth experience, one that I
would redo anytime.

Let us now hope that you will have as much fun attending the symposium that we had orga-
nizing it. In just one sexp. . .

(have :fun #\!)

Organization

Programme Chair

• Kent M. Pitman, Hypermeta Inc., USA

Local Chairs

• Didier Verna, EPITA/LRDE, Paris, France

• Gérard Assayag, IRCAM, UMR STMS (CNRS, UPMC), France

Programme Committee

• Marie Beurton-Aimar, LaBRI, University of Bordeaux, France

• Pierre Parquier, IBM France Lab, Paris, France

• Rainer Joswig, Hamburg, Germany

• Guiseppe Attardi, Università di Pisa, Italy

• Taiichi Yuasa, Kyoto University, Japan

• António Leitão, IST/Universidade de Lisboa, Portugal

• Christophe Rhodes, Goldsmiths, University of London, UK

• Olin Shivers, Northeastern University, USA

• Charlotte Herzeel, IMEC, ExaScience Life Lab, Leuven, Belgium

Organizing Committee

• Daniela Becker, EPITA/LRDE, Paris, France

• Sylvie Benoit, IRCAM, Paris, France

ELS 2014 v

Sponsors

EPITA
14-16 rue Voltaire
FR-94276 Le Kremlin-Bicêtre CEDEX
France
www.epita.fr

IRCAM
UMR STMS (CNRS, UPMC)
Institut de Recherche et Coordination
Acoustique / Musique
1, place Igor-Stravinsky
75004 Paris
France www.ircam.fr

LispWorks Ltd.
St John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England
www.lispworks.com

Franz Inc.
2201 Broadway, Suite 715
Oakland, CA 94612
www.franz.com

vi ELS 2014

Contents

Preface iii
Message from the Programme Chair . iii
Message from the Local Chair . iv

Organization v
Programme Chair . v
Local Chairs . v
Programme Committee . v
Organizing Committee . v
Sponsors . vi

Invited Talks 1
Making Creativity: Software as Creative Partner – Richard P. Gabriel 1
Parallel Programming with Lisp, for Performance – Pascal Costanza 2
Sending Beams into the Parallel Cube – Gábor Melis . 2

Session I: Language and Libraries 3
CLAUDE: The Common Lisp Library Audience Expansion Toolkit – Nick Levine 4
ASDF3, or Why Lisp is Now an Acceptable Scripting Language – François-René Rideau 12
Generalizers: New Metaobjects for Generalized Dispatch – Christophe Rhodes, Jan Morin-

gen and David Lichteblau . 20

Session II: Demonstrations 29
web-mode.el: Heterogeneous Recursive Code Parsing with Emacs Lisp – François-

Xavier Bois . 30
The OMAS Multi-Agent Platform – Jean-Paul Barthès . 33
Yet Another Wiki – Alain Marty . 35

Session III: Application and Deployment Issues 37
High performance Concurrency in Common Lisp: Hybrid Transactional Memory with

STMX – Massimiliano Ghilardi . 38
A Functional Approach for Disruptive Event Discovery and Policy Monitoring in Mo-

bility Scenarios – Ignasi Gómez-Sebastià, Luis Oliva, Sergio Alvarez-Napagao, Dario
Garcia-Gasulla, Arturo Tejeda and Javier Vazquez . 46

A Racket-Based Robot to Teach First-Year Computer Science – Franco Raimondi, Giuseppe
Primiero, Kelly Androutsopoulos, Nikos Gorogiannis, Martin Loomes, Michael Margo-
lis, Puja Varsani, Nick Weldin and Alex Zivanovic . 54

Session IV: Crossing the Language Barrier 63
A need for Multilingual Names – Jean-Paul Barthès . 64
An Implementation of Python for Racket – Pedro Ramos and António Leitão 72
Defmacro for C: Lightweight, Ad Hoc Code Generation – Kai Selgrad, Alexander Lier,

Markus Wittmann, Daniel Lohmann and Marc Stamminger 80

ELS 2014 vii

Invited Talks

Making Creativity: Software as Creative Partner

Richard P. Gabriel, IBM, Redwood City, CA, USA
Programming, software development, and software engineering: We are taught to solve puzzles
and do what we’re told. We carry these lessons into our jobs and careers without deliberation.
Old fashioned software engineering aims to make no mistakes; agile aims to render program-
mers compliant, and commands them make money for their bosses. For the past year I’ve been
exploring what creativity means during the act of writing, and I’ve been doing it by construct-
ing a software partner that acts as a scientific engine of discovery –— a partner that displays
a flair for the strange that even the most daring poets can rarely match. I don’t have require-
ments, I don’t have specifications, and I normally don’t have a plan much beyond a guess. If
my program doesn’t surprise me, I cry “failure!” and lament.
I’ll explore what programming is, how software can act as a collaborator, show you how the
agile practices are like training wheels, and explain how a program can astound.
All in Lisp, of course.

Richard P. “Dick” Gabriel overcame a hardscrabble, working-class upbringing in the dreadfully indus-
trialized and famously polluted Merrimack Valley of eastern Massachusetts to become one of the few
genuine Renaissance men to emerge from the OO milieu: scholar, scientist, poet, performance artist,
entrepreneur, musician, essayist, and yes, hacker. . .
Though somewhat less well-endowed of the effortless intellectual incandescence, easy charisma, and raw
animal magnetism of so many of his generation of future object-oriented luminaries, he was able, with
discipline, determination, and hard work, to survive the grueling demands of elite, first-tier academic
institutions such as MIT, Stanford and UIUC to earn his PhD and become a leader among the burgeoning
legions of Lisp-dom during the early nineties.
However, after a series of the inevitable, endemic startup setbacks that the Internet boom all too often left
in its wake, Gabriel grew weary of the cold, cloistered, celibate tedium of engineering culture, and fell
willing prey to the lure of the exotic social and intellectual stimulation and blandishments that only the
Liberal Arts could offer.
And they, in turn, embraced this gruff emissary from the exotic, intimidating, but newly chic world of
technology. Gabriel’s dissonant, desiccated, plainchant blank verse was dark, disturbing, distant, candid,
calculating, and desperate, at once florid yet monochromatic. It could “cons-up” a soul in a single
haunting, searing stanza and remand it remorselessly, insouciantly to the heap in the next. It was like
nothing that could be heard on the stale, staid, inbred Writers’ Workshop circuits of those times.
But then, as always, poetry alone seldom pays the bills, so the prodigal poet, like a salmon to spawn,
returned to his object-oriented roots, proselytizing a newfound artistic sensibility to an aesthetically
impoverished community.
His technological audiences, who had subsisted on bland, austere stylistic pabulum born of their collective
status as a poor stepchild of mathematics, physics, and engineering, embraced his audacious set-piece
guerilla performances and this novel aesthetic dimension in a manner akin to that in which Medieval
European palates had embraced the infusion of spices from the East Indies.
His considerable successes in synthesizing the “Two Cultures” in this software setting will likely stand
as his enduring legacy.

ELS 2014 1

Gabriel lives in Redwood City, CA, and works for International Business Machines Corporation as a
research helper. He likes to unwind by writing a poem every day.

Parallel Programming with Lisp, for Performance

IMEC, ExaScience Life Lab, Leuven, Belgium
This presentation gives an overview of parallel programming constructs and primitives, and
how they can be used efficiently from within Common Lisp. The focus of this talk is on taking
advantage of multi-core processors for improving the performance of algorithms. For this rea-
son, the most important techniques for achieving efficiency in general will also be covered. The
presentation will be based on examples from high performance and life sciences computing.

Pascal Costanza works as a researcher specializing on high-performance computing at the ExaScience Life
Lab for Intel Belgium. He maintains Closer, an open source project that provides a compatibility layer
for the CLOS MOP across multiple Common Lisp implementations. In the past, he has implemented
ContextL, the first programming language extension for Context-oriented Programming based on CLOS,
and aspect-oriented extensions for CLOS. More recently, he released Arrow Street, a template library for
C++11 to support semi-automatic SIMD-efficient data layouts.

Sending Beams into the Parallel Cube

Gábor Melis, Franz Inc., Hungary
A pop-scientific look through the Lisp lens at machine learning, parallelism, software, and
prize fighting
We send probes into the topic hypercube bounded by machine learning, parallelism, software
and contests, demonstrate existing and sketch future Lisp infrastructure, pin the future and
foreign arrays down.
We take a seemingly random walk along the different paths, watch the scenery of pairwise in-
teractions unfold and piece a puzzle together. In the purely speculative thread, we compare
models of parallel computation, keeping an eye on their applicability and lisp support. In the
the Python and R envy thread, we detail why lisp could be a better vehicle for scientific pro-
gramming and how high performance computing is eroding lisp’s largely unrealized compet-
itive advantages. Switching to constructive mode, a basic data structure is proposed as a first
step.
In the machine learning thread, lisp’s unparalleled interactive capabilities meet contests, neural
networks cross threads and all get in the way of the presentation.

Gábor Melis is a consultant at Franz Inc. He worked on the SMP thread implementation of both SBCL
and AllegroCL and got interested in all things parallel. Had he been a first generation lisper, he would
have been in the artificial intelligence bubble of the 80s, but as a second generation lisper all that was
left for him is machine learning. There are two kinds of programmers: those who get a kick out of their
creation being used by real people to accomplish a goal, and those who first and foremost think in terms
of the internal beauty of the object at hand. Most of the time, Gábor is firmly in the latter category and
for his practical side to emerge he needs external pressure. Fortunately, external pressure is abundant in
contests which he finds and leverages with some success.

Session I: Language and Libraries

CLAUDE – The Common Lisp Library Audience Expansion
Toolkit

Nick Levine
Ravenbrook Limited

PO Box 205
Cambridge, CB2 1AN

United Kingdom
ndl@ravenbrook.com

ABSTRACT
CLAUDE is a toolkit for exporting libraries written in Com-
mon Lisp, so that applications being developed in other lan-
guages can access them. CLAUDE co-operates with foreign
runtimes in the management of CLOS objects, records, ar-
rays and more primitive types. Lisp macros make the task of
exporting a library simple and elegant; template documenta-
tion along with C headers and sample code files relieve some
of the burden of explaining such exports to the application
programmer.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability—Distrib-
uted objects; D.2.2 [Software Engineering]: Design Tools
and Techniques—Software libraries

1. INTRODUCTION
One the the ways in which most Common Lisp implementa-
tions extend the ANSI standard is by providing some means
of distributing a lisp application as a pre-compiled executable.
Another essential extension is the capability to link into li-
braries written in other languages. The first of these features
greatly extends the potential audience of an application, ex-
posing it to end-users who don’t ever want to meet a lisp
loader (and indeed have no reason to ever know what lan-
guage the application was written in). The other gives the
application writer access to a wealth of foreign libraries and
so leaves them freer to get on with solving their core prob-
lems.

Less obvious is the possibility of distributing a lisp program
as a pre-compiled library, into which authors of applications
written in other languages could link. These authors form a
vast talent pool, and their users a massive audience base be-
side which the number of people running applications writ-
ten in lisp is regrettably less impressive.

In this paper we will discuss a nascent toolkit intended to
address this problem. The Common Lisp Library Audience
Expansion Toolkit (CLAUDE)1 includes:

• macros for exporting classes and functions;

• shared memory strategies for the allocation and freeing
of objects, records, arrays and strings;

• callbacks (which in this context means calls from lisp
back into the outside world of the application);

• support for UTF-8; high data throughput; full thread-
safety; error handling with backtraces visible to the
application programmer;

• tests, and templates for generating documentation and
C / Python examples.

Authors of libraries written in lisp, in their search for a wider
audience, can use CLAUDE to write a thin interface layer on
top of their code; the result is saved as a DLL. They should
extend the provided header and sample code files and tem-
plate documentation, to cover their own exported classes
and functionality as well as CLAUDE’s. Their distribution
to application programmers consists then of the DLL plus
these extended files. Although the explicit support is for C
and Python, there’s no particular reason why applications
should confine themselves to these two languages: CLAUDE
is totally agnostic about the application’s implementation
choices. In theory CLAUDE can be even used to link two
different lisp implementations (we might then, say, drive
the LispWorks CAPI windowing environment from SBCL);
however CLAUDE’s interface is deliberately aimed at lower-
level languages than Common Lisp and so in practice talking
to other lisps won’t be its greatest strength.

We will distinguish two roles:

• the library writer uses CLAUDE to export their Com-
mon Lisp library; and

• the application programmer uses that library as part
of their (C / Python / other) application.

1http://www.nicklevine.org/claude/

4 ELS 2014

In the following we will use Python – and to a lesser extent
C – to illustrate the foreign (i.e. application) side of several
CLAUDE exports.

Hitherto CLAUDE has been deployed only on LispWorks;
some LW specifics are present in the code fragments be-
low, exported from the packages SYS and FLI. Other im-
plementations for which a port is possible should be accessi-
ble in return for reasonable effort. Indeed where convenient
CLAUDE uses Bordeaux Threads (BT) and the Common
Foreign Function Interface (CFFI), to help reduce the cost
of future ports. However, and this is most unfortunate, most
lisps will not be able support CLAUDE, because the facility
to save lisp code as a linkable library is not generally avail-
able. We expect additional ports to be limited to Allegro
and to the lisps which directly embed into other runtimes
(ABCL and ECL).

2. EXAMPLE
The inspiration for the present work was Ravenbrook’s Chart
Desktop: a free, pre-existing, 15k LoC library for the lay-
out and interactive display of large, complex graphs2. Here,
by way of an introduction to CLAUDE’s capabilities, is an
example of driving part of the Chart library externally.

On the lisp side, we can say:

(defclass-external graph (chart:graph)

())

(defun-external (new-graph :result-type object) ()

(make-instance ’graph))

In both C and Python there’s quite a bit of overhead before
we can get started. The CLAUDE distribution includes all
the code for that; once this is out of the way, we can now
go:

claude_handle_t graph;

CHECK(chart_new_graph(&graph));

Here chart_new_graph() is an export from the library, au-
tomatically created by the defun-external form; note the
mapping between the lisp and foreign function names. CHECK
is an unedifying C macro provided with CLAUDE for con-
firming that the call into lisp returned a success code. After
this call, graph will contain a CLAUDE handle: a value
which can be passed back into lisp at any time to refer un-
ambiguously to the CLOS object in question.

In Python it’s worth establishing a more sophisticated cor-
respondence with the CLOS object than the raw pointers
that C provides:

>>> from pyChart import chart

>>> chart.Graph()

<Chart Graph handle=0x20053748>

>>>

2http://chart.ravenbrook.com/downloads

Here’s the application writer’s Python code to drive this.
The CLAUDE function val() makes the foreign call (i.e.
into lisp), checks for a success code, and dereferences the
pointer result; init() establishes a correspondence (in a
Python dictionary) between the new Graph instance and its
Chart handle.

class Graph(ClaudeObject):

def __init__(self):

handle = val(dll.chart_new_graph)()

ClaudeObject.init(self, handle)

Meanwhile, provided the lisp library was configured when it
was saved to open a REPL on restarting, we can check:

(in-package claude)

(loop for w being the hash-values of *wrappers*

return (wrapper-object w))

->

#<Chart Graph handle=0x20053748>

Note the similarities in printed representations, between the
CLOS object and its Python counterpart.

3. DATA MODEL
CLAUDE functions take arguments of the following types:

• integer (signed and unsigned);

• UTF-8 encoded string;

• handle (used to denote a CLOS object within the li-
brary);

• record (in this paper: a sequence of values whose length
and constituent types are determined by the context
in which it’s being passed);

• array (in this paper: a sequence of values whose con-
stituent types are all the same, but whose length is not
known in advance);

• pointer to any of the above (for return values);

• pointer to function (for callbacks).

There’s no particular reason why floats can’t be supported;
Chart happened not to need them.

It’s vital that the responsibilities for allocating and recycling
memory are clearly laid out, and that CLAUDE co-operates
transparently with foreign memory managers.

Aggregate values – strings, records (for example, a pair of
integers representing x-y co-ordinates) and arrays (for exam-
ple, a list of such co-ordinates, or a list of CLAUDE objects)
– may be generated by either the library or the application.

The contents of any aggregate value created by the applica-
tion, passed into the library and retained there – for exam-
ple, a string to be drawn inside some display window, or an

ELS 2014 5

array of records describing a set of new objects to be added
to the system – are copied and retained by CLAUDE. So
the application may immediately recycle any memory asso-
ciated with such aggregates, after the library call using them
has returned.

An aggregate value created within the library and passed to
the application as return data will be retained by CLAUDE,
until such time as the application declares that it has no fur-
ther use for this by calling the library function claude_free().
If the application frees a record or array which itself contains
any aggregate values, then these values will be freed recur-
sively.

CHECK(chart_new_nodes(&nodes, graph, node_defs));

node_0 = nodes->values[0].handle;

node_1 = nodes->values[1].handle;

/* Tell Chart it may free the array in which it

returned the nodes. */

freeable.array = nodes;

CHECK(claude_free(freeable));

A handle may only be generated by the library, by making
an instance of an external class (one defined by defclass-

external) and then returning that instance from a call to
defun-external, as in the new-graph or chart_new_nodes()
examples above. When the application has no further use for
a set of handles, it should call claude_remove_objects() to
invalidate the CLAUDE objects and permit memory to be
recycled on both sides of the fence. Here’s the corresponding
lisp function for that:

(defun-external (remove-objects

:result-type (array object

:call ’drop))

((array (array object)))

(remove-duplicates

(loop for object in array

append (remove-object object))))

Note that both the arguments and the return value of remove-
objects are (CLAUDE) arrays of objects. This interface is
designed to allow the library to:

1. take further action when an object is invalidated;

2. cause the invalidation of one object to invalidate oth-
ers with it (for example, in Chart, if the application
removes a node from the graph then the library will
ensure that the node’s edges are removed as well); and

3. decline to invalidate an object, if it so chooses.

The calls to remove-object allow the library to update its
structures and specify secondary removals; supplying ’drop

against the :call keyword invokes the following method on
each of the dead objects, to recycle lisp memory:

(defmethod drop ((self object))

(let ((wrapper (shiftf (object-wrapper self)

nil)))

(setf (wrapper-object wrapper) nil)

(remhash wrapper *wrappers*)

wrapper))

Finally, remove-objects returns to the application the full
set of invalidated handles. The CLAUDE objects corre-
sponding to each of these handles have been turned over for
garbage collection; the application should no longer commu-
nicate with the library about those objects and any attempt
to do so will signal a CLAUDE error. If the application has
been mapping the handles into its own objects then these
should now be recycled:

def _discard(self):

handle = self.handle

del _objects[handle]

self.handle = None

4. ARGUMENT TRANSLATION
Every CLAUDE object has a wrapper which is a statically
allocated structure, doubly linked to the object:

(defmethod initialize-instance

:after ((self object) &key)

(setf (object-wrapper self) (make-wrapper self)))

(defun make-wrapper (object)

(let ((wrapper (sys:in-static-area

(in-make-wrapper object))))

(setf (gethash wrapper *wrappers*) wrapper)

wrapper))

(defstruct (wrapper

(:constructor

in-make-wrapper (object)))

object)

The external representation of an object is its wrapper’s
memory address, guaranteed never to change. The generic-
function box which retrieves this address is cautious about
possible errors (as is its counterpart unbox which converts
incoming addresses back into the corresponding CLAUDE
objects):

(defmethod box ((self object)

&key &allow-other-keys)

(if (slot-boundp self ’wrapper)

(let ((wrapper (object-wrapper self)))

(if wrapper

(sys:object-address wrapper)

(error "~a doesn’t have a handle."

self)))

(complain "~a has not yet been initialised."

self)))

6 ELS 2014

(defmethod box ((self null) &key allow-null)

(if allow-null

0

(call-next-method)))

(defmethod box (self &key &allow-other-keys)

(complain "~a is not a ~a object and cannot ~

be boxed."

library self))

Note the use of zero to denote null objects, when the library’s
API permits this.

Boxing and unboxing are handled behind the scenes, by a
LispWorks foreign-converter object. Such converters make
the argument and result handling of defun-external ele-
gant (and indeed quite invisible to the library writer).

(fli:define-foreign-converter object

(&key allow-null type) (object address)

:foreign-type ’uint

:foreign-to-lisp ‘(unbox ,address

:allow-null ,allow-null

:type ,type)

:lisp-to-foreign ‘(box ,object

:allow-null ,allow-null))

We suggest that if possible the application should mirror the
above process, if not its elegance, so that it too is dealing
with objects rather than raw pointers:

_objects = {0:None}

class ClaudeObject(object):

def __init__(self, handle):

_objects[handle] = self

self.handle = handle

def init(self, handle):

self.__init__(handle)

def box(self):

return self.handle

def unbox(handle):

return _objects[handle]

Depending on the level of introspection exposed by the li-
brary, the application’s unbox might be used interactively
as a debugging aid. For example in Chart, faced with the
following error. . .

pyChart.invoke.ChartError: Source and destination

are the same node (#<Chart Node handle=0x20053838>),

which is not permitted.

. . . unbox can identify the object with handle 0x20053838,
and then chart_describe_nodes() can ask the library to
provide further information about it:

>>> unbox(0x20053838)

<Chart Node handle=0x20053838>

>>> chart.describe_nodes([_])

[(<Chart Graph handle=0x20053748>,

[], u’Hello World!’)]

>>>

Alternatively, a little cut-and-paste allows us to access the
object on the lisp side:

CLAUDE 17 > (unbox #x20053838)

#<Chart Node handle=0x20053838>

CLAUDE 18 > (describe *)

#<Chart Node handle=0x20053838> is a CHART:NODE

WRAPPER #<WRAPPER Node 2005383B>

GRAPH #<Chart Graph handle=0x20053748>

LABEL "Hello"

EDGES NIL

CLAUDE 19 >

A record is passed as a raw sequence of values; an array
is implemented as a record whose first member is the ar-
ray’s length, and whose remaining members are the array’s
values. Corresponding to box and unbox for objects, we
have construct and deconstruct for records, and pack and
unpack for arrays.

def set_callbacks(object, callbacks):

c_tuples = map(lambda((name, function)): \

(c_string(name), function or 0),

callbacks)

records = map(construct, c_tuples)

array = pack(records)

boxed = object.box() if object else None

lib.set_callbacks(boxed, array)

In LispWorks both of these aggregate types are handled by
foreign-converters, and once again the library writer is iso-
lated from any unpleasantness. For example (decoding of
incoming record addresses):

(fli:define-foreign-converter record

(types &key allow-null) (objects address)

:foreign-type ’uint

:foreign-to-lisp ‘(deconstruct ,address ’,types

:allow-null

,allow-null)

:lisp-to-foreign ‘(construct ,objects ’,types

:allow-null

,allow-null))

(defun deconstruct (address types &key allow-null)

(let ((pointer (cffi:make-pointer address)))

(if (cffi:null-pointer-p pointer)

(unless allow-null

(complain "Null pointer for record ~

ELS 2014 7

which expected ~a"

types))

(loop for type in types

for index from 0

collect

(follow pointer index type)))))

(defun follow (pointer index type)

(let ((address (cffi:mem-aref pointer ’uint

index)))

(ecase (follow-type type)

((array) (unpack address (cadr type)))

((boolean) (not (zerop address)))

((object) (unbox address :type type))

((uint) address)

((int) (if (<= address

most-positive-fixnum)

address

(+ (logand address

most-positive-fixnum)

most-negative-fixnum)))

((record) (apply ’deconstruct

address (cdr type)))

((ustring) (from-foreign-string

(make-string-pointer

address))))))

Note incidentally that the CLAUDE package shadows the
symbol ARRAY.

One particular use of arrays is for reducing the stack switch-
ing overhead of making very many calls into or out of lisp,
which can otherwise become significant. We strongly recom-
mend that wherever possible the data for such calls should
be packed into arrays and the interface desgined so as to en-
force fewer calls across the language boundary. For example,
Chart supports chart_new_nodes() rather than chart_new_

node()3.

5. FUNCTION CALLS
The macro defun-external defines the library’s functional
interface. It hides everything that really matters but the
programmer never wants to see: argument unmarshalling,
checking and result marshalling; foreign name translation;
memory management; error handlers. It installs an entry
point into lisp (as if by cffi:defcallback), arranging for
the corresponding C-name to be exported from the library
and thus made visible to the application programmer. By
hacking into the defcallback form’s macroexpansion it is
able to wrap error handlers around argument deconstruc-
tion as well as the body of the function; if for example an
argument of the wrong type shows up then CLAUDE can
explain the problem to the application:

>>> chart.describe_nodes([g])

Traceback (most recent call last):

[...]

File "pyChart\invoke.py", line 63, in invoker

3A simple experiment indicates that if chart_new_node()
were made available, it would generate 1000 nodes almost
an order of magnitude slower than its array counterpart.

check(func, ctypes.byref(pointer), *args)

File "pyChart\invoke.py", line 54, in check

raise ChartError()

pyChart.invoke.ChartError: #<Chart Graph handle=

0x20053748> is a graph, but a node was expected.

>>>

The types of all arguments and the result (if any) must be
specified, to allow for automatic conversion on the way in
and out of the function. For example, this function:

(defun-external (display-graph

:result-type (object

:allow-null t))

((display display))

(chart:display-graph display))

takes a display and returns a CLAUDE object, possibly null;
and this one:

(defun-external set-node-locations

((display display)

(nodes-and-locations (array

(record

(node

(record

(int int)

:allow-null t))))))

(loop for (node location) in nodes-and-locations

do

(setf (chart:node-location node display)

(when location

(apply ’chart:make-location

location)))))

takes a display and a sequence of (node location) pairs,
where the location is either a pair of integers or null, and
the function does not return a result.

Passing a variable number of arguments across a foreign
function interface can get ugly and we’ve chosen not to sup-
port it. The arguments to an external function are always
fixed; the library is free to accept nulls for arguments whose
specification was in some sense optional; and an array argu-
ment can have variable length.

By default each external call runs in its own thread. This
allows for a last-ditch defense against errors in the library (or
CLAUDE, or for that matter the lisp implementation): if the
thread dies then the call is necessarily over but the program
is not4. This precaution might not seem very important once
the library is believed to be working properly, but during
development it’s invaluable.

4LispWorks executes all incoming calls in its “thread created
by foreign code”; if this thread is killed (say by an unguarded
"Quit process" restart) then no further incoming calls can
be handled in that lisp session.

8 ELS 2014

(let ((result +error+)

(name (format nil "Safe call to ~s"

function)))

(flet ((safe-run ()

(when (with-simple-restart

(abort "Abandon call to ~a"

function)

(let ((*debugger-hook*

’debugger-hook))

(apply function arguments))

t)

(setf result +success+))))

(bt:join-thread (bt:make-thread #’safe-run

:name name))

result))

Function calls from the CLAUDE library into the applica-
tion are referred to as callbacks (we’re describing life from
the application writer’s perspective). Their uses range from
notification of mouse events in a graphical toolkit to the han-
dling of asynchronous errors. In lisp they are equivalent to
invocations of cffi:foreign-funcall-pointer; LispWorks
has a declarative macro fli:define-foreign-funcallable

for handling this, a call to which is assembled and explicitly
compiled first time a callback is invoked.

Callbacks are established and removed by calls to claude_

set_callbacks(); they can be associated with a specific
object and/or with none at all.

@ctypes.WINFUNCTYPE(ctypes.c_void_p,

ctypes.c_uint,

ctypes.c_uint)

def advise_condition(foreignRef, report):

lib.raise_error(report)

set_callbacks(None, (("claude_advise_condition",

advise_condition),))

If the library wishes to invoke a callback on an object and
none is currently established – either on that object or non-
specifically – then nothing happens (i.e. it’s not an error).
It’s assumed that the application programmer doesn’t care
to be informed about this particular event.

(invoke-callback

’(:void

(display (display :allow-null t))

(address uint))

display

’advise-condition

(when (and display (object-wrapper display))

display)

report)

6. ERROR HANDLING
The functions which CLAUDE exports all return a suc-
cess/fail code (and so any “result” which functions wish to
communicate must be via a pointer argument for the appli-
cation to dereference).

enum {

CLAUDE_RES_OK = 0, /* success */

CLAUDE_RES_FAIL = -1 /* failure */

};

If the application spots a fail code, it can call claude_last_
error() to find out more.

(defun-external (last-error :result-type ustring)

()

(shift-last-error nil))

(defun debugger-hook (condition encapsulation)

(declare (ignore encapsulation))

(shift-last-error condition)

(abort))

(defun shift-last-error (condition)

(shiftf *last-error*

(when condition

(with-output-to-string (report)

(report condition report)))))

There are methods on report for handling errors, warnings,
and complaints (application pilot errors spotted by the li-
brary). The method on errors produces a full lisp backtrace;
the library can choose whether to pass the whole thing on
or to chop it (after the first line, say); if the application
does anything intelligent with this string and its end users
are sufficiently well trained then the backtrace could even
be forwarded to the library writer for assistance. CLAUDE
contains an elementary patch loader (which has been de-
scribed elsewhere5) and so field patching of the lisp library
is generally possible. Note that in LispWorks, at least, it is
not possible to export new functions from the library with-
out resaving the image, and so the introduction of additional
defun-external forms is one thing that cannot be patched.

An asynchronous error can’t be handled as above: the option
of returning a CLAUDE_RES_FAIL isn’t available when we’re
not actually inside a defun-external call. So it’s advised
that all threads which the library creates should install an
error handler which invokes the claude_advise_condition

callback, and that the application should handle this call-
back. When the application is notified of an asynchronous
error, it can either deal with this directly, or make a syn-
chronous call to claude_raise_error() and allow the usual
error handlers to take over:

(defun-external raise-error ((report ustring))

(shift-last-error report)

(abort))

7. THE EXPORT PROCESS
After downloading the toolkit, the first step in exporting
a library is to call claude-setup:configure, supplying the
library’s name and a working directory. For example, with a
library called wombat, the following files and subdirectories
are established:
5See http://www.nicklevine.org/play/patching-made-
easy.html

ELS 2014 9

wombat/

build/save-dll.lisp

claude/

claude.asd

src/...

examples/C/...

include/wombat.h

manual/...

pyWombat/...

src/defsys.lisp

wombat.asd

Even though no library is yet present we can easily try out
the vanilla framework, by using the build script save-dll.
lisp to save a DLL and then running some tests through
the Python interface:

C:\home\wombat> lisp -init save-dll.lisp

[...] ; saves wombat.dll

C:\home\wombat> python

Python 2.7.1

>>> from pyWombat import wombat

>>> wombat.Wombat()

<Wombat Wombat handle=0x200538b0>

>>> wombat.objects.communications_test()

True

>>>

Source files defining the library’s external interface can later
be added to the src/ directory; these files along with de-
pendencies for loading the library itself should be listed in
the LispWorks defsys file (or, for those who’d rather, in the
equivalent .asd file; the build script should then be set to
load this instead). As each external class or function appears
in lisp, its counterpart should be added to the pyWombat

package. Whether or not the library is being targetted at
Python application writers, Python is a reasonable test envi-
ronment for it. Only once features are known to be working
is it worth adding them to the C header and test files and
finally to the manual.

The library, and in particular its CLAUDE layer, should
be developed using lisp images saved to include a full lisp
IDE (for instance, the LispWorks environment, or SLIME).
CLAUDE supports this, via command-line arguments sup-
plied when save-dll.lisp is loaded. With an IDE in place
all the standard lisp development tools are immediately avail-
able. In particular it’s straightforward to edit and recompile
library code; depending on the framework being used to test
the library, it may (Python) or clearly will not (C) be possi-
ble to interactively update the calling code without frequent
halts. As already noted, one other cause for closing down
and resaving the lisp image is addition of exported functions
(new calls to defun-external).

8. ANOTHER EXAMPLE
Let’s see what’s involved in exporting another library: one
not written by the present author. We choose Edi Weitz’s
“.NET layer for Common Lisp”: RDNZL. We don’t have
space for the whole thing here, so we pick the following short
example, for accessing web pages, out of RDNZL documen-
tation and work on exporting that.

(import-types "System" "Net.WebClient")

(defun download-url (url)

(let ((web-client (new "System.Net.WebClient")))

[GetString (new "System.Text.ASCIIEncoding")

[DownloadData web-client url]]))

Note the reader-macro on #\[, which case-preserves the next
symbol and expands into a call to rdnzl:invoke. Two minor
problems are presented, and we’ll have to work around them:

• the function rdnzl:new returns an instance of the struc-
ture type rdnzl:container; and

• neither the argument types of invoke’s variable num-
ber of arguments nor that of its return value are pre-
ordained.

Let’s deal with the RDNZL structure instances first, wrap-
ping externalised objects around them6. In general new takes
a variable number of arguments, but that feature won’t be
needed for this cut-down example.

(defclass-external container ()

((container :reader container-container

:initarg :container)))

(defun contain (container)

(make-instance ’container :container container))

(defun-external (new :result-type container)

((type ustring))

(contain (rdnzl:new type)))

The next two functions are straightforward. Each RDNZL
container has a type-name which is used in its print-object
method, and it’s worth exporting that; rdnzl:import-types
takes a list of strings and doesn’t return a value.

(defun-external import-types

((types (array ustring)))

(apply ’rdnzl:import-types types))

(defun-external (type-name :result-type ustring)

((container object))

(rdnzl::get-type-name

(container-container container)))

The only real annoyance is rdnzl:invoke. Its first two ar-
guments are a (RDNZL) container and a string, but after
that all bets are off. A simple (if inelegant) solution for
handling this flexibility is to export a number of functions,
one for each signature that’s needed. Here are the two we
want. We have to translate between RDNZL’s structure ob-
jects and our externalised CLOS instances, but otherwise
the going is clear.
6CLAUDE does support the direct export of structure-
objects, via its defstruct-external macro, but using that
here would involve modifying RDNZL source, so we’ll inves-
tigate this other option.

10 ELS 2014

(defun-external (invoke-container-string

:result-type container)

((container object)

(method ustring)

(arg ustring))

(contain

(rdnzl:invoke (container-container container)

method arg)))

(defun-external (invoke-string-container

:result-type ustring)

((container object)

(method ustring)

(arg container))

(rdnzl:invoke (container-container container)

method

(container-container arg)))

Now for the Python. We start by writing a stub for simpli-
fying access to each of the external functions, for instance:

def new(type):

return lib.rdnzl_new(type)

We can then implement a higher-level interface. Omitting
here some of the details (string conversion functions; and a
__repr__ method which uses rdnzl_type_name() to gener-
ate printed representations), we have:

def import_types(types):

c_strings = map(c_string, types)

lib.import_types(objects.pack(c_strings))

class Container(objects.RdnzlObject):

def __init__(self, type=None, handle=None):

if handle is None:

handle = lib.new(type)

objects.RdnzlObject.init(self, handle)

def invoke_container_string(self, method, arg):

invoke = lib.invoke_container_string

handle = invoke(self.box(),

c_string(method),

c_string(arg))

return Container(handle=handle)

and similarly for invoke_string_container().

Finally, we can try it all out, stepping our way through the
download-url function with which we started:

>>> from pyRdnzl import rdnzl

>>> rdnzl.import_types(["System", "Net.WebClient"])

>>> c=rdnzl.Container("System.Net.WebClient")

>>> d=c.invoke_container_string("DownloadData",

"http://nanook.agharta.de/")

>>> e=rdnzl.Container("System.Text.ASCIIEncoding")

>>> (c,d,e)

(<Rdnzl Container System.Net.WebClient

handle=0x20053748>,

<Rdnzl Container System.Byte[] handle=0x20053838>,

<Rdnzl Container System.Text.ASCIIEncoding

handle=0x200538b0>)

>>> print e.invoke_string_container("GetString", d)

<html>

<head>

<meta http-equiv="refresh"

content="0;url=http://weitz.de/">

</head>

<body>

</body>

</html>

>>> rdnzl.objects.remove_objects([c,d,e])

>>>

9. CONCLUDING REMARKS
This toolkit has only been tried on one lisp implementation
and exercised by one individual. Indeed it came about as
a quite unforseen consequence of publishing Chart and it’s
clearly yet to meet its full general potential.

Preparing a Common Lisp library for use in the outside
world means abandoning some of CL’s grace: no with-

interesting-state macro can cross the divide; interfaces
which depend on any number of keyword arguments will
have to be rethought, as will multiple return values, clo-
sures, and undoubtedly various other features among CL’s
great strengths. If these restrictions are not excessive then
libraries can be exported in exchange for very reasonable
effort. CLAUDE is an abstraction layer whose task is to
simplify that effort.

Our audience can be expanded.

ELS 2014 11

ASDF 3, or Why Lisp is Now an
Acceptable Scripting Language

François-René Rideau
Google

tunes@google.com

Abstract
ASDF, the de facto standard build system for Common Lisp, has
been vastly improved between 2012 and 2014. These and other im-
provements finally bring Common Lisp up to par with "scripting
languages" in terms of ease of writing and deploying portable code
that can access and "glue" together functionality from the underly-
ing system or external programs. "Scripts" can thus be written in
Common Lisp, and take advantage of its expressive power, well-
defined semantics, and efficient implementations. We describe the
most salient improvements in ASDF 3 and how they enable pre-
viously difficult and portably impossible uses of the programming
language. We discuss past and future challenges in improving this
key piece of software infrastructure, and what approaches did or
didn’t work in bringing change to the Common Lisp community.

Introduction
As of 2013, one can use Common Lisp (CL) to portably write the
programs for which one traditionally uses so-called "scripting" lan-
guages: one can write small scripts that glue together functionality
provided by the operating system (OS), external programs, C li-
braries, or network services; one can scale them into large, main-
tainable and modular systems; and one can make those new ser-
vices available to other programs via the command-line as well as
via network protocols, etc.

The last barrier to making that possible was the lack of a
portable way to build and deploy code so a same script can run
unmodified for many users on one or many machines using one or
many different compilers. This was solved by ASDF 3.

ASDF has been the de facto standard build system for portable
CL software since shortly after its release by Dan Barlow in 2002
(Barlow 2004). The purpose of a build system is to enable divi-
sion of labor in software development: source code is organized
in separately-developed components that depend on other compo-
nents, and the build system transforms the transitive closure of
these components into a working program.

ASDF 3 is the latest rewrite of the system. Aside from fixing
numerous bugs, it sports a new portability layer. One can now
use ASDF to write Lisp programs that may be invoked from the
command line or may spawn external programs and capture their
output ASDF can deliver these programs as standalone executable
files; moreover the companion script cl-launch (see section 2.9)
can create light-weight scripts that can be run unmodified on many
different kinds of machines, each differently configured. These
features make portable scripting possible. Previously, key parts
of a program had to be configured to match one’s specific CL
implementation, OS, and software installation paths. Now, all of
one’s usual scripting needs can be entirely fulfilled using CL,
benefitting from its efficient implementations, hundreds of software
libraries, etc.

In this article, we discuss how the innovations in ASDF 3 enable
new kinds of software development in CL. In section 1, we explain
what ASDF is about; we compare it to common practice in the C
world. In section 2, we describe the improvements introduced in
ASDF 3 and ASDF 3.1 to solve the problem of software delivery;
this section requires some familiarity with CL. In section 3, we
discuss the challenges of evolving a piece of community software,
concluding with lessons learned from our experience.

This is the short version of this article. It sometimes refers to
appendices present only in the extended version (Rideau 2014), that
also includes a few additional examples and footnotes.

1. What ASDF is
1.1 ASDF: Basic Concepts
1.1.1 Components
ASDF is a build system for CL: it helps developers divide soft-
ware into a hierarchy of components and automatically generates a
working program from all the source code.

Top components are called systems in an age-old Lisp tradition,
while the bottom ones are source files, typically written in CL. In
between, there may be a recursive hierarchy of modules.

Users may then operate on these components with various
build operations, most prominently compiling the source code (op-
eration compile-op) and loading the output into the current Lisp
image (operation load-op).

Several related systems may be developed together in the same
source code project. Each system may depend on code from other
systems, either from the same project or from a different project.
ASDF itself has no notion of projects, but other tools on top of
ASDF do: Quicklisp (Beane 2011) packages together systems
from a project into a release, and provides hundreds of releases
as a distribution, automatically downloading on demand required
systems and all their transitive dependencies.

Further, each component may explicitly declare a dependency
on other components: whenever compiling or loading a component
relies on declarations or definitions of packages, macros, variables,
classes, functions, etc., present in another component, the program-
mer must declare that the former component depends-on the latter.

1.1.2 Example System Definition
Below is how the fare-quasiquote system is defined (with
elisions) in a file fare-quasiquote.asd. It contains three
files, packages, quasiquote and pp-quasiquote (the
.lisp suffix is automatically added based on the component
class; see Appendix C). The latter files each depend on the first
file, because this former file defines the CL packages1:

1 Packages are namespaces that contain symbols; they need to be created
before the symbols they contain may even be read as valid syntax.

12 ELS 2014

(defsystem "fare-quasiquote" ...
:depends-on ("fare-utils")
:components
((:file "packages")

(:file "quasiquote"
:depends-on ("packages"))

(:file "pp-quasiquote"
:depends-on ("quasiquote"))))

Among the elided elements were metadata such as :license
"MIT", and extra dependency information :in-order-to
((test-op (test-op "fare-quasiquote-test"))),
that delegates testing the current system to running tests on an-
other system. Notice how the system itself depends-on another sys-
tem, fare-utils, a collection of utility functions and macros
from another project, whereas testing is specified to be done by
fare-quasiquote-test, a system defined in a different file,
fare-quasiquote-test.asd, within the same project.

1.1.3 Action Graph
The process of building software is modeled as a Directed Acyclic
Graph (DAG) of actions, where each action is a pair of an oper-
ation and a component. The DAG defines a partial order, whereby
each action must be performed, but only after all the actions it (tran-
sitively) depends-on have already been performed.

For instance, in fare-quasiquote above, the loading of
(the output of compiling) quasiquote depends-on the compiling
of quasiquote, which itself depends-on the loading of (the
output of compiling) package, etc.

Importantly, though, this graph is distinct from the preceding
graph of components: the graph of actions isn’t a mere refinement
of the graph of components but a transformation of it that also
incorporates crucial information about the structure of operations.

ASDF extracts from this DAG a plan, which by default is a
topologically sorted list of actions, that it then performs in order,
in a design inspired by Pitman (Pitman 1984).

Users can extend ASDF by defining new subclasses of oper-
ation and/or component and the methods that use them, or by
using global, per-system, or per-component hooks.

1.1.4 In-image
ASDF is an "in-image" build system, in the Lisp defsystem
tradition: it compiles (if necessary) and loads software into the cur-
rent CL image, and can later update the current image by recom-
piling and reloading the components that have changed. For better
and worse, this notably differs from common practice in most other
languages, where the build system is a completely different piece of
software running in a separate process.2 On the one hand, it min-
imizes overhead to writing build system extensions. On the other
hand, it puts great pressure on ASDF to remain minimal.

Qualitatively, ASDF must be delivered as a single source file
and cannot use any external library, since it itself defines the code
that may load other files and libraries. Quantitatively, ASDF must
minimize its memory footprint, since it’s present in all programs
that are built, and any resource spent is paid by each program.

For all these reasons, ASDF follows the minimalist principle
that anything that can be provided as an extension should be
provided as an extension and left out of the core. Thus it cannot
afford to support a persistence cache indexed by the cryptographic
digest of build expressions, or a distributed network of workers,
etc. However, these could conceivably be implemented as ASDF
extensions.

2 Of course, a build system could compile CL code in separate processes,
for the sake of determinism and parallelism: our XCVB did (Brody 2009);
so does the Google build system.

1.2 Comparison to C programming practice
Most programmers are familiar with C, but not with CL. It’s there-
fore worth contrasting ASDF to the tools commonly used by C pro-
grammers to provide similar services. Note though how these ser-
vices are factored in very different ways in CL and in C.

To build and load software, C programmers commonly use
make to build the software and ld.so to load it. Additionally, they
use a tool like autoconf to locate available libraries and identify
their features. In many ways these C solutions are better engineered
than ASDF. But in other important ways ASDF demonstrates how
these C systems have much accidental complexity that CL does
away with thanks to better architecture.

• Lisp makes the full power of runtime available at compile-time,
so it’s easy to implement a Domain-Specific Language (DSL):
the programmer only needs to define new functionality, as an
extension that is then seamlessly combined with the rest of the
language, including other extensions. In C, the many utilities
that need a DSL must grow it onerously from scratch; since the
domain expert is seldom also a language expert with resources
to do it right, this means plenty of mutually incompatible, mis-
designed, power-starved, misimplemented languages that have
to be combined through an unprincipled chaos of expensive yet
inexpressive means of communication.

• Lisp provides full introspection at runtime and compile-time
alike, as well as a protocol to declare features and condition-
ally include or omit code or data based on them. Therefore you
don’t need dark magic at compile-time to detect available fea-
tures. In C, people resort to horribly unmaintainable configu-
ration scripts in a hodge podge of shell script, m4 macros, C
preprocessing and C code, plus often bits of python, perl,
sed, etc.

• ASDF possesses a standard and standardly extensible way to
configure where to find the libraries your code depends on,
further improved in ASDF 2. In C, there are tens of incompatible
ways to do it, between libtool, autoconf, kde-config,
pkg-config, various manual ./configure scripts, and
countless other protocols, so that each new piece of software
requires the user to learn a new ad hoc configuration method,
making it an expensive endeavor to use or distribute libraries.

• ASDF uses the very same mechanism to configure both runtime
and compile-time, so there is only one configuration mecha-
nism to learn and to use, and minimal discrepancy.3 In C, com-
pletely different, incompatible mechanisms are used at runtime
(ld.so) and compile-time (unspecified), which makes it hard
to match source code, compilation headers, static and dynamic
libraries, requiring complex "software distribution" infrastruc-
tures (that admittedly also manage versioning, downloading and
precompiling); this at times causes subtle bugs when discrepan-
cies creep in.

Nevertheless, there are also many ways in which ASDF pales
in comparison to other build systems for CL, C, Java, or other
systems:

• ASDF isn’t a general-purpose build system. Its relative sim-
plicity is directly related to it being custom made to build CL
software only. Seen one way, it’s a sign of how little you can
get away with if you have a good basic architecture; a simi-
larly simple solution isn’t available to most other programming
languages, that require much more complex tools to achieve a
similar purpose. Seen another way, it’s also the CL community

3 There is still discrepancy inherent with these times being distinct: the
installation or indeed the machine may have changed.

ELS 2014 13

failing to embrace the outside world and provide solutions with
enough generality to solve more complex problems.

• At the other extreme, a build system for CL could have been
made that is much simpler and more elegant than ASDF, if it
could have required software to follow some simple organiza-
tion constraints, without much respect for legacy code. A con-
structive proof of that is quick-build (Bridgewater 2012),
being a fraction of the size of ASDF, itself a fraction of the size
of ASDF 3, and with a fraction of the bugs — but none of the
generality and extensibility (See section 2.10).

• ASDF it isn’t geared at all to build large software in mod-
ern adversarial multi-user, multi-processor, distributed environ-
ments where source code comes in many divergent versions
and in many configurations. It is rooted in an age-old model of
building software in-image, what’s more in a traditional single-
processor, single-machine environment with a friendly single
user, a single coherent view of source code and a single target
configuration. The new ASDF 3 design is consistent and gen-
eral enough that it could conceivably be made to scale, but that
would require a lot of work.

2. ASDF 3: A Mature Build
2.1 A Consistent, Extensible Model
Surprising as it may be to the CL programmers who used it daily,
there was an essential bug at the heart of ASDF: it didn’t even try
to propagate timestamps from one action to the next. And yet it
worked, mostly. The bug was present from the very first day in
2001, and even before in mk-defsystem since 1990 (Kantrowitz
1990), and it survived till December 2012, despite all our robusti-
fication efforts since 2009 (Goldman 2010). Fixing it required a
complete rewrite of ASDF’s core.

As a result, the object model of ASDF became at the same
time more powerful, more robust, and simpler to explain. The dark
magic of its traverse function is replaced by a well-documented
algorithm. It’s easier than before to extend ASDF, with fewer lim-
itations and fewer pitfalls: users may control how their operations
do or don’t propagate along the component hierarchy. Thus, ASDF
can now express arbitrary action graphs, and could conceivably be
used in the future to build more than just CL programs.

The proof of a good design is in the ease of extending it.
And in CL, extension doesn’t require privileged access to the code
base. We thus tested our design by adapting the most elaborate ex-
isting ASDF extensions to use it. The result was indeed cleaner,
eliminating the previous need for overrides that redefined sizable
chunks of the infrastructure. Chronologically, however, we con-
sciously started this porting process in interaction with developing
ASDF 3, thus ensuring ASDF 3 had all the extension hooks required
to avoid redefinitions.

See the entire story in Appendix F.

2.2 Bundle Operations
Bundle operations create a single output file for an entire system or
collection of systems. The most directly user-facing bundle oper-
ations are compile-bundle-op and load-bundle-op: the
former bundles into a single compilation file all the individual out-
puts from the compile-op of each source file in a system; the
latter loads the result of the former. Also lib-op links into a li-
brary all the object files in a system and dll-op creates a dynam-
ically loadable library out of them. The above bundle operations
also have so-called monolithic variants that bundle all the files in a
system and all its transitive dependencies.

Bundle operations make delivery of code much easier. They
were initially introduced as asdf-ecl, an extension to ASDF

specific to the implementation ECL, back in the day of ASDF 1.
asdf-ecl was distributed with ASDF 2, though in a way that
made upgrade slightly awkward to ECL users, who had to explicitly
reload it after upgrading ASDF, even though it was included by
the initial (require "asdf"). In 2012, it was generalized to
other implementations as the external system asdf-bundle. It
was then merged into ASDF during the development of ASDF 3:
not only did it provide useful new operations, but the way that
ASDF 3 was automatically upgrading itself for safety purposes (see
Appendix B) would otherwise have broken things badly for ECL
users if the bundle support weren’t itself bundled with ASDF.

In ASDF 3.1, using deliver-asd-op, you can create both
the bundle from compile-bundle-op and an .asd file to use
to deliver the system in binary format only.

2.3 Understandable Internals
After bundle support was merged into ASDF (see section 2.2
above), it became trivial to implement a new concatenate-
source-op operation. Thus ASDF could be developed as multi-
ple files, which would improve maintainability. For delivery pur-
pose, the source files would be concatenated in correct dependency
order, into the single file asdf.lisp required for bootstrapping.

The division of ASDF into smaller, more intelligible pieces had
been proposed shortly after we took over ASDF; but we had re-
jected the proposal then on the basis that ASDF must not depend on
external tools to upgrade itself from source, another strong require-
ment (see Appendix B). With concatenate-source-op, an
external tool wasn’t needed for delivery and regular upgrade, only
for bootstrap. Meanwhile this division had also become more im-
portant, since ASDF had grown so much, having almost tripled in
size since those days, and was promising to grow some more. It
was hard to navigate that one big file, even for the maintainer, and
probably impossible for newcomers to wrap their head around it.

To bring some principle to this division, we followed the princi-
ple of one file, one package, as demonstrated by faslpath (Et-
ter 2009) and quick-build (Bridgewater 2012), though not yet
actively supported by ASDF itself (see section 2.10). This program-
ming style ensures that files are indeed providing related function-
ality, only have explicit dependencies on other files, and don’t have
any forward dependencies without special declarations. Indeed, this
was a great success in making ASDF understandable, if not by new-
comers, at least by the maintainer himself; this in turn triggered a
series of enhancements that would not otherwise have been obvi-
ous or obviously correct, illustrating the principle that good code
is code you can understand, organized in chunks you can each
fit in your brain.

2.4 Package Upgrade
Preserving the hot upgradability of ASDF was always a strong re-
quirement (see Appendix B). In the presence of this package refac-
toring, this meant the development of a variant of CL’s def-
package that plays nice with hot upgrade: define-package.
Whereas the former isn’t guaranteed to work and may signal an
error when a package is redefined in incompatible ways, the lat-
ter will update an old package to match the new desired definition
while recycling existing symbols from that and other packages.

Thus, in addition to the regular clauses from defpackage,
define-package accepts a clause :recycle: it attempts to
recycle each declared symbol from each of the specified packages
in the given order. For idempotence, the package itself must be
the first in the list. For upgrading from an old ASDF, the :asdf
package is always named last. The default recycle list consists in a
list of the package and its nicknames.

New features also include :mix and :reexport. :mix
mixes imported symbols from several packages: when multiple

14 ELS 2014

packages export symbols with the same name, the conflict is auto-
matically resolved in favor of the package named earliest, whereas
an error condition is raised when using the standard :use clause.
:reexport reexports the same symbols as imported from given
packages, and/or exports instead the same-named symbols that
shadow them. ASDF 3.1 adds :mix-reexport and :use-
reexport, which combine :reexport with :mix or :use
in a single statement, which is more maintainable than repeating a
list of packages.

2.5 Portability Layer
Splitting ASDF into many files revealed that a large fraction of
it was already devoted to general purpose utilities. This fraction
only grew under the following pressures: a lot of opportunities for
improvement became obvious after dividing ASDF into many files;
features added or merged in from previous extensions and libraries
required new general-purpose utilities; as more tests were added
for new features, and were run on all supported implementations,
on multiple operating systems, new portability issues cropped up
that required development of robust and portable abstractions.

The portability layer, after it was fully documented, ended up
being slightly bigger than the rest of ASDF. Long before that
point, ASDF was thus formally divided in two: this portability
layer, and the defsystem itself. The portability layer was ini-
tially dubbed asdf-driver, because of merging in a lot of
functionality from xcvb-driver. Because users demanded a
shorter name that didn’t include ASDF, yet would somehow be
remindful of ASDF, it was eventually renamed UIOP: the Utili-
ties for Implementation- and OS- Portability4 It was made avail-
able separately from ASDF as a portability library to be used on
its own; yet since ASDF still needed to be delivered as a single file
asdf.lisp, UIOP was transcluded inside that file, now built us-
ing the monolithic-concatenate-source-op operation.
At Google, the build system actually uses UIOP for portability
without the rest of ASDF; this led to UIOP improvements that will
be released with ASDF 3.1.1.

Most of the utilities deal with providing sane pathname ab-
stractions (see Appendix C), filesystem access, sane input/output
(including temporary files), basic operating system interaction —
many things for which the CL standard lacks. There is also an ab-
straction layer over the less-compatible legacy implementations, a
set of general-purpose utilities, and a common core for the ASDF
configuration DSLs.5 Importantly for a build system, there are
portable abstractions for compiling CL files while controlling all
the warnings and errors that can occur, and there is support for the
life-cycle of a Lisp image: dumping and restoring images, initial-
ization and finalization hooks, error handling, backtrace display,
etc. However, the most complex piece turned out to be a portable
implementation of run-program.

2.6 run-program
With ASDF 3, you can run external commands as follows:

(run-program ‘("cp" "-lax" "--parents"
"src/foo" ,destination))

On Unix, this recursively hardlinks files in directory src/foo into
a directory named by the string destination, preserving the
prefix src/foo. You may have to add :output t :error-
output t to get error messages on your *standard-output*

4 U, I, O and P are also the four letters that follow QWERTY on an anglo-
saxon keyboard.
5 ASDF 3.1 notably introduces a nest macro that nests arbitrarily many
forms without indentation drifting ever to the right. It makes for more
readable code without sacrificing good scoping discipline.

and *error-output* streams, since the default value, nil,
designates /dev/null. If the invoked program returns an error
code, run-program signals a structured CL error, unless you
specified :ignore-error-status t.

This utility is essential for ASDF extensions and CL code in
general to portably execute arbitrary external programs. It was a
challenge to write: Each implementation provided a different un-
derlying mechanism with wildly different feature sets and count-
less corner cases. The better ones could fork and exec a process and
control its standard-input, standard-output and error-output; lesser
ones could only call the system(3) C library function. More-
over, Windows support differed significantly from Unix. ASDF 1
itself actually had a run-shell-command, initially copied over
from mk-defsystem, but it was more of an attractive nuisance
than a solution, despite our many bug fixes: it was implicitly call-
ing format; capturing output was particularly contrived; and what
shell would be used varied between implementations, even more so
on Windows.

ASDF 3’s run-program is full-featured, based on code orig-
inally from XCVB’s xcvb-driver (Brody 2009). It abstracts
away all these discrepancies to provide control over the program’s
standard output, using temporary files underneath if needed. Since
ASDF 3.0.3, it can also control the standard input and error out-
put. It accepts either a list of a program and arguments, or a shell
command string. Thus your previous program could have been:

(run-program
(format nil "cp -lax --parents src/foo ∼S"

(native-namestring destination))
:output t :error-output t)

where (UIOP)’s native-namestring converts the path-
name object destination into a name suitable for use by the
operating system, as opposed to a CL namestring that might be
escaped somehow.

You can also inject input and capture output:

(run-program ’("tr" "a-z" "n-za-m")
:input ’("uryyb, jbeyq") :output :string)

returns the string "hello, world". It also returns secondary
and tertiary values nil and 0 respectively, for the (non-captured)
error-output and the (successful) exit code.

run-program only provides a basic abstraction; a separate
system inferior-shell was written on top of UIOP, and
provides a richer interface, handling pipelines, zsh style redirec-
tions, splicing of strings and/or lists into the arguments, and im-
plicit conversion of pathnames into native-namestrings, of symbols
into downcased strings, of keywords into downcased strings with
a -- prefix. Its short-named functions run, run/nil, run/s,
run/ss, respectively run the external command with outputs to
the Lisp standard and error output, with no output, with output to
a string, or with output to a stripped string. Thus you could get the
same result as previously with:

(run/ss ’(pipe (echo (uryyb ", " jbeyq))
(tr a-z (n-z a-m))))

Or to get the number of processors on a Linux machine, you can:

(run ’(grep -c "^processor.:"
(< /proc/cpuinfo))

:output #’read)

2.7 Configuration Management
ASDF always had minimal support for configuration management.
ASDF 3 doesn’t introduce radical change, but provides more usable
replacements or improvements for old features.

ELS 2014 15

For instance, ASDF 1 had always supported version-checking:
each component (usually, a system) could be given a version string
with e.g. :version "3.1.0.97", and ASDF could be told to
check that dependencies of at least a given version were used,
as in :depends-on ((:version "inferior-shell"
"2.0.0")). This feature can detect a dependency mismatch
early, which saves users from having to figure out the hard way
that they need to upgrade some libraries, and which.

Now, ASDF always required components to use "semantic ver-
sioning", where versions are strings made of dot-separated numbers
like 3.1.0.97. But it didn’t enforce it, leading to bad surprises
for the users when the mechanism was expected to work, but failed.
ASDF 3 issues a warning when it finds a version that doesn’t fol-
low the format. It would actually have issued an error, if that
didn’t break too many existing systems.

Another problem with version strings was that they had to be
written as literals in the .asd file, unless that file took painful
steps to extract it from another source file. While it was easy for
source code to extract the version from the system definition, some
authors legitimately wanted their code to not depend on ASDF it-
self. Also, it was a pain to repeat the literal version and/or the
extraction code in every system definition in a project. ASDF 3 can
thus extract version information from a file in the source tree, with,
e.g. :version (:read-file-line "version.text")
to read the version as the first line of file version.text. To
read the third line, that would have been :version (:read-
file-line "version.text" :at 2) (mind the off-by-
one error in the English language). Or you could extract the
version from source code. For instance, poiu.asd specifies
:version (:read-file-form "poiu.lisp" :at (1
2 2)) which is the third subform of the third subform of the
second form in the file poiu.lisp. The first form is an in-
package and must be skipped. The second form is an (eval-
when (...) body...) the body of which starts with a (def-
parameter *poiu-version* ...) form. ASDF 3 thus
solves this version extraction problem for all software — except
itself, since its own version has to be readable by ASDF 2 as well
as by who views the single delivery file; thus its version informa-
tion is maintained by a management script using regexps, of course
written in CL.

Another painful configuration management issue with ASDF 1
and 2 was lack of a good way to conditionally include files de-
pending on which implementation is used and what features it sup-
ports. One could always use CL reader conditionals such as #+(or
sbcl clozure) but that means that ASDF could not even see
the components being excluded, should some operation be invoked
that involves printing or packaging the code rather than compil-
ing it — or worse, should it involve cross-compilation for another
implementation with a different feature set. There was an obscure
way for a component to declare a dependency on a :feature,
and annotate its enclosing module with :if-component-dep-
fails :try-next to catch the failure and keep trying. But
the implementation was a kluge in traverse that short-circuited
the usual dependency propagation and had exponential worst case
performance behavior when nesting such pseudo-dependencies to
painfully emulate feature expressions.

ASDF 3 gets rid of :if-component-dep-fails: it didn’t
fit the fixed dependency model at all. A limited compatibility mode
without nesting was preserved to keep processing old versions of
SBCL. As a replacement, ASDF 3 introduces a new option :if-
feature in component declarations, such that a component is
only included in a build plan if the given feature expression is true
during the planning phase. Thus a component annotated with :if-
feature (:and :sbcl (:not :sb-unicode)) (and its
children, if any) is only included on an SBCL without Unicode sup-

port. This is more expressive than what preceded, without requiring
inconsistencies in the dependency model, and without pathological
performance behavior.

2.8 Standalone Executables
One of the bundle operations contributed by the ECL team was
program-op, that creates a standalone executable. As this was
now part of ASDF 3, it was only natural to bring other ASDF-
supported implementations up to par: CLISP, Clozure CL, CMUCL,
LispWorks, SBCL, SCL. Thus UIOP features a dump-image
function to dump the current heap image, except for ECL and
its successors that follow a linking model and use a create-
image function. These functions were based on code from xcvb-
driver, which had taken them from cl-launch.

ASDF 3 also introduces a defsystem option to specify an
entry point as e.g. :entry-point "my-package:entry-
point". The specified function (designated as a string to be read
after the package is created) is called without arguments after the
program image is initialized; after doing its own initializations, it
can explicitly consult *command-line-arguments*6 or pass
it as an argument to some main function.

Our experience with a large application server at ITA Software
showed the importance of hooks so that various software compo-
nents may modularly register finalization functions to be called be-
fore dumping the image, and initialization functions to be called
before calling the entry point. Therefore, we added support for im-
age life-cycle to UIOP. We also added basic support for running
programs non-interactively as well as interactively: non-interactive
programs exit with a backtrace and an error message repeated
above and below the backtrace, instead of inflicting a debugger on
end-users; any non-nil return value from the entry-point function
is considered success and nil failure, with an appropriate program
exit status.

Starting with ASDF 3.1, implementations that don’t support
standalone executables may still dump a heap image using the
image-op operation, and a wrapper script, e.g. created by cl-
launch, can invoke the program; delivery is then in two files
instead of one. image-op can also be used by all implementations
to create intermediate images in a staged build, or to provide ready-
to-debug images for otherwise non-interactive applications.

2.9 cl-launch
Running Lisp code to portably create executable commands from
Lisp is great, but there is a bootstrapping problem: when all you
can assume is the Unix shell, how are you going to portably invoke
the Lisp code that creates the initial executable to begin with?

We solved this problem some years ago with cl-launch. This
bilingual program, both a portable shell script and a portable CL
program, provides a nice colloquial shell command interface to
building shell commands from Lisp code, and supports delivery
as either portable shell scripts or self-contained precompiled ex-
ecutable files.

Its latest incarnation, cl-launch 4 (March 2014), was up-
dated to take full advantage of ASDF 3. Its build specification in-
terface was made more general, and its Unix integration was im-
proved. You may thus invoke Lisp code from a Unix shell:
cl -sp lisp-stripper \

-i "(print-loc-count \"asdf.lisp\")"
You can also use cl-launch as a script "interpreter", except

that it invokes a Lisp compiler underneath:

6 In CL, most variables are lexically visible and statically bound, but spe-
cial variables are globally visible and dynamically bound. To avoid subtle
mistakes, the latter are conventionally named with enclosing asterisks, also
known in recent years as earmuffs.

16 ELS 2014

#!/usr/bin/cl -sp lisp-stripper -E main
(defun main (argv)

(if argv
(map () ’print-loc-count argv)
(print-loc-count *standard-input*)))

In the examples above, option -sp, shorthand for --system-
package, simultaneously loads a system using ASDF during the
build phase, and appropriately selects the current package; -i,
shorthand for --init evaluates a form at the start of the execution
phase; -E, shorthand for --entry configures a function that is
called after init forms are evaluated, with the list of command-
line arguments as its argument.7 As for lisp-stripper, it’s a
simple library that counts lines of code after removing comments,
blank lines, docstrings, and multiple lines in strings.

cl-launch automatically detects a CL implementation in-
stalled on your machine, with sensible defaults. You can eas-
ily override all defaults with a proper command-line option, a
configuration file, or some installation-time configuration. See
cl-launch --more-help for complete information. Note
that cl-launch is on a bid to homestead the executable path
/usr/bin/cl on Linux distributions; it may slightly more
portably be invoked as cl-launch.

A nice use of cl-launch is to compare how various imple-
mentations evaluate some form, to see how portable it is in practice,
whether the standard mandates a specific result or not:
for l in sbcl ccl clisp cmucl ecl abcl \

scl allegro lispworks gcl xcl ; do
cl -l $l -i \
’(format t "’$l’: ∼S∼%" ‘#5(1 ,@‘(2 3)))’ \
2>&1 | grep "^$l:" # LW, GCL are verbose

done
cl-launch compiles all the files and systems that are speci-

fied, and keeps the compilation results in the same output-file cache
as ASDF 3, nicely segregating them by implementation, version,
ABI, etc. Therefore, the first time it sees a given file or system, or
after they have been updated, there may be a startup delay while
the compiler processes the files; but subsequent invocations will be
faster as the compiled code is directly loaded. This is in sharp con-
trast with other "scripting" languages, that have to slowly interpret
or recompile everytime. For security reasons, the cache isn’t shared
between users.

2.10 package-inferred-system
ASDF 3.1 introduces a new extension package-inferred-
system that supports a one-file, one-package, one-system style
of programming. This style was pioneered by faslpath (Etter
2009) and more recently quick-build (Bridgewater 2012).
This extension is actually compatible with the latter but not the
former, for ASDF 3.1 and quick-build use a slash "/" as a
hierarchy separator where faslpath used a dot ".".

This style consists in every file starting with a defpackage
or define-package form; from its :use and :import-
from and similar clauses, the build system can identify a list
of packages it depends on, then map the package names to the
names of systems and/or other files, that need to be loaded first.
Thus package name lil/interface/all refers to the file
interface/all.lisp under the hierarchy registered by sys-
tem lil, defined as follows in lil.asd as using class package-
inferred-system:

(defsystem "lil" ...
:description "LIL: Lisp Interface Library"

7 Several systems are available to help you define an evaluator for your
command-line argument DSL: command-line-arguments, clon,
lisp-gflags.

:class :package-inferred-system
:defsystem-depends-on ("asdf-package-system")
:depends-on ("lil/interface/all"

"lil/pure/all" ...)
...)

The :defsystem-depends-on ("asdf-package-system")
is an external extension that provides backward compatibility with
ASDF 3.0, and is part of Quicklisp. Because not all package names
can be directly mapped back to a system name, you can register new
mappings for package-inferred-system. The lil.asd
file may thus contain forms such as:

(register-system-packages :closer-mop
’(:c2mop :closer-common-lisp :c2cl ...))

Then, a file interface/order.lisp under the lil hierarchy,
that defines abstract interfaces for order comparisons, starts with
the following form, dependencies being trivially computed from
the :use and :mix clauses:

(uiop:define-package :lil/interface/order
(:use :closer-common-lisp

:lil/interface/definition
:lil/interface/base
:lil/interface/eq :lil/interface/group)

(:mix :fare-utils :uiop :alexandria)
(:export ...))

This style provides many maintainability benefits: by imposing
upon programmers a discipline of smaller namespaces, with ex-
plicit dependencies and especially explicit forward dependencies,
the style encourages good factoring of the code into coherent units;
by contrast, the traditional style of "everything in one package" has
low overhead but doesn’t scale very well. ASDF itself was rewritten
in this style as part of ASDF 2.27, the initial ASDF 3 pre-release,
with very positive results.

Since it depends on ASDF 3, package-inferred-system
isn’t as lightweight as quick-build, which is almost two or-
ders of magnitude smaller than ASDF 3. But it does interoperate
perfectly with the rest of ASDF, from which it inherits the many
features, the portability, and the robustness.

2.11 Restoring Backward Compatibility
ASDF 3 had to break compatibility with ASDF 1 and 2: all opera-
tions used to be propagated sideway and downward along the com-
ponent DAG (see Appendix F). In most cases this was undesired;
indeed, ASDF 3 is predicated upon a new operation prepare-op
that instead propagates upward.8 Most existing ASDF extensions
thus included workarounds and approximations to deal with the is-
sue. But a handful of extensions did expect this behavior, and now
they were broken.

Before the release of ASDF 3, authors of all known ASDF
extensions distributed by Quicklisp had been contacted, to make
their code compatible with the new fixed model. But there was
no way to contact unidentified authors of proprietary extensions,
beside sending an announcement to the mailing-list. Yet, whatever
message was sent didn’t attract enough attention. Even our co-
maintainer Robert Goldman got bitten hard when an extension used
at work stopped working, wasting days to figure out the issue.

Therefore, ASDF 3.1 features enhanced backward-compatibility.
The class operation implements sideway and downward prop-
agation on all classes that do not explicitly inherit from any

8 Sideway means the action of operation o on component c depends-on the
action of o (or another operation) on each of the declared dependencies
of c. Downward means that it depends-on the action of o on each of c’s
children; upward, on c’s parent (enclosing module or system).

ELS 2014 17

of the propagating mixins downward-operation, upward-
operation, sideway-operation or selfward-operation,
unless they explicitly inherit from the new mixin non-propagating-
operation. ASDF 3.1 signals a warning at runtime when an
operation class is instantiated that doesn’t inherit from any of the
above mixins, which will hopefully tip off authors of a proprietary
extension that it’s time to fix their code. To tell ASDF 3.1 that their
operation class is up-to-date, extension authors may have to define
their non-propagating operations as follows:
(defclass my-op (#+asdf3.1 non-propagating-
operation operation) ())

This is a case of "negative inheritance", a technique usually
frowned upon, for the explicit purpose of backward compatibility.
Now ASDF cannot use the CLOS Meta-Object Protocol (MOP),
because it hasn’t been standardized enough to be portably used
without using an abstraction library such as closer-mop, yet
ASDF cannot depend on any external library, and this is too small
an issue to justify making a sizable MOP library part of UIOP.
Therefore, the negative inheritance is implemented in an ad hoc
way at runtime.

3. Code Evolution in a Conservative Community
3.1 Feature Creep? No, Mission Creep
Throughout the many features added and tenfold increase in size
from ASDF 1 to ASDF 3, ASDF remained true to its minimalism —
but the mission, relative to which the code remains minimal, was
extended, several times: In the beginning, ASDF was the simplest
extensible variant of defsystem that builds CL software (see Ap-
pendix A). With ASDF 2, it had to be upgradable, portable, mod-
ularly configurable, robust, performant, usable (see Appendix B).
Then it had to be more declarative, more reliable, more predictable,
and capable of supporting language extensions (see Appendix D).
Now, ASDF 3 has to support a coherent model for representing de-
pendencies, an alternative one-package-per-file style for declaring
them, software delivery as either scripts or binaries, a documented
portability layer including image life-cycle and external program
invocation, etc. (see section 2).

3.2 Backward Compatibility is Social, not Technical
As efforts were made to improve ASDF, a constant constraint was
that of backward compatibility: every new version of ASDF had to
be compatible with the previous one, i.e. systems that were defined
using previous versions had to keep working with new versions.
But what more precisely is backward compatibility?

In an overly strict definition that precludes any change in be-
havior whatsoever, even the most uncontroversial bug fix isn’t
backward-compatible: any change, for the better as it may be, is
incompatible, since by definition, some behavior has changed!

One might be tempted to weaken the constraint a bit, and de-
fine "backward compatible" as being the same as a "conservative
extension": a conservative extension may fix erroneous situations,
and give new meaning to situations that were previously undefined,
but may not change the meaning of previously defined situations.
Yet, this definition is doubly unsatisfactory. On the one hand, it pre-
cludes any amendment to previous bad decisions; hence, the jest if
it’s not backwards, it’s not compatible. On the other hand, even
if it only creates new situations that work correctly where they were
previously in error, some existing analysis tool might assume these
situations could never arise, and be confused when they now do.

Indeed this happened when ASDF 3 tried to better support sec-
ondary systems. ASDF looks up systems by name: if you try to
load system foo, ASDF will search in registered directories for a
file call foo.asd. Now, it was common practice that programmers
may define multiple "secondary" systems in a same .asd file, such

as a test system foo-test in addition to foo. This could lead to
"interesting" situations when a file foo-test.asd existed, from
a different, otherwise shadowed, version of the same library, result-
ing in a mismatch between the system and its tests. To make these
situations less likely, ASDF 3 recommends that you name your sec-
ondary system foo/test instead of of foo-test, which should
work just as well in ASDF 2, but with reduced risk of clash. More-
over, ASDF 3 can recognize the pattern and automatically load
foo.asd when requested foo/test, in a way guaranteed not
to clash with previous usage, since no directory could contain a file
thus named in any modern operating system. In contrast, ASDF 2
has no way to automatically locate the .asd file from the name
of a secondary system, and so you must ensure that you loaded the
primary .asd file before you may use the secondary system. This
feature may look like a textbook case of a backward-compatible
"conservative extension". Yet, it’s the major reason why Quicklisp
itself still hasn’t adopted ASDF 3: Quicklisp assumed it could al-
ways create a file named after each system, which happened to be
true in practice (though not guaranteed) before this ASDF 3 inno-
vation; systems that newly include secondary systems using this
style break this assumption, and will require non-trivial work for
Quicklisp to support.

What then, is backward compatibility? It isn’t a technical con-
straint. Backward compatibility is a social constraint. The new
version is backward compatible if the users are happy. This doesn’t
mean matching the previous version on all the mathematically con-
ceivable inputs; it means improving the results for users on all the
actual inputs they use; or providing them with alternate inputs they
may use for improved results.

3.3 Weak Synchronization Requires Incremental Fixes
Even when some "incompatible" changes are not controversial,
it’s often necessary to provide temporary backward compatible
solutions until all the users can migrate to the new design. Changing
the semantics of one software system while other systems keep
relying on it is akin to changing the wheels on a running car: you
cannot usually change them all at once, at some point you must
have both kinds active, and you cannot remove the old ones until
you have stopped relying on them. Within a fast moving company,
such migration of an entire code base can happen in a single
checkin. If it’s a large company with many teams, the migration
can take many weeks or months. When the software is used by a
weakly synchronized group like the CL community, the migration
can take years.

When releasing ASDF 3, we spent a few months making sure
that it would work with all publicly available systems. We had to
fix many of these systems, but mostly, we were fixing ASDF 3 itself
to be more compatible. Indeed, several intended changes had to be
forsaken, that didn’t have an incremental upgrade path, or for which
it proved infeasible to fix all the clients.

A successful change was notably to modify the default encod-
ing from the uncontrolled environment-dependent :default to
the de facto standard :utf-8; this happened a year after adding
support for encodings and :utf-8 was added, and having fore-
warned community members of the future change in defaults, yet a
few systems still had to be fixed (see Appendix D).

On the other hand, an unsuccessful change was the attempt
to enable an innovative system to control warnings issued by the
compiler. First, the *uninteresting-conditions* mecha-
nism allows system builders to hush the warnings they know they
don’t care for, so that any compiler output is something they care
for, and whatever they care for isn’t drowned into a sea of unin-
teresting output. The mechanism itself is included in ASDF 3, but
disabled by default, because there was no consensually agreeable
value except an empty set, and no good way (so far) to configure it

18 ELS 2014

both modularly and without pain. Second, another related mech-
anism that was similarly disabled is deferred-warnings,
whereby ASDF can check warnings that are deferred by SBCL
or other compilers until the end of the current compilation-unit.
These warnings notably include forward references to functions
and variables. In the previous versions of ASDF, these warnings
were output at the end of the build the first time a file was built,
but not checked, and not displayed afterward. If in ASDF 3 you
(uiop:enable-deferred-warnings), these warnings are
displayed and checked every time a system is compiled or loaded.
These checks help catch more bugs, but enabling them prevents
the successful loading of a lot of systems in Quicklisp that have
such bugs, even though the functionality for which these systems
are required isn’t affected by these bugs. Until there exists some
configuration system that allows developers to run all these checks
on new code without having them break old code, the feature will
have to remain disabled by default.

3.4 Underspecification Creates Portability Landmines
The CL standard leaves many things underspecified about path-
names in an effort to define a useful subset common to many then-
existing implementations and filesystems. However, the result is
that portable programs can forever only access but a small subset
of the complete required functionality. This result arguably makes
the standard far less useful than expected (see Appendix C). The
lesson is don’t standardize partially specified features. It’s bet-
ter to standardize that some situations cause an error, and reserve
any resolution to a later version of the standard (and then follow up
on it), or to delegate specification to other standards, existing or
future.

There could have been one pathname protocol per operating
system, delegated to the underlying OS via a standard FFI. Li-
braries could then have sorted out portability over N operating sys-
tems. Instead, by standardizing only a common fragment and let-
ting each of M implementations do whatever it can on each oper-
ating system, libraries now have to take into account N*M combi-
nations of operating systems and implementations. In case of dis-
agreement, it’s much better to let each implementation’s variant
exist in its own, distinct namespace, which avoids any confusion,
than have incompatible variants in the same namespace, causing
clashes.

Interestingly, the aborted proposal for including defsystem
in the CL standard was also of the kind that would have specified
a minimal subset insufficient for large scale use while letting the
rest underspecified. The CL community probably dodged a bullet
thanks to the failure of this proposal.

3.5 Safety before Ubiquity
Guy Steele has been quoted as vaunting the programmability of
Lisp’s syntax by saying: If you give someone Fortran, he has
Fortran. If you give someone Lisp, he has any language he pleases.
Unhappily, if he were speaking about CL specifically, he would
have had to add: but it can’t be the same as anyone else’s.

Indeed, syntax in CL is controlled via a fuzzy set of global
variables, prominently including the *readtable*. Making non-
trivial modifications to the variables and/or tables is possible, but
letting these modifications escape is a serious issue; for the author
of a system has no control over which systems will or won’t be
loaded before or after his system — this depends on what the user
requests and on what happens to already have been compiled or
loaded. Therefore in absence of further convention, it’s always a
bug to either rely on the syntax tables having non-default values
from previous systems, or to inflict non-default values upon next
systems. What is worse, changing syntax is only useful if it also
happens at the interactive REPL and in appropriate editor buffers.

Yet these interactive syntax changes can affect files built interac-
tively, including, upon modification, components that do not de-
pend on the syntax support, or worse, that the syntax support de-
pends on; this can cause catastrophic circular dependencies, and
require a fresh start after having cleared the output file cache. Sys-
tems like named-readtables or cl-syntax help with syntax
control, but proper hygiene isn’t currently enforced by either CL or
ASDF, and remains up to the user, especially at the REPL.

Build support is therefore strongly required for safe syntax
modification; but this build support isn’t there yet in ASDF 3.
For backward-compatibility reasons, ASDF will not enforce strict
controls on the syntax, at least not by default. But it is easy to
enforce hygiene by binding read-only copies of the standard syntax
tables around each action. A more backward-compatible behavior
is to let systems modify a shared readtable, and leave the user
responsible for ensuring that all modifications to this readtable used
in a given image are mutually compatible; ASDF can still bind
the current *readtable* to that shared readtable around every
compilation, to at least ensure that selection of an incompatible
readtable at the REPL does not pollute the build. A patch to this
effect is pending acceptance by the new maintainer.

Until such issues are resolved, even though the Lisp ideal is
one of ubiquitous syntax extension, and indeed extension through
macros is ubiquitous, extension though reader changes are rare in
the CL community. This is in contrast with other Lisp dialects, such
as Racket, that have succeeded at making syntax customization
both safe and ubiquitous, by having it be strictly scoped to the
current file or REPL. Any language feature has to be safe before
it may be ubiquitous; if the semantics of a feature depend on
circumstances beyond the control of system authors, such as the
bindings of syntax variables by the user at his REPL, then these
authors cannot depend on this feature.

3.6 Final Lesson: Explain it
While writing this article, we had to revisit many concepts and
pieces of code, which led to many bug fixes and refactorings
to ASDF and cl-launch. An earlier interactive "ASDF walk-
through" via Google Hangout also led to enhancements. Our expe-
rience illustrates the principle that you should always explain your
programs: having to intelligibly verbalize the concepts will make
you understand them better.

Bibliography
Daniel Barlow. ASDF Manual. 2004. http://common-lisp.net/

project/asdf/
Zach Beane. Quicklisp. 2011. http://quicklisp.org/
Alastair Bridgewater. Quick-build (private communication). 2012.
François-René Rideau and Spencer Brody. XCVB: an eXtensible Com-

ponent Verifier and Builder for Common Lisp. 2009. http://
common-lisp.net/projects/xcvb/

Peter von Etter. faslpath. 2009. https://code.google.com/p/
faslpath/

François-René Rideau and Robert Goldman. Evolving ASDF: More Co-
operation, Less Coordination. 2010. http://common-lisp.net/
project/asdf/doc/ilc2010draft.pdf

Mark Kantrowitz. Defsystem: A Portable Make Facility for Com-
mon Lisp. 1990. ftp://ftp.cs.rochester.edu/pub/
archives/lisp-standards/defsystem/pd-code/
mkant/defsystem.ps.gz

Kent Pitman. The Description of Large Systems. 1984. http://www.
nhplace.com/kent/Papers/Large-Systems.html

François-René Rideau. ASDF3, or Why Lisp is Now an Acceptable Script-
ing Language (extended version). 2014. http://fare.tunes.
org/files/asdf3/asdf3-2014.html

ELS 2014 19

Generalizers: New Metaobjects for Generalized Dispatch

Christophe Rhodes
Department of Computing
Goldsmiths, University of

London
London SE14 6NW

c.rhodes@gold.ac.uk

Jan Moringen
Universität Bielefeld
Technische Fakultät

33594 Bielefeld
jmoringe@techfak.uni-

bielefeld.de

David Lichteblau
ZenRobotics Ltd
Vilhonkatu 5 A

FI-00100 Helsinki
david@lichteblau.com

ABSTRACT
This paper introduces a new metaobject, the general-
izer, which complements the existing specializer metaobject.
With the help of examples, we show that this metaobject al-
lows for the efficient implementation of complex non-class-
based dispatch within the framework of existing metaob-
ject protocols. We present our modifications to the generic
function invocation protocol from the Art of the Metaob-
ject Protocol ; in combination with previous work, this pro-
duces a fully-functional extension of the existing mechanism
for method selection and combination, including support for
method combination completely independent from method
selection. We discuss our implementation, within the SBCL
implementation of Common Lisp, and in that context com-
pare the performance of the new protocol with the standard
one, demonstrating that the new protocol can be tolerably
efficient.

Report-No.: http://eprints.gold.ac.uk/id/eprint/9924

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Object-oriented
Programming ; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

General Terms
Languages, Design

Keywords
generic functions, specialization-oriented programming, method
selection, method combination

1. INTRODUCTION
The revisions to the original Common Lisp language [14] in-
cluded the detailed specification of an object system, known
as the Common Lisp Object System (CLOS), which was
eventually standardized as part of the ANSI Common Lisp

standard [10]. The object system as presented to the stan-
dardization committee was formed of three chapters. The
first two chapters covered programmer interface concepts
and the functions in the programmer interface [15, Chapter
28] and were largely incorporated into the final standard;
the third chapter, covering a Metaobject Protocol (MOP)
for CLOS, was not.

Nevertheless, the CLOS MOP continued to be developed,
and the version documented in [7] has proven to be a rea-
sonably robust design. While many implementations have
derived their implementations of CLOS from either the Clos-
ette illustrative implementation in [7], or the Portable Com-
mon Loops implementation of CLOS from Xerox Parc, there
have been largely from-scratch reimplementations of CLOS
(in CLISP1 and CCL2, at least) incorporating substantial
fractions of the Metaobject Protocol as described.

•

CLOS

AMOP space

•

sparse slots

•
message-not-understood

Figure 1: MOP Design Space

Although it has stood the test of time, the CLOS MOP
is neither without issues (e.g. semantic problems with
make-method-lambda [2]; useful functions such as compute-

effective-slot-definition-initargs being missing from

1GNU CLISP, at http://www.clisp.org/
2Clozure Common Lisp, at http://ccl.clozure.com/

20 ELS 2014

the standard) nor is it a complete framework for the
metaprogrammer to implement all conceivable variations of
object-oriented behaviour. While metaprogramming offers
some possibilities for customization of the object system be-
haviour, those possibilities cannot extend arbitrarily in all
directions (conceptually, if a given object system is a point
in design space, then a MOP for that object system allows
exploration of a region of design space around that point;
see figure 1). In the case of the CLOS MOP, there is still
an expectation that functionality is implemented with meth-
ods on generic functions, acting on objects with slots; it is
not possible, for example, to transparently implement sup-
port for “message not understood” as in the message-passing
paradigm, because the analogue of messages (generic func-
tions) need to be defined before they are used.

Nevertheless, the MOP is flexible, and is used for a number
of things, including: documentation generation (where in-
trospection in the MOP is used to extract information from
a running system); object-relational mapping and other ap-
proaches to object persistence; alternative backing stores
for slots (hash-tables or symbols); and programmatic con-
struction of metaobjects, for example for IDL compilers and
model transformations.

One area of functionality where there is scope for customiza-
tion by the metaprogrammer is in the mechanics and seman-
tics of method applicability and dispatch. While in princi-
ple AMOP allows customization of dispatch in various dif-
ferent ways (the metaprogrammer can define methods on
protocol functions such as compute-applicable-methods,
compute-applicable-methods-using-classes), for exam-
ple, in practice implementation support for this was weak
until relatively recently3.

Another potential mechanism for customizing dispatch is im-
plicit in the class structure defined by AMOP: standard spe-
cializer objects (instances of class and eql-specializer)
are generalized instances of the specializer protocol class,
and in principle there are no restrictions on the metapro-
grammer constructing additional subclasses. Previous work
[9] has explored the potential for customizing generic func-
tion dispatch using extended specializers, but there the
metaprogrammer must override the entirety of the generic
function invocation protocol (from compute-discriminating-

function on down), leading to toy implementations and du-
plicated effort.

This paper introduces a protocol for efficient and controlled
handling of new subclasses of specializer. In particular,
it introduces the generalizer protocol class, which gener-
alizes the return value of class-of in method applicability
computation, and allows the metaprogrammer to hook into
cacheing schemes to avoid needless recomputation of effec-
tive methods for sufficiently similar generic function argu-
ments (See Figure 2).

The remaining sections in this paper can be read in any
order. We give some motivating examples in section 2, in-
cluding reimplementations of examples from previous work,

3the Closer to MOP project, at http://common-lisp.net/
project/closer/, attempts to harmonize the different im-
plementations of the metaobject protocol in Common Lisp.

eql-specializer

class

specializer

argument

generalizergen.-spec.

eql

eql-specializer-object

subtypep

class-of

generalizer-of

s-a-g-p

specializer-accepts-generalizer-p

Figure 2: Dispatch Comparison

as well as examples which are poorly supported by previ-
ous protocols. We describe the protocol itself in section 3,
describing each protocol function in detail and, where ap-
plicable, relating it to existing protocol functions within the
CLOS MOP. We survey related work in more detail in sec-
tion 4, touching on work on customized dispatch schemes in
other environments. Finally, we draw our conclusions from
this work, and indicate directions for further development,
in section 5; reading that section before the others indicates
substantial trust in the authors’ work.

2. EXAMPLES
In this section, we present a number of examples of dis-
patch implemented using our protocol, which we describe
in section 3. For reasons of space, the metaprogram code
examples in this section do not include some of the neces-
sary support code to run; complete implementations of each
of these cases, along with the integration of this protocol
into the SBCL implementation [11] of Common Lisp, are
included in the authors’ repository4.

A note on terminology: we will attempt to distinguish be-
tween the user of an individual case of generalized dispatch
(the “programmer”), the implementor of a particular case
of generalized dispatch (the “metaprogrammer”), and the
authors as the designers and implementors of our general-
ized dispatch protocol (the “metametaprogammer”, or more
likely “we”).

2.1 CONS specializers
One motivation for the use of generalized dispatch is in an
extensible code walker: a new special form can be han-
dled simply by writing an additional method on the walking
generic function, seamlessly interoperating with all existing
methods. In this use-case, dispatch is performed on the
first element of lists. Semantically, we allow the program-
mer to specialize any argument of methods with a new kind
of specializer, cons-specializer, which is applicable if and
only if the corresponding object is a cons whose car is eql

to the symbol associated with the cons-specializer; these
specializers are more specific than the cons class, but less
specific than an eql-specializer on any given cons.

4the tag els2014-submission in http://christophe.
rhodes.io/git/specializable.git corresponds to the
code repository at the point of submitting this paper.

ELS 2014 21

The programmer code using these specializers is unchanged
from [9]; the benefits of the protocol described here are: that
the separation of concerns is complete – method selection is
independent of method combination – and that the proto-
col allows for efficient implementation where possible, even
when method selection is customized. In an application such
as walking source code, we would expect to encounter spe-
cial forms (distinguished by particular atoms in the car po-
sition) multiple times, and hence to dispatch to the same ef-
fective method repeatedly. We discuss the efficiency aspects
of the protocol in more detail in section 3.1.2; we present the
metaprogrammer code to implement the cons-specializer

below.

(defclass cons-specializer (specializer)

((%car :reader %car :initarg :car)))

(defclass cons-generalizer (generalizer)

((%car :reader %car :initarg :car)))

(defmethod generalizer-of-using-class

((gf cons-generic-function) arg)

(typecase arg

((cons symbol)

(make-instance ’cons-generalizer

:car (car arg)))

(t (call-next-method))))

(defmethod generalizer-equal-hash-key

((gf cons-generic-function)

(g cons-generalizer))

(%car g))

(defmethod specializer-accepts-generalizer-p

((gf cons-generic-function)

(s cons-specializer)

(g cons-generalizer))

(if (eql (%car s) (%car g))

(values t t)

(values nil t)))

(defmethod specializer-accepts-p

((s cons-specializer) o)

(and (consp o) (eql (car o) (%car s))))

The code above shows a minimal use of our protocol. We
have elided some support code for parsing and unparsing
specializers, and for handling introspective functions such
as finding generic functions for a given specializer. We have
also elided methods on the protocol functions specializer<
and same-specializer-p; for cons-specializer objects,
specializer ordering is trivial, as only one cons-specializer

(up to equality) can ever be applicable to any given argu-
ment. See section 2.3 for a case where specializer ordering
is non-trivial.

As in [9], the programmer can use these specializers to imple-
ment a modular code walker, where they define one method
per special operator. We show two of those methods below,
in the context of a walker which checks for unused bindings
and uses of unbound variables.

(defgeneric walk (form env stack)

(:generic-function-class cons-generic-function))

(defmethod walk

((expr (cons lambda)) env call-stack)

(let ((lambda-list (cadr expr))

(body (cddr expr)))

(with-checked-bindings

((bindings-from-ll lambda-list)

env call-stack)

(dolist (form body)

(walk form env (cons form call-stack))))))

(defmethod walk

((expr (cons let)) env call-stack)

(flet ((let-binding (x)

(walk (cadr x) env

(cons (cadr x) call-stack))

(cons (car x)

(make-instance ’binding))))

(with-checked-bindings

((mapcar #’let-binding (cadr expr))

env call-stack)

(dolist (form (cddr expr))

(walk form env (cons form call-stack))))))

Note that in this example there is no strict need for cons-

specializer and cons-generalizer to be distinct classes.
In standard generic function dispatch, the class functions
both as the specializer for methods and as the generalizer
for generic function arguments; we can think of the dispatch
implemented by cons-specializer objects as providing for
subclasses of the cons class distinguished by the car of
the cons. This analogy also characterizes those use cases
where the metaprogrammer could straightforwardly use fil-
tered dispatch [3] to implement their dispatch semantics.
We will see in section 2.3 an example of a case where fil-
tered dispatch is incapable of straightforwardly expressing
the dispatch, but first we present our implementation of the
motivating case from [3].

2.2 SIGNUM specializers
Our second example of the implementation and use of gener-
alized specializers is a reimplementation of one of the exam-
ples in [3]: specifically, the factorial function. Here, dispatch
will be performed based on the signum of the argument, and
again, at most one method with a signum specializer will be
applicable to any given argument, which makes the struc-
ture of the specializer implementation very similar to the
cons specializers in the previous section.

The metaprogrammer has chosen in the example below
to compare signum values using =, which means that a
method with specializer (signum 1) will be applicable to
positive floating-point arguments (see the first method on
specializer-accepts-generalizer-p and the method on
specializer-accepts-p below). This leads to one subtle
difference in behaviour compared to that of the cons spe-
cializers: in the case of signum specializers, the next method
after any signum specializer can be different, depending on
the class of the argument. This aspect of the dispatch is
handled by the second method on specializer-accepts-

generalizer-p below.

(defclass signum-specializer (specializer)

((%signum :reader %signum :initarg :signum)))

(defclass signum-generalizer (generalizer)

22 ELS 2014

((%signum :reader %signum :initarg :signum)))

(defmethod generalizer-of-using-class

((gf signum-generic-function) (arg real))

(make-instance ’signum-generalizer

:signum (signum arg)))

(defmethod generalizer-equal-hash-key

((gf signum-generic-function)

(g signum-generalizer))

(%signum g))

(defmethod specializer-accepts-generalizer-p

((gf signum-generic-function)

(s signum-specializer)

(g signum-generalizer))

(if (= (%signum s) (%signum g))

(values t t)

(values nil t)))

(defmethod specializer-accepts-generalizer-p

((gf signum-generic-function)

(s specializer)

(g signum-generalizer))

(specializer-accepts-generalizer-p

gf s (class-of (%signum g))))

(defmethod specializer-accepts-p

((s signum-specializer) o)

(and (realp o) (= (%signum s) (signum o))))

Given these definitions, and once again some more straight-
forward ones elided for reasons of space, the programmer
can implement the factorial function as follows:

(defgeneric fact (n)

(:generic-function-class signum-generic-function))

(defmethod fact ((n (signum 0))) 1)

(defmethod fact ((n (signum 1))) (* n (fact (1- n))))

The programmer does not need to include a method on
(signum -1), as the standard no-applicable-method pro-
tocol will automatically apply to negative real or non-real
arguments.

2.3 Accept HTTP header specializers
In this section, we implement a non-trivial form of dispatch.
The application in question is a web server, and specif-
ically to allow the programmer to support RFC 2616 [5]
content negotiation, of particular interest to publishers and
consumers of REST-style Web APIs.

The basic mechanism in content negotiation is as follows:
the web client sends an HTTP request with an Accept

header, which is a string describing the media types it is
willing to receive as a response to the request, along with nu-
merical preferences. The web server compares these stated
client preferences with the resources it has available to sat-
isfy this request, and sends the best matching resource in its
response.

For example, a graphical web browser might send an Accept

header of text/html,application/xml;q=0.9,*/*;q=0.8

for a request of a resource typed in to the URL bar. This

should be interpreted as meaning that: if the server can
provide content of type text/html (i.e. HTML) for that re-
source, then it should do so. Otherwise, if it can provide
application/xml content (i.e. XML of any schema), then
that should be provided; failing that, any other content type
is acceptable.

In the case where there are static files on the filesystem, and
the web server must merely select between them, there is
not much more to say. However, it is not unusual for a web
service to be backed by some other form of data, and re-
sponses computed and sent on the fly, and in these circum-
stances the web server must compute which of its known
output formats it can use to satisfy the request before ac-
tually generating the best matching response. This can be
modelled as one generic function responsible for generating
the response, with methods corresponding to content-types
– and the generic function must then perform method se-
lection against the request’s Accept header to compute the
appropriate response.

The accept-specializer below implements this dispatch.
It depends on a lazily-computed tree slot to represent
the information in the accept header (generated by parse-

accept-string), and a function q to compute the (de-
faulted) preference level for a given content-type and tree;
then, method selection and ordering involves finding the q

for each accept-specializer’s content type given the tree,
and sorting them according to the preference level.

(defclass accept-specializer (specializer)

((media-type :initarg :media-type :reader media-type)))

(defclass accept-generalizer (generalizer)

((header :initarg :header :reader header)

(tree)

(next :initarg :next :reader next)))

(defmethod generalizer-equal-hash-key

((gf accept-generic-function)

(g accept-generalizer))

‘(accept-generalizer ,(header g)))

(defmethod specializer-accepts-generalizer-p

((gf accept-generic-function)

(s accept-specializer)

(g accept-generalizer))

(values (q (media-type s) (tree g)) t))

(defmethod specializer-accepts-generalizer-p

((gf accept-generic-function)

(s specializer)

(g accept-generalizer))

(specializer-accepts-generalizer-p

gf s (next g)))

(defmethod specializer<

((gf accept-generic-function)

(s1 accept-specializer)

(s2 accept-specializer)

(g accept-generalizer))

(let ((m1 (media-type s1))

(m2 (media-type s2))

(tree (tree g)))

(cond

((string= m1 m2) ’=)

(t (let ((q1 (q m1 tree)))

ELS 2014 23

(q2 (q m2 tree))))

(cond

((= q1 q2) ’=)

((< q1 q2) ’>)

(t ’<))))))

The metaprogrammer can then add support for objects rep-
resenting client requests, such as instances of the request

class in the Hunchentoot5 web server, by translating these
into accept-generalizer instances. The code below imple-
ments this, by defining the computation of a generalizer

object for a given request, and specifying how to compute
whether the specializer accepts the given request object (q
returns a number between 0 and 1 if any pattern in the tree

matches the media type, and nil if the media type cannot
be matched at all).

(defmethod generalizer-of-using-class

((gf accept-generic-function)

(arg tbnl:request))

(make-instance ’accept-generalizer

:header (tbnl:header-in :accept arg)

:next (call-next-method)))

(defmethod specializer-accepts-p

((s accept-specializer)

(o tbnl:request))

(let* ((accept (tbnl:header-in :accept o))

(tree (parse-accept-string accept))

(q (q (media-type s) tree)))

(and q (> q 0))))

This dispatch cannot be implemented using filtered dispatch,
except by generating anonymous classes with all the right
mime-types as direct superclasses in dispatch order; the filter
would generate

(ensure-class nil :direct-superclasses

’(text/html image/webp ...))

and dispatch would operate using those anonymous classes.
While this is possible to do, it is awkward to express content-
type negotiation in this way, as it means that the dispatcher
must know about the universe of mime-types that clients
might declare that they accept, rather than merely the set
of mime-types that a particular generic function is capable of
serving; handling wildcards in accept strings is particularly
awkward in the filtering paradigm.

Note that in this example, the method on specializer<

involves a non-trivial ordering of methods based on the q

values specified in the accept header (whereas in sections 2.1
and 2.2 only a single extended specializer could be applicable
to any given argument).

Also note that the accept specializer protocol is straight-
forwardly extensible to other suitable objects; for exam-
ple, one simple debugging aid is to define that an accept-

specializer should be applicable to string objects. This
5Hunchentoot is a web server written in Common Lisp, al-
lowing the user to write handler functions to compute re-
sponses to requests; http://weitz.de/hunchentoot/

can be done in a modular fashion (see the code below, which
can be completely disconnected from the code for Hunchen-
toot request objects), and generalizes to dealing with multi-
ple web server libraries, so that content-negotiation methods
are applicable to each web server’s request objects.

(defmethod generalizer-of-using-class

((gf accept-generic-function)

(s string))

(make-instance ’accept-generalizer

:header s

:next (call-next-method)))

(defmethod specializer-accepts-p

((s accept-specializer) (o string))

(let* ((tree (parse-accept-string o))

(q (q (media-type s) tree)))

(and q (> q 0))))

The next slot in the accept-generalizer is used to deal
with the case of methods specialized on the classes of ob-
jects as well as on the acceptable media types; there is a
method on specializer-accepts-generalizer-p for spe-
cializers that are not of type accept-specializer which
calls the generic function again with the next generalizer, so
that methods specialized on the classes tbnl:request and
string are treated as applicable to corresponding objects,
though less specific than methods with accept-specializer

specializations.

3. PROTOCOL
In section 2, we have seen a number of code fragments as
partial implementations of particular non-standard method
dispatch strategies, using generalizer metaobjects to me-
diate between the methods of the generic function and the
actual arguments passed to it. In section 3.1, we go into
more detail regarding these generalizer metaobjects, de-
scribing the generic function invocation protocol in full, and
showing how this protocol allows a similar form of effective
method cacheing as the standard one does. In section 3.2,
we show the results of some simple performance measure-
ments on our implementation of this protocol in the SBCL
implementation [11] of Common Lisp to highlight the im-
provement that this protocol can bring over a näıve imple-
mentation of generalized dispatch, as well as to make the
potential for further improvement clear.

3.1 Generalizer metaobjects
3.1.1 Generic function invocation

As in the standard generic function invocation protocol, the
generic function’s actual functionality is provided by a dis-
criminating function. The functionality described in this
protocol is implemented by having a distinct subclass of
standard-generic-function, and a method on compute-

discriminating-function which produces a custom dis-
criminating function. The basic outline of the discriminat-
ing function is the same as the standard one: it must first
compute the set of applicable methods given particular ar-
guments; from that, it must compute the effective method
by combining the methods appropriately according to the
generic function’s method combination; finally, it must call
the effective method with the arguments.

24 ELS 2014

Computing the set of applicable methods is done using a
pair of functions: compute-applicable-methods, the stan-
dard metaobject function, and a new function compute-

applicable-methods-using-generalizers. We define a
custom method on compute-applicable-methods which
tests the applicability of a particular specializer against a
given argument using specializer-accepts-p, a new pro-
tocol function with default implementations on class and
eql-specializer to implement the expected behaviour. To
order the methods, as required by the protocol, we define a
pairwise comparison operator specializer< which defines
an ordering between specializers for a given generalizer ar-
gument (remembering that even in standard CLOS the or-
dering between class specializers can change depending on
the actual class of the argument).

The new compute-applicable-methods-using-generalizers

is the analogue of the MOP’s compute-applicable-methods-
using-classes. Instead of calling it with the class-of each
argument, we compute the generalizers of each argument us-
ing the new function generalizer-of-using-class (where
the -using-class refers to the class of the generic func-
tion rather than the class of the object), and call compute-
applicable-methods-using-generalizers with the generic
function and list of generalizers. As with compute-applicable-

methods-using-classes, a secondary return value indicates
whether the result of the function is definitive for that list
of generalizers.

Thus, in generic function invocation, we first compute the
generalizers of the arguments; we compute the ordered set of
applicable methods, either from the generalizers or (if that
is not definitive) from the arguments themselves; then the
normal effective method computation and call can occur.
Unfortunately, the nature of an effective method function is
not specified, so we have to reach into implementation in-
ternals a little in order to call it, but otherwise the remain-
der of the generic function invocation protocol is unchanged
from the standard one. In particular, method combination
is completely unchanged; programmers can choose arbitrary
method combinations, including user-defined long form com-
binations, for their generic functions involving generalized
dispatch.

3.1.2 Effective method memoization
The potential efficiency benefit to having generalizer

metaobjects lies in the use of compute-applicable-methods-
using-generalizers. If a particular generalized special-
izer accepts a variety of objects (such as the signum spe-
cializer accepting all reals with a given sign, or the ac-

cept specializer accepting all HTTP requests with a par-
ticular Accept header), then there is the possibility of
cacheing and reusing the results of the applicable and effec-
tive method computation. If the computation of the appli-
cable method from compute-applicable-methods-using-

generalizers is definitive, then the ordered set of applicable
methods and the effective method can be cached.

One issue is what to use as the key for that cache. We can-
not use the generalizers themselves, as two generalizers that
should be considered equal for cache lookup will not com-
pare as equal – and indeed even the standard generalizer,
the class, cannot easily be used as we must be able to in-

validate cache entries upon class redefinition. The issue of
class generalizers we can solve as in [8] by using the wrapper
of a class, which is distinct for each distinct (re)definition of
a class; for arbitrary generalizers, however, there is a priori
no good way of computing a suitable hash key automatically,
so we allow the metaprogrammer to specify one by defining
a method on generalizer-equal-hash-key, and combining
the hash keys for all required arguments in a list to use as a
key in an equal hash-table.

3.2 Performance
We have argued that the protocol presented here allows for
expressive control of method dispatch while preserving the
possibility of efficiency. In this section, we quantify the ef-
ficiency that the memoization protocol described in section
3.1.2 achieves, by comparing it both to the same protocol
with no memoization, as well as with equivalent dispatch
implementations in the context of methods with regular spe-
cializers (in an implementation similar to that in [8]), and
with implementation in straightforward functions.

In the case of the cons-specializer, we benchmark the
walker acting on a small but non-trivial form. The imple-
mentation strategies in the table below refer to: an imple-
mentation in a single function with a large typecase to dis-
patch between all the cases; the natural implementation in
terms of a standard generic function with multiple methods
(the method on cons having a slightly reduced typecase to
dispatch on the first element, and other methods handling
symbol and other atoms); and three separate cases using
cons-specializer objects. As well as measuring the ef-
fect of memoization against the full invocation protocol, we
can also introduce a special case: when only one argument
participates in method selection (all the other required ar-
guments only being specialized on t), we can avoid the con-
struction of a list of hash keys and simply use the key from
the single active generalizer directly.

implementation time (µs/call) overhead
function 3.17
standard-gf/methods 3.6 +14%
cons-gf/one-arg-cache 7.4 +130%
cons-gf 15 +370%
cons-gf/no-cache 90 +2700%

The benchmarking results from this exercise are promising:
in particular, the introduction of the effective method cache
speeds up the use of generic specializers in this case by a fac-
tor of 6, and the one-argument special case by another fac-
tor of 2. For this workload, even the one-argument special
case only gets to within a factor of 2-3 of the function and
standard generic function implementations, but the overall
picture is that the memoizability in the protocol does in-
deed drastically reduce the overhead compared with the full
invocation.

For the signum-specializer case, we choose to benchmark
the computation of 20!, because that is the largest factorial
whose answer fits in SBCL’s 63-bit fixnums – in an attempt
to measure the worst case for generic dispatch, where the
work done within the methods is as small as possible without

ELS 2014 25

being meaningless, and in particular does not cause heap
allocation or garbage collection to obscure the picture.

implementation time (µs/call) overhead
function 0.6
standard-gf/fixnum 1.2 +100%
signum-gf/one-arg-cache 7.5 +1100%
signum-gf 23 +3800%
signum-gf/no-cache 240 +41000%

The relative picture is similar to the cons-specializer case;
including a cache saves a factor of 10 in this case, and an-
other factor of 3 for the one-argument cache special case.
The cost of the genericity of the protocol here is starker;
even the one-argument cache is a factor of 6 slower than
the standard generic-function implementation, and a further
factor of 2 away from the implementation of factorial as a
function. We discuss ways in which we expect to be able to
improve performance in section 5.1.

We could allow the metaprogrammer to improve on the one-
argument performance by constructing a specialized cache:
for signum arguments of rational arguments, the logical
cache structure is to index a three-element vector with (1+

signum). The current protocol does not provide a way of
eliding the two generic function calls for the generic cache;
we discuss possible approaches in section 5.

3.3 Full protocol
The protocol described in this paper is only part of a com-
plete protocol for specializer and generalizer metaob-
jects. Our development of this protocol is as yet incomplete;
the work described here augments that in [9], but is yet rel-
atively untested – and additionally our recent experience of
working with that earlier protocol suggests that there might
be useful additions to the handling of specializer metaob-
jects, independent of the generalizer idea presented here.

4. RELATED WORK
The work presented here builds on specializer-oriented pro-
gramming described in [9]. Approximately contemporane-
ously, filtered dispatch [3] was introduced to address some
of the same use cases: filtered dispatch works by having a
custom discriminating function which wraps the usual one,
where the wrapping function augments the set of applica-
ble methods with applicable methods from other (hidden)
generic functions, one per filter group; this step is not memo-
ized, and using eql methods to capture behaviours of equiv-
alence classes means that it is hard to see how it could be.
The methods are then combined using a custom method
combination to mimic the standard one; in principle im-
plementors of other method combinations could cater for
filtered dispatch, but they would have to explicitly mod-
ify their method combinations. The Clojure programming
language supports multimethods6 with a variant of filtered
dispatch as well as hierarchical and identity-based method
selectors.

In context-oriented programming [6, 16], context dispatch
occurs by maintaining the context state as an anonymous

6http://clojure.org/multimethods

class with the superclasses representing all the currently ac-
tive layers; this is then passed as a hidden argument to
context-aware functions. The set of layers is known and
under programmer control, as layers must be defined be-
forehand.

In some sense, all dispatch schemes are specializations of
predicate dispatch [4]. The main problem with predicate
dispatch is its expressiveness: with arbitrary predicates able
to control dispatch, it is essentially impossible to perform
any substantial precomputation, or even to automatically
determine an ordering of methods given a set of arguments.
Even Clojure’s restricted dispatch scheme provides an ex-
plicit operator for stating a preference order among meth-
ods, where here we provide an operator to order specializers;
in filtered dispatch the programmer implicitly gives the sys-
tem an order of precedence, through the lexical ordering of
filter specification in a filtered function definition.

The Slate programming environment combines prototype-
oriented programming with multiple dispatch [13]; in that
context, the analogue of an argument’s class (in Common
Lisp) as a representation of the equivalence class of objects
with the same behaviour is the tuple of roles and delegations:
objects with the same roles and delegations tuple behave the
same, much as objects with the same generalizer have the
same behaviour in the protocol described in this paper.

The idea of generalization is of course not new, and arises
in other contexts. Perhaps of particular interest is general-
ization in the context of partial evaluation; for example, [12]
considers generalization in online partial evaluation, where
sets of possible values are represented by a type system con-
struct representing an upper bound. Exploring the relation-
ship between generalizer metaobjects and approximation in
type systems might yield strategies for automatically com-
puting suitable generalizers and cache functions for a variety
of forms of generalized dispatch.

5. CONCLUSIONS
In this paper, we have presented a new generalizer metaob-
ject protocol allowing the metaprogrammer to implement in
a straightforward manner metaobjects to implement custom
method selection, rather than the standard method selection
as standardized in Common Lisp. This protocol seamlessly
interoperates with the rest of CLOS and Common Lisp in
general; the programmer (the user of the custom specializer
metaobjects) may without constraints use arbitrary method
combination, intercede in effective method combination, or
write custom method function implementations. The pro-
tocol is expressive, in that it handles forms of dispatch not
possible in more restricted dispatch systems, while not suf-
fering from the indeterminism present in predicate dispatch
through the use of explicit ordering predicates.

The protocol is also reasonably efficient; the metaprogram-
mer can indicate that a particular effective method computa-
tion can be memoized, and under those circumstances much
of the overhead is amortized (though there remains a sub-
stantial overhead compared with standard generic-function
or regular function calls). We discuss how the efficiency
could be improved below.

26 ELS 2014

5.1 Future work
Although the protocol described in this paper allows for a
more efficient implementation, as described in section 3.1.2,
than computing the applicable and effective methods at
each generic function call, the efficiency is still some way
away from a baseline of the standard generic-function, let
alone a standard function. Most of the invocation pro-
tocol is memoized, but there are still two full standard
generic-function calls – generalizer-of-using-class and
generalizer-equal-hash-key – per argument per call to a
generic function with extended specializers, not to mention
a hash table lookup.

For many applications, the additional flexibility afforded by
generalized specializers might be worth the cost in efficiency,
but it would still be worth investigating how much the over-
head from generalized specializers can be reduced; one pos-
sible avenue for investigation is giving greater control over
the cacheing strategy to the metaprogrammer.

As an example, consider the signum-specializer. The nat-
ural cache structure for a single argument generic function
specializing on signum is probably a four-element vector,
where the first three elements hold the effective methods for
signum values of -1, 0, and 1, and the fourth holds the cached
effective methods for everything else. This would make the
invocation of such functions very fast for the (presumed)
common case where the argument is in fact a real num-
ber. We hope to develop and show the effectiveness of an
appropriate protocol to allow the metaprogrammer to con-
struct and exploit such cacheing strategies, and (more spec-
ulatively) to implement the lookup of an effective method
function in other ways.

We also aim to demonstrate support within this protocol
for some particular cases of generalized specializers which
seem to have widespread demand (in as much as any lan-
guage extension can be said to be in “demand”). In partic-
ular, we have preliminary work towards supporting efficient
dispatch over pattern specializers such as implemented in
the Optima library7, and over a prototype object system
similar to that in Slate [13]. Our current source code for
the work described in this paper can be seen in the git
source code repository at http://christophe.rhodes.io/

git/specializable.git, which will be updated with future
developments.

Finally, after further experimentation (and, ideally, non-
trivial use in production) if this protocol stands up to use
as we hope, we aim to produce a standards-quality docu-
ment so that other implementors of Common Lisp can, if
they choose, independently reimplement the protocol, and
so that users can use the protocol with confidence that the
semantics will not change in a backwards-incompatible fash-
ion.

5.2 Acknowledgments
We thank Lee Salzman, Pascal Costanza and Mikel Evins
for helpful and informative discussions, and all the respon-
dents to the first author’s request for imaginative uses for
generalized specializers.

7https://github.com/m2ym/optima

6. REFERENCES
[1] Craig Chambers. Predicate Classes. In Oscar

Nierstrasz, editor, ECOOP 1993 – Object-Oriented
Programming, number 707 in LNCS, pages 268–296.
Springer, 1993.

[2] Pascal Costanza and Charlotte Herzeel.
make-method-lambda considered harmful. In
European Lisp Workshop, 2008.

[3] Pascal Costanza, Charlotte Herzeel, Jorge Vallejos,
and Theo D’Hondt. Filtered Dispatch. In Dynamic
Languages Symposium. ACM, 2008.

[4] Michael Ernst, Craig Kaplan, and Craig Chambers.
Predicate dispatching: A unified theory of dispatch. In
Eric Jul, editor, ECOOP 1998 – Object-Oriented
Programming, number 1445 in LNCS, pages 186–211.
Springer, Berlin, 1998.

[5] R. Fielding, J. Gettys, J. Movil, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616, IETF,
June 1999.

[6] Robert Hirschfeld, Pascal Costanza, and Oscar
Nierstrasz. Context-oriented programming. Journal of
Object Technology, 7(3):125–151, 2008.

[7] Gregor Kiczales, Jim des Rivières, and Daniel G.
Bobrow. The Art of the Metaobject Protocol. MIT
Press, Cambridge, Mass., 1991.

[8] Gregor Kiczales and Luis Rodriguez. Efficient Method
Dispatch in PCL. In LISP and Functional
Programming, pages 99–105, Nice, 1990.

[9] J. Newton and C. Rhodes. Custom specializers in
Object-oriented Lisp. Journal of Universal Computer
Science, 14(20):3370–3388, 2008. Presented at
European Lisp Symposium, Bordeaux, 2008.

[10] Kent Pitman and Kathy Chapman, editors.
Information Technology – Programming Language –
Common Lisp. Number 226–1994 in INCITS. ANSI,
1994.

[11] C. Rhodes. SBCL: A Sanely-Bootstrappable Common
Lisp. In Robert Hirschfeld and Kim Rose, editors,
Self-Sustaining Systems, number 5146 in LNCS, pages
74–86. Springer-Verlag, Berlin, 2008. Presented at
Workshop on Self-Sustaining Systems, Potsdam, 2008.

[12] Erik Ruf. Topics in Online Partial Evaluation. PhD
thesis, Stanford, California, USA, 1993.

[13] Lee Salzman and Jonathan Aldrich. Prototypes with
Multiple Dispatch: An Expressive and Dynamic
Object Model. In Andrew P. Black, editor, ECOOP
2005 – Object-Oriented Programming, number 3586 in
LNCS, pages 312–336. Springer, Berlin, 2005.

[14] Guy L. Steele, Jr. Common Lisp: The Language.
Digital Press, Newton, Mass., 1984.

[15] Guy L. Steele, Jr. Common Lisp: The Language.
Digital Press, Newton, Mass., second edition, 1990.

[16] Jorge Vallejos, Sebastián González, Pascal Costanza,
Wolfgang De Meuter, Theo D’Hondt, and Kim Mens.
Predicated Generic Functions: Enabling
Context-Dependent Method Dispatch. In
International Conference on Software Composition,
pages 66–81, 2010.

ELS 2014 27

Session II: Demonstrations

web-mode.el

Heterogeneous recursive code parsing with Emacs Lisp
François-Xavier Bois

Kernix Lab
15 rue Cels

75014 Paris - France
+33 (1) 53 98 73 43

fxbois@kernix.com

ABSTRACT

web-mode.el is an Emacs module for editing HTML templates.

Unlike other “source codes”, web templates can include various

language components (heterogeneous dimension) that may embed

themselves into each other (recursive dimension).

Indeed, an HTML document may contain a JavaScript that

embeds a PHP block.

<div>
 <h1>title</h1>
 <script>var x = <?=$x?>;</script>
</div>

This recursive aspect invalidates standard ways of lexing

(syntactic tokens), highlighting (colorizing) and indenting.

All the power of Emacs is necessary to enable contextual

indentation and highlighting.

This paper describes web-mode.el features and some of its

internal processes.

Categories and Subject Descriptors

Coding Tools and Techniques, Document and Text Editing, User

Interfaces, Programming Environments, Reusable Software

General Terms

Algorithms, Languages.

Keywords

Emacs, Lisp, Web, HTML, templates, engines.

1. OVERVIEW
Emacs owes a big part of its success to two strengths that

characterize it: its extensibility through modules (modes) and its

“Lisp Machine” dimension.

Though compatible with the vast majority of programming

languages, Emacs has suffered in the past years of its relative

weakness in the field of web template editing. Those HTML

documents which embed parts written in different languages

(JavaScript, CSS, PHP, Java, Ruby, etc) are at the core of web

development, a very dynamic domain of computer science.

1.1 Multi modes approach
HTML template editing under Emacs has long been the

prerogative of “multi modes” like mumamo.el, mmm-mode.el or

multi-web-mode.el. Those modes rely on the “available”

dedicated modules to handle their corresponding “parts” in the

template.

A template with HTML, JavaScript, CSS and PHP content may

for example use

 nxml.el for HTML

 js2-mode.el for JavaScript code (located between

<script> and </script> tags)

 css-mode.el for styles (between <style> and </style>)

 php-mode.el for PHP statements delimited by <?php and
?>

In order to explain how this “multi modes” approach works, one

should keep in mind that Emacs modes are divided in two

families: the major and minor modes.

A major mode handles the responsibility of buffer highlighting

and indentation; only one major mode may be running for a

buffer at a given time.

To let many major modes “coexist”, a “multi mode” (which is a

minor mode) loads a specific major mode according to the cursor

position (point). If the cursor is between the delimiters

<?php and ?>, the “multi mode” activates the major mode php-

mode.el. The narrowing mechanism helps the “multi-mode” to

restrict the working space to the region between the delimiters

(<?php and ?>).

This “Unix-like” approach is very appealing:

 Each mode has one role that it tries to achieve the best it

can.

 By combining those modes one may achieve a larger

ambition.

Alas it can be very frustrating for the users:

 Going back and forth between modes triggers visual

artifacts and slows down the workflow.

 Incompatibilities between modes result conflicts and errors.

 Customization is difficult and inconsistent (indeed, each

major mode has its own parameters).

 The lack of common ground prevents advanced features (no

context is shared between the major modes).

30 ELS 2014

1.2 web-mode.el
Aware that no satisfactory results would ever happen with this

approach, I started in 2011 the development of the major mode

web-mode.el. The main features of this mode are

 Autonomous (no other major mode is required)

 Fast

 Simple (no configuration required)

 Effective (auto-closing, code folding, tag navigation)

 Aware of all the HTML format specificities

 Compatible with more than twenty engines (erb, jsp, php,

asp, razor, django, mason, etc.)

2. IMPLEMENTATION NOTES

2.1 Terminology
As was said previously, a template may embed various code

components. Two kinds will be considered here:

 A part is interpreted by the navigator (e.g. a JavaScript part

or a CSS part).

 A block is processed (client-side or server-side) before

being rendered by the navigator e.g. a PHP block, an Erb

block, a dustjs block etc.

This terminology is not a standard but is useful for

function/variable naming and for the documentation.

2.2 The main loop
Two tasks are executed as soon as the buffer is loaded and

altered:

 Lexing: to detect the various entities (blocks, parts, nodes)

and for each one, identify their tokens: block/part

strings/comments, node attributes, block delimiters.

 Highlighting: to colorize the code.

2.3 Lexing phase
Three steps are necessary for parsing the code

1. Block identification and scanning.

2. HTML scanning (HTML tags / attributes /

comments, doctype declaration)

3. Parts scanning (JavaScript, CSS).

When a file is opened, web-mode.el scans the entire buffer.

Subsequent scans are performed on smaller zones “around” the

altered zone: it is called the invalidation phase and is described

below.

The order of the steps is very important: indeed, nodes/parts:

identification must be done outside the blocks.

<div>
 <?php /* <script>var x = 1</script> */ ?>
</div>

Part scan is done during a specific step because web-mode.el can

be used to edit files whose content-type is not HTML but

JavaScript or CSS. For example *.js.erb is a Ruby on Rails

JavaScript template.

Given the large variety of tokens (specific to languages) and the

recursive dimension of code, web-mode.el can’t rely on Emacs

internal functions to tokenize and highlight.

Parameters are associated to each engine family and are used for

tokenizing, indenting, highlighting, auto-pairing and auto-

closing.

With each engine are associated

 Delimiters (e.g. <?php ?>)

 Control blocks (e.g. <?php if(): ?>)

 Syntactic tokens regular expressions

 Auto-pairs, snippets

In order to parse the code, web-mode.el must know which is the

engine associated with the template. This association is

automatic as soon as the file extension is obvious (e.g. *.erb).

Association must be forced when the extension is too common.

(require 'web-mode)

(add-to-list 'auto-mode-alist
 '("\\.html\\'" . web-mode))

(setq web-mode-engines-alist
 '(("erb" . "/rails/.*\\.html\\'")
 ("php" . "/zend/.*\\.html\\'"))
)

2.4 Custom text properties
The scanning/lexing phase will help store information that will

be used to implement interactive features like indentation,

folding, or tag navigation.

This process is achieved with the “text-properties” which are

plists attached to every single character in the buffer.

web-mode.el adds to the common properties (e.g. 'face,

'visibility) new ones that describe the following states

 'block-side is set to t throughout blocks characters

 'block-(beg|end) mark the blocks boundaries

 'block-token
1 is 'string, 'comment or

'delimiter on block tokens

 'block-controls is the current block a control block?

(e.g. {% for %} … {% endfor %})

 'tag-type tells if the tag is a 'start, 'end or 'void

tag ('tag-name store the tag name).

Bitmask on '*-beg properties is an additional way to store

information useful for the highlighting phase.

2.5 Indentation
As the main purpose of web-mode.el is to remain autonomous, a

generic indentation engine was developed.

web-mode.el deals with three kinds of indentations

1/ HTML indentation relies on finding the first previous line

beginning with a start tag. Deciding if the current line should be

indented is done by counting start / end tags and see if a start tag

remains unclosed.

1 All the 'block-* properties are available as 'part-* equivalents.

ELS 2014 31

2/ Bracket based indentation. It relies on counting the number of

unclosed brackets. Inline calls are also handled by looking at the

first unclosed bracket. This kind of indentation is used by

languages like PHP, JavaScript, CSS, etc.

3/ With stack based indentation, each indentation line depends

directly on the current and previous lines. For instance, if the

previous line is a control statement (if) the current line is

indented.

It is important to remember that templates are at the core of the

MVC design pattern. The developer must separate the various

logical components of its application: Model, View (templates)

and Controller. The more code is placed in the Model or

Controller components, the better.

More generally, a good habit in web development is to put

foreign code in specific files (e.g. *.css for styles, *.js for

javascripts, *.php for engine statements). Thus the indentation

engine should not have to deal with complex and large parts or

blocks.

2.6 Consistency
Being able to consider the whole buffer state is very useful to

implement advanced features. The markup indentation engine

can for example evaluate HTML elements and control blocks

when calculating the indentation offset.

<div>
 <?php if ($x): ?>

 <?php endif; ?>
<div>

2.7 Highlighting
Highlighting a buffer in Emacs involves the font-locking

mechanism. The recursive dimension of templates and some

complex parsing rules (e.g. for HTML attributes) prevents the

use of standards font-lock keywords.

As for the scanning phase, the highlighting phase involves three

steps:

1. node highlighting

2. part highlighting

3. block highlighting

Ending with block highlighting reflects a logical situation: a

block can be included in a part or a node, block highlighting is

thus priority.

Two techniques are used for highlighting

 Direct setting of the 'font-lock-face text-property for

HTML nodes (brackets, tags, attributes)

 Font-locking keywords for parts and blocks.

2.8 Decoration
After the highlighting phase, web-mode.el may “decorate” some

of the tokens:

 String: variable interpolation (for erb and php, in double

quoted string), css colorization (background refects the css

color).

 Comment: keyword highlighting (ex. TODO, FIX).

2.9 Invalidation
Most major modes delegate “region invalidation” to Emacs. This

process is the responsibility of font-locking; it automatically

detects syntactic tokens and refreshes the colors of the altered

zone.

As web-mode.el scans the buffer by itself, it has to trigger a new

scan as soon as the user alters the buffer. The 'after-

change-function hook is used for this purpose. To ensure

that parts and blocks are properly scanned, the following rule has

been set: the region should begin and end with an HTML tag.

For the highlighting phase, the same region should be

considered. web-mode.el can influence font-lock by associating a

custom function to the 'font-lock-extend-region-

functions.

One should note that the lexical invalidation must be done before

the highlighting; indeed highlighting uses some of the text-

properties set by the lexical process ('tag-attr, 'block-

token, 'part-token, etc.)

3. CONCLUSION
Thanks to the power of Lisp and to the advanced Emacs

mechanisms, web-mode.el is able to provide a very robust and

rich experience to its users.

Invalidation of a zone located in a part or a block is still a flaw

that needs to be addressed. Indeed when such a part or block is

huge, re scanning and re highlighting it entirely can be pricy.

Identifying a narrower zone inside the block (or the part) is a

very difficult task whenever this process must work with many

languages/engines.

4. ACKNOWLEDGMENTS
A special thanks to Stefan Monnier a great Emacs maintainer

and a wonderful guide to the Emacs internals.

5. REFERENCES
[1] François-Xavier Bois. web-mode.el presentation and

documentation.

http://web-mode.org.

[2] François-Xavier Bois. web-mode.el code repository.

https://github.com/fxbois/web-mode.

[3] James Clark. nXML mode, powerful mode for editing XML

documents.

http://www.thaiopensource.com/nxml-mode.

[4] Multi Modes. Introduction to multi modes.

http://www.emacswiki.org/emacs/MultipleModes.

32 ELS 2014

Demonstration: The OMAS Multi-Agent Platform

Jean-Paul A. Barthès
UMR CNRS 7253 Heudiasyc

Université de Technologie de Compiègne
60205 Compiègne, France

barthes@utc.fr

ABSTRACT
OMAS is a platform developed for easy implementation of
complex agent systems. It has a number of interesting fea-
tures including four predefined types of agents: service agents,
personal assistant agents, transfer agent and rule-based agents.
Organization is peer to peer with no central functionalities.
Personal assistants can interact in natural language typed or
vocal. Multilingualism is supported. OMAS has been used
in a number of projects during the last years. It was devel-
oped in the MCL and Allegro environments, and currently
works in the Allegro Common Lisp environment. Persis-
tency uses AllegroCache.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Data types
and structures

General Terms
MAS, Programming structures

1. MULTI-AGENT SYSTEMS
Multi-agent systems (MAS) are systems involving agents,
i.e. independent pieces of software that can run autonomously.
MAS range from sets of reactive agents, similar to active ob-
jects, to cognitive agents capable of independent reasoning
and free to take decisions. Reactive agents are used mainly
for simulating systems with a large number of agents (e.g.
ant colonies), cognitive agents are limited to a smaller set
of agents mainly because they are much more complex and
difficult to build. Agents communicate by exchanging mes-
sages. In the last 10 years the FIPA organization, now part
of IEEE1, issued a number of recommendations that led to
the FIPA standards. Many platforms (toolkits), over 200,
have been proposed to help people develop multi-agent sys-
tems, one of the most used worldwide being JADE written
in Java2. There are not many platforms written in Lisp, the

1http://fipa.org/about/fipa and ieee.html
2http://jade.tilab.com/

most famous one being SOAR3, a complex environment de-
signed to simulate cognitive behavior. We developed OMAS
(Open Multi-Agent System) for our own needs, first for
robotics, then with a broader scope, namely to be able to
prototype complex systems involving cognitive agents inter-
acting with humans easily4.

2. PREVIOUS PROJECTS
OMAS [2] has been used in a number of projects among
which the following ones.

Figure 1: Avatar in the virtual environment con-
trolled by an OMAS agent

V3S a project intended to train operators in the context of
dangerous industrial plants (SEVESO plants) by simulating
the work to do in a virtual environment populated by avatars
controlled by agents (Fig.1). In this project OMAS was
coupled with a virtual reality platform [4].

CODAVI a project testing the possibility of modeling a car
as an intelligent agent with the driver interacting using voice
and natural language (Fig.2). In the project OMAS was
coupled with a fast real time platform, PACPUS, monitoring
all the car systems [1].

TATIN-PIC a project using an interactive graphic sur-
face and board for cooperative preliminary design (Fig.3).
OMAS was interfaced with JADE. JADE was used to run
the graphics and OMAS was used to provide personal as-
sistants to the participants, allowing them to interact using
voice and natural language [5].

3http://www.soartech.com/images/uploads/file/SoarTech
Autonomous Platforms Review.pdf
4OMAS can be downloaded (watch the tilde) from
http://www.utc.fr/∼barthes/OMAS/

ELS 2014 33

Figure 2: The personal assistant SUZY in the CO-
DAVI project

HDSRI a project developed for managing the international
relationship of our laboratory. It contains agents for han-
dling contacts, international projects, missions, international
announcements of research programs.

NEWS a prototype of international platform for exchang-
ing multilingual information while letting the participants
access the system using their own language.

Other applications are being developed in France, Japan and
Brazil, e.g. [6].

Figure 3: Simplified TATIN-PIC architecture show-
ing the connection between the JADE Java agents
(left) and the OMAS Lisp agents (right)

3. OMAS FEATURES
3.1 Agents
Our agents are rather complex. They are multithreaded
and can answer several requests at the same time. They
are built to last, meaning that, once they are created, they
remain in the system waiting for something to do. Agents
have skills (what they can do) and goals (what they plan to
do). Agents are organized in groups called coteries, federat-
ing local subgroups. There are four types of agents: service
agents, personal assistant agents, transfer agents (also called
postmen) and rule-based agents. Agents have their own on-
tology and knowledge base. They reason using goals and
queries on the knowledge base.

A particular care has been taken when designing personal
assistant agents (PAs). One can implement natural language
dialogs with vocal interaction [3, 5]. PAs can have helpers
as staff agents in charge of more technical matters, imple-
menting the concept of ”digital butler.”

Transfer agents or postmen are used for connecting local
coteries, or for interacting with other systems (multi-agent
or not).

3.2 Agent Communication Language (ACL)
Messages are structured using the OMAS Communication
Language that can be translated by postmen agents to other
ACLs, e.g. FIPA ACL.

Communication can be point-to-point, multicast, broadcast
or conditional. Protocol is a subset of FIPA and supports
Contract-Net, a special protocol allowing cooperation.

Messages are received by agents in their mailbox, and if not
processed readily, are inserted into an agenda to be pro-
cessed later. Each request gives birth to several processes
(threads).

Because JADE is a widely used Java platform, we developed
an interface at a fairly low level allowing OMAS to call any
JADE agent directly and vice-versa.

4. DEMONSTRATION
The demonstration will show the NEWS application, a pro-
totyped multilingual NEWS systems, on several machines
(if possible). Time permitting, I also will show how to build
an OMAS agent and add it to an existing application, how
to access and edit objects belonging to agents using a web
browser, and how to use the IDE.

5. REFERENCES
[1] J.-P. Barthès and P. Bonnifait. Multi-Agent Active

Interaction with Driving Assistance Systems. In
I. ITSC, editor, Multi-Agent Active Interaction with
Driving Assistance Systems, pages 1–7, Funchal,
Portugal, Sept. 2010. 7 pages.

[2] J.-P. A. Barthès. Omas - a flexible multi-agent
environment for cscwd. Future Generation Computer
Systems, 27:78–87, 2011.

[3] J.-P. A. Barthès. Improving human-agent
communication using linguistic and ontological cues.
Int. J. Electronic Business, 10(3):207–231, 2013.

[4] L. Edward, D. Lourdeaux, and J.-P. A. Barthès.
Virtual autonomous agents in an informed environment
for risk prevention. In IVA, pages 496–497, 2009.

[5] A. Jones, A. Kendira, C. Moulin, J.-P. A. Barthès,
D. Lenne, and T. Gidel. Vocal Interaction in Collocated
Cooperative Design. In Proc. ICCI*CC 2012, pages
246–252, 2012.

[6] K. Sugawara and J.-P. A. Barthès. An Approach to
Developing an Agent Space to Support Users’
Activities. In Proc. The Fifth International Conference
on Advances in Human-oriented and Personalized
Mechanisms, pages 84–90, Lisbon, Portugal, 2012.

34 ELS 2014

+

ELS_2014 :: A4_2

Yet Another Wiki!
Alain Marty Engineer Architect

66180, Villeneuve de la Raho, France
marty.alain@free.fr

Abstract
The present contribution introduces a small environment working
on top of any modern browser, allowing to write, style and script
dynamic WEB pages using a simple and unique LISP-like syntax.

Keywords
Wiki, CMS, interpreter, language, Lisp

1......INTRODUCTION
Web browsers can parse data (HTML code, CSS rules, JS code, ...)
stored on the server side and display rich multimedia dynamic
pages on the client side. Some HTML functions, (texarea, input,
form, ...) associated with script languages (PHP,...) allow
interactions with these data leading to web apps like blogs, wikis
and CMS. Hundreds of engines have been built, managing files on
the server side and interfaces on the client side, such as Wordpress,
Wikipedia, Joomla,.... Syntaxes are proposed to simplify text
enrichment, pages composing, multimedia handling. The
Markdown syntax is the de facto standard to help writing styled
and structured texts, but stays far from the wish of the father of
LISP, John McCarthy: « An environment where the markup,
styling and scripting is all s-expression based would be nice. »
Works have been done in this direction, for instance:

Skribe [1] a text-processor based on the SCHEME
programming language dedicated to writing web pages,
HOP [2] a Lisp-like progamming language for the Web 2.0,
based on SCHEME,
BRL [3] based on SCHEME and designed for server-side
WWW-based applications.

All of these projects are great and powerful. With the plain benefit
of existing SCHEME implementations they make a strong junction
between the mark-up (HTML/CSS) and programming (JS, PHP,...)
syntaxes. But these tools are devoted to developers, not to users or
web-designers.

The α-wiki project [4] is intended to link the user, the
web-designer and the developer in a single collaborative work: 1)
α-wiki is a small wiki intended to be easy to install, its archive is
about 100kb (about 1000 JS lines), with nothing but PHP on the
server side and no external library. 2) α-wiki is a small and easy to
use environment on top of the browser allowing to write, style and
script WEB pages with the same LISP-like syntax: λ-talk. In this
paper I will present a few elements of this syntax and its evaluator.

2......λ-talk SYNTAX
The code is keyed into the frame editor as a mix of plain text and
s-expressions. Valid s-expressions are evaluated by λ-talk and
displayed by α-wiki in the wiki page; others are ignored. At least,
the code is displayed without any enrichment and without any
structure, as a sequence of words.

2.1.....Words
First of all, α-wiki is a text editor. As in any text editor, enriching
a sequence of words proceeds into two steps: select & apply. In
α-wiki, selection uses curly braces { } and application uses a
dictionary of HTML tags, to build s-expressions : {tag any text}.
λ-talk translates them into HTML expressions to be evaluated and
displayed by the browser. For instance, writing in the editor frame:

{div {@ id="myId"
 style="text-align:center;
 border:1px solid;"}
 I am {b fat},
 I am {b {i fat italicized}},
 I am {b {i {u
 fat italicized underlined}}}.
}

displays in the wiki page :
I am fat, I am fat italicized, I am fat italicized underlined.

Note that the function @ contains HTML attributes and CSS rules
expressed in the standard HTML/CSS syntax, not in an
s-expression syntax. This is a matter of choice : not to use a pure
s-expression such as {@ {id myId} {style {text-align center}
{border 1px solid}}} avoids dictionary pollution, support
HTML/CSS future evolution and is well known by a web-designer.

2.2......Numbers
α-wiki offers the usual numeric computation capabilities that a
pocket calculator would have. Following the same syntax {first
rest} where first is a math function (+, -, *, /, %, sqrt, ...) and rest a
sequence of numbers and/or valid s-expressions, any complex math
expressions can be evaluated by λ-talk and inserted anywhere in
the page, for instance writing in the editor frame:

1: {* 1 2 3 4 5 6}
2: {sqrt {+ {* 3 3} {* 4 4}}}
3: {sin {/ {PI} 2}}
4: {map {lambda {:x} {* :x :x}} {serie 1 10}}
5: {reduce + {serie 1 100}}

displays in the wiki page :
1: 720
2: 5
3: 1
4: 1 4 9 16 25 36 49 64 81 100
5: 5050

2.3......Code
λ-talk is a programmable programming language. It keeps from
LISP nothing but three special forms (lambda, def, if) opening the
door to recursion (and thus iteration), local variables (via lambdas),
partial application (currying). The if, lambda, def forms can be
nested and the λ-talk's dictionary can be extended via the def form.
For instance, writing in the editor frame :

ELS 2014 35

{b 1) a basic function:}
{def hypo
 {lambda {:a :b}
 {sqrt {+ {* :a :a} {* :b :b}}}}}
hypo(3,4) = {hypo 3 4}
{b 2) a recursive function:}
{def fac
 {lambda {:n}
 {if {< :n 1}
 then 1
 else {* :n {fac {- :n 1}}}}}}
fac(6) = {fac 6}
{b 3) the first derivees of y=x{sup 3}
 using partial function calls:}
{def D
 {lambda {:f :x}
 {/ {- {:f {+ :x 0.01}}
 {:f {- :x 0.01}}} 0.02}}}
{def cubic
 {lambda {:x} {* :x :x :x}}}
cubic(1)={cubic 1}
cubic'(1)={{D cubic} 1}
cubic''(1)={{D {D cubic}} 1}
cubic'''(1)={{D {D {D cubic}}} 1}
cubic''''(1)={{D {D {D {D cubic}}}} 1}

displays in the wiki page:

1) a basic function:
hypo
hypo(3,4) = 5
2) a recursive function:
fac(6) = 720
3) the first derivees of y=x3 using partial function calls:
cubic cubic(1) = 1
cubic'(1) = 3.0000999999999998 ≠3
cubic''(1) = 5.999999999999628 ≠6
cubic'''(1) = 6.000000000007111 ≠6
cubic''''(1) = 4.107825191113079e-9 ≠0

And the underground JS language can always be called via the
input function and external plugins to give access to user
interaction (buttons) and more complex tools like graphics,
raytracing, fractals, and spreadsheets. Spreadsheets are known to be
a good illustration of the functional approach, for instance:

3.λ-talk EVALUATOR
The λ-talk's code is a function defined and executed on page
loading. This function creates a dictionary containing a set of pairs
[function_name : function_value], defines the function evaluate()
and a few associated ones. The function evaluate() is called at

every keyUp and the page's display follows the edition in real-time:

function evaluate(str) {
 str = preprocessing(str);
 str = eval_ifs(str);
 str = eval_lambdas(str);
 str = eval_defs(str, true);
 str = eval_sexprs(str);
 str = postprocessing(str);
 return str;
};

The eval_sexprs() function starts a loop based on a single pattern
(a Regular Expression) used in only one JS line to replace
s-expressions by HTML expressions or evaluated math
expressions:

function eval_sexprs(str) {
 var rex=/\{([^\s{}]*)(?:[\s]*)([^{}]*)\}/g;
 while (str != (str =
 str.replace(rex,do_apply)));
 return str;
}
function do_apply() {
 var f = arguments[1], r = arguments[2];
 if (dico.hasOwnProperty(f))
 return dico[f].apply(null,[r]);
 else
 return '('+f+' '++')';
};

The three special forms "if, lambda, def" are pre-processed before
the s-expressions evaluation. For instance, this is the simplified
pseudo-code of the eval_lambda() function:

function eval_lambda(s) {
 s = eval_lambdas(s);
 var name = random_name()
 var args = get_arguments(s)
 var body = get_body(s)
 dico[name] = function(vals) {
 return function(bod){
 for every i in vals
 replace in bod args[i] by vals[i]
 return bod
 }(body)
 }
 return name;
}

The λ-talk's dictionary contains about 110 primitives handling
HTML markup, math functions, ... For instance this the code of a
simplified "*" function:

dico['*'] = function() {
 return arguments[0]*arguments[1]
};

4. CONCLUSION
With α-wiki and λ-talk, the beginner, the web-designer and the
developer benefit from a simple text editor and a coherent syntax
allowing them, in a gentle learning slope and a collaborative work,
to build sets of complex and dynamic pages.

5. REFERENCES
[1] : Manuel Serrano, http://www-sop.inria.fr/,
[2] : Manuel Serrano, http://en.wikipedia.org/wiki/Hop,
[3] : Bruce R.Lewis, http://brl.sourceforge.net/,
[4] : Alain Marty, http://epsilonwiki.free.fr/alphawiki_2/

36 ELS 2014

Session III: Application and
Deployment Issues

High performance concurrency in Common Lisp - hybrid
transactional memory with STMX

Massimiliano Ghilardi
TBS Group

AREA Science Park 99, Padriciano
Trieste, Italy

massimiliano.ghilardi@gmail.com

ABSTRACT
In this paper we present STMX, a high-performance Com-
mon Lisp implementation of transactional memory.

Transactional memory (TM) is a concurrency control mech-
anism aimed at making concurrent programming easier to
write and understand. Instead of traditional lock-based code,
a programmer can use atomic memory transactions, which
can be composed together to make larger atomic memory
transactions. A memory transaction gets committed if it re-
turns normally, while it gets rolled back if it signals an error
(and the error is propagated to the caller).

Additionally, memory transactions can safely run in parallel
in different threads, are re-executed from the beginning in
case of conflicts or if consistent reads cannot be guaranteed,
and their effects are not visible from other threads until they
commit.

Transactional memory gives freedom from deadlocks and
race conditions, automatic roll-back on failure, and aims at
resolving the tension between granularity and concurrency.

STMX is notable for the three aspects:

• It brings an actively maintained, highly optimized trans-
actional memory library to Common Lisp, closing a
gap open since 2006.

• It was developed, tested and optimized in very limited
time - approximately 3 person months - confirming
Lisp productivity for research and advanced program-
ming.

• It is one of the first published implementations of hy-
brid transactional memory, supporting it since August
2013 - only two months after the first consumer CPU
with hardware transactions hit the market.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.3.3 [Language Constructs
and Features]: Concurrent programming structures; F.1.2
[Modes of Computation]: Parallelism and concurency;
D.2.13 [Reusable Software]: Reusable Libraries; D.2.11
[Software Architectures]: Patterns

General Terms
Algorithms, Theory

Keywords
Common Lisp, parallelism, concurrency, high-performance,
transactions, memory

1. INTRODUCTION
There are two main reasons behind transactional memory.

The first is that in recent years all processors, from high-end
servers, through consumer desktops and laptops, to tablets
and smartphones, are increasingly becoming multi-core. Af-
ter the Pentium D (2005), one of the first dual-core con-
sumer CPU, only six years passed to see the 16-core AMD
Opteron Interlagos (2011). Supercomputers and high-end
servers are much more parallel than that, and even tablets
and smartphones are often dual-core or quad-core. Concur-
rent programming has become mandatory to exploit the full
power of multi-core CPUs.

The second reason is that concurrent programming, in its
most general form, is a notoriously difficult problem [5, 6, 7,
11, 12]. Over the years, different paradigms have been pro-
posed to simplify it, with various degrees of success: func-
tional programming, message passing, futures, π-calculus,
just to name a few.

Nowadays, the most commonly used is multi-threading with
shared memory and locks (mutexes, semaphores, conditions
...). It is very efficient when used correctly and with fine-
grained locks, as it is extremely low level and maps quite
accurately the architecture and primitives found in modern
multi-core processors. On the other hand, it is inherently
fraught with perils: deadlocks, livelocks, starvation, prior-
ity inversion, non-composability, nondeterminism, and race
conditions. The last two can be very difficult to diagnose, to
reproduce, and to solve as they introduce non-deterministic
behavior. To show a lock-based algorithm’s correctness, for

38 ELS 2014

example, one has to consider all the possible execution inter-
leavings of different threads, which increases exponentially
with the algorithm’s length.

Transactional memory is an alternative synchronisation mech-
anism that solves all these issues (with one exception, as
we will see). Advocates say it has clean, intuitive seman-
tics and strong correctness guarantees, freeing programmers
from worrying about low-level synchronization details. Skep-
tics highlight its disadvantages, most notably an historically
poor performance - although greatly improved by recent
hardware support (Intel TSX and IBM Power ISA v.2.0.7)
- and that it does not solve livelocks, as it is prone to almost-
livelocks in case of high contention.

STMX is a high-performance Common Lisp implementation
of transactional memory. It is one of the first implementa-
tions supporting hybrid transactions, taking advantage of
hardware transactions (Intel TSX) if available and using
software-only transactions as a fallback.

2. HISTORY
Transactional memory is not a new idea: proposed as early
as 1986 for Lisp [8], it borrows the concurrency approach
successfully employed by databases and tries to bring it to
general purpose programming. For almost ten years, it was
hypothesized as a hardware-assisted mechanism. Since at
that time no CPU supported the required instructions, it
was mainly confined as a research topic.

The idea of software-only transactional memory, introduced
by Nir Shavit and Dan Touitou in 1995 [11], fostered more
research and opened the possibility of an actual implemen-
tation. Many researchers explored the idea further, and the
first public implementation in Haskell dates back to 2005 [6].

Implementations in other languages followed soon: C/C++
(LibLTX, LibCMT, SwissTM, TinySTM), Java (JVSTM,
Deuce), C# (NSTM, MikroKosmos), OCaml (coThreads),
Python (Durus) and many others. Transactional memory is
even finding its way in C/C++ compilers as GNU gcc and
Intel icc.

Common Lisp had CL-STM, written in 2006 Google Sum-
mer of Code1. Unfortunately it immediately went unmain-
tained as its author moved to other topics. The same year
Dave Dice, Ori Shalev and Nir Shavit [4] solved a funda-
mental problem: guaranteeing memory read consistency.

Despite its many advantages, software transactional mem-
ory still had a major disadvantage: poor performance. In
2012, both Intel2 and IBM3 announced support for hard-
ware transactional memory in their upcoming lines of prod-
ucts. The IBM products are enterprise commercial servers
implementing “Power ISA v.2.0.7”: Blue Gene/Q4 and zEn-

1http://common-lisp.net/project/cl-stm/
2http://software.intel.com/en-
us/blogs/2012/02/07/transactional-synchronization-in-
haswell
3https://www.power.org/documentation/power-isa-
transactional-memory/
4http://www.kurzweilai.net/ibm-announces-20-petaflops-
supercomputer

terprise EC12, both dated 2012, and Power85 released in
May 2013. Intel products are the “Haswell” generation of
Core i5 and Core i7, released in June 2013 - the first con-
sumer CPUs offering hardware transactional memory under
the name “Intel TSX”.

Hardware support greatly improves transactional memory
performance, but it is never guaranteed to succeed and needs
a fallback path in case of failure.

Hybrid transactional memory is the most recent reinven-
tion. Hypothesized and researched several times in the past,
it was until now speculative due to lack of hardware sup-
port. In March 2013, Alexander Matveev and Nir Shavit [10]
showed how to actually implement a hybrid solution that
successfully combined the performance of Intel TSX hard-
ware transactions with the guarantees of a software transac-
tion fallback, removing the last technical barrier to adoption.

STMX started in March 2013 as a rewrite of CL-STM, and a
first software-only version was released in May 2013. It was
extended to support hardware transactions in July 2013,
then hybrid transactions in August 2013, making it one of
the first published implementations of hybrid transactional
memory.

3. MAIN FEATURES
STMX offers the following functionalities, common to most
software transactional memory implementations:

• atomic blocks: each (atomic ...) block runs code in
a memory transaction. It gets committed if returns
normally, while it gets rolled back if it signals an error
(and the error is propagated to the caller). For people
familiar with ContextL6, transactions could be defined
as layers, an atomic block could be a scoped layer ac-
tivation, and transactional memory is analogous to a
layered class: its behavior differs inside and outside
atomic blocks.

• atomicity: the effects of a transaction are either fully
visible or fully invisible to other threads. Partial effects
are never visible, and rollback removes any trace of the
executed operations.

• consistency: inside a transaction data being read is
guaranteed to be in consistent state, i.e. all the invari-
ants that an application guarantees at commit time
are preserved, and they can be temporarily invalidated
only by a thread’s own writes. Other simultaneous
transactions cannot alter them.

• isolation: inside a transaction, effects of transactions
committed by other threads are not visible. They be-
come visible only after the current transaction commits
or rolls back. In database terms this is the highest pos-
sible isolation level, named “serializable”.

• automatic re-execution upon conflict: if STMX de-
tects a conflict between two transactions, it aborts and
restarts at least one of them.

5https://www.power.org/documentation/power-isa-
version-2-07/
6http://common-lisp.net/project/closer/contextl.html

ELS 2014 39

• read consistency: if STMX cannot guarantee that a
transaction sees a consistent view of the transactional
data, the whole atomic block is aborted and restarted
from scratch before it can see the inconsistency.

• composability: multiple atomic blocks can be com-
posed in a single, larger transaction simply by exe-
cuting them from inside another atomic block.

STMX also implements the following advanced features:

• waiting for changes: if the code inside an atomic block
wants to wait for changes on transactional data, it
just needs to invoke (retry). This will abort the
transaction, sleep until another thread changes some of
the transactional data read since the beginning of the
atomic block, and finally re-execute it from scratch.

• nested, alternative transactions: an atomic block can
execute two or more Lisp forms as alternatives in sepa-
rate, nested transactions with (atomic (orelse form1

form2 ...)). If the first one calls (retry) or aborts
due to a conflict or an inconsistent read, the second
one will be executed and so on, until one nested trans-
action either commits (returns normally) or rollbacks
(signals an error or condition).

• deferred execution: an atomic block can register arbi-
trary forms to be executed later, either immediately
before or immediately after it commits.

• hybrid transactional memory: when running on 64-bit
Steel Bank Common Lisp (SBCL) on a CPU with Intel
TSX instructions, STMX automatically takes advan-
tage of hardware memory transactions, while falling
back on software ones in case of excessive failures. The
implementation is carefully tuned and allows software
and hardware transactions to run simultaneously in
different threads with a constant (and very low) over-
head on both transaction types. STMX currently does
not support IBM Power ISA hardware transactions.

4. DESIGN AND IMPLEMENTATION
STMX brings efficient transactional memory to Common
Lisp thanks to several design choices and extensive opti-
mization. Design and implementation follows three research
papers [6] [4] [10]. All of them contain pseudo-code for the
proposed algorithms, and also include several correctness
demonstrations.

Keeping the dynamically-typed spirit of Lisp, STMX is value-
based: the smallest unit of transactional memory is a single
cell, named TVAR. It behaves similarly to a variable, as it
can hold a single value of any type supported by the hosting
Lisp: numbers, characters, symbols, arrays, lists, functions,
closures, structures, objects... A quick example:

(quicklisp:quickload :stmx)

(use-package :stmx)

(defvar *v* (tvar 42))

(print ($ *v*)) ;; prints 42

(atomic

(if (oddp ($ *v*))

(incf ($ *v*))

(decf ($ *v*)))) ;; *v* now contains 41

While TVARs can be used directly, it is usually more conve-
nient to take advantage of STMX integration with closer-

mop, a Metaobject Protocol library. This lets programmers
use CLOS objects normally, while internally wrapping each
slot value inside a TVAR to make it transactional. Thus it
can also be stated that STMX is slot-based, i.e. it imple-
ments transactional memory at the granularity of a single
slot inside a CLOS object. This approach introduces some
space overhead, as each TVAR contains several other infor-
mations in addition to the value. On the other hand, it has
the advantage that conflicts are detected at the granularity
of a single slot: two transactions accessing different slots of
the same object do not interfere with each other and can
proceed in parallel. A quick CLOS-based example:

(transactional

(defclass bank-account ()

((balance :type rational :initform 0

:accessor account-balance))))

(defun bank-transfer (from-acct to-acct amount)

(atomic

(when (< (account-balance from-acct) amount)

(error "not enough funds for transfer"))

(decf (account-balance from-acct) amount)

(incf (account-balance to-acct) amount)))

Object-based and stripe-based implementations exist too.
In the former, the smallest unit of transactional memory is
a single object. In the latter, the smallest unit is instead a
“stripe”: a (possibly non-contiguous) region of the memory
address space - suitable for languages as C and C++ where
pointers are first-class constructs. Both have lower overhead
than slot-based transactional memory, at the price of spuri-
ous conflicts if two transactions access different slots in the
same object or different addresses in the same stripe.

4.1 Read and write implementation
The fundamental operations on a TVAR are reading and writ-
ing its value. During a transaction, TVAR contents are never
modified: that’s performed at the end of the transaction by
the commit phase. This provides the base for the atomicity
and isolation guarantees. So writing into a TVAR must store
the value somewhere else. The classic solution is to have
a transaction write log: a thread-local hash table recording
all writes. The hash table keys are the TVARs, and the hash
table values are the values to write into them.

Reading a TVAR is slightly more complex. Dave Dice, Ori
Shalev and Nir Shavit showed in [4] how to guarantee that
a transaction always sees a consistent snapshot of the TVARs
contents. Their solution requires versioning each TVAR, and
also adding a “read version” to each transaction. Such ver-
sion numbers are produced from a global clock. One bit of
the TVAR version is reserved as a lock.

To actually read a TVAR, it is first searched in the transaction
write log and, if found, the corresponding value is returned.
This provides read-after-write consistency. Otherwise, the
TVAR contents is read without acquiring any lock - first re-
trieving its full version (including the lock bit), then issuing
a memory read barrier, retrieving its value, issuing another
memory read barrier, and finally retrieving again its full ver-
sion. The order is intentional, and the memory read barriers
are fundamental to ensure read consistency, as they couple

40 ELS 2014

with the memory write barriers used by the commit phase
when actually writing TVAR contents. Then, the two TVAR

versions read, including the lock bits, are compared with
each other: if they differ, or if one or both lock bits are set,
the transaction aborts and restarts from scratch in order to
guarantee read consistency and isolation. Then, the TVAR

version just read is compared with the transaction read ver-
sion: if the former is larger, it means the TVAR was modified
after the transaction started. In such case, the transaction
aborts and restarts too. Finally, if the TVAR version is smaller
than or equal to the transaction read version, the TVAR and
the retrieved value are stored in the transaction read log: a
thread-local hash table recording all the reads, needed by
the commit phase.

4.2 Commit and abort implementation
Aborting a transaction is trivial: just discard some thread-
local data - the write log, the read log and the read version.

Committing a STMX transaction works as described in [4]:

First, it acquires locks for all TVARs in the write log. Us-
ing non-blocking locks is essential to avoid deadlocks, and if
some locks cannot be acquired, the whole transaction aborts
and restarts from scratch. STMX uses compare-and-swap
CPU instructions on the TVAR version to implement this op-
eration (the version includes the lock bit).

Second, it checks that all TVARs in the read log are not locked
by some other transaction trying to commit simultaneously,
and that their version is still less or equal to the transaction
read version. This guarantees the complete isolation be-
tween transactions - in database terms, transactions are “se-
rializable”. If this check fails, the whole transaction aborts
and restarts from scratch.

Now the commit is guaranteed to succeed. It increases the
global clock by one with an atomic-add CPU instruction,
and uses the new value as the transaction write version. It
then loops on all TVARs in the write log, setting their value to
match what is stored in the write log, then issuing a memory
write barrier, finally setting their version to the transaction
write version. This last write also sets the lock bit to zero,
and is used to release the previously-acquired lock.

Finally, the commit phase loops one last time on the TVARs
that have been just updated. The semaphore and condition
inside each TVAR will be used to notify any transaction that
invoked (retry) and is waiting for TVARs contents to change.

4.3 Novel optimizations
In addition to the algorithm described above, STMX uses
two novel optimizations to increase concurrency, and a third
to reduce the overhead:

If a transaction tries to write back in a TVAR the same value
read from it, the commit phase will recognize it before lock-
ing the TVAR by observing that the TVAR is associated to the
same value both in the write log and in the read log. In such
case, the TVAR write is degraded to a TVAR read and no lock
is acquired, improving concurrency.

When actually writing value and version to a locked TVAR,

the commit phase checks if it’s trying to write the same
value already present in the TVAR. In such case, the value
and version are not updated. Keeping the old TVAR version
means other transaction will not abort due to a too-large
version number, improving concurrency again.

To minimize the probability of near-livelock situations, where
one or more transactions repeatedly abort due to conflicts
with other ones, the commit phase should acquire TVAR locks
in a stable order, i.e. different transactions trying to lock the
same TVARs A and B should agree whether to first lock A
or B. The most general solution is to sort the TVARs before
locking them, for example ordering by their address or by
some serial number stored inside them. Unluckily, sorting
is relatively expensive - its complexity is O(N logN) - while
all other operations performed by STMX during commit are
at most linear, i.e. O(N) in the number of TVARs. To avoid
this overhead, STMX omits the sort and replaces it with
a faster alternative, at the price of increasing vulnerability
to near-livelocks (crude tests performed by the author seem
to show that near-livelocks remain a problem only under
extreme contention). The employed solution is to store a
serial number inside each TVAR and use it for the hashing
algorithm used by the read log and write log hash tables.
In this way, iterating on different write logs produces rel-
atively stable answers to the question “which TVAR should
be locked first, A or B ?” - especially if the hash tables
have the same capacity - maintaining a low probability for
near-livelock situations, without any overhead.

4.4 Automatic feature detection
ANSI Common Lisp does not offer direct access to low-
level CPU instructions used by STMX, as memory barriers,
compare-and-swap, and atomic-add. Among the free Lisp
compilers, only Steel Bank Common Lisp (SBCL) exposes
them to user programs. STMX detects the available CPU
instructions at compile time, while falling back on slower,
more standard features to replace any relevant CPU instruc-
tion not exposed by the host Lisp.

If memory barriers or compare-and-swap are not available,
STMX inserts a bordeaux-threads:lock in each TVAR and
uses it to lock the TVAR. The operation “check that all TVARs
in the read log are not locked by some other transaction” in
the commit phase requires getting the owner of a lock, or
at least retrieving whether a lock is locked or not and, in
case, whether the owner is the current thread. Bordeaux-

threads does not expose such operation, but the underly-
ing implementation often does: Clozure Common Lisp has
(ccl::%%lock-owner), CMUCL has (mp::lock-process)

and Armed Bear Common Lisp allows to directly call the
Java methods ReentrantLock.isLocked() and Reentrant-

Lock.isHeldByCurrentThread() to obtain the same infor-
mation. STMX detects and uses the appropriate mechanism
automatically.

Similarly, the global counter uses atomic-add CPU instruc-
tions if available, otherwise it falls back on a normal add
protected by a bordeaux-threads:lock.

4.5 Hybrid transactions

ELS 2014 41

In June and July 2013 we extended STMX to support the
Intel TSX CPU instructions7, that provide hardware mem-
ory transactions.

Intel TSX actually comprise two sets of CPU instructions:
HLE and RTM. Hardware Lock Elision (HLE) is designed
as a compatible extension for existing code that already
uses atomic compare-and-swap as locking primitive. Re-
stricted Transactional Memory (RTM) is a new set of CPU
instructions that implement hardware memory transactions
directly at the CPU level:

• XBEGIN starts a hardware memory transaction. After
this instruction and until the transaction either com-
mits or aborts, all memory accesses are guaranteed
to be transactional. The programmer must supply to
XBEGIN the address of a fallback routine, that will be
executed if the transaction aborts for any reason.

• XEND commits a transaction.

• XABORT immediately aborts a transaction and jumps
to the fallback routine passed to XBEGIN. Note that
hardware transactions can also abort spontaneosly for
many different reasons: they are executed with a “best
effort” policy, and while following Intel guidelines and
recommendations usually results in very high success
rates (> 99.99%), they are never guaranteed to suc-
ceed and they have limits on the amount of memory
that can be read and written within a transaction.
Also, many operations usually cause them to abort
immediately, including: conflicting memory accesses
from other CPU cores, system calls, context switches,
CPUID and HLT CPU instructions, etc.

• XTEST checks whether a transaction is in progress.

Exposing the XBEGIN, XEND, XABORT, and XTEST CPU instruc-
tions as Lisp functions and macros is non-portable but usu-
ally fairly straightforward, and we added them on 64-bit
SBCL.

The real difficulty is making them compatible with software
transactions: the software-based commit uses locks to pre-
vent other threads from accessing the TVARs it wants to mod-
ify, so if a hardware transaction reads those TVARs at the
wrong time, it would see a half-performed commit: isolation
and consistency would be violated. A naive solution is to
instrument hardware transactions to check whether TVARs
are locked or not when reading or writing them. It imposes
such a large overhead that cancels the performance advan-
tage. Another attempt is to use hardware transactions only
to implement the commit phase of software transactions.
Tests on STMX show that the performance gain is limited -
about 5%.

The key was discovered by Alexander Matveev and Nir Shavit
[10] in 2013: use a hardware transaction to implement the
commit phase of software transactions, not to improve per-
formance, but to make them really atomic at the CPU level.
Then the software commit phase does not need anymore to
lock the TVARs: atomicity is now guaranteed by the hardware
transaction. With such guarantees, hardware transactions

7http://www.intel.com/software/tsx

can directly read and write TVARs without any instrumenta-
tion - no risk of seeing a partial commit - and their overhead
is now almost zero. The only remaining overhead is the need
to write both TVARs value and version, not just the value.

There were two problems left.

The first is: as stated above, hardware transaction are never
guaranteed to succeed. They may abort if hardware limits
are exceeded or if the thread attempts to execute a CPU
instruction not supported inside a hardware transaction. For
example, memory allocation in SBCL almost always causes
hardware transactions to abort - this is an area that could
be significantly improved by creating thread-local memory
pools in the host Lisp.

Alexander Matveev and Nir Shavit [10] provided a sophisti-
cated solution to this problem, with multiple levels of fall-
backs: software transactions using a smaller hardware trans-
action during commit, software-only transactions, and intru-
mented hardware transactions.

We added hybrid transactions to STMX using a simpli-
fied mechanism: if the commit phase of software transac-
tions fails (remember, it is now implemented by a hardware
transaction), it increments a global counter that prevents
all hardware transactions from running, then performs an
old-style software-only commit, finally decrements the global
counter to re-enable hardware transactions.

The second problem is: the commit phase of a transaction -
either hardware or software - must atomically increment the
global clock. For hardware transactions, this means mod-
ifying a highly contended location, causing a conflict (and
an abort) as soon as two or more threads modify it from
overlapping transactions.

A partial solution is described in [4, 10]: use a different
global clock algorithm, named GV5, that increases the global
clock only after an abort. It works by writing the global
clock +1 into TVARs during commit without increasing it,
and has the side effect of causing approximately 50% of soft-
ware transactions to abort.

The full solution, as described in [10, 2] is to use an adaptive
global clock, named GV6, that can switch between the nor-
mal and the GV5 algorithm depending on the success and
abort rates of software and hardware transactions. STMX
stores these rates in thread-local variables and combines
them only sporadically (every some hundred transactions)
to avoid creating other highly contended global data.

We released STMX version 1.9.0 in August 2013 - the first
implementation to support hybrid transactional memory in
Common Lisp, and one of the first implementations to do so
in any language.

4.6 Data structures
STMX includes transactional versions of basic data struc-
tures: TCONS and TLIST for cons cells and lists, TVECTOR for
vectors, THASH-TABLE for hash tables, and TMAP for sorted
maps (it is backed by a red-black tree).

42 ELS 2014

THASH-TABLE and TMAP also have non-transactional coun-
terparts: GHASH-TABLE and GMAP. They are provided both
for completeness and as base classes for the corresponding
transactional version. This makes them practical examples
showing how to convert a normal data structure into a trans-
actional one.

In many cases the conversion is trivial: change (defclass

foo ...) definition to (transactional (defclass foo ...))8.
When needed, it is also possible to decide on a slot-by-slot
basis whether they should become transactional or not. This
can significantly reduce the overhead in certain cases, as
shown in [3]. For slots that contain non-immutable values
(i.e. objects, arrays, etc.), such inner objects must also be
replaced by their transactional counterparts if their contents
can be modified concurrently. STMX also includes some
transactional-only data structures: a first-in last-out buffer
TSTACK, a first-in first-out buffer TFIFO, a reliable multicast
channel TCHANNEL, and its reader side TPORT.

5. BENEFITS
The conceptual simplicity, intuitivity and correctness guar-
antees of transactional memory are not its only advantages.

A more subtle, important advantage is the fact that convert-
ing a data structure into its transactional version is almost
completely mechanical: with STMX, it is sufficient to re-
place a CLOS (defclass foo ...) with (transactional

(defclass foo ...)), with object-valued slots needing the
same replacement.

This means that arbitrarily complex algorithms and data
structures can be easily converted, without the need to ana-
lyze them in deep detail, as it’s usually the case for the con-
version to fine-grained lock-based concurrency. Such ability
makes transactional memory best suited for exactly those
algorithms and data structures that are difficult to paral-
lelize with other paradigms: large, complex, heterogeneous
data structures that can be modified concurrently by com-
plex algorithms and do not offer easy divisions in subsets.

Clearly, analyzing the algorithms and data structures can
provide benefits, in the form of insights about the subset
of the data that really needs to become transactional, and
which parts of the algorithms should be executed inside
transactions.

A practical example is Lee’s circuit routing algorithm, also
used as transactional memory benchmark [1]: the algorithm
takes as input a large, discrete grid and pairs of points
to connect (e.g. an integrated circuit) and produces non-
intersecting routes between them. Designing a lock-based
concurrent version of Lee’s algorithm requires decisions and
trade-offs, as one has to choose at least the locking ap-
proach and the locks granularity. The transactional version
is straightforward: the circuit grid becomes transactional.
A deeper analysis also reveals that only a small part of the
algorithm, namely backtracking, needs to be executed inside
a transaction.

8an analogous macro for structure-objects defined with
(defstruct foo ...) is currently under development.

6. DISADVANTAGES
Transactional memory in general has some drawbacks, and
STMX inherits them.

One is easy to guess: since transactions can abort and restart
at any time, they can be executed more times than expected,
or they can be executed when not expected, so perform-
ing any irreversible operation inside a transaction is prob-
lematic. A typical example is input/output: a transaction
should not perform it, rather it should queue the I/O opera-
tions in a transactional buffer and execute them later, from
outside any transaction. Hardware transactions - at least
Intel TSX - do not support any irreversible operation and
will abort immediately if you try to perform input/output
from them.

Another drawback is support for legacy code: to take advan-
tage of transactions, code must use transactional cells, i.e.
TVARs. This requires modifications to the source code, which
can be performed automatically only by transaction-aware
compilers or by instrumentation libraries as Java Deuce [9].
STMX is implemented as a normal library, not as a compiler
plugin, so it requires programmers to adapt their code. The
modifications are quite simple and mechanic, and STMX
includes transactional versions of some popular data struc-
tures, both as ready-to-use solutions and as examples and
tutorials showing how to modify a data structure to make it
transactional.

The last disadvantage is proneness to almost-livelocks under
high contention. This is common to all implementations that
use non-blocking mutexes (STMX uses compare-and-swap
ones) as synchronization primitives, as they either succeed
or fail immediately, and they are not able nor supposed to
sleep until the mutex can be acquired: doing so would cause
deadlocks.

7. TRANSACTIONAL I/O
We present a novel result, showing that in a very specific case
it is possible to perform I/O from a hardware transaction
implemented by Intel TSX, working around the current Intel
hardware limitations. The result is transactional output,
i.e. the output is performed if and only if the hardware
transaction commits.

Intel reference documentation9 states that attempting to
execute I/O from an Intel TSX transactions may cause
it to abort immediately, and that the exact behavior is
implementation-dependent. On the hardware tested by the
author (Intel Core i7 4770) this is indeed the case: syscalls,
context switches, I/O to hardware ports, and the other oper-
ations that “may abort transactions”, actually abort them.
The technique described below works around this limitation.

Hardware transactions are guaranteed to support only ma-
nipulation of CPU registers and memory. Anyway, the con-
tent and meaning of the memory is irrelevant for Intel TSX.
It is thus possible to write to memory-mapped files or shared
memory, as long as doing so does not immediately trigger a
context switch or a page fault.

9http://download-software.intel.com/sites/default/files/319433-
014.pdf - section 8.3.8.1, pages 391-392

ELS 2014 43

Thus, if some pages of memory mapped file are already dirty
- for example because we write into them from outside any
transaction - it is possible to continue writing into them
from hardware transactions. After some time, the kernel will
spontaneously perform a context switch and write back the
pages to disk. Since hardware transactions are atomic at the
CPU level and they currently abort upon a context switch,
the kernel will observe that some of them have committed
and altered the pages, while some others have aborted and
their effects are completely rolled back. The memory pages,
altered only by the committed transactions, will be written
to disk by the kernel, thus implementing transactional I/O.

Author’s initial tests show that it is possible to reach very
high percentages of successful hardware transactions - more
than 99% - writing to memory mapped files, provided the
transactions are short and there is code to dirty again the
pages if the hardware transactions fail.

This is a workaround - maybe even a hack - yet it is ex-
tremely useful to implement database-like workloads, where
transactions must also be persistent, and shared memory
inter-process communication. The author is currently using
this technique to implement Hyperluminal-DB10, a transac-
tional and persistent object store, on top of STMX.

8. PERFORMANCE
This paragraph contains benchmark results obtained on an
Intel Core i7 4770, running 64-bit versions of Linux/Debian
jessie, SBCL 1.1.15 and the latest STMX. Disclaimer: re-
sults on different systems will vary. Speed differences up
to 100 times and more have been observed, depending
on the Lisp compiler and the support for features used by
STMX. System setup: execute the forms

(declaim (optimize (compilation-speed 0) (space 0)

(debug 0) (safety 0) (speed 3)))

(ql:quickload "stmx")

(ql:quickload "stmx.test")

(fiveam:run! ’stmx.test:suite)

before loading any other Lisp library, to set optimization
strategy, load STMX and its dependencies, and run the test
suite once to warm up the system.

8.1 Micro-benchmarks
We then created some transactional objects: a TVAR v, a
TMAP tm, a THASH-TABLE th and fill them - full details are
described in STMX source code11. Note that TMAP and
THASH-TABLE are CLOS objects, making the implementa-
tion short and (usually) clear but not heavily optimized for
speed. Rewriting them as structure-objects would definitely
improve their performance. Finally, $ is the function to read
and write TVAR contents.

To record the execution time, we repeated each benchmark
one million times in a loop and divided the resulting time
by the number of iterations.

In Table 1, we report three times for each micro-benchmark:
the first for software-only transactions, the second for hybrid

10https://github.com/cosmos72/hyperluminal-db
11http://github.com/cosmos72/stmx

transactions, the third for non-transactional execution with
non-transactional data structures.

Table 1: micro-benchmarks time, in nanoseconds
Name Code SW tx hybrid no tx
read ($ v) 87 22 < 1
write (setf ($ v) 1) 113 27 < 1
incf (incf ($ v)) 148 27 3
10
incf

(dotimes (j 10)

(incf (the fixnum

($ v))))

272 59 19

100
incf

(dotimes (j 100)

(incf (the fixnum

($ v))))

1399 409 193

1000
incf

(dotimes (j 1000)

(incf (the fixnum

($ v))))

12676 3852 1939

map
read

(get-gmap tm 1) 274 175 51

map
incf

(incf

(get-gmap tm 1))

556 419 117

hash
read

(get-ghash th 1) 303 215 74

hash
incf

(incf

(get-ghash th 1))

674 525 168

Some remarks and deductions on the micro-benchmarks re-
sults: STMX software-only transactions have an initial over-
head of ∼ 130 nanoseconds, and hybrid transactions reduce
the overhead to ∼ 25 nanoseconds.

In software-only transactions, reading and writing TVARs, i.e.
transactional memory, is 6–7 times slower than reading and
writing normal memory. Hardware transactions improve the
situation: inside them, transactional memory is twice as slow
as normal memory. In this respect, it is worth noting that
STMX can be further optimized, since in pure hardware
transactions (which do not use TVARs nor the function $)
reading and writing memory has practically the same speed
as normal memory access outside transactions.

The results on CLOS sorted maps and hash tables show
that they are relatively slow, and the transactional version
even more so. To have a more detailed picture, non-CLOS
implementations of sorted maps and hash tables would be
needed for comparison.

8.2 Lee-TM
Finding or designing a good synthetic benchmark for trans-
actional memory is not easy. Lee’s circuit routing algo-
rithm, in the proposers’ opinion [1], is a more realistic bench-
mark than classic ones (red-black trees and other micro-
benchmarks, STMBench7 . . .). It takes as input a large,
discrete grid and pairs of points to connect (e.g. an inte-
grated circuit) and produces non-intersecting routes between
them. Proposed and used as benchmark for many trans-
actional memory implementations (TL2, TinySTM, RSTM,
SwissTM . . .), it features longer transactions and non-trivial
data contention.

After porting Lee-TM to STMX12, we realized that it spends
about 99.5% of the CPU time outside transactions due

12https://github.com/cosmos72/lee-stmx

44 ELS 2014

to the (intentionally naive) grid exploration algorithm, and
0.5% in the backtracking algorithm (executed inside a trans-
action). It is thus not really representative of the strength
and weaknesses of transactional memory. Lacking a better
alternative we present it nevertheless, after some optimiza-
tions (we replaced Lee’s algorithm with faster Hadlock’s one)
that reduce the CPU time spent outside transactions to 92–
94%. The effect is that Lee-TM accurately shows the over-
head of reading transactional memory from outside trans-
actions, but is not very sensitive to transactional behavior.

In Table 2, we compare the transactional implementation of
Lee-TM with a single-thread version and with a simple lock-
based version that uses one global write lock. The results
show that transactional memory slows down Lee’s algorithm
(actually, Hadlock’s algorithm) by approximately 20% with-
out altering its scalability.

The global write lock is a particularly good choice for this
benchmark due to the very low time spent holding it (6–
8%), and because the algorithm can tolerate lock-free reads
from the shared grid. Yet, the overhead of the much more
general transactional memory approach is contained. More
balanced or more complex algorithms would highlight the
poor scalability of trying to parallelize using a simple global
write lock.

Table 2: Lee-TM, mainboard circuit

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50

co
n
n
e
ct

e
d

 r
o
u
te

s
p

e
r

se
co

n
d

threads

global write lock
stmx transactions

single threaded

9. CONCLUSIONS
Transactional memory has a long history. Mostly confined
to a research topic for the first two decades, it is now finding
its way into high-quality implementations at an accelerating
pace. The long-sought arrival of hardware support may well
be the last piece needed for wide diffusion as a concurrent
programming paradigm.

STMX brings state of the art, high-performance transac-
tional memory to Common Lisp. It is one of the first pub-
licly available implementations to support hybrid transac-
tions, integrating “Intel TSX” CPU instructions and soft-
ware transactions with minimal overhead on both.

STMX is freely available: licensed under the “Lisp Lesser
General Public Licence” (LLGPL), it can be installed with

Quicklisp (ql:quickload "stmx") or downloaded from
http://stmx.org/

10. REFERENCES
[1] M. Ansari, C. Kotselidis, I. Watson, C. Kirkham,

M. Luján, and K. Jarvis. Lee-TM: A non-trivial
benchmark suite for transactional memory. In
Proceedings of the 8th International Conference on
Algorithms and Architectures for Parallel Processing,
ICA3PP ’08, pages 196–207, 2008.

[2] H. Avni. A transactional consistency clock defined and
optimized. Master’s thesis, Tel-Aviv University, 2009.
http://mcg.cs.tau.ac.il/papers/hillel-avni-msc.pdf.

[3] F. M. Carvalho and J. Cachopo. STM with
transparent API considered harmful. In Proceedings of
the 11th International Conference on Algorithms and
Architectures for Parallel Processing - Volume Part I,
ICA3PP’11, pages 326–337, Berlin, Heidelberg, 2011.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional
locking II. In DISC’06 Proceedings of the 20th
international conference on Distributed Computing,
pages 194–208. Sun Microsystems Laboratories,
Burlington, MA, 2006.

[5] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes,
and D. Lea. Java Concurrency in Practice.
Addison-Wesley Publishing Company, Boston,
Massachusetts, 2006.

[6] T. Harris, S. Marlow, S. Peyton-Jones, and
M. Herlihy. Composable memory transactions. In
PPoPP ’05 Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel
programming, pages 48–60. Microsoft Research,
Cambridge, UK, 2005.

[7] G. Karam and R. Buhr. Starvation and critical race
analyzers for Ada. IEEE Transactions on Software
Engineering, 16(8):829–843, August 1990.

[8] T. Knight. An architecture for mostly functional
languages. In LFP ‘86 Proceedings of the 1986 ACM
conference on LISP and functional programming,
pages 105–112. Symbolics, Inc., and The M.I.T.
Artificial Intelligence Laboratory, Cambridge,
Massachusetts, 1986.

[9] G. Korland, N. Shavit, and P. Felber. Noninvasive
Java concurrency with Deuce STM. In Proceedings of
the Israeli Experimental Systems Conference,
SYSTOR’09. Tel-Aviv University, Israel and
University of Neuchâtel, Switzerland, 2009.

[10] A. Matveev and N. Shavit. Reduced hardware
transactions: A new approach to hybrid transactional
memory. In SPAA ’13 Proceedings of the twenty-fifth
annual ACM symposium on Parallelism in algorithms
and architectures, pages 11–22. MIT, Boston, MA and
Tel-Aviv University, Israel, 2013.

[11] N. Shavit and D. Touitou. Software transactional
memory. In PODC ‘95 Proceedings of the fourteenth
annual ACM symposium on Principles of distributed
computing, pages 204–213. MIT and Tel-Aviv
University, 1995.

[12] D. A. Wheeler. Secure programming for Linux and
Unix HOWTO. http://www.dwheeler.com/secure-
programs/Secure-Programs-HOWTO/avoid-race.html,
1991.

ELS 2014 45

A functional approach for disruptive event discovery and
policy monitoring in mobility scenarios

Ignasi Gómez-Sebastià
Universitat Politécnica de

Catalunya - Barcelona Tech
igomez@lsi.upc.edu

Luis Oliva-Felipe
Universitat Politécnica de

Catalunya - Barcelona Tech
loliva@lsi.upc.edu

Sergio Alvarez-Napagao
Universitat Politécnica de

Catalunya - Barcelona Tech
salvarez@lsi.upc.edu

Dario Garcia-Gasulla
Universitat Politécnica de

Catalunya - Barcelona Tech
dariog@lsi.upc.edu

Arturo Tejeda-Gómez
Universitat Politécnica de

Catalunya - Barcelona Tech
jatejeda@lsi.upc.edu

Javier Vázquez-Salceda
Universitat Politécnica de

Catalunya - Barcelona Tech
jvazquez@lsi.upc.edu

ABSTRACT
This paper presents the results obtained of using LISP for real-
time event detection and how these results are interpreted
and used within the context of SUPERHUB, a European-
Funded projected aimed to achieve a more sustainable mo-
bility behaviour in cities. Real-time detection allows faster
reaction for decision making processes as well as a valuable
asset for policy makers to know what should be done when
an unexpected event occurs. The use of LISP has facilitated
most of this process and, specially, supported to parallelize
the capture, aggregation and interpretation of data.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Smart cities, Clojure, Event Detection, Policy evaluation

1. INTRODUCTION
Mobility is one of the main challenges for urban planners

in the cities. Even with the constant technological progress,
it is still difficult for policy makers and transport operators to
1) know the state of the city in (near) real-time, and 2) achieve
proximity with the end-user of such city services, especially
with regards to communicating with the citizen and receiving
proper feedback.

There is a relatively recent technological advance that en-
ables an opportunity to partially tackle these issues: ubiqui-
tous computational resources. For instance, thanks to smart-
phones, users that move in a city can potentially generate au-
tomatic data that may be hard to obtain otherwise: location,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

movement flow, average trip times, and so on1. Moreover,
transport network problems and incidents that affect mobil-
ity services are often documented by someone somewhere in
the Internet at the same time or even before, in many cases,
than they will appear in the official sources or in the news
media.

This phenomenon has been referred to as humans as sensors
[11]. Sensing through mobile humans potentially provides
sensor coverage where events are taking place. An additional
benefit is that human expertise can be used to operate such
sensors to raise the quality of measurements, through e.g. a
more intelligent decision making, such as setting up a camera
in an optimal way in poor lighting conditions; or providing
exploitable additional metadata, as in collaborative tagging
processes such as hashtagging.

In this paper, we show a system that is able to mine such
data in order to:

1. improve knowledge obtained from other data genera-
tion approaches, such as GPS pattern analysis, and

2. detect unexpected situations in the city that may affect
large groups of people at a certain location, e.g. public
demonstrations or celebrations or sudden traffic jams
caused by accidents.

3. enable services to users that exploit such generated
knowledge, providing novel kinds of real-time infor-
mation and recommendation.

The paper presents, due to space constraints, just a general
overview of the problems we tackle, the preliminary results
of the parts already implemented, and the future work. For
deeper reports on the technical details, please refer to the
related deliverables2 and to [6].

This paper is structured as follows: in §2 we introduce
SUPERHUB, an urban mobility-related EU project3 and §3
motivates our use of a LISP dialect ; §4 contains an expla-
nation of the extent of the contextual detection, focusing on
social network data; §5 explains the policy monitoring and
optimization procedures; and finally §6 presents related work
and wraps up the paper with conclusions.
1 Please, notice all data is anonymized and sensitive personal data is not stored
neither gathered under any circumstances.
2http://www.superhub-project.eu/downloads/viewcategory/
6-approved-deliverables.html
3This work has been supported by the EU project ICT-FP7-289067 SUPERHUB.

46 ELS 2014

2. THE SUPERHUB PROJECT
SUPERHUB [3] is a project co-funded by the European

Commission. Its main goal is to provide an open platform
capable of considering in real time various mobility offers,
in order to provide a set of mobility services able to address
users’ needs. At the same time the project intends to promote
user participation and environmental friendly and energy-
efficient behaviours.

The project builds on the notion that citizens are not just
mere users of mobility services, but represent an active com-
ponent and a resource for policy-makers willing to improve
sustainable mobility in smart cities. Existing journey plan-
ners only provide a few options to let users customize, to
some extent, how the journey should look like. The reality,
however, is more nuanced – different users might prefer dif-
ferent routes which, in addition, depend on the user’s context
(e.g. , a shopping trip, travelling with small children or going
back home) as well as on the environmental context: weather,
traffic, crowdedness, events, etc. .

SUPERHUB will provide an open platform, through which
users shall inquire for possible mobility options to reach a
given destination at any given time. The back-end system
replies providing a rich set of possible options and recom-
mendations taking into account a number of mobility solu-
tions. The possible options are ranked based on the pref-
erences elaborated within the user’s profile, which includes
information such as the perceived importance of the environ-
mental impact, the willingness to walk/cycle in rainy weather
etc. After the choice is made by the user, the system will track
and guide the user throughout her/his journey and will con-
stantly offer, at run time, new options/suggestions to improve
the service experience, for example assisting her/him in the
search of the nearest parking lot or providing her/him addi-
tional and customised information services such as pollutions
maps.

To achieve these objectives SUPERHUB is developing, but
not limited to:

1. Novel methods and tools for event detection via real-
time reasoning on large data streams coming from het-
erogeneous sources.

2. New algorithms and protocols for inferring traffic con-
ditions from mobile users, by coupling data from mo-
bile phone networks with information coming from
both GPS data and social network streams.

3. A policy monitor component to put in contrast the po-
litical reality designed by policy-makers with the social
reality represent by the actual state of the city w.r.t. mo-
bility.

4. A policy optimizer for analysing and suggesting im-
provements to the policies in places.

In this paper, we focus on two specific components of the
SUPERHUB project in which the authors have been involved:
the event detection mechanism and the policy framework.

The Disruptive Event Detector is a component that pro-
vides knowledge in the form of RDF triples inferred from
sensor data (esp. social network data) that is of a higher
level of abstraction than what is usually obtained with other
techniques, acting as a central point for data homogeniza-
tion. Via this component, raw data is filtered, normalised
and interpreted into high-level concepts. Such concepts can

be merged and analysed to generate derivative concepts that
are not explicit in the sensor data but implicit in the aggrega-
tion of large instances of it.

The Policy Framework (including the policy monitor and
optimizer among other sub-components) combines real-time
information analysis with state of the art Urban Mobility De-
cision Support Systems, accomplishing two main objectives.
First, helping policy makers design the actions that will im-
prove urban mobility via the policy optimizer component.
Second, real-time assessment of the state of the city, via the
policy monitor, in order to find out when to apply such ac-
tions.

3. CHOOSING A LANGUAGE: CLOJURE
The following are the requirements and constraints that

affected the decision on which language to use to implement
the systems described in §2:

1. Due to project-wide constraints, they have to be run on
top of a Java Virtual Machine (JVM), and use Java code
for easy integration with the rest of the components.

2. Facilitate working with maps and vectors, and espe-
cially with JSON data.

3. Shared data models have been in continuous change,
so it was important to be able to change internal data
models as simply as possible and to be able to use legacy
versions at the same time as new ones.

4. Transparent support for immutable structures, for work-
ing concurrently with several city sensor inputs and
different policies to be evaluated in parallel.

5. Native, and easy to use, support for multi-core archi-
tectures where several threads run in parallel.

6. First class functions. Policies are self-contained, typi-
cally expressing computation and data aggregation meth-
ods inside the fields. Even when these methods are
expressed as part of the policy (data) they should be
transparently used for evaluating it (i.e. used as code).

7. A runtime as dynamic as possible, as any kind of down-
time, esp. change in code, can reflect on gaps on the data
collected from the sensors.

Considering these requirements, Clojure has been a natural
choice. Due to its rigid type system, the difficulty of work-
ing with reflection, and the lack of a high-level concurrency
framework, Java was discarded.

On the other hand, object orientation has never been a
needed feature, which added to the fact that continuously
evolving data models were not encouraging us to use type
systems, Clojure was finally chosen over Scala and Groovy.
The use of Clojure protocols has been enough to cover types
on the few cases in which this was needed.

Additionally, Clojure is the only JVM language that allows
us to handle self-contained policies as code as data (or data as
code), effectively enabling us to remove one tier of processing
between definition and execution.

ELS 2014 47

4. DISRUPTIVE EVENT DETECTION
Event detection based on social networks is a topic of recent

interest. Since the data provided by social networks is large
in volume and can be accessed in real time through avail-
able APIs, predicting either expected or unexpected events
in which a significant amount of people is involved becomes
feasible. For that reason, all approaches within the state-of-
the-art follow the human as a sensor approach for data collec-
tion.

In [9], authors identify earthquakes, typhoons and traffic
jams based on tweets from Twitter. They estimate the location
and trajectory of those target events and model three main
characteristics:

1. Scale of event - many users experience the event

2. Impact of event - they affect people’s life and, therefore,
their behaviour

3. Location of event - they take place in a spatial and tem-
poral regions

Authors define an event as an arbitrary classification of a
space-time region. Their temporal model assumes that users
messages represent an exponential distribution since users
post the most after a given critical time. Their spatial model
assumes messages are geo-located, and uses Bayesian filters
to identify location and trajectory of the event.

In [14], authors classify event detection algorithms into
two categories: document-pivot methods and feature-pivot
methods. The former is based on clustering documents,
according to a semantic distance. The latter on clustering
words together, instead of documents. Authors focus on
feature-pivot methods to propose an event detection algo-
rithm based on clustering Wavelet-based signals. Wavelet
analysis shows when and how the frequency of a signal
changes over time. Their event detection algorithm builds
signals for single words and captures only the bursts ones to
measure the cross-correlation between signals. The detection
arises when they cluster signals together by modularity-base
graph partitioning.

A different approach to event detection is that of summariz-
ing long-running structure-rich events [4]. Authors assume
that, when a new event is detected, the immediate goal is
to extract the information that best describes the chain of in-
teresting occurrences explaining the event. In order to carry
out this process, previous experience is needed (i.e. repeated
events). A modified Hidden Markov Model is integrated
with the event time-line, based on the stream of tweets and
their word distribution. By splitting the time-line, a set of
sub-events is found each of which describing a portion of the
full event.

Finally, in [8] the TEDAS system is proposed for online
and offline analysis. The online solves analytical queries and
generates visual results to rank tweets and extract patterns
for the query based on a clustering model; the offline one re-
trieves tweets, classifies them and stores statements (events).
Another proposed application, Tweevent, was presented in
[7]. It retrieves tweets from the Twitter stream, and segments
each tweet in a sequence of consecutive phrases, every seg-
ment being modelled as a Gaussian distribution based on its
frequency. Tweevent applies a clustering algorithm to group
segments; each segment representing a detected event.

All these proposals have in common that they consider in-
ternal features of the social network activity (in most cases,

the text of tweets) in order to build their model. As a result,
the main challenges they must face are frequently related with
Natural Language Processing (e.g. solving ambiguities, iden-
tifying stop-words, removing emoticons, handling hashtags,
etc.). Our proposal is quite different in that it does not con-
sider features of social network activities, only the existence
of the activity itself. As we will see next, this allows us to
to model the city and predict unexpected events in a simple
manner, although we cannot determine their specific nature.

4.1 Data Sources
Social networks are among the most frequently used appli-

cations in smart mobile devices. One of the main benefits of
social network applications (from the data scientist point of
view) is that people use them at all times, everywhere. Some
of these social networks offer APIs which can be queried for
user information (information which users have previously
accepted to provide). The Twitter API allows to query Tweets
generated in a given area. Foursquare provides information
about where users have checked in (where they have marked
as currently being at) at a given time. Finally, the third large
social network with available API is Instagram, providing
access to the uploaded pictures, the text added by users to
those pictures, and the location where the upload took place.
These three social networks will be our main sources of data.

The information provided by these social networks has a
very small granularity and size, which complicates its atomic
interpretation. The semantics of each tweet are hard to un-
derstand through Natural Language Processing due to their
short nature, the use of slang, hashtags, etc. Foursquare is
smaller (i.e. it has less activity) and its data is biased towards
points of interest. Data from Instagram is also biased to-
wards sight-seeing locations. Unfortunately, the computa-
tional cost of performing image recognition on each photo
is prohibitive. With these restrictions, an attempt to analyse
their combined data in detail will result in multiple problems
of high complexity. However, if one focuses on their most
basic shared properties (e.g. a happening, and its time and
location) and discards the most context dependent proper-
ties (e.g. text, images, categories) the problem becomes much
simpler, while its potential benefits remain remarkable. And
most important, by simplifying the problem we are increas-
ing the amount of the dataset (Twitter + Foursquare + Insta-
gram). We focus on atomic data points representing single
activities in a place and time, normalizing tweets, check-ins
and image uploads to consider only when and where they
happen. We aggregate them into a single model and obtain a
combined data source with millions of real-time sensors of a
wider spectrum.

One of the important theorems for Big Data is the law of
large numbers, which states that a large sample will con-
verge to a normalized average as the sample grows. In that
regard we produce a larger and broader sample than the re-
lated work by combining three social networks. This makes
our model resistant to variations and outliers. In a domain
as volatile as the behaviour of a large city (i.e. the semi-
coordinated and combined behaviour of millions of people),
these features will be a valuable asset.

4.2 Data Properties
The quest for simple data made us focus on the most basic

features available from the data sources. Concretely we work
only with when and where a social network action takes place.

48 ELS 2014

These two properties are shared by the three data sources,
which allows us to easily aggregate their information. Fur-
ther information would also enrich the model and enhance
the capabilities of the system (for example by trying to de-
tect the semantics of events based on the text), which is why
we consider using it in the future as a second step process.
However, from the perspective of this paper we work only
in terms of time and space, to demonstrate what can be done
with such a simple, but vast, input.

Due to the fact that all the data sources that we currently use
provide data in JSON format, Clojure gives us a noticeable
advantage over any other language thanks to the immediate
mapping from JSON to Clojure nested associative maps by
the use of the data.json library. Handling data directly as
associative maps allows for straightforward handling and
mapping to and from data structures, as in the following
example that is used to convert tweets into our normalized
data structure:
(defn map-from-twitter

"Maps a Tweet structure into an ad hoc one."
[tweet]
(hash-map

:_id (str "twitter-" (:id_str tweet))
:lat (second (:coordinates (:coordinates tweet)))
:lng (first (:coordinates (:coordinates tweet)))
:geometry {:lat (second (:coordinates (:coordinates tweet)))

:lng (first (:coordinates (:coordinates tweet)))}
:ts (int (/ (.getTime (.parse

th/date-formatter-twitter
(:created_at tweet))) 1000))

:tags (:hashtags (:entities tweet))
:urls (:urls (:entities tweet))
:mentions (:user_mentions (:entities tweet))
:venue-id (:id (:place tweet))
:text (:text tweet)
:count 1
:lang (:lang tweet)
:user (:id_str (:user tweet))
:user-twitter (:user tweet)
:favorite-count (:favorite_count tweet)
:retweet-count (:retweet_count tweet)
:in-reply-to-status-id (:in_reply_to_status_id_str tweet)
:in-reply-to-user-id (:in_reply_to_user_id_str tweet)
:app "twitter"))

An advantage of defining such simple mappings between
data models allows us to modify the mappings whenever it is
needed, adding or removing particular data from the sources
in execution time. In our case, this has been really important
due to the fact that we have been able to use, for our training
sets, data collected since the beginning of our deployment
even when our mappings have been evolving over time.

The small granularity of the information available forces us
to characterize events in a simple manner. Of the two main
features we handle, time and space, we will only use time
dynamically, to represent the persistence of events through
time. This allows us to study how events are created and
how they fade away over time. Space could also be used
dynamically, and it would allow us to introduce the notion of
travelling event (e.g. a demonstration which moves), a topic
which we intend to tackle in the future. However for the
scope of this paper we will only model events dynamically
through time. Space will be used statically.

4.2.1 Handling of time
To represent time we split it in 15 minutes portions (what

we call time-windows). This time length is a trade-off between
the event granularity we wish to detect (any event shorter
than 15 minutes is not worth detecting for us) and a minimum
temporal gap which would guarantee an stable data input
(shorter portions would result in more variable data). We
starting collecting data in July 2013, and at the time of writing
this paper we are still collecting it. That roughly amounts to

22,000 non-overlapping time-windows.
There is a set of predicates that can be applied to each

timestamp of T in order to retrieve its calendar information:
month, day (of the month), weekday, hour (of the day), and
minute (of the hour):
(defn get-date-fields [ts]

(let [millis (* 1000 ts)
day (.format cet-date-format millis)
t (.format cet-time-format millis)
day-tokens (clojure.string/split day #"[\s|,]")
year (java.lang.Integer/parseInt (last day-tokens))
weekday (first day-tokens)
day (java.lang.Integer/parseInt (nth day-tokens 2))
month (nth day-tokens 3)
time-tokens (clojure.string/split t #":")
hour (java.lang.Integer/parseInt (first time-tokens))
minute (java.lang.Integer/parseInt (second time-tokens))]

{:weekday weekday
:month month
:day day
:hour hour
:minute minute
:year year}))

Analogously, each of these predicates can be applied to
a time-window, retrieving the information corresponding to
its initial timestamp. To compare the measurements occur-
ring in a specific time-window with respect to historical data,
we use the history of measurements having occurred in the
correspondent time-window for all the other weeks. There-
fore, two time-windows will be comparable if they share the
same weekday, hour and minute, which is true whenever
the result of abstract-interval below is the same for two given
timestamps:

(defn abstract-interval [ts]
(let [jt (timec/from-long (* 1000 ts))

hour (time/hour jt)
minute (time/minute jt)
weekday (["" "Monday" "Tuesday" "Wednesday"

"Thursday" "Friday" "Saturday" "Sunday"]
(time/day-of-week jt))]

{:hour hour :minute minute :weekday weekday :interval ts}))

4.2.2 Handling of space
Regarding our representation of space, we focus on the

Barcelona metropolitan area, with an area of 633km2 and a
population of approximately 3.2 million people. We split the
city into sectors based on geohashes, a hierarchical represen-
tation of space in the form of a recursive grid [5]. Sectors are
defined by geohashes of n characters, where 1 ≤ n < 12 (a
geohash of 12 characters represents a one-dimensional coor-
dinate). This allows to split geographical locations in non-
overlapping sectors of equal area. We decided to work with
geohashes six characters long, roughly representing 0.55km2

in the area of Barcelona. As a result we have over 2,000 land
sectors with relevant data (we consider an slightly bigger area
than that of the Barcelona metropolitan area).

By splitting Barcelona and its surrounding cities in equally
seized sectors, obtaining data for each of those sectors every
15 minutes for over seven months, and combining all that
data, we build an approximate model for the whole city. Ag-
gregations are made by mapping coordinates to sectors, each
coordinate c defined by a pair of floating point numbers and
representing Earth latitude and longitude. As a result we
produce a separate behavioural model for each sector and
weekday using the social network activity taking place in it.

4.3 Data Aggregation and Deviation Detection
The main data aggregation process of our system computes

the crowd density in a specific pair of < sector, interval > by
gathering all data taking place in that time and location. For

ELS 2014 49

a given time-window corresponding to a specific period of
15 minutes or 900 seconds and a given sector, we generate
several values that correspond to: 1) the set of all the raw
data obtained during the time-window geolocated inside the
sector, 2) the set of sources that pushed data during such
time-window, regardless of the sector, 3) the sum of all the
unique users for each source obtained by push for the given
sector, and 4)t he aggregation of all the values of the property
count (always 1 in the case of Twitter and Instagram, ≥ 0 in
the case of Foursquare).

In order to make predictions we need to train the system
with already collected data. We assume that not all sources
have been actively polled during the full expanse of the crawl-
ing, so we need a mechanism to consider which aggregations
are statistically valid. We will only consider valid those ag-
gregations done for a time-window in which there is a mini-
mum value of 1 for each of the sums of the full historical set
of sources.

In order to define normality as a metric of what can be
expected of sensor data in a certain time-window, we split
the week into all of its possible distinct time-windows (w, h, m
denote weekday, hour and minute respectively).

Therefore, for each combination of weekday, hour and minute,
for a certain training set for a specific sector, a function
statistics-area-interval returns all the aggregation sums. Tak-
ing this set as basis, we can thus infer normality by using the
median and the inter-quartile range [iqr(set) = q3(set) − q1(set)]
[13]:
all-values (map :sum new-val)
qs (quantile all-values)
q1 (second qs)
q3 (nth qs 3)
iq (- q3 q1)
upper-distance (* 3 iq)
upper-inner-fence (+ q3 lower-distance)
upper-outer-fence (+ q3 upper-distance)

Given this set of statistical measures, we can now define
three predicates over an aggregation: normal, deviated and
abnormal, each of them denoting a different degree of normality
with respect to a training set:

(defn statistics-area-interval [area ts]
(let [agg (aggregate-by-weekday-area area)

interval (th/abstract-interval ts)
agg-by-hour-minutes (group-by :interval agg)]

(let [values (get agg-by-hour-minutes interval)
hour-minute (* 3600000

(+ (:hour interval)
(/ (:minute interval) 60)))

correct-value (first
(filter

(fn [a]
(= (:weekday a)

(:weekday interval)))
(get agg-by-hour-minutes hour-minute)))]

(if (nil? correct-value)
nil
{:interval (* 1000 (:interval interval))
:normal (:median correct-value)
:deviated (:upper-inner-fence correct-value)
:abnormal (:upper-outer-fence correct-value)}))))

We detect an event in a certain sector during a set of time-
windows, when all of the time-windows correspond to de-
viated sensor data, and at least one of those corresponds to
abnormal sensor data.

4.4 Event Representation
Once we have defined our model of city behaviour and

how we detect events in it, now we introduce our model
of events. We represent events as pseudo-trapezoids where
the horizontal axis represents time and the vertical axis cer-
tainty. In this representation one can imagine an event which

is slowly forming as a trapezoid beginning with a gentle as-
cending slope until reaching certainty 1, and an event which
abruptly ends as a trapezoid ending with a strong descend-
ing slope (see Figure 1). The segment in the horizontal axis in
which the trapezoid bottom and top lines are parallel would
represent the temporal gap in which the event is happening
with full certainty (i.e. abnormal status). In this representa-
tion the low base must be at least as large as the top base, and
must include it w.r.t. the horizontal axis. In the example of
Figure 1 the lower base goes from t1 to t11, and the top base
from t5 to t10.

Figure 1: Trapezoid representation of an event. Its begin-
ning goes from t1 to t5. Its ending from t10 to t11.

In the trapezoid representation we can identify three main
components in each event: Its beginning, its body and its
ending. The beginning of an event a is called a−, while the
ending is called a+ (see Figure 1). Both these components
represent a deviated status as previously defined. The body
section represents an abnormal status. This decomposition
of events into beginning, body and ending is frequent in the
bibliography and allows temporal reasoning based on their
properties [1, 10]. In order to implement this algorithm, we
make intensive use of functions as first-class citizens of the
language. Each of the thirteen temporal reasoning predicates
is implemented as a boolean function such as:

(defn A-before-B
[A B]
(subint<subint

(get-ending-of-interval A)
(get-beginning-of-interval B)))

(defn A-after-B
[A B]
(A-before-B B A))

To obtain all of the values for a pair of events, the thirteen
functions are then statically defined in a vector and iterated
with a map invocation:

(defn get-all-AB-temporal-relations
[A B]
(let [fns [A-before-B A-after-B A-overlaps-B

A-overlapped_by-B A-during-B
A-contains-B A-meets-B A-met_by-B
A-starts-B A-started_by-B A-equals-B
A-finishes-B A-finished_by-B]

all-rels (zipmap
[:before :after :overlaps :overlapped_by
:during :contains :meets :met_by :starts
:started_by :finishes :finished_by :equals]

(map #(% A B) fns))]
all-rels))

4.5 Experimentation
There are multiple ways of exploiting the huge amount of

available data. In here we will focus on how event detection
performs, and the profile of the detected events. We begin by
showing an example of detected event and its representation
in our model, to help illustrate the approach. Afterwards we

50 ELS 2014

will show the potential of the methodology by showing the
most relevant events detected in the period of data captured
and some other interesting events we have identified. That
will motivate a later study on the potential applications of the
approach.

4.5.1 Event Model
To illustrate the methodology, this section presents an event

detected the 20th of November, 2013 in the sp3e37 geohash
sector (see Figure 2). The event was later manually iden-
tified as a concert of the popular band Mishima in the city
of Barcelona. We also learned that a warm-up band started
playing at 20:00 while the main concert started at 21:00.

As shown in Figure 2, the data retrieved for this event
started being relevant at 19:45, in coherency with the start-
ing of the warm-up concert. As people arrive at the venue,
the social network activity becomes more dense than nor-
mal which triggers the event detection (deviated status). The
event reached full certainty (abnormal status) at 20:15, when
the warm-up concert was already going on, and shortly be-
fore the main concert began. At that point the event would
remain certain (with a minor fall at 20:30) long after the end
of the main concert, until it finally disappeared at 00:45.

Figure 2: Model of a concert event. Left image represents
the social network activity through time (Top line is the
event activity, middle line is the upperfence for event de-
tection). Right image shows its trapezoid representation,
with time on the x axis and certainty on the y axis.

The beginning of this event, between 19:15 and 20:15, rep-
resents the gradual arrival of people to the venue, and is co-
herent with the idea that people arrive to a concert between 2
hours and half an hour before it begins. The duration of the
event itself, from 20:15 to 00:15, includes the whole duration
of the concert with an additional margin on both sides. This
most likely represents the people staying around the concert
area shortly after the concert has ended. Finally, the end of
the event is more sudden than its beginning (it goes from
00:15 to 00:45). This strong descending slope can be under-
stood as the quick dispersion of the people who went to the
concert. This example allows us to motivate an interesting
application of the methodology, as the model of events can
be used to profile them and help understand their nature. In
this case we could argue that concerts tend to attract people
gradually, while their dispersion afterwards is much faster.

4.5.2 Massive Event Discovery
To further analyse the capabilities of the event discovery

approach, we now focus on the full potentiality of the system.
At the time of writing this paper our system has detected
712 events. These, in the 229 days of captured data corre-

spond to 3.1 events per day. We decided to study the most
relevant events detected in the time gap captured, under-
standing relevance as the certainty and length of the event’s
occurrence. From the top 40 events captured, 15 are Football
Club Barcelona (FCB) games (the most popular sport team
in the city), one being of its basketball section. To evaluate
the social impact of one of those games consider that the FCB
stadium has a capacity for over 98,000 people. The second
most popular sport team in the city, Real Club Deportiu Es-
panyol (RCDE), caused 2 events in the top 40. This club has
significantly fewer supporters and its stadium has capacity
for 40,500 people. Within the top 40 there are also 10 con-
certs, 5 events related with New Year’s Day and Christmas, 5
events in the Barcelona airport, 2 events in popular locations
and 1 event associated with an important and yearly fashion
event in the city of Barcelona.

The ranking of football game events found within the top
40 seem to correlate with the idea that the popularity of the
game is associated with its impact on the model. The top
ranked game is against Real Madrid, the arch-rivals of FCB.
Champions League games (the most important international
competition FCB plays) are also highly ranked (vs. Milan,
vs. Celtic) on average. The correlation between popularity
and impact is similarly found in concerts, which events rank
based on the popularity of the performer. The first concert
however corresponds to a day in which three concerts took
place in the same area at the same time. Next come concerts
which had an isolated location but which had very popular
performers (Michael Buble, Arctic Monkeys, Bruno Mars, De-
peche Mode, etc.). It is also relevant to see how New Year’s
day is a source of huge events, something which is coherent
with the specially active behaviour of the city during that day.

Beyond the top 40 there are other interesting events which
we have identified within the total of 712 detected. Next
we list some of them to illustrate the wide capabilities of the
system. The variety in the nature, target audience and impact
of the detected events suggests that our approach can be used
in a wide variety of contexts:

1) The iPhone 5 release date caused an event in the area
of the Apple store. 2) A 3 day special sale for movie theatre
tickets (half price) city wide, caused events in several movie
theatres. 3) A strike in the train service caused events in
the main stations. 4) The re-opening day of an old market
caused events in the market area. 5) Congresses such as ERS
congress, Smart Cities congress and others, caused events
in the venue areas. 6) Barcelona shopping night, an event
organized by Barcelona merchants caused events in several
commercial areas.

As a final experiment, we study the crowd of events in
comparison with their impact on our model. We validate
that much through event websites and official sources where
the number of participants or attendants to these events can
often be found. Figure 3 contains a dispersion chart showing
the relationship between the average per time-window and
the actual attendance for the 100 top ranked events we have
captured, along with the computed linear regression. The
Pearson correlation coefficient is approximately 0.82, which
is a relevant result considering the dispersion of the data col-
lected. This experiment suggests that we can automatically
estimate the number of people at an event detected by our
model.

Internally, the implementation is based on independent,

ELS 2014 51

Figure 3: Captured data vs. actual attendance for the Top
100 events detected.

autonomous agents that communicate with each other ex-
clusively by asynchronous messages via Clojure agents. The
agents have the capability to pro-actively assign themselves a
particular role: Crawler agents assign themselves a target API
or web service and manage the reception of data from them,
and Worker agents schedule periodical aggregation processes.
Aggregation processes can be hot-plugged and removed from
the Semantic Interpreter at runtime via plug-ins, and can in-
clude but are not limited to: crowdedness by area and time
interval, crowdedness by Point of Interest and time interval,
user trajectories by time interval, disruptive events detection,
and so on.

As seen in §3, reliability in data-sensible applications such
as the Disruptive Event Detector is a crucial feature. In our
system agents are fail-safe in the sense that if a process fails,
another agent is taken from a pool to automatically select one
or more roles and fulfill them. Scalability is handled by the
Semantic Interpreter by not allowing more agents than n− 1,
where n is the number of cores of the host. Please, notice
formal tests for obtaining the metrics that will support the
benefits of adopting a multi-cored architecture are still to be
performed.

An instance of the Semantic Interpreter can be parametrised
by setting up the following values in a configuration file: lat-
itude and longitude of the central coordinate, radius of the
metropolitan area of the city, counts-as rules (city-specific
interpretation rules in RDF), social network API keys, the
credentials to MongoDB and Neo4j, and the periodicity of
the aggregation processes. This means that, with a small
setup of one Java properties file, three instances for Barcelona,
Helsinki and Milan have been collecting and aggregating data
since July 2013 with minimal downtime.

5. POLICY FRAMEWORK
Information about events occurring in the city have value

by themselves, but there is added value in aggregating and
interpreting them in order to produce knowledge useful for
policy-makers. The SUPERHUB Policy Framework is the
component responsible for such processing, providing the
perspective of mobility authorities and other stakeholders
like transport operators that have relevant contributions to
the decision making in mobility policies. As a consequence,
it provides tools oriented to improve the quality of the mo-
bility policies adopted by the decision makers in sustainable
mobility management. The Policy Framework shall improve
the relevance of the information policy makers work with,
integrate data and provide a holistic and multi-criteria ap-
proach for the analysis of information, facilitate the design
and off-line analysis and simulation of the strategies to adopt,
and provide metrics and indicators about the success of the

policies already applied.
The Policy Framework consists in two main components,

the Policy Monitor and the Policy Optimizer. The Policy
Monitor extracts the information required to diagnose the
current mobility status of the city. The component receives
data from the city sensors and analyses it in order to put it
in contrast with past data and contextual data. Examples
of contextual data include the set of available mobility poli-
cies. The analysis allows for inferring higher level informa-
tion (on-line analysis) such as the relevance of a particular
piece of data, relevant situations and events with potential
impact on the mobility of the city. The Policy Monitor also
collaborates with Policy Optimizer for on-line Policy Opti-
mization. The monitor analyses the performance of active
policies w.r.t. received data generating an overall picture of
the city’s situation regarding mobility parameters. In case of
low performing policies, the monitor component can start an
automatic policy optimization process.

The Policy Optimizer component performs policy opti-
mization triggered manually by mobility experts or auto-
matically by the monitor component. Policy optimization
is performed by generating small variations of the policy -
and the contextual data related to the policy - and simulat-
ing them. Once the results for all variations are available,
the Policy Optimizer selects a solution and provides it as the
proposal for policy optimization.

Both the Policy Monitor and the Policy Optimizer compo-
nents rely in a common policy evaluation module. This mod-
ule is able to put in contrast the data received from the city
sensors or the city simulations (social reality) with the poli-
cies (political reality). Therefore, policy evaluation module is
a core component of the policy framework, and it should be
specifically design to be efficient, fast and easy to implement
and maintain.

The following code shows the translation maps used to
derive low level information into high-level one. As we can
see, in order to support these maps we need support for map
structures, polymorphism (e.g. , values range from String,
Vector and function and code is the same) and first class func-
tions (function + and data ’producedCO2InGram’ are treated
equally):
(def parameter-translation-table

"Translate parameters to values in mongoDB"
{:CO2 "producedCO2InGram", :NOx "producedNOxInGram",
:SOx "producedSOxInGram", :CO "producedCOInGram",
:PM10 "producedPM10InGram"
:public ["METRO" "BUS" "TRAM"]
:private ["WALK" "BICYCLE" "CAR" "MOTORBIKE"]
:selfPropelled ["WALK" "BICYCLE"]
:ALL ["WALK" "METRO" "BUS" "TRAM" "BICYCLE" "CAR" "MOTORBIKE"]})

(def function-translation-table
"Translate function names to clojure functions"
{:sum +, :max max, :min min})

Of special interest is the function translation table that allows
to convert data contained in the policy model (i.e. "formula"
: "(* (/ count_type count_all) 100)") into code, effectively com-
puting both concepts equally.

Policies are converted into a normative framework [2] that
uses an Ecore metamodel [12] as a representation format. We
make use of multi-methods in order to handle the polymor-
phism required by having to convert input objects of different
classes to Clojure structures. Additionally, we take advantage
of homoiconicity to dynamically assign to these structures a
functional semantic meaning, allowing them to be used as
executable formulas:
(defmulti operator class)

52 ELS 2014

(defmethod operator ConjunctionImpl
[o]
‘(~and

~(operator (.getLeftStateFormula o))
~(operator (.getRightStateFormula o))))

(defmethod operator ImplicationImpl
[o]
‘(~or

~(cons not
~(operator (.getAntecedentStateFormula o)))
~(operator (.getConsequentStateFormula o))))

(defmethod operator DisjunctionImpl
[o]
‘(~or

~(operator (.getLeftStateFormula o))
~(operator (.getRightStateFormula o))))

These formulas allow to obtain the values for the metrics
defined in the policies defined by policy-makers in the Policy
Framework. However, such metrics are still low-level infor-
mation about key-performance indicators. [2] defines bridge
rules that allow abstracting such low-level information to the
level of institutional facts, which in the context of SUPERHUB
represent the social and political reality of the city.

In order to implement such bridge rules in our system, we
use the clara-rules library, which allows to define production
rules (similar to CLIPS, Drools or JESS) by purely using Clo-
jure code. Therefore, no additional compiler or interpreter
is needed, and run-time changes are simple and straightfor-
ward. Again, because the policies can be added, modified
or removed in run-time, we make use of homoiconicity to
generate the rules in execution time:

(eval
’(defrule holds

"holds"
[?h1 <- HasClause (= ?f formula) (= ?f2 clause)]
[?h2 <- Holds (= ?f2 formula) (= ?theta substitution)]
=>
(insert! (->Holds ?f ?theta))))

(eval
’(defrule norm-instantiation

"norm instantiation"
[?a <- Activation (= ?n norm) (= ?f formula)]
[?h <- Holds (= ?f formula) (= ?theta substitution)]
[:not [Instantiated (= ?n norm) (= ?theta substitution)]]
[:not [Repair (= ?n2 norm) (= ?n repair-norm)]]
=>
(insert-unconditional! (->Instantiated ?n ?theta))))

6. CONCLUSIONS
This paper has presented one of the key elements of the

SUPERHUB project: a mechanism to capture and aggregate
information to detect unexpected events. By means of Clo-
jure we have been able to tackle the parallelization problem
without extra effort from our side, thus making it possible
to capture and interpret this information in almost real-time
from multiple, diverse, and schema-free data sources. This
allows us to process large amounts of data and provide a
more accurate process of detecting unexpected events. This
information is used later on by other components used by
citizens –to personalise mobility within the city– and policy
makers –to react and provide policy adaptation accordingly.

Concretely, using Clojure helped us to easily consume in-
coming data from data sources in JSON format into language
structures; to manipulate data with immutable structures al-
lowing for transparent horizontal partitions of datasets; to
assign functional semantic meaning thanks to homoiconicity;
to define, at run-time, production rules in the same language,
thus allowing a higher level interpretation of information;
among others.

Code ported from Java in the first stages from adoption

has been reduced to a 10% in lines of code, while a functional
approach has reduced the complexity of the code structure,
being less dependent on hard-to-refactor class hierarchies.
Additionally, for a system of a considerable size, the de-
ployed platforms (using Compojure4 for the backend and
Clojurescript5 for the frontend) has proven to be robust, e.g.
the Disruptive Event Detector has currently more than three
months of continuous uptime while collecting and processing
gigabytes of data per day.

7. REFERENCES
[1] J. F. Allen. Maintaining knowledge about temporal

intervals. Communications of the ACM, 26(11):832–843,
1983.

[2] S. Alvarez-Napagao, H. Aldewereld,
J. Vázquez-Salceda, and F. Dignum. Normative
Monitoring: Semantics and Implementation. In COIN
2010 International Workshops, pages 321–336.
Springer-Verlag, Berlin Heidelberg, May 2011.

[3] I. Carreras, S. Gabrielli, D. Miorandi, A. Tamilin,
F. Cartolano, M. Jakob, and S. Marzorati. SUPERHUB: a
user-centric perspective on sustainable urban mobility.
In Sense Transport ’12: Proc. of the 6th ACM workshop on
Next generation mobile computing for dynamic personalised
travel planning. ACM, June 2012.

[4] D. Chakrabarti and K. Punera. Event Summarization
using Tweets. 5th International Conference on Weblogs and
Social Media, ICWSM, 2011.

[5] A. Fox, C. Eichelberger, J. Hughes, and S. Lyon.
Spatio-temporal indexing in non-relational distributed
databases. In Big Data, 2013 IEEE International
Conference on, pages 291–299, 2013.

[6] D. Garcia-Gasulla, A. Tejeda-Gómez,
S. Alvarez-Napagao, L. Oliva-Felipe, and
J. Vázquez-Salceda. Detection of events through
collaborative social network data. The 6th International
Workshop on Emergent Intelligence on Networked Agents
(WEIN’14), May 2014.

[7] C. Li, A. Sun, and A. Datta. Twevent: Segment-based
Event Detection from Tweets. pages 155–164, 2012.

[8] R. Li, K. H. Lei, R. Khadiwala, and K. C. C. Chang.
TEDAS: A Twitter-based Event Detection and Analysis
System. pages 1273–1276, Apr. 2012.

[9] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake
Shakes Twitter Users: Real-time Event Detection by
Social Sensors. pages 851–860, 2010.

[10] S. Schockaert, M. De Cock, and E. E. Kerre. Fuzzifying
Allen’s temporal interval relations. Fuzzy Systems, IEEE
Transactions on, 16(2):517–533, 2008.

[11] M. Srivastava, T. Abdelzaher, and B. Szymanski.
Human-centric sensing. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering
Sciences, 370(1958):176–197, Nov. 2011.

[12] M. Stephan and M. Antkiewicz. Ecore. fmp: A tool for
editing and instantiating class models as feature
models. University of Waterloo, Tech. Rep, 8:2008, 2008.

[13] J. W. Tukey. Exploratory data analysis, 1977.
[14] J. Weng and B.-S. Lee. Event Detection in Twitter.

ICWSM, 2011.

4https://github.com/weavejester/compojure/wiki
5https://github.com/clojure/clojurescript/wiki

ELS 2014 53

A Racket-Based Robot to Teach First-Year Computer
Science

K.Androutsopoulos, N. Gorogiannis, M. Loomes, M. Margolis,
G. Primiero, F. Raimondi, P. Varsani, N. Weldin, A.Zivanovic

School of Science and Technology
Middlesex University

London, UK
{K.Androutsopoulos|N.Gkorogiannis|M.Loomes|M.Margolis|G.Primiero|F.Raimondi|P.Varsani|N.Weldin|A.Zivanovic}@mdx.ac.uk

ABSTRACT
A novel approach to teaching Computer Science has been de-
veloped for the academic year 2013/14 at Middlesex Univer-
sity, UK. The whole first year is taught in an holistic fashion,
with programming at the core, using a number of practical
projects to support learning and inspire the students. The
Lisp derivative, Racket, has been chosen as the main pro-
gramming language for the year. An important feature of
the approach is the use of physical computing so that the
students are not always working “through the screen”, but
can experience physical manifestations of behaviours result-
ing from programs. In this paper we describe the MIddlesex
Robotic plaTfOrm (MIRTO), an open-source platform built
using Raspberry Pi, Arduino, and with Racket as the core
coordination mechanism. We describe the architecture of
the platform and how it can be used to support teaching of
core Computer Science topics, we describe our teaching and
assessment strategies, we present students’ projects and we
provide a preliminary evaluation of our approach.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Theory,Human Factors.

Keywords
Educational approaches and perspectives, Experience reports
and case studies

1. INTRODUCTION
Designing an undergraduate programme requires a num-

ber of choices to be made: what programming language
should we teach? Which development environments? Should

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
European LISP Symposium 2014 Paris, France
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

mathematical foundations play a dominant role, or will they
discourage students from attending? Moreover, the cur-
rent stand of our educational system with respect to in-
dustry seems to rely on a discouraging contradiction: on
the one hand, it is tempting to market new undergraduate
programmes with the claim that they will provide the skills
required by industry. On the other hand, we argue that
the only certainty is that students will live in a continuously
evolving environment when they leave education, and that
it is not possible to forecast market requests in a few years’
time.

In the design of a new Computer Science programme for
the academic year 2013/2014 we have been driven by the re-
quirement that we should prepare students for change, and
that we should teach them how to learn new skills autonom-
ously. Students entering academia may not be prepared for
this: they could be arriving from high school where the fo-
cus is on achieving good grades in specific tests. How do we
achieve the objective of preparing good learners?

We decided to employ the Lisp-derivative Racket to sup-
port the delivery of a solid mathematical background and
the creation of language-independent programming skills.
Moreover, we decided to work on real hardware so that the
students could appreciate the result of executed code. The
work is organised around projects involving Arduino, Rasp-
berry Pi, and a Robot that we describe here.

We have completely revised our delivery and assessment
methods to support our aims. There are no modules or
courses and the activities run seamlessly across the projects.
The assessment method is not based on exams, but on Stu-
dent Observable Behaviours (SOBs), that are fine-grained
decompositions of learning outcomes providing evidence of
students’ progress.

Many of the elements in this approach have been tried
elsewhere, including: problem-based learning, assessment
through profiling and using Lisp as a first programming
language. We believe, however, that this programme takes
these ideas further than previously, and also blends these in
ways that are unique. The integration of Lisp (Scheme) and
formalisms in an holistic way was introduced at Hertford-
shire by one of the authors many years ago [7], but only in
the context of a single module. Several years earlier, a highly
integrated curriculum was designed in a project funded by a
large company in the UK, to develop formal methods in soft-
ware engineering practice [8], but this was for small cohorts
of students at Master level. From a pedagogical viewpoint,
our approach broadly recalls a fine-grained outcome-based

54 ELS 2014

learning path model, but the theoretical implications remain
to be assessed in their full meaning, especially for the ped-
agogical support (see [14] for a recent overview). Finally, an
essential aspect of our course structure is the integration of
the Lisp-based programming methodology with a range of
issues in electrical engineering, robotics and web-based ap-
plications. While other educational programmes have often
preferred to drop Lisp variants in favour of other more ded-
icated programming environments (e.g. in the famous case
of MIT 6.001 course based on Scheme and [1] redesigned
with Python for Robotics applications) we intend to pre-
serve the more in-depth and foundational understanding of
programming that a Lisp-style language can offer and at the
same time offer a greater flexibility with respect to real-world
challenges.

In this paper we focus on how Racket has provided a solid
support for our new strategy: in Section 2 we describe the
overall structure of the first year and the progress of stu-
dents from simple examples to more complex scenarios; this
progress enables the students to control a real robot, de-
scribed in Section 3. In section 4 we describe our assessment
strategy and we present a tool to support it. An evaluation
of our approach is provided in Section 5, where we describe
students’ projects and various measures for engagement, at-
tendance and overall progress.

2. OVERVIEW OF THE FIRST YEAR
In our new first year of Computer Science, there are no

modules or courses and all the activities run across vari-
ous sessions during the week. The idea is that employing
a problem-driven approach, we give students the confidence
needed to study independently. In essence, this is our way
to teach them “how to learn”.

Each week consists of the following structured sessions:
lecture, design workshop, programming workshop, physical
computing workshop, synoptic workshop.

General Lecture. A two-hour lecture is given, introducing
or developing a topic and related projects. However,
this is not where learning should happen: we envisage
our lectures as motivational and high-level descriptions
of the activities that will follow during the week.

Design Workshop. In these workshops students develop
skills required to work in a design environment. Design
might be built in software (programming) or hardware,
it might involve bolting existing systems together (sys-
tems engineering), or developing processes for people
who are using the systems (HCI). We cover ways of
generating ideas, ways of representing designs so that
they can be discussed, professional ways of criticising
designs and ways teams of people work together to
produce and deliver designs. Delivery happens in an
open-space flexible environment, with large tables that
can be moved around and arranged in small groups,
and the workshop lasts two hours. Students may be
asked to present in front of the class the result of their
work.

Programming Workshop. In the two-hour programming
workshops we help the students with exercises, master-
classes, coaching sessions, to develop their fluency in
coding. We have restricted the first year to looking
at just one main language, Racket [11], a functional

language derived from Lisp. Racket should be new to
most students, thus ensuring that the students are all
at the same level of experience so that we can focus
on teaching best practises rather than undoing bad
habits. The choice of a programming language was
one of the most carefully debated issues in the design
of this new course. Racket was selected for the avail-
ability of a number of libraries that support teaching,
for its integrated environment (DrRacket) that allows
obtaining results with very minimal set-up, and for the
availability of a large number of extensions including
libraries to interact with networking applications such
as Twitter, libraries for Arduino integration and en-
vironments for graphics, music and live-coding.

Physical Computing Workshop. The output of software
systems increasingly results in tangible actions in the
real world. It is very likely that the most common
piece of software students will see in their jobs is not
a relational database to store sales, but a procedure
to manage self-driving cars. As a result, we think
that students should be exposed to a wide variety of
physical devices that are crucial to understanding com-
puter science. These will range from simple logic gates
(the building blocks of every computer currently com-
mercially available), to microcontrollers (Arduino) and
other specialist devices. The emphasis is on program-
ming using Racket, not building, these devices. In this
two-hour workshop we also explore how to interface
these, and how people interact with computers using
such devices.

Synoptic Workshop. This is where we “pull everything
together” by taking multiple strands of activity and
fit all of the bits together. It is longer than the other
workshops (4 hours) to allow time to design, build,
test and discuss projects. This is not simply about
‘applying’ what has been learnt - it is about learning
and extending what is known in a larger context.

In each of the Programming, Physical and Synoptic Work-
shops, one staff member and two Graduate Teaching Assist-
ants attend to around 20 students. In the Design session the
number of students rises to 40. Students do most of their
study during class hours, but handouts contain exercises for
self-study and they have almost continuous access to the
laboratories to work independently on physical computing.

2.1 Growing Racket skills
Our delivery of Racket starts with the aim of supporting

the development of a traffic light system built using Ardu-
ino boards [2, 9], LEDs and input switches. The final res-
ult should be a system with three traffic lights to control
a temporary road-work area where cars are only allowed in
alternate one-way flow and with a pedestrian crossing with
request button.

Arduino is a microcontroller that can run a specific code or
can be driven using a protocol called Firmata [3]. We employ
this second approach to control Arduino boards from a dif-
ferent machine. To this end, we have extended the Firmata
Racket library available on PLaneT [13] to support Windows
platforms, to automatically recognise the USB/serial port
employed for connection and to support additional kinds of
messages for analog output and for controlling a robot (see
next section). Our library is available from [12].

ELS 2014 55

Figure 1: A screenshot of the Dungeon Game Inter-
face

Students employ this library in the first week to start in-
teracting with DrRacket using simple code such as the fol-
lowing:

1 #lang racket

2 (require "firmata.rkt")

3 (open-firmata)

4 (set-pin-mode! 13 OUTPUT_MODE)

5 (set-arduino-pin! 13)

6 (sleep 1)

7 (clear-arduino-pin! 13)

This code turns an LED on for a second and then turns
it off. Students then start working on lists and see traffic
lights as lists of LEDs. High order functions are introduced
to perform actions on lists of LEDs, such as in the following
code that sets Arduino PINs 7, 8 and 9 to OUTPUT mode:

1 #lang racket

2 (require "firmata.rkt")

3 (open-firmata)

4 (define pins ’(7 8 9))

5 (map (lambda (pin)

6 (set-pin-mode! pin OUTPUT_MODE))

7 pins)

As part of this project students learn how to control events
in a timed loop using clocks and by making use of the Racket
function (current-inexact-milliseconds). This also en-
ables students to read the values of input switches and to
modify the control loop accordingly.

The result of this project is typically approximately 200
to 500 lines of Racket code with simple data structures, high
order functions and the implementation of control loops us-
ing clocks.

Following this Arduino project, students explore a number
of other Racket applications, including:

• A dungeon game with a GUI to learn Racket data
structures. See Figure 1.

• The Racket OAuth library to interact with the Twitter
API. A Racket bot is currently running at https://

twitter.com/mdxracket, posting daily weather fore-
cast for London. A description of this bot is available
at http://jura.mdx.ac.uk/mdxracket/index.php/Racket_
and_the_Twitter_API.

Figure 2: The Middlesex Robotic Platform

• A Racket web server to control an Arduino board.
More details about this are available at http://www.

rmnd.net/wp-content/uploads/2014/02/w2-programming.

pdf (this is the handout given to students for their pro-
gramming and physical computing workshop in one
week).

All these elements contribute towards the final project:
develop Racket applications for the Middlesex Robotic Plat-
form (MIRTO), described in the next section.

3. MIRTO ARCHITECTURE
The MIddlesex Robotic plaTfOrm (MIRTO, also known

as Myrtle), shown in Figure 2, has been developed as a flex-
ible open-source platform that can be used across different
courses; its current design and all the source code are avail-
able on-line [10]. The Middlesex Robotic platform shown is
composed of two units (from bottom to top):

1. The base platform provides wheels, power, basic sens-
ing and low level control. It has two HUB-ee wheels [4],
which include motors and encoders (to measure actual
rotation) built in, front and rear castors, two bump
sensors and an array of six infra-red sensors (mounted
under the base), a rechargeable battery pack, which is
enough to cover a full day of teaching (8 hours) and an
Arduino microcontroller board with shield to interface
to all of these. An extended version of Firmata (to
read the wheel encoders) is running on the Arduino,
which provides a convenient interface for Racket code
to control and monitor the robot.

2. The top layer (the panel on top in Figure 2) is where
higher level functions are run in Racket and consists of
a Raspberry Pi, which is connected to the the Ardu-
ino by the serial port available on its interface connec-
tion. The Raspberry Pi is running a bespoke Linux
image that extends the standard Raspbian image; it
includes Racket (current version 5.93), and is using

56 ELS 2014

Figure 3: MIRTO Arduino layer connected directly
to a PC

a USB WiFi adapter to enable remote connections via
SSH and general network activities. This layer enabled
us to also use cameras, microphones and text to speech
with speakers to extend the range of activities avail-
able to students. Additional layers can be added to
the modular design to extend the robots capabilities.

The robotic platform is certainly a helpful artifact to en-
gage students more, but it also represents a way to combine
our crucial interest in the formal and theoretical aspects un-
derlying computing. In fact, students start using the robot
to investigate product of finite state machines (computing
the product of the state space of the two wheels) and con-
tinue studying all the relevant formal properties that they
see implemented on MIRTO. They then move to connect-
ing the Arduino layer directly to a PC, see Figure 3. We
have built a bespoke Racket module for this interaction (see
Section 3.1); from the students’ point of view, this is es-
sentially a step forward with respect to a “simple” traffic
light system, and they can re-use the control loops tech-
niques employed for the first project to interact with wheels
and sensors. After getting familiar with this library, stu-
dents progress to study networking and operating systems
concepts: this allows the introduction of the top layer, the
Raspberry Pi. Students can now transfer their code from
a PC to the Raspberry Pi and they control MIRTO over
a wireless connection. This allows the introduction of con-
trol theory to follow a line and other algorithms (such as
maze solving). We present some details of the code in the
following section.

3.1 A Racket library for MIRTO
We have built a Racket library for MIRTO that allows

students to interact with the robot by abstracting away from
the actual messages exchanged at the Firmata level (see the
file MIRTOlib.rkt available from [10]). The library provides
the following functions:

• setup is used to initialise the connection between a
Racket program and the Arduino layer (this function
initialises Firmata and performs some initial set-up for

counters). Correspondingly, shutdown closes the con-
nection.

• w1-stopMotor and w2-stopMotor stop the left and the
right wheel, respectively. The function stopMotors

stop both wheels.

• (setMotor wheel power) sets wheel (either 1 or 2)
to a certain power, where power ranges between -100
(clockwise full power) and +100 (anti-clockwise full
power). (setMotors power1 power2) sets both mo-
tors with one instruction.

• (getCount num) for num ∈ {1, 2}, returns the “count”
for a wheel. This is an integer counter that increases
with the rotation of the wheel. A full rotation cor-
responds to an increase of 64 units for this counter.
Given that the wheel has a diameter of 60 mm, it is
thus possible to compute the distance travelled by each
wheel.

• enableIR enables infra-red sensors (these are initial-
ised in an “off” state to save battery); (getIR num)

(where num ∈ {1, 2, 3}) returns the value of the infra-
red sensor. This is a number between 0 (white, per-
fectly reflecting surface) and 2000 (black, perfectly ab-
sorbing surface).

• leftBump? and rightBump? are Boolean functions re-
turning true (resp. false) when a bump sensor is pressed
(resp. not pressed).

The following is the first exercise that students are asked
to do to move the wheels for one second:

1 #lang racket

2 (require "MIRTOlib.rkt")

3 (define (simpleTest)

4 (setup)

5 (setMotors 75 75)

6 (sleep 1)

7 (stopMotors)

8 (shutdown))

This code moves the wheels for one second and then stops
them. Students test this code using the Arduino layer only,
as shown in Figure 3. Similarly to the traffic light project,
students then move to more complex control loops and start
using the Raspberry Pi layer using SSH and command-line
Racket. The following snippet of code extracted from a con-
trol loop prints the values of the infra-red sensors every two
seconds:

1 ;; [...]

2 (set! currentTime (current-inexact-milliseconds))

3 ;;

4 (cond ((> (- currentTime previousTime) 2000)

5 (map (lambda (i)

6 (printf " IR sensor ~a -> ~a\n" i

7 (getIR i)))

8 ’(1 2 3))

9 (set! previousTime

10 (current-inexact-milliseconds))))

11 ;; [...]

ELS 2014 57

The functions provided by the library allow the imple-
mentation of a Racket-based PID controller [6] for MIRTO.
Students are also introduced to maze solving algorithms,
which can be implemented using the infra-red sensors and
the bump sensors. The Racket code for both programs is
available from [10] in the servos-and-distance branch.

After these exercises and guided projects, students are
asked to develop an independent project. We report some
of these projects in Section 5.

4. ASSESSMENT STRATEGY
As mentioned above, the delivery of the first year of Com-

puter Science has been substantially modified, modules have
been removed and students are exposed to a range of activ-
ities that contribute to projects.

As a result, we have introduced a new assessment strategy
to check that students have understood and mastered the
basic concepts required during the second year and are able
to demonstrate these through practical demonstration. We
use the term Student Observable Behaviours (SOBs)
to refer to fine-grained decompositions of learning outcomes
that provide the evidence that the students are progressing.
Passing the year involves demonstrating SOBs. There are
three types of SOBs:

Threshold level SOBs are those that must be observed
in order to progress and pass the year. Students must
pass all of these; a continuous monitoring of the pro-
gress using the tool described below ensures that any
student who is at risk of not doing so is offered extra
support to meet this level.

Typical level SOBs represent what we would expect a typ-
ical student to achieve in the first year to obtain a
good honours degree. Monitoring this level provides a
very detailed account of how each student is meeting
expectations. Students are supported in their weak
areas, encouraged not to hide them and not to focus
only on the things they can do well. Our aspiration
is to get the majority of students to complete all the
typical level SOBs.

Excellent level SOBs identify outstanding achievements.
These are used to present real challenges of different
types to students who have demonstrated to be ready
for them.

Projects were designed to offer assessment opportunities
both en-route and in the final project delivery. Projects
are posed in such a way as to ensure that students who en-
gage with the process have the opportunity to demonstrate
threshold level SOBs. As a result, “failure” to successfully
complete a project does not lead to failure to complete the
threshold SOBs. Projects have a well-defined set of core
ideas and techniques (threshold), with suggestions for en-
hancements (typical), and open-ended questions (excellent).
Note that there is no concept of averaging or summation:
in theory a student could complete all of the excellent level
SOBs, but fail the year as a consequence of not meeting one
threshold SOB. This is virtually impossible in practice, as
staff are aware that there are outstanding threshold SOBs,
and take the opportunity of observing them en-route. Of
course, if a student really can’t do something that has been
judged threshold, we will deem it a failure.

Students who fail to demonstrate all threshold SOBs by
the end of the academic year will, at the discretion of the
Examination Board and within the University Regulations,
be provided with a subsequent demonstration opportunity.
This will normally be over the Summer in the same academic
year. Resources including labs and support staff will be
made available during this period.

The process of assessment and feedback is thus continuous
via a “profiling” method. This method allows us to track
every student in detail, to ensure that we are supporting
development and progression. This means we have compre-
hensive feedback to the teaching team available in real time.
Also, students have a detailed mechanism available to mon-
itor their own progress. This includes ways of viewing their
position relative to our expectations, but also to the rest
of the group. The students have multiple opportunities to
pass SOBs. There are no deadlines and SOBs can be demon-
strated anytime during the year, although each SOB carries
a “suggested” date range in which it should be observed. Al-
though the formal aspect of the profiling method appears
to be a tick-box exercise, discussion and written comments
(where appropriate) are provided at several points through-
out the year.

4.1 The Student Observable (SOB) Tool
Overall, we have defined 119 SOBs: 34 threshold, 50 typ-

ical and 35 excellent. In terms of Racket-specific SOBs, 10
of them are threshold and include behaviours such as “Use
define, lambda and cond, with other language features as
appropriate, to create and use a simple function.”; 15 SOBs
are typical, such as “Define functions to write the contents
of a data structure to disk and read them back”; there are 13
SOBs at the excellent level, for instance: “The student can
build an advanced navigation system for a robot in Racket
that uses different data streams”

Our first year cohort consists of approximately 120 stu-
dents. An appropriate tool is crucially needed to keep track
of the progress of each student and to alert the teaching team
as soon as problems arise (students not attending, students
not being observed for SOBs, etc.). We have developed an
on-line application that takes care of this aspect, in collab-
oration with research associates in our department.

Figure 4 presents a screenshot of the tool when entering or
querying SOBs. The first column identifies the SOB by num-
ber; the second the level (threshold, typical, excellent); the
third the topic (Racket, Fundamentals, Computer Systems,
Project Skills); the fourth offers a description; the fifth and
sixth column indicate respectively start and expected com-
pletion dates; the last column is an edit option. In addition
to this facility, the tool provides a set of graphs to monitor
overall progress and attendance. Background processes gen-
erate reports for the teaching team about non-attending or
non-performing students. As an example, Figure 5 shows in
tabular form the list of students (id number, first and last
name, email), highlighting those who have (threshold) SOBs
that should have been observed at the current date.

Figure 6 shows a screenshot of the “observation” part of
the tool. In this case a demo student is selected and then
the appropriate SOBs can be searched using the filters on
the right. Different colours are used to highlight the most
relevant SOBs. In addition, for each level a progress bar dis-
plays the overall progress of the student in green against the
overall average progress of the cohort (vertical black bar);

58 ELS 2014

Figure 4: Entering and searching SOBs

Figure 5: Student list with SOBs

in this case, the student is slightly ahead of the overall class
for threshold SOBs. The “Notes” tab can be used to provide
feedback and to record intermediate attempts at a SOB. In
addition to the design presented in the figure we have also
implemented a tablet-friendly design to be used in the labs.

Students are provided a separate access to the database to
check their progress. A dashboard provides immediate and
quick access to key information (number of SOBs expected
to be observed in the coming week, number of SOBs that
are “overdue”, etc.). More detailed queries are possible for
self-assessment with respect to the overall set of SOBs and
with respect to the cohort in order to motivate students.
As an example, Figure 7 shows the student progress (green
bar) with respect to the whole class (yellow bars) for typical
SOBs.

Figure 6: Observing a SOB for a student

Figure 7: Student view: position with respect to
class

As described in the following section, this tool has enabled
the teaching team to provide continuous support to the stu-
dents who needed it most, by identifying non-attending or
dis-engaged students very early in the year.

5. EVALUATION
We provide here an overview of two forms of evaluation:

a list of students’ projects built using Racket and MIRTO,
and an evaluation of average attendance, progression rate
and engagement.

5.1 Student projects
In the final 3 weeks of their first year, students have been

asked to work in teams and submit projects using MIRTO
and Racket. Members of staff have provided support, but all
the projects have been designed and implemented entirely
by the students. The following is a list of some of these final
projects.

• Dancing robots: this has been a popular theme, with
two groups working at coordinating the movement of
multiple robots in a choreography of their choice. Two
example videos are available at https://www.youtube.
com/watch?v=V-NfC4WK2Sg and https://www.youtube.

com/watch?v=nMjdH9TCKOU.

• A student has developed a GUI running on the Rasp-
berry Pi. By tunnelling an X connection through SSH
the robot can be controlled from a remote computer.
The project also includes the possibility of taking pic-
tures and a sequence of instructions to be executed.
The video is available at the following link: https:

//www.youtube.com/watch?v=FDi2TSCe3-4

• A student has implemented a web server running on
the Raspberry Pi, so that the robot can be controlled
using a browser. The web interface enables keyboard
control of the movements and detects the values of
infra-red and bump sensors. Additionally, from the
web interface a user could take a picture or start line
following (on a separate thread). Finally, the stu-
dent has also implemented a voice recognition feature
by combining Racket and Pocketsphinx [5]: when the
name of a UK city is pronounced, the local weather is
retrieved. The video is available at this link: https:

//www.youtube.com/watch?v=lwsG0lD55wk.

• Finally, a student has taken a commercially available
robotic platform (4tronix initio robot) built on top of

ELS 2014 59

Arduino and has modified it by installing firmata and
by adding a Raspberry Pi running Racket. To this
end, the student has developed a bespoke version of
MIRTOlib.rkt for this new robotic platform, adding
support for servo motors. The video of this project
is available at this link: https://www.youtube.com/

watch?v=hfByxWhyXkc.

More importantly, through the projects and the threshold
SOBs we have been able to assess the ability of nearly all
students to control a robot from Racket, thus ensuring that
they have achieved the minimal level of familiarity with the
language to progress to the second year.

5.2 Attendance, engagement and progression
The teaching team has been concerned with various risks

associated to this new structure of delivery for a whole first
year cohort:

• Would students attend all the sessions, or only drop-in
to tick SOBs?

• Would students engage with the new material?

• Would students focus on threshold SOBs only, and not
progress beyond this level?

The delivery of this year has now nearly completed, with
only two weeks left in our academic year. In “standard”
programmes these are typically dedicated to revision before
the exams. In our case, instead, we are in a position of
analysing the data collected over the year to answer the
questions above.

5.2.1 Attendance
Figure 8 shows the weekly attendance rate in percentage

for the new first year programme (in blue) and for two other
first year modules from another programme (in green and
red, anonymised). Unfortunately, no aggregated attendance
data is available for the other programme. As a result, we
can only compare attendance of the whole first year with
these two modules, one of which has compulsory attendance.

The graph displays attendance per week; a student is con-
sidered to have attended in a week if s/he has attended at
least one session during the week. “Standard” modules have
an attendance ranging between 50% and 70% for the “core”
module with compulsory attendance, and between 40% and
60% for the “non-core” module. There is also a decreasing
trend as weeks progress.

We have been positively surprised by the attendance for
the new programme, which has been oscillating between 80%
and 90% with only a minimal drop over the year (the two
“low” peaks around week 10 and 17 correspond to British
“half-term” periods, when family may go on holiday). Un-
fortunately, no aggregated attendance data is available for
other programmes. As a result, we can only compare at-
tendance of the whole first year with a compulsory module
in another programme and for a standard first year module.

5.2.2 Engagement
Engagement is strictly correlated with attendance, but

it may be difficult to provide a direct metric for it. We
typically assess engagement by checking log-in rates in our
VLE environment and, in our case, we could also measure

Figure 8: Weekly attendance (comparison)

Figure 9: Example lab session

SOB progression. We were able to identify approximately
10% of the cohort being “not engaged”. Thanks to our tool,
we have been able to address these students individually.

In addition to SOB progression, we could also measure
usage of the MIRTO platforms. We have built 10 yellow and
10 blue robots. We have used 4 of these for research and 2
for demo purposes, leaving a total of 7 blue and 7 yellow
robots for teaching in the workshops. There are typically 20
students allocated to each workshop, working in groups of 2
or 3 (see Figure 9); all sessions required all robots, showing
that all students were engaged with the material.

5.2.3 Progression
Finally, there was a risk that the majority of the class

would focus just on the achievement of threshold SOBs. Our
first year is not graded and therefore, once the threshold
SOBs have been achieved, there is no formal difference between
students with different numbers of SOBs.

Besides anecdotal evidence of students working on op-
tional projects, our monitoring tool has allowed us to en-
courage the best students to work on new challenges for the
whole year. This has resulted in the vast majority of stu-

60 ELS 2014

dents progressing beyond the “threshold” level. This is con-
firmed by the results presented in Figure 10: the majority of
students has progressed well beyond the 34 threshold SOB
mark (red line in the figure). The same trend is confirmed if
Racket-specific SOBs are considered. Figure 11 shows that
approximately 70% of the students have completed SOBs
beyond the required threshold level (the same distribution
occurs for other SOB categories).

The tool has also shown interesting approaches to this
new structure, both in general and for Racket-specific SOBs:
some students have focussed on threshold SOBs first and
only moved to typical and excellent SOBs later. Other stu-
dents, instead, have worked at typical and excellent SOBs
with many threshold SOBs still outstanding.

6. CONCLUSION
In designing a new Computer Science programme for Mid-

dlesex University we have decided to make use of Racket
and to design and build a robotic platform to support our
delivery. To the best of our knowledge, this is the first time
that this approach is applied at such a large scale. The
preparation of this new programme has required the joint
effort of a large team of academics and teaching assistants
for more than a year before the actual delivery. However,
the results obtained are very encouraging: attendance and
engagement are well above average, and the large majority
of students are progressing beyond the level required to pass
this first year.

7. REFERENCES
[1] H. Abelson and G.J. Sussman. Structure and

Interpretation of Computer Programs. MIT Press,
Cambridge, MA, USA, 2nd edition, 1996.

[2] M. Banzi. Getting Started with Arduino. Make Books -
Imprint of: O’Reilly Media, Sebastopol, CA, 2008.

[3] The Firmata protocol. http://firmata.org/.
Accessed: 2014-03-20.

[4] The MIddlesex Robotic plaTfOrm (MIRTO). http:
//www.creative-robotics.com/About-HUBee-Wheels.
Accessed: 2014-03-20.

[5] D. Huggins-Daines, M. Kumar, A. Chan, A.W. Black,
M. Ravishankar, and A.I. Rudnicky. Pocketsphinx: A
free, real-time continuous speech recognition system
for hand-held devices. In IEEE International
Conference on Acoustics, Speech and Signal
Processing, ICASSP 2006, volume 1, pages 185–188,
2006.

[6] M. King. Process Control: A Practical Approach. John
Wiley & Sons, 2010.

[7] M. Loomes, B. Christianson, and N. Davey. Formal
systems, not methods. In Teaching Formal Methods,
volume 3294 of Lecture Notes in Computer Science,
pages 47–64. 2004.

[8] M. Loomes, A. Jones, and B. Show. An education
programme for software engineers. In Proceedings of
the First British Software Engineering Conference,
1986.

[9] M. Margolis. Arduino Cookbook. O’Reilly Media, 2011.

[10] The MIddlesex Robotic plaTfOrm (MIRTO).
https://github.com/fraimondi/myrtle. Accessed:
2014-03-20.

[11] The Racket Language. http://racket-lang.org.
Accessed: 2013-10-21.

[12] Racket Firmata for Middlesex Students.
https://bitbucket.org/fraimondi/racket-firmata.
Accessed: 2014-03-20.

[13] Racket Firmata. http://planet.racket-lang.org/
display.ss?package=firmata.plt&owner=xtofs.
Accessed: 2014-03-20.

[14] F. Yang, F.W.B. Li, and R.W.H. Lau. A fine-grained
outcome-based learning path model. IEEE T. Systems,
Man, and Cybernetics: Systems, 44(2):235–245, 2014.

ELS 2014 61

Figure 10: SOB overview (end of year)

Figure 11: Threshold SOBs for Racket (end of year)

62 ELS 2014

Session IV: Crossing the Language
Barrier

A Need for Multilingual Names

Jean-Paul A. Barthès
UMR CNRS 7253 Heudiasyc

Université de Technologie de Compiègne
60205 Compiègne, France

barthes@utc.fr

ABSTRACT
An increasing number of international projects require us-
ing or developing multilingual ontologies. This leads to awk-
ward problems when several languages are used concurrently
in the same environment. I discuss in this paper the possi-
bility of defining data structures called multilingual names
to facilitate the programmer’s life, hoping that it could be
made part of the various Lisp environments. An example of
a multilingual ontology is given to illustrate the approach.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Data types
and structures

General Terms
Programming structures, Lisp, Multilingual data

1. INTRODUCTION
An increasing number of international projects, in particular
in Europe, require multilinguism. A few years ago we were
part of such a project, the Terregov project that focused on
the development of eGovernment for social services1. This
particular project required developing an ontology in En-
glish, French, Italian and Polish [2]. On the other hand,
because we are routinely working with Brazil and Japan,
we often have to develop interfaces supporting the English,
French, Portuguese or Japanese languages.

A number of researchers have addressed the issue of devel-
oping multilingual ontologies, the most popular position be-
ing of developing separate ontologies, then performing some
alignment on the resulting separate ontologies. With this ap-
proach, the MultiFarm dataset provides references for test-
ing multilingual ontologies and alignments [6]. Although
this seems to work reasonably well, it taxes the program-
mer who must be careful in developing common code. The

1http://cordis.europa.eu/projects/rcn/71114 en.html

XML approach on the other hand allows defining concepts
only once, tagged with lingual attributes in formalisms like
OWL (see for example the hotel multilingual ontology de-
veloped by Silveira et al. [3]). However, using such tags in
the programs is not especially easy, in particular with some
ontology editors that were developed essentially for English
and added multilinguism as a second thought.

Our ontologies are not built for supporting translation like
the Pangloss ontology [5], nor generating descriptions as in
[4]. We are not interested in building linguistic resources
like in [7], but in the programming aspect for applications
where several languages are necessary. In that context, on-
tologies are used by people for common reference, by con-
tent languages in multi-agent systems, and for supporting
Human-machine communication in natural language.

In our previous projects we faced the problem of finding
a way to express concepts in a multilingual context within
Lisp environments. We had problems with linguistic tags,
synonyms and versions, which we had to solve. The paper
mostly presents the second issue, namely how we dealt with
multilingual data at a very low level, from a programmer
point of view. The last issue, namely versioning, has to do
with the internal representation of concepts and individuals
independently of the multilingual approach and is outside
the scope of this paper. We would like very much to have
standard low level structures and primitives to achieve a
better and cleaner programming.

2. REQUIREMENTS
Our goal was to let the Lisp programmer develop applica-
tions as if they were using a particular (natural) language
and have the same code run in other languages simply by
specifying a special environment variable called *language*.
Thus, we want to obtain the following behavior:

(let ((*language* :FR))

(print greetings))

print -> Bonjour

NIL

(let ((*language* :ZH))

(print greetings))

print -> 你好
NIL

64 ELS 2014

where greetings is a variable having a multilingual value.
We call the value of such variables multilingual names, al-
though they may contain multilingual sentences.

Thus, the programmer should be able to write statements
like (print greetings), the output being controlled by the
value of the *language* special variable.

The second requirement is to use standard language codes.
To do so, we adopted the ISO-639-1 standard2 which speci-
fies two letter codes for most languages, although RFC4646
offers more precise possibilities.

3. DEFINITION AND PROPERTIES OF MUL-
TILINGUAL NAMES

3.1 Definition
A multilingual name, MLN , is a set of subsets Ti containing
terms taken from a set of phrases Vj belonging to a particular
language j

MLN = {T1, T2, ..., Tn} with Ti = {sj1, sj2, ..., sjk}

and sji ∈ Vj

Thus, sji is a phrase of the j-language and Ti is a set of
synonym phrases. The set of languages can be augmented
by two ”artificial” languages: Vω and V?, where Vω stands
for any languages and V? represents an unknown language3.
Each Ti set can be semi-ordered, in the sense that the first
value for example, could have a more important role among
all synonyms.

In this definition, nothing prevents a term to appear in dif-
ferent languages, for example the same term "Beijing" can
appear in many different languages.

3.2 Language Environment
The language environment is defined to host a particular
language including ω, which is a special marker meaning
that all languages are accepted in this environment (used
for inputs).

The purpose of a language environment is to provide a de-
fault language when constructing MLNs from strings or sym-
bols.

3.3 Dominant Language
One of the languages can be privileged and declared as the
dominant language.

This is useful when building multilingual ontologies for struc-
turing the concepts around a set of concepts containing terms
in the dominant language. For example, when we built the
Terregov ontology, using English, French, Italian, and Pol-
ish, English was chosen to be the dominant language. Thus,
the dominant language can be viewed as a default language.

2http://www.mathguide.de/info/tools/languagecode.html.
3In addition one could define a Vπ denoting a ”pending”
language, i.e. a language that has not yet been recognized.
But we did not use this feature.

3.4 Canonical Form for a Term
The expression ”canonical form” is probably misleading but
corresponds to the following idea: when extracting a term
in a given language from an MLN, we define the canonical
form as the the first term in the set of language synonyms,
or else the first synonym of the dominant language, or else
the first name of a randomly chosen language.

When working with an ontology often specialists give a main
term for defining a concept, then add additional synonyms.
The firs term is usually more significant than the synonyms.
Thus if a concept must be represented by a single term the
first one is supposedly the best. Now, sometimes, when
building an ontology in several languages, a concept may
not have been defined in this language, but already exists
in another one. It is important to return something to help
users to see some term describing a concept that is used in
the program. It is also a convenient mechanism allowing
not to repeat a term that appears in many languages, for
example names found in an onomasticon:

(:en "Paris" :zh "巴黎")

Here ”Paris” can be omitted from most languages in which it
is written in the same fashion when English is the dominant
language, which is convenient in Europe.

3.5 Properties
The properties comprise equality, term membership and fu-
sion. They were defined in order to facilitate the creation of
indexes. Examples are given in the following section about
implementation.

Equality. Two MLN are equal if they share one of the syn-
onyms for a given language, or between a language and the
unknown language, or between unknown languages.

Term Membership. A term sj is said to belong to an MLN
if it is one of the synonyms specified by the language envi-
ronment. This property is however not essential.

Fusion. A new MLN can be obtained by merging two MLNs.
Each of its language sets Ti is obtained by merging the corre-
sponding Tis eliminating duplicates. The order within each
set of synonyms is kept with respect to the order of the MLN
arguments.

4. OUR IMPLEMENTATION
This section describes our solution for implementing MLNs
and presents the different functions associated with this choice.

4.1 Multilingual Name Format
4.1.1 Format

One needs to create a data structure for holding the names in
the different languages. Among the different possibilities, we
selected a property list format using keywords for language
tags and strings for synonyms, e.g.

ELS 2014 65

(:en "Beijing" :fr "Pékin; Beijing" :zh "北京")

Note that in the MLN two French synonyms appear sepa-
rated by a semi-column for labeling the same concept. This
choice is debatable and is discussed in Section 6.1.

In our implementation the language codes (LTAG) are taken
from ISO-639-1already mentioned4. All the language tags
used in an application are kept in *language-tags* a special
list that defines the set of legal languages for the application.

The tag corresponding to ω is set to :all and the one cor-
responding to ”?” is set to :unknown for dealing with ex-
ternal inputs. The first one, :all, is used when inputing
data from a file containing several languages, the second one,
:unknown, is used when the language data is not known, but
we want an MLN format.

The environment is defined by the *language* special vari-
able that can take any value of legal language tags and ω.

Extensions: Two extensions are possible:

1. the concept of multilingual name can be extended to
include whole sentences instead of simply names, which
is convenient for handling dialogs;

2. MLNs can include simple strings with the following
understanding:
- if *language* is defined, then a string s can be con-
sidered as equivalent to (val(*language*) s);
- if *language* is undefined, then a string s can be
considered equivalent to (:unknown s).

Thus, with this convention, MLN operators can also work
on simple strings.

4.1.2 Equality
With the proposed formalism:
(:en "name" :fr "nom; patronyme")

and
(:en "surname" :fr "patronyme")

are equal, meaning that they represent the same concept.

Or:
(:unknown "patronyme")

and
(:en "name" :fr "nom; patronyme")

are considered equal.

4.1.3 Term Membership
For example, if the environment language is French
"cité" belongs to (:en "city;town" :fr "ville;cité").

4.1.4 Fusion
For example:
(:en "surname" :fr "patronyme")

(:fr "nom" :de "Name")

when fused yield
(:en "surname" :fr "patronyme; nom" :de "Name")

4We only worked with English, French, Japanese Polish,
Portuguese, and Spanish.

4.2 The MLN Library of Functions
The functions to deal with the proposed format belong to
two groups: those dealing with language tags, and those
dealing with synonyms. Details are given in the appendix.

4.2.1 Functions Dealing with Multilingual Tags
The following functions dealing with the language tags (LTAG)
were found useful. They implement different features:

• constructor: building an MLN from parts

• predicates: type-checking, equality, term membership

• editors: adding or removing synonym values, setting
synonym values, removing a language entry, fusing
MLNs

• extractors (accessors): extracting synonyms, obtaining
a canonical name

• printer

The %MLN-EXTRACT function allowing extraction is specially
useful. It takes three arguments: MLN, LTAG (key) and ALWAYS

(key), and extracts from MLN the string of synonyms corre-
sponding to the language specified by LTAG (defaulting to
the current environment language: *language*). It works
as follows:

1. If MLN is a string returns the string.

2. If language is :all, returns a string concatenating all
the languages.

3. If language is :unknown, returns the string associated
with the :unknown tag.

4. If always is t, then tries to return something: tries
first the specified language, then tries English, then
:unknown, then first recorded language.

The :always option is interesting when dealing with multi-
lingual ontologies, when one wants to obtain some value even
when the concept has no entry in the specified language.

4.2.2 Functions Dealing with Synonyms
We also need some functions to take care of the set of syn-
onyms, for adding, removing, retrieving values, and for merg-
ing sets of synonyms.

4.3 Extension of Standard Primitives
Since MLN can be considered as a new datatype some of the
Lisp primitive could be extended to include MLNs, for ex-
ample functions like equal, +, -, member, etc. Some should
work in a combination of strings and MLN as seen in the
MLN library functions.

Consider for example the concatenate primitive. It has
already been extended in the AllegroTM environment to
string+ to simplify programming, arguments being coerced
to strings. It could be extended easily to include MLNs by

66 ELS 2014

applying the mln-get-canonical-name function to the MLN
arguments before concatenating them.

The equal primitive can be extended to include MLN equal-
ity. For example the NEWS application consists of collecting
news items produced by different people in different coun-
tries. Each participant has a Personal Assistant agent (PAs).
PAs and their staff agents have each an ontology in the lan-
guage spoken by the participant, e.g. English, French, Por-
tuguese, etc. A Service Agent, named PUBLISHER, col-
lects information sent be the various PAs and in turn sends
back information like categories of news , keywords. PUB-
LISHER has a multilingual ontology and knowledge base.
The list of categories if asked by a French speaking PA will
be extracted as follows:

(mapcar

#’(lambda (xx)

(%mln-extract xx :language :FR :always t))

(access ’("category")))

Now, if a PA send a message asking to subscribe to a cat-
egory, a keyword or follow a person, the PUBLISHER can
test which function to invoke by comparing the message ar-
gument to a predefined MLN:

(let ((*language* message-language))

...

(cond

((equal+ message-arg *e-category*) ...)

((equal+ message-arg *e-keyword*)...)

((equal+ message-arg *e-person*)...)

...))

where *e-category*, *e-message* or *e-person* are MLN
containing the allowed synonyms for designating categories,
keywords or persons in the legal languages. In a way the
corresponding MLNs are interned using the special variables.

In the MOSS knowledge representation that we use [1] MLNs
are values associated to a particular attribute. Since MOSS
attributes are multi-valued, MLNs are assimilated to mul-
tiple values. And the functions and methods handling at-
tribute values can be extended to accommodate MLNs.

4.4 Example of Multilingual Ontology Items
The examples of this section are taken from the past Eu-
ropean FP6 TerreGov project, and the definitions are those
given by the different specialists.

The following concept definition of a country uses multilin-
gual data: English, French, Italian and Polish.

(defconcept
(:en "Country; Land" :fr "Pays" :it "Paese; Stato"
:pl "Kraj; Państwo")
(:is-a "territory")
(:att (:en "name") (:unique))
(:doc
:en "a Country or a state is an administrative entity."
:fr "Territoire qui appartient à une nation, qui est

Figure 1: Individual of the ontology in an English
context.

Figure 2: The same individual in a French context.

administré par un gouvernement et dont les
frontières terrestres et maritimes ont clairement
été établies."

:pl "Kraj lub Państwo to jednostka administracyjna."
:it "Un Paese o Stato è un’entità amministrativa."))

The :is-a property indicates a subsumption between the
concept of ”Country” and the supposedly more general con-
cept of ”Territory”. Note that ”Stato” is the term given by
the Italian specialist to designate a country. If American
”states” were part of the application, then most probably
the concept would be defined as ”American State” distinct
from the concept of ”State”.

The following item defines an individual country:

(defindividual "country"
(:en "united kingdom" :fr "Royaume Uni"
:it "Inghilterra" :pl "Anglia"))

this gives examples for concept names and attributes. Rela-
tions are expressed in a similar manner. For example, within
the concept of person the relation between a person and an
individual representing the gender of a person is expressed
as:

(:rel (:en "gender" :fr "sexe" :pl "p leć" :it "sesso")
(:one-of (:en "male" :fr "masculin" :pl "m

↪
ezczyzna"

:it "maschio")}

Figures 1 and 2 show the same individual ($E-PERSON.1:
internal ID) in an English and French context. The names of
the properties belonging to the multilingual ontology adapt
to the active context. The same is true for the names of the
buttons and the check boxes of the displaying window. The
show-concept widget for example is simply programmed as:

ELS 2014 67

(make-instance ’check-box
:name :if-check-box
:font (MAKE-FONT-EX NIL "Tahoma / ANSI" 11 NIL)
:left (+ (floor (/ (interior-width win) 2)) 4)
;:left 502
:top 18
:title (%mln-extract *WOVR-show-concept*)
:on-change ’ow-class-check-box-on-change
:width 105
:bottom-attachment :top
:left-attachment :scale
:right-attachment :scale
:tab-position 4)

The only difference with programming using a single nat-
ural language is the line associated with the title option.
This permits to centralize all data tied to languages, like
wovr-show-concept, in a single place.

5. TRANSLATING INTO OWL
The proposed formalism is routinely used in connection to
the MOSS language [1] for representing ontologies and knowl-
edge bases. It can be combined with some of the MOSS
features like versioning, indexing, automatic maintenance of
inverse links, virtual classes and virtual properties.5

However, because most European projects require using stan-
dard approaches we could not deliver the final product in
Lisp in the TerreGov project and were led to build a MOSS-
to-OWL compiler which produced the same information in
an OWL format. For the concept of country it yields the
following structures:

<owl:Class rdf:ID="Z-Country">
<rdfs:label xml:lang="en">Country; Land</rdfs:label>
<rdfs:label xml:lang="fr">Pays</rdfs:label>
<rdfs:label xml:lang="it">Stato</rdfs:label>
<rdfs:label xml:lang="pl">Kraj; Państwo</rdfs:label>
<rdfs:subClassOf rdf:resource="#Z-Territory"/>
<rdfs:comment xml:lang="en">a Country or a State is

an administrative entity.</rdfs:comment>
<rdfs:comment xml:lang="fr">Territoire qui appartient

à une nation, qui est administré par un gouvernement
et dont les frontières terrestres et maritimes ont
clairement été établies.</rdfs:comment>

<rdfs:comment xml:lang="pl">Kraj lub Państwo to
jednostka administracyjna.</rdfs:comment>

<rdfs:comment xml:lang="it">Un Paese o Stato è
un’entità amministrativa.</rdfs:comment>

</owl:Class>

Here we use labels for the different names, accepting syn-
onyms, and comments for the documentation. Note that
the concept of country here is very simple. Of course one
must define the attribute name, here called has-name which
is shared by a number of other concepts (not all shown here):

<owl:DatatypeProperty rdf:ID="hasName">
<rdfs:label xml:lang="en">Name</rdfs:label>
<rdfs:label xml:lang="fr">Nom</rdfs:label>
<rdfs:label xml:lang="pl">Nazwa</rdfs:label>
<rdfs:label xml:lang="it">Nome</rdfs:label>

5MOSS with documentation are available at
http://www.utc.fr/∼barthes/MOSS/

<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Z-Territory"/>
<owl:Class rdf:about="#Z-Conurbation"/>
<owl:Class rdf:about="#Z-Country"/>
<owl:Class rdf:about="#Z-ElectedBody"/>
...
<owl:Class rdf:about="#Z-Month"/>
<owl:Class rdf:about="#Z-Project"/>
<owl:Class rdf:about="#Z-Tool"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#Name"/>
</owl:DatatypeProperty>

In addition one must express the cardinality restriction:

<owl:Class rdf:about="#Z-Country">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasName"/>
<owl:cardinality

rdf:datatype="&xsd;nonNegativeInteger">1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The paper by Barthès and Moulin [1] gives details on how
the formalism can be used to develop multilingual ontologies
and how the declarations can be translated into OWL with
the addition of JENA or SPARQL rules.

6. LESSONS LEARNED
We have been using this formalism successfully through sev-
eral projects requesting multilingual treatment and could
develop a single code addressing the different languages si-
multaneously. The main advantage is that one does not need
to perform any ontology alignment. However, the proposed
formalism clearly does not solve the problem of concepts that
do not exist in all languages or have not the same meaning
in different languages. For example the name prefecture

relates to different concepts in France, Italy or Japan.

We have developed windows for displaying ontologies, edi-
tors for editing them, and web interfaces. MLNs were helpful
to simplify programming. The MLN formalism is also used
in multi-agent systems where personal assistants agents in-
terface people using different natural languages in their di-
alogs, but access the same shared multilingual information,
like in the NEWS project.

When modeling concepts, we first thought of an MLN as an-
other value with a type different from a string or a number.
The realization that it was equivalent to a multiple value by
itself came only later. Indeed assigning several MLNs to a
single property has no meaning unless one tags along meta
information as who provided the data.

Alphabetical order. Another difficult point occurs when we
want to display information in alphabetical order, since the

68 ELS 2014

order is not simply the order of the UTF-8 codes. To obtain
a proper order for the different languages, we first capitalize
the string, then use a table giving the proper order in each
language.

6.1 Discussion of the Different Formats
When designing the multilingual approach we thought of
different possibilities. We could use packages, structures,
pure strings, tagged lists, hash tables, property lists, a-lists,
etc. All possibilities have advantages and drawbacks.

Using different packages is an interesting idea. However, it
was conflicting with the use of packages in our multi-agent
platform and was not further considered.

Using pure strings like

":en Beijing :fr Pékin;Beijing :zh 北京"

is elegant and easy to read but more difficult with sentences.
On would have to use special separators and handling the
string is somewhat expensive.

Using structs is too rigid. Using hash tables has some over-
head for a small number of languages. Using a-lists is effi-
cient but not very nice and adds some complexity with our
treatment of versions (not discussed here):

((:en "Beijing") (:fr "Pékin" "Beijing") (:zh "北京"))

Using a tagged alternated list was our first choice:

(:name :en "Beijing" :fr "Pékin;Beijing" :zh "北京”)

but we realized that the first element of the list was not
really needed and thus subsequently removed it.

Thus our choice was on a simple disembodied property list,
using a simple string to host the various synonyms. The
drawback is the use of the reserved symbol semi-column for
separating synonyms. We found that we could live with it.

One of the reviewers of this paper suggested the following
format:

(:en ("Beijing") :fr ("Pékin" "Beijing") :zh ("北京"))

which could be a good compromise adding efficiency to the
handling of synonyms.

Finally, considering simple strings as a particular case of
MLN turns out to be quite useful.

6.2 Conclusion
The approach described in this paper has no linguistic am-
bition and is merely a simple tool to simplify programming.
We would like to see it improved and inserted in the various
Lisp dialects.

Clearly our experimental approach could be improved and

more work needs to be done on issues like the choice of
an efficient format for representing MLNs, the possibility of
adding annotations like the origin of the value represented
by an MLN, the interest of having :all and :unknown tags
at run time in addition to input time, whether GUID codes
could be used to intern MLNs and how this would fly with
persistent storage, etc.

Acknowledgments
I would like to thanks the reviewers for their numerous in-
spiring remarks pointing to many possible ways of general-
izing the work presented here, extending it to domains other
that ontologies and knowledge bases.

Appendix - Function Library
We give a more detailed description of the functions we de-
veloped for dealing with MLNs, then for dealing wit syn-
onyms.

Functions Dealing with Multilingual Names
All functions in this section are prefixed by %MLN- and we
agree that we could drop this prefix and defined the func-
tions in a specific ”MLN” package.

Constructor

%MAKE-MLN-FROM-REF (REF) builds an MLN structure. If
the argument is a string or a symbol, then uses the value of
the *language* variable as the language tag. If the value
is :all, then uses the :unknown tag. If the argument is
already an MLN, then leaves it unchanged.

(%make-mln-from-ref "Paris") -> (:EN "Paris")

Predicates

%MLN? (EXPR) uses language tags to check if EXPR is a valid
MLN, meaning that all language tags must belong to the list
of valid languages for the application, *language-tags*.

%MLN-EQUAL (MLN1 MLN2 &key LTAG) Equality between two
MLNs is true if they share some synonym for a given lan-
guage. If one of the language tag of MLN1 is :unknown, then
the associated synonyms will be checked against the syn-
onyms of all the languages of MLN2. If one of the values is
a string then *language* is used to build the corresponding
MLN before the comparison.

(%mln-equal ’(:en "Beijing" :fr "Pékin") ’(:fr

"Beijing; Pékin")) -> T

%MLN-IDENTICAL? (MLN1 MLN2) Two MLNs are identical if
they have the same synonyms for the same language.

%MLN-INCLUDED? (MLN1 MLN2) Checks if all synonyms of MLN1
are included those of MLN22 for all languages of MLN1.

%MLN-IN? (INPUT-STRING LTAG MLN) checks whether the in-
put string is one of the synonyms of the MLN in the language
specified by LTAG. If the tag is :all or :unknown, then we
check against any synonym in any language.

ELS 2014 69

(%mln-in? "Beijing" ’(:fr "Beijing; Pékin")) ->

NIL but
(let ((*language* :FR)) (%mln-in? "Beijing" ’(:fr

"Beijing; Pékin")) -> T

Modifiers

The following functions are used to edit the values of an
MLN.

%MLN-ADD-VALUE (MLN VALUE LTAG) adds a synonym corre-
sponding to a specific language at the end of the list of syn-
onyms.

(%mln-add-value ’(:en "Beijing" :fr "Pékin")

"Pékin" :FR) -> (:EN "Beijing" :FR "Pékin;

Beijing")

%MLN-REMOVE-VALUE (MLN VALUE LTAG) removes a synonym
corresponding to a specific language from the list of syn-
onyms.

(%mln-remove-value ’(:en "Beijing" :fr "Pékin")

"Beijing" :EN) -> (:FR "Pékin")

%MLN-REMOVE-LANGUAGE (MLN LTAG) removes the set of syn-
onyms corresponding to a particular language.

(%mln-remove-language ’(:en "Beijing" :fr "Pékin;

Beijing") :FR) -> (:EN "Beijing")

%MLN-SET-VALUE (MLN LTAG SYN-STRING) sets the synonyms
corresponding to a specific language. Synonyms are sup-
posed to have the standard form of a string containing terms
separated by semi-columns.

(%mln-set-value ’(:en "Beijing" :fr "Beijing") :FR

"Pékin") -> (:EN "Beijing" :FR "Pékin")

%MLN-MERGE (&rest MLN) merges a set of MLNs removing
duplicated synonyms within the same language. This func-
tion is equivalent to an addition of two MLNs.

(%mln-merge ’(:en "UK" :fr "Royaume Uni") ’(:it

"Inghilterra") ’(:fr "Angleterre") (:pl "Anglia"))

-> (:EN "UK" :FR "Royaume Uni: Angleterre" :IT

"Inghilterra" :PL "Anglia")

Extractors

One of the problems when extracting a value from an MLN
is related to what happens when the requested language has
no entry.
%MLN-EXTRACT-ALL-SYNONYMS (MLN) extracts all synonyms
as a list of strings regardless of the language.

(%mln-extract-all-synonyms ’(:en "Beijing" :fr

"Pékin")) -> ("Beijing" "Pékin")

%MLN-FILTER-LANGUAGE (MLN LTAG) extracts from the MLN
the string corresponding to specified language. If MLN is a
string returns the string. If language is :all, returns a string
concatenating all the languages. If language is :unknown,

returns the string associated with the :unknown tag. If lan-
guage is not present, then returns nil.

(%mln-filter-language ’(:en "Beijing" :fr

"Beijing; Pékin") :fr) -> "Beijing; Pékin"

%MLN-GET-CANONICAL-NAME (MLN) extracts from a multilin-
gual name the canonical name. By default it is the first name
corresponding to the value of *language*, or else the first
name of the English entry, or else the name of the list. An
error occurs when the argument is not multilingual name.

(let ((*language* :fr))(%mln-get-canonical-name

’(:en "Beijing" :fr "Pékin; Beijing"))) -> "Pékin"

(let ((*language* :it))(%mln-get-canonical-name

’(:en "Beijing" :fr "Pékin; Beijing"))) ->

"Beijing"

%MLN-EXTRACT (MLN &key (LTAG *LANGUAGE*) ALWAYS) ex-
tracts from the MLN the string of synonyms corresponding
to specified language. If MLN is a string returns the string.
If language is :all, returns a string concatenating all the
languages. If language is :unknown, returns the string asso-
ciated with the :unknown tag. If always is t, then tries to
return something: tries English, then :unknown, then first
recorded language.
The :always option is interesting when dealing with multi-
lingual ontologies, when one wants to obtain some value even
when the concept has no marker in the current language.

(%mln-extract :it ’(:en "Beijing" :fr "Pékin;

Beijing")))-> NIL

(%mln-extract :it ’(:en "Beijing" :fr "Pékin;

Beijing") :always t) -> "Beijing"

Printer

%MLN-PRINT-STRING (MLN &optional LTAG) returns a nicely
formatted string, e.g.

(%mln-print-string ’(:en "Beijing" :fr "Pékin;

Beijing")) ->

"EN: Beijing - FR: Pékin ; Beijing"

Functions Dealing with Synonyms
We also need some functions to take care of the set of syn-
onyms. As could be seen in the previous examples, syn-
onyms are encoded in a single string, terms being separated
by semi-columns. The functions dealing with synonyms are
what one could expect, therefore no further examples are
given here.

%SYNONYM-ADD (SYN-STRING VALUE) adds a value (term) to
a string at the end, sending a warning if language tag does
not exist. In that case does not add value.

%SYNONYM-EXPLODE (TEXT) takes a string, considers it as a
synonym string and extracts items separated by a semi-
column. Returns the list of string items.

%SYNONYM-MEMBER (VALUE SYN-STRING) Checks if value, a
string, is part of the synonym list. Uses the %string-norm

function to normalize the strings before comparing.

70 ELS 2014

%SYNONYM-MERGE-STRINGS (&REST NAMES) merges several syn-
onym strings, removing duplicates (using a norm-string com-
parison) and preserving the order.

%SYNONYM-REMOVE (VALUE SYN-STRING) removes a synonym
from the set of synonyms. If nothing is left returns the empty
string.

%SYNONYM-MAKE (&REST ITEM-LIST) builds a synonym string
with a list of items. Each item is coerced to a string. Re-
turns a synonym string.

The set of synonyms is (partially) ordered, because in on-
tologies there is often a preferred term for labeling a con-
cept. This term will appear first in the list and the extractor
functions will take advantage of this position to retrieve this
synonym.

Note. Representing synonyms as a list of strings would sim-
plify the functions, namely %synonym-explode would simply
be a getf, %synonym-make would not be needed.

7. REFERENCES
[1] J.-P. A. Barthès and C. Moulin. Moss: A formalism for

ontologies including multilingual features. In Proc.
KSE, volume 2, pages 95–107, 2013.

[2] F. Bettahar, C. Moulin, and J.-P. A. Barthès. Towards
a semantic interoperability in an e-government
application. Electronic Journal of e-Government,

7(3):209–226, 2009.

[3] M. S. Chaves, L. A. Freitas, and R. Vieira. Hontology:
a multilingual ontology for the accommodation sector
in the tourism industry. In Proceedings of the 4th
International Conference on Knowledge Engineering
and Ontology Development, pages 149–154. 4th
International Conference on Knowledge Engineering
and Ontology Development, Octobre 2012.

[4] D. Galanis and I. Androutsopoulos. Generating
multilingual descriptions from linguistically annotated
owl ontologies: the naturalowl system. In in
Proceedings of the 11th European Workshop on Natural
Language Generation (ENLG 2007), Schloss Dagstuhl,
pages 143–146, 2007.

[5] K. Knight. Building a large ontology for machine
translation. In Proceedings of the Workshop on Human
Language Technology, HLT ’93, pages 185–190,
Stroudsburg, PA, USA, 1993. Association for
Computational Linguistics.

[6] C. Meilicke, R. Garćıa Castro, F. Freitas, W. R. van
Hage, E. Montiel-Ponsoda, R. Ribeiro de Azevedo,
H. Stuckenschmidt, O. Sváb-Zamazal, V. Svátek,
A. Tamilin, C. Trojahn, and S. Wang. MultiFarm: A
benchmark for multilingual ontology matching. Journal
of Web Semantics, 15(3):62–68, 2012. meilicke2012a
Infra-Seals.

[7] D. Picca, A. M. Gliozzo, and A. Gangemi. Lmm: an
owl-dl metamodel to represent heterogeneous lexical
knowledge. In LREC, 2008.

ELS 2014 71

An Implementation of Python for Racket

Pedro Palma Ramos
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa
Rua Alves Redol 9
Lisboa, Portugal

pedropramos@tecnico.ulisboa.pt

António Menezes Leitão
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa
Rua Alves Redol 9
Lisboa, Portugal

antonio.menezes.leitao@tecnico.ulisboa.pt

ABSTRACT
Racket is a descendent of Scheme that is widely used as a
first language for teaching computer science. To this end,
Racket provides DrRacket, a simple but pedagogic IDE. On
the other hand, Python is becoming increasingly popular
in a variety of areas, most notably among novice program-
mers. This paper presents an implementation of Python
for Racket which allows programmers to use DrRacket with
Python code, as well as adding Python support for other Dr-
Racket based tools. Our implementation also allows Racket
programs to take advantage of Python libraries, thus signif-
icantly enlarging the number of usable libraries in Racket.

Our proposed solution involves compiling Python code into
semantically equivalent Racket source code. For the run-
time implementation, we present two different strategies:
(1) using a foreign function interface to directly access the
Python virtual machine, therefore borrowing its data types
and primitives or (2) implementing all of Python’s data
model purely over Racket data types.

The first strategy provides immediate support for Python’s
standard library and existing third-party libraries. The sec-
ond strategy requires a Racket-based reimplementation of
all of Python’s features, but provides native interoperability
between Python and Racket code.

Our experimental results show that the second strategy far
outmatches the first in terms of speed. Furthermore, it is
more portable since it has no dependencies on Python’s vir-
tual machine.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors

General Terms
Languages

Keywords
Python; Racket; Language implementations; Compilers

1. INTRODUCTION
The Racket programming language is a descendent of Scheme,
a language that is well-known for its use in introductory
programming courses. Racket comes with DrRacket, a ped-
agogic IDE [2], used in many schools around the world, as
it provides a simple and straightforward interface aimed at
inexperienced programmers. Racket provides different lan-
guage levels, each one supporting more advanced features,
that are used in different phases of the courses, allowing
students to benefit from a smoother learning curve. Fur-
thermore, Racket and DrRacket support the development of
additional programming languages [13].

More recently, the Python programming language is being
promoted as a good replacement for Scheme (and Racket)
in computer science courses. Python is a high-level, dynam-
ically typed programming language [16, p. 3]. It supports
the functional, imperative and object-oriented programming
paradigms and features automatic memory management.
It is mostly used for scripting, but it can also be used to
build large scale applications. Its reference implementation,
CPython, is written in C and it is maintained by the Python
Software Foundation. There are also alternative implemen-
tations such as Jython (written in Java) and IronPython
(written in C#).

According to Peter Norvig [11], Python is an excellent lan-
guage for pedagogical purposes and is easier to read than
Lisp for someone with no experience in either language. He
describes Python as a dialect of Lisp with infix syntax, as
it supports all of Lisp’s essential features except macros.
Python’s greatest downside is its performance. Compared
to, e.g., Common Lisp, Python is around 3 to 85 times slower
for most tasks.

Despite its slow performance, Python is becoming an in-
creasingly popular programming language on many areas,
due to its large standard library, expressive syntax and fo-
cus on code readability.

In order to allow programmers to easily move between Racket
and Python, we are developing an implementation of Python
for Racket, that preserves the pedagogic advantages of Dr-
Racket’s IDE and provides access to the countless Python
libraries.

72 ELS 2014

As a practical application of this implementation, we are
developing Rosetta [8], a DrRacket-based IDE, aimed at ar-
chitects and designers, that promotes a programming-based
approach for modelling three-dimensional structures. Al-
though Rosetta’s modelling primitives are defined in Racket,
Rosetta integrates multiple programming languages, includ-
ing Racket, JavaScript, and AutoLISP, with multiple compu-
ter-aided design applications, including AutoCAD and Rhi-
noceros 3D.

Our implementation adds Python support for Rosetta, al-
lowing Rosetta users to program in Python. Therefore,
this implementation must support calling Racket code from
Python, using Racket as an interoperability platform. Being
able to call Python code from Racket is also an interesting
feature for Racket developers, by allowing them to benefit
from the vast pool of existing Python libraries.

In the next sections, we will briefly examine the strengths
and weaknesses of other Python implementations, describe
the approaches we took for our own implementation and
showcase the results we have obtained so far.

2. RELATED WORK
There are a number of Python implementations that are
good sources of ideas for our own implementation. In this
section we describe the most relevant ones.

2.1 CPython
CPython, written in the C programming language, has been
the reference implementation of Python since its first release.
It parses Python source code (from .py files or interactive
mode) and compiles it to bytecode, which is then interpreted
on a virtual machine.

The Python standard library is implemented both in Python
and C. In fact, CPython makes it easy to write third-party
module extensions in C to be used in Python code. The
inverse is also possible: one can embed Python functionality
in C code, using the Python/C API [15].

CPython’s virtual machine is a simple stack-based machine,
where the byte codes operate on a stack of PyObject point-
ers [14]. At runtime, every Python object has a correspond-
ing PyObject instance. A PyObject contains a reference
counter, used for garbage collection, and a pointer to a Py-

TypeObject, which specifies the object’s type (and is also
a PyObject). In order for every value to be treated as a
PyObject, each built-in type is declared as a structure con-
taining these two fields, plus any additional fields specific to
that type. This means that everything is allocated on the
heap, even basic types.

To avoid relying too much on expensive dynamic memory
allocation, CPython makes use of memory pools for small
memory requests. Additionally, it also pre-allocates com-
monly used immutable objects (such as the integers from -5
to 256), so that new references will point to these instances
instead of allocating new ones.

Garbage collection in CPython is performed through refer-
ence counting. Whenever a new Python object is allocated
or whenever a new reference to it is made, its reference

counter is incremented. When a reference to an object is
discarded, its reference counter is decremented. When it
reaches zero, the object’s finalizer is called and the space is
reclaimed.

Reference counting, however, does not work well with ref-
erence cycles [17, ch. 3.1]. Consider the example of a list
containing itself. When its last reference goes out of scope,
its counter is decremented, however the circular reference
inside the list is still present, so the reference counter will
never reach zero and the list will not be garbage collected,
even though it is already unreachable.

2.2 Jython and IronPython
Jython is an alternative Python implementation, written in
Java and first released in 2000. Similarly to how CPython
compiles Python source-code to bytecode that can be run on
its virtual machine, Jython compiles Python source-code to
Java bytecode, which can then be run on the Java Virtual
Machine (JVM).

Jython programs cannot use extension modules written for
CPython, but they can import Java classes, using the same
syntax that is used for importing Python modules. It is
worth mentioning that since Clojure targets the JVM, Jython
makes it possible to import and use Clojure libraries from
Python and vice-versa [5]. There is also work being done by
a third-party [12] to integrate CPython module extensions
with Jython, through the use of the Python/C API. This
would allow popular C-based libraries such as NumPy and
SciPy to be used with Jython.

Garbage collection in Jython is performed by the JVM and
does not suffer from the issues with reference cycles that
plague CPython [7, p. 57]. In terms of speed, Jython claims
to be approximately as fast as CPython. Some libraries are
known to be slower because they are currently implemented
in Python instead of Java (in CPython these are written in
C). Jython’s performance is also deeply tied to performance
gains in the Java Virtual Machine.

IronPython is another alternative implementation of Python,
this one for Microsoft’s Common Language Infrastructure
(CLI). It is written in C# and was first released in 2006.
Similarly to what Jython does for the JVM, IronPython
compiles Python source-code to CLI bytecode, which can
be run on the .NET framework. It claims to be 1.8 times
faster than CPython on pystone, a Python benchmark for
showcasing Python’s features.

IronPython provides support for importing .NET libraries
and using them with Python code [10]. There is also work
being done by a third-party in order to integrate CPython
module extensions with IronPython [6].

2.3 CLPython
CLPython (not to be confused with CPython, described
above) is yet another Python implementation, written in
Common Lisp. Its development was first started in 2006,
but stopped in 2013. It supports six Common Lisp imple-
mentations: Allegro CL, Clozure CL, CMU Common Lisp,
ECL, LispWorks and SBCL [1]. Its main goal was to bridge
Python and Common Lisp development, by allowing access

ELS 2014 73

to Python libraries from Lisp, access to Lisp libraries from
Python and mixing Python and Lisp code.

CLPython compiles Python source-code to Common Lisp
code, i.e. a sequence of s-expressions. These s-expressions
can be interpreted or compiled to .fasl files, depending on
the Common Lisp implementation used. Python objects are
represented by equivalent Common Lisp values, whenever
possible, and CLOS instances otherwise.

Unlike other Python implementations, there is no official
performance comparison with a state-of-the-art implemen-
tation. Our tests (using SBCL with Lisp code compila-
tion) show that CLPython is around 2 times slower than
CPython on the pystone benchmark. However it outper-
forms CPython on handling recursive function calls, as shown
by a benchmark with the Ackermann function.

2.4 PLT Spy
PLT Spy is an experimental Python implementation written
in PLT Scheme and C, first released in 2003. It parses and
compiles Python source-code into equivalent PLT Scheme
code [9].

PLT Spy’s runtime library is written in C and extended to
Scheme via the PLT Scheme C API. It implements Python’s
built-in types and operations by mapping them to CPython’s
virtual machine, through the use of the Python/C API. This
allows PLT Spy to support every library that CPython sup-
ports (including NumPy and SciPy).

This extended support has a big trade-off in portability,
though, as it led to a strong dependence on the 2.3 version
of the Python/C API library and does not seem to work
out-of-the-box with newer versions. More importantly, the
repetitive use of Python/C API calls and conversions be-
tween Python and Scheme types severely limited PLT Spy’s
performance. PLT Spy’s authors use anecdotal evidence to
claim that it is around three orders of magnitude slower than
CPython.

2.5 Comparison
Table 1 displays a rough comparison between the imple-
mentations discussed above.

Platform(s)

targeted

Speedup

(vs. CPython)

Std. library

support

CPython CPython’s VM 1× Full

Jython JVM ∼ 1× Most

IronPython CLI ∼ 1.8× Most

CLPython Common Lisp ∼ 0.5× Most

PLT Spy Scheme ∼ 0.001× Full

Table 1: Comparison between implementations

PLT Spy can interface Python code with Scheme code and
is the only alternative implementation which can effortlessly
support all of CPython’s standard library and third-party
modules extensions, through its use of the Python/C API.
Unfortunately, there is a considerable performance cost that
results from the repeated conversion of data from Scheme’s
internal representation to CPython’s internal representation.

On the other hand, Jython, IronPython and CLPython show
us that it is possible to implement Python’s semantics over
high-level languages, with very acceptable performances and
still providing the means for importing that language’s func-
tionality into Python programs. However, Python’s stan-
dard library needs to be manually ported.

Taking this into consideration, we developed a Python im-
plementation for Racket that we present in the next section.

3. SOLUTION
Our proposed solution consists of two compilation phases:
(1) Python source-code is compiled to Racket source-code
and (2) Racket source-code is compiled to Racket bytecode.

In phase 1, the Python source code is parsed into a list of
abstract syntax trees, which are then expanded into seman-
tically equivalent Racket code.

In phase 2, the Racket source-code generated above is fed to
a bytecode compiler which performs a series of optimizations
(including constant propagation, constant folding, inlining,
and dead-code removal). This bytecode is interpreted on
the Racket VM, where it may be further optimized by a JIT
compiler.

Note that phase 2 is automatically performed by Racket,
therefore our implementation effort relies only on a source-
to-source compiler from Python to Racket.

3.1 General Architecture
Fig. 1 summarises the dependencies between the different
Racket modules of the proposed solution. The next para-
graphs provide a more detailed explanation of these mod-
ules.

Figure 1: Dependencies between modules. The ar-
rows indicate that a module uses functionality that
is defined on the module it points to.

74 ELS 2014

3.1.1 Racket Interfacing
A Racket file usually starts with the line #lang <language>

to specify which language is being used (in our case, it will be
#lang python). The entry-point for a #lang is at the reader
module, visible at the top of Fig. 1. This module must
provide the functions read and read-syntax [4, ch. 17.2].

The read-syntax function takes the name of the source file
and an input port as arguments and returns a list of syntax
objects, which correspond to the Racket code compiled from
the input port. It uses the parse and compile modules to
do so.

Syntax objects [4, ch. 16.2.1] are Racket’s built-in data type
for representing code. They contain the quoted form of
the code (an s-expression), source location information (line
number, column number and span) and lexical-binding in-
formation. By keeping the original source location infor-
mation on every syntax object generated by the compiler,
DrRacket can map each compiled s-expression to its corre-
sponding Python code. This way, DrRacket’s features for
Racket code will also work for Python. Such features in-
clude the syntax checker, debugger, displaying source loca-
tion for errors, tacking and untacking arrows for bindings
and renaming variables.

3.1.2 Parse and Compile Modules
The lex+yacc module defines a set of Lex and Yacc rules for
parsing Python code, using the parser-tools library. This
outputs a list of abstract syntax trees (ASTs), which are de-
fined in the ast-node module. These nodes are implemented
as Racket objects. Each subclass of an AST node defines its
own to-racket method, responsible for generating a syntax
object with the compiled code and respective source loca-
tion. A call to to-racket works in a top-down recursive
manner, as each node will eventually call to-racket on its
children.

The parse module simply defines a practical interface of
functions for converting the Python code from an input
port into a list of ASTs, using the functionality from the
lex+yacc module. In a similar way, the compile module
defines a practical interface for converting lists of ASTs into
syntax objects with the compiled code, by calling the to-

racket method on each AST.

3.1.3 Runtime Modules
The libpython module defines a foreign function interface
to the functions provided by the Python/C API. Its use will
be explained in detail on the next section.

Compiled code contains references to Racket functions and
macros, as well as some additional functions which imple-
ment Python’s primitives. For instance, we define py-add

as the function which implements the semantics of Python’s
+ operator. These primitive functions are defined in the
runtime module.

Finally, the python module simply provides everything de-
fined at the runtime module, along with all the bindings
from the racket language. Thus, every identifier needed for
the compiled code is provided by the python module.

3.2 Runtime Implementation using FFI
For the runtime, we started by following a similar approach
to PLT Spy, by mapping Python’s data types and primitive
functions to the Python/C API. The way we interact with
this API, however, is radically different.

On PLT Spy, this was done via the PLT Scheme C API, and
therefore the runtime is implemented in C. This entails con-
verting Scheme values into Python objects and vice-versa for
each runtime call. Besides the performance issue (described
on the Related Work section), this method lacks portability
and is somewhat cumbersome for development, since it re-
quires compiling the runtime module with a platform specific
C compiler, and to do so each time this module is modified.

Instead, we used the Racket Foreign Function Interface (FFI)
to directly interact with the foreign data types created by
the Python/C API, therefore our runtime is implemented in
Racket. These foreign functions are defined on the libpython
modules, according to their C signatures, and are called by
the functions and macros defined on the runtime module.

The values passed around correspond to pointers to objects
in CPython’s virtual machine, but there is sometimes the
need to convert them back to Racket data types, so they
can be used as conditions in flow control forms like ifs and
conds.

As with PLT Spy, this approach only requires implement-
ing the Python language constructs, because the standard
library and other libraries installed on CPython’s implemen-
tation are readily accessible.

Unfortunately, as we will show in the Performance section,
the repetitive use of these foreign functions introduces a sig-
nificant overhead on our primitive operators, resulting in a
very slow implementation.

Another issue is that the Python objects allocated on CPy-
thon’s VM must have their reference counters explicitly decre-
mented or they will not be garbage collected. This issue
can be solved by attaching a Racket finalizer to every FFI
function that returns a new reference to a Python object.
This finalizer will decrement the object’s reference counter
whenever Racket’s GC proves that there are no more live
references to the Python object. On the other hand, this
introduces another significant performance overhead.

3.3 Runtime Implementation using Racket
Our second approach is a pure Racket implementation of
Python’s data model. Comparing it to the FFI approach,
this one entails implementing all of Python’s standard li-
brary in Racket, but, on the other hand, it is a much faster
implementation and provides reliable memory management
of Python’s objects, since it does not need to coordinate
with another virtual machine.

3.3.1 Object Model
In Python, every object has an associated type-object (where
every type-object’s type is the type type-object). A type-
object contains a list of base types and a hash table which
maps operation names (strings) to the functions that type
supports (function pointers, in CPython).

ELS 2014 75

As a practical example, in the expression obj1 + obj2, the
behaviour of the plus operator depends on the type of its
operands. If obj1 is a number this will be the addition oper-
ator. If it is a string, this will be a string concatenation. Ad-
ditionally, a user-defined class can specify another behaviour
for the plus operator by defining the method __add__. This
is typically done inside a class definition, but can also be
done after the class is defined, through reflection.

CPython stores each object’s type as a pointer in the Py-

Object structure. Since an object’s type is not known at
compile-time, method dispatching must be done at runtime,
by obtaining obj1’s type-object and looking up the function
that is mapped by the string __add__ on its hash table. If
there is no such entry, the search continues on that type-
object’s base types.

While the same mechanics would work in Racket, there
is room for optimization. In Racket, one can recognize a
value’s type through its predicate (number?, string?, etc.).
In Python, a built-in object’s type is not allowed to change,
so we can directly map basic Racket types into Python’s
basic types. Their types are computed through a pattern
matching function, which returns the most appropriate type-
object, according to the predicates that value satisfies. Com-
plex built-in types are still implemented through Racket
structures (which include a reference to the corresponding
type-object).

This way, we avoid the overhead from constantly wrapping
and unwrapping frequently used values from the structures
that hold them. Interoperability with Racket data types is
also greatly simplified, eliminating the need to wrap/unwrap
values when using them as arguments or return values from
functions imported from Racket.

There is also an optimization in place concerning method
dispatching. Despite the ability to add new behaviour for
operators in user-defined classes, a typical Python program
will mostly use these operators for numbers (and strings, in
some cases). Therefore, each operator implements an early
dispatch mechanism for the most typical argument types,
which skips the heavier dispatching mechanism described
above. For instance, the plus operator is implemented as
such:

(define (py-add x y)
(cond
[(and (number? x) (number? y)) (+ x y)]
[(and (string? x) (string? y)) (string-append x y)]
[else (py-method-call x "__add__" y)]))

3.3.2 Importing Modules
In Python, files can be imported as modules, which contain
bindings for defined functions, defined classes and global as-
signments. Unlike in Racket, Python modules are first-class
citizens. There are 3 ways to import modules in Python:
(1) the import <module> syntax, which imports <module>
as a module object whose bindings are accessible as at-
tributes; (2) the from <module> import <binding> syntax,
which only imports the declared <binding> from <mod-
ule>; (3) the from <module> import * syntax, which im-
ports all bindings from <module>.

To implement the first syntax, we make use of module-

>exports to get a list of the bindings provided by a module
and dynamic-require to import each one of them and store
them in a new module object. The other two syntaxes are
semantically similar to Racket’s importing model and, there-
fore, are implemented with require forms.

This implementation of the import system was designed to
allow importing both Python and Racket modules. We have
come up with a slightly different syntax for referring to
Racket modules. They are specified as a string literal con-
taining a Racket module path (following the syntax used for
a require form [3, ch. 3.2]).

This way we support importing bindings from the Racket
library, Racket files or packages hosted on PLaneT (Racket’s
centralized package distribution system), using any of the
Python importing syntaxes mentioned above. The following
example shows a way to access the Racket functions cons,
car and cdr in a Python program.

1 #lang python
2 import "racket" as racket
3
4 def add_cons(c):
5 return racket.car(c) + racket.cdr(c)
6
7 c1 = racket.cons(2, 3)
8 c2 = racket.cons("abc", "def")

> add_cons(c1)
5
> add_cons(c2)
"abcdef"

Since the second and third syntaxes above map to require

forms (which are evaluated before macro expansion), it is
also possible to use Racket-defined macros with Python code.

Predictably, importing Python modules into Racket pro-
grams is also possible and straightforward. Function defi-
nitions, class definitions and top-level assignments are de-

fine’d and provide’d in the compiled Racket code, therefore
they can be require’d in Racket.

3.3.3 Class Definitions
A class definition in Python is just syntactic sugar for defin-
ing a new type-object. Its hash table will contain the vari-
ables and methods defined within the class definition. There-
fore, an instance of a class is an object like any other, whose
type-object is its class. The main distinction is that an in-
stance of a class also contains its own hash table, where its
attributes are mapped to their values.

3.3.4 Exception Handling
Both Python and Racket support exceptions in a similar
way. In Python, one can only raise objects whose type de-
rives from BaseException, while in Racket, any value can
be raised and caught.

In Python, exceptions are raised with the raise statement
and caught with the try...except statement (with optional

76 ELS 2014

else and finally clauses). Their semantics can be imple-
mented with Racket’s raise and with-handlers forms, re-
spectively. The latter expects an arbitrary number of pairs
of predicate and procedure. Each predicate is responsible
for recognizing a specific exception type and the procedure
is responsible for handling it.

The exceptions themselves can be implemented as Racket
exceptions. In fact, some of Python’s built-in exceptions
can be defined as their equivalents in Racket, for added in-
teroperability. For instance, Python’s ZeroDivisionError

can be mapped to Racket’s exn:fail:contract:divide-

by-zero and Python’s NameError is mapped to Racket’s
exn:fail:contract:variable.

4. EXAMPLES
In this section we provide some examples of the current state
of the translation between Python and Racket. Note that
this is still a work in progress and, therefore, the compilation
results of these examples may change in the future.

4.1 Ackermann
Consider the following program in Racket which implements
the Ackermann function and calls it with arguments m = 3
and n = 9:

1 (define (ackermann m n)
2 (cond
3 [(= m 0) (+ n 1)]
4 [(and (> m 0) (= n 0)) (ackermann (- m 1) 1)]
5 [else (ackermann (- m 1) (ackermann m (- n 1)))]))
6
7 (ackermann 3 9)

Its equivalent in Python would be:

1 def ackermann(m,n):
2 if m == 0: return n+1
3 elif m > 0 and n == 0: return ackermann(m-1,1)
4 else: return ackermann(m-1, ackermann(m,n-1))
5
6 print ackermann(3,9)

Currently, this code is compiled to:

1 (provide :ackermann)
2 (define-py-function :ackermann with-params (m n)
3 (lambda (:m :n)
4 (cond
5 [(py-truth (py-eq :m 0))
6 (py-add :n 1)]
7 [(py-truth (py-and (py-gt :m 0) (py-eq :n 0)))
8 (py-call :ackermann (py-sub :m 1) 1)]
9 [else
10 (py-call
11 :ackermann
12 (py-sub :m 1)
13 (py-call :ackermann :m (py-sub :n 1)))])))
14
15 (py-print (py-call :ackermann 3 9))

The first thing one might notice is the colon prefixing the
identifiers ackermann, m and n. This has no syntactic mean-
ing in Racket; it is simply a name mangling technique to
avoid replacing Racket’s bindings with bindings defined in

Python. For example, one might set a variable cond in
Python, which would then be compiled to :cond and there-
fore would not interfere with Racket’s built-in cond.

The (define-py-function ... with-params ...) macro
builds a function structure, which is essentially a wrapper
for a lambda and a list of the argument names. The need
to store a function’s argument names arises from the fact
that in Python a function can be called both with positional
or keyword arguments. A function call without keyword
arguments is handled by the py-call macro, which simply
expands to a traditional Racket function call. If the function
is called with keyword arguments, this is handled by py-

call/keywords, which rearranges the arguments’ order at
runtime.

This way, we can use the same syntax for calling both Python
user-defined functions and Racket functions. On the other
hand, since the argument names are only stored with Python
user-defined functions, it is not possible to use keyword ar-
guments for calling Racket functions.

The functions/macros py-eq, py-and, py-gt, py-add and
py-sub are defined on the runtime module and implement
the semantics of the Python operators ==, and, >, +, -, re-
spectively.

The function py-truth takes a Python object as argument
and returns a Racket boolean value, #t or #f, according to
Python’s semantics for boolean values. This conversion is
necessary because, in Racket, only #f is treated as false,
while, in Python, the boolean value false, zero, the empty
list and the empty dictionary, among others, are all treated
as false when used on the condition of an if, for or while

statement. Finally, the function py-print implements the
semantics of the print statement.

4.2 Mandelbrot
Consider now a Racket program which defines and calls a
function that computes the number of iterations needed to
determine if a complex number c belongs to the Mandelbrot
set, given a limited number of limit iterations.

1 (define (mandelbrot limit c)
2 (let loop ([i 0]
3 [z 0+0i])
4 (cond
5 [(> i limit) i]
6 [(> (magnitude z) 2) i]
7 [else (loop (add1 i)
8 (+ (* z z) c))])))
9
10 (mandelbrot 1000000 .2+.3i)

Its Python equivalent could be implemented like such:

1 def mandelbrot(limit, c):
2 z = 0+0j
3 for i in range(limit+1):
4 if abs(z) > 2:
5 return i
6 z = z*z + c
7 return i+1
8
9 print mandelbrot(1000000, .2+.3j)

ELS 2014 77

This program demonstrates some features which are not
straightforward to map in Racket. For example, in Python
we can assign new local variables anywhere, as shown in line
2, while in Racket they become parameters of a named let

form.

Another feature, present in most programming languages
but not in Racket, is the return keyword, which immedi-
ately returns to the point where the function was called,
with a given value. On the former example, all returns were
tail statements, while on this one we have an early return,
on line 5.

The program is compiled to:

1 (provide :mandelbrot)
2 (define-py-function :mandelbrot with-params (limit c)
3 (lambda (:limit :c)
4 (let ([:i (void)]
5 [:z (void)])
6 (let/ec return9008
7 (set! :z (py-add 0 0))
8 (py-for continue9007
9 [:i (py-call :range (py-add :limit 1))]
10 (begin
11 (cond
12 [(py-truth (py-gt (py-call :abs :z) 2))
13 (return9008 :i)]
14 [else py-None])
15 (set! :z (py-add (py-mul :z :z) :c))))
16 (return9008 (py-add :i 1))))))
17
18 (py-print
19 (py-call :mandelbrot 1000000 (py-add 0.2 0+0.3i)))

You will notice the let form on lines 4-5. The variables
:i and :z are declared with a void value at the start of
the function definition, allowing us to simply map Python
assignments to set! forms.

Early returns are implemented as escape continuations, as
seen on line 6: there is a let/ec form (syntactic sugar for a
let and a call-with-escape-continuation) wrapping the
body of the function definition. With this approach, a re-
turn statement is as straightforward as calling the escape
continuation, as seen on line 13.

Finally, py-for is a macro which implements Python’s for
loop. It expands to a named let which updates the control
variables, evaluates the for’s body and recursively calls it-
self, repeating the cycle with the next iteration. Note that
calling this named let has the same semantics as a continue

statement.

In fact, although there was already a for form in Racket with
similar semantics as Python’s, the latter allows the use of
break and continue as flow control statements. The break

statement can be implemented as an escape continuation
and continue is implemented by calling the named let, thus
starting a new iteration of the loop.

5. PERFORMANCE
The charts on Fig. 2 compare the running time of these
examples for:

• (a) Racket code running on Racket;

• (b) Python code running on CPython;

• (c.1) Python code running on Racket with the FFI
runtime approach, without finalizers

• (c.2) Python code running on Racket with the FFI
runtime approach, with finalizers for garbage collecting
Python objects

• (d.1) Python code running on Racket with the pure
Racket runtime approach

• (d.2) Python code running on Racket with the pure
Racket runtime approach, using early dispatch for op-
erators

These benchmarks were performed on an Intel R© CoreTM i7
processor at 3.2GHz running under Windows 7. The times
below represent the minimum out of 3 samples.

Figure 2: Benchmarks of the Ackermann and Man-
delbrot examples

The Racket implementation of the Ackermann example is
about 28 times faster than Python’s implementation, but
the Mandelbrot example’s implementation happens to be
slightly slower than Python’s. This is most likely due to

78 ELS 2014

Racket’s lighter function calls and operators, since the Ack-
ermann example heavily depends on them.

Since the FFI based runtime uses CPython’s primitives, we
have to endure with sluggish foreign function calls for ev-
ery Python operation and we also cannot take advantage of
Racket’s lightweight mechanics, therefore the same Python
code runs about 20 times slower on our implementation than
in CPython, for both examples. This figure more than dou-
bles if we consider the use of finalizers, in order to avoid a
memory leak.

Moving to a pure Racket runtime yielded a great improve-
ment over the FFI runtime, since it eliminated the need for
foreign function calls, synchronizing garbage collection with
another virtual machine and type conversions. With this
transition, both examples run at around 3 to 4 times slower
than in CPython, which is very tolerable for our goals.

Optimizing the dispatching mechanism of operators for com-
mon types further led to huge gains in the Ackermann ex-
ample pushing it below the running time for CPython. The
Mandelbrot example is still slower than in CPython, but
nonetheless it has also benefited from this optimization.

6. CONCLUSIONS
A Racket implementation of Python would benefit Racket
developers giving them access to Python’s huge standard li-
brary and the ever-growing universe of third-party libraries,
as well as Python developers by providing them with a ped-
agogic IDE in DrRacket. To be usable, this implementation
must allow interoperability between Racket and Python pro-
grams and should be as close as possible to other state-of-
the-art implementations in terms of performance.

Our solution tries to achieve these qualities by compiling
Python source-code to semantically equivalent Racket source-
code, using a traditional compiler’s approach: a pipeline of
scanner, parser and code generation. This Racket source-
code is then handled by Racket’s bytecode compiler, JIT
compiler and interpreter.

We have come up with two alternative solutions for imple-
menting Python’s runtime semantics in Racket. The first
one consists of using Racket’s Foreign Interface and the
Python/C API to manipulate Python objects in Python’s
virtual machine. This allows our implementation to effort-
lessly support all of Python’s standard library and even
third-party libraries written in C. On the other hand, it suf-
fers from bad performance (at least one order of magnitude
slower than CPython).

Our second approach consists of implementing Python’s data
model and standard library purely in Racket. This leads to
a greater implementation effort, but offers a greater per-
formance, currently standing at around the same speed as
CPython, depending on the application. Additionally, it al-
lows for a better integration with Racket code, since many
Python data types are directly mapped to Racket data types.

Our current strategy consists of implementing the language’s
essential features and core libraries using the second ap-
proach (for performance and interoperability). Future ef-

forts may include developing a mechanism to import mod-
ules from CPython through the FFI approach, in a way that
is compatible with our current data model.

7. ACKNOWLEDGMENTS
This work was partially supported by Portuguese national
funds through Fundação para a Ciência e a Tecnologia under
contract Pest-OE/EEI/LA0021/2013 and by the Rosetta
project under contract PTDC/ATP-AQI/5224/2012.

8. REFERENCES
[1] W. Broekema. CLPython - an implementation of

Python in Common Lisp.
http://common-lisp.net/project/clpython/.
[Online; retrieved on March 2014].

[2] R. B. Findler, J. Clements, C. Flanagan, M. Flatt,
S. Krishnamurthi, P. Steckler, and M. Felleisen.
DrScheme: A programming environment for Scheme.
Journal of functional programming, 12(2):159–182,
2002.

[3] M. Flatt. The Racket Reference, 2013.

[4] M. Flatt and R. B. Findler. The Racket Guide, 2013.

[5] E. Franchi. Interoperability: from Python to Clojure
and the other way round. In EuroPython 2011,
Florence, Italy, 2011.

[6] Ironclad - Resolver Systems. http:
//www.resolversystems.com/products/ironclad/.
[Online; retrieved on January 2014].

[7] J. Juneau, J. Baker, F. Wierzbicki, L. M. Soto, and
V. Ng. The definitive guide to Jython. Springer, 2010.

[8] J. Lopes and A. Leitão. Portable generative design for
CAD applications. In Proceedings of the 31st annual
conference of the Association for Computer Aided
Design in Architecture, pages 196–203, 2011.

[9] P. Meunier and D. Silva. From Python to PLT
Scheme. In Proceedings of the Fourth Workshop on
Scheme and Functional Programming, pages 24–29,
2003.

[10] Microsoft Corporation. IronPython .NET Integration
documentation.
http://ironpython.net/documentation/. [Online;
retrieved on January 2014].

[11] P. Norvig. Python for Lisp programmers.
http://norvig.com/python-lisp.html. [Online;
retrieved on March 2014].

[12] S. Richthofer. JyNI - using native CPython-extensions
in Jython. In EuroSciPi 2013, Brussels, Belgium, 2013.

[13] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper,
M. Flatt, and M. Felleisen. Languages as libraries.
ACM SIGPLAN Notices, 46(6):132–141, 2011.

[14] P. Tröger. Python 2.5 virtual machine. http:
//www.troeger.eu/files/teaching/pythonvm08.pdf,
April 2008. [Lecture at Blekinge Institute of
Technology].

[15] G. van Rossum and F. L. Drake. Extending and
embedding the Python interpreter. Centrum voor
Wiskunde en Informatica, 1995.

[16] G. van Rossum and F. L. Drake. An introduction to
Python. Network Theory Ltd., 2003.

[17] G. van Rossum and F. L. Drake. The Python Language
Reference. Python Software Foundation, 2010.

ELS 2014 79

Defmacro for C:
Lightweight, Ad Hoc Code Generation

Kai Selgrad1 Alexander Lier1 Markus Wittmann2 Daniel Lohmann1 Marc Stamminger1

1 Friedrich-Alexander University Erlangen-Nuremberg
2 Erlangen Regional Computing Center

{kai.selgrad, alexander.lier, markus.wittmann, daniel.lohmann, marc.stamminger}@fau.de

ABSTRACT
We describe the design and implementation of CGen, a C
code generator with support for Common Lisp-style macro
expansion. Our code generator supports the simple and effi-
cient management of variants, ad hoc code generation to
capture reoccurring patterns, composable abstractions as
well as the implementation of embedded domain specific
languages by using the Common Lisp macro system. We
demonstrate the applicability of our approach by numerous
examples from small scale convenience macros over embed-
ded languages to real-world applications in high-performance
computing.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code gen-
eration; D.2.3 [Software Engineering]: Coding Tools and
Techniques—pretty printers; D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—evolutionary prototyp-
ing

General Terms
Design, Languages, Experimentation, Management, Perfor-
mance

Keywords
Code Generation, Common Lisp, Configurability, Mainte-
nance, Macros, Meta Programming

1. INTRODUCTION
Code generation and its application in domain-specific

languages is a long-established method to help reduce the
amount of code to write, as well as to express solutions
much closer to the problem at hand. In Lisp the former
is provided by defmacro, while the latter is usually accom-
plished through its application. In this paper we present a

Copyright c© 2014 The Authors
European Lisp Symposium 2014, Paris, France
.

formulation of C (and C-like languages in general) that is
amenable to transformation by the Lisp macro processor.

With this formulation we strive towards providing more el-
egant and flexible methods of code configuration and easing
investigation of different variants during evaluation (e.g. to
satisfy performance requirements) without additional costs
at run-time. The significance of this can be seen by the vast
amount of work on variant management [26, 30], code gener-
ation and domain-specific languages for heterogeneous sys-
tems (e.g. [21, 17]) and code optimization in general [23] in
the last years. It is, e.g., mandatory in performance critical
applications to reevaluate different versions of an algorithm
as required by advances in hardware and systems design (see
e.g. [9, 18]). We believe that those approaches to algorithm
evaluation will become ever more common in an increasing
number of computational disciplines. Our contribution is
the description and demonstration of a system that lever-
ages the well established Common Lisp macro system to the
benefit of the C family of languages. Additionally this ex-
tends to lowering the entry barrier for using meta code by
providing a system that is much more suited to ad hoc code
generation than current large-scale approaches.

In contrast to stand-alone domain-specific languages that
generate C code, such as Yacc [12], most general purpose
generative programming methods for C can be placed into
two categories: string-based approaches, and systems based
on completely parsed and type-checked syntax trees (ASTs).
The systems of the former category (e.g. [5, 4]) tend to be
suitable for ad hoc code generation, and for simple cases
tackling combinatoric complexity (e.g. [9]), but lack layer-
ing capabilities (i.e. transforming generated code). Further-
more they suffer from using different languages in the same
file (a problem described by [18], too), and thereby encom-
pass problems including complicated scoping schemes. AST-
based systems, on the other hand, are very large systems
which are not suitable for ad hoc code generation. Even
though such systems are very powerful, they are mostly
suited for highly specialized tasks. Examples of such larger
scopes include product line parameterization [26] and DSLs
embedded into syntactically challenging languages [28, 21].

With respect to this classification our approach covers a
middle-ground between these two extremes. Our formula-
tion of C facilitates the use of Common Lisp macros and
thereby light-weight structural and layered meta program-
ming. Yet, we neither provide nor strive for a completely
analyzed syntax tree as this would introduce a much larger
gap between the actual language used and its meta code.

80 ELS 2014

Based on our reformulation of C, and tight integration
into the Common Lisp system we present a framework that
is most suitable for describing domain-specific languages in
the C family. We therefore adopt the notion of our system
being a meta DSL.

This paper focuses on the basic characteristics of CGen,
our implementation of the approach described above. Sec-
tion 3 presents CGen’s syntax and shows simple macro ex-
amples to illustrate how input Lisp code is mapped to C
code. Section 4 discusses the merits and challenges of di-
rectly integrating the CGen language into a Common Lisp
system and shows various implementation details. A sys-
tematic presentation of more advanced applications with our
method is given in Section 5, focusing on how our code gen-
erator works on different levels of abstraction and in which
way they can be composed. Section 6 evaluates two rather
complete and relevant examples found in high performance
computing applications [3]. We analyze the abstractions
achieved and compare the results to hand-crafted code in
terms of variant management, extensibility and maintenance
overhead. Section 7 concludes our paper by reflecting our
results. Throughout this paper we provide numerous exam-
ples to illustrate our generator’s capabilities as well as the
style of programming it enables.

2. RELATED WORK
Since C is the de facto assembly language for higher level

abstractions and common ground in programming and since
generative programming [8] is as old as programming itself,
there is an enormous amount of previous work in code gener-
ation targetting C. We therefore limit our scope to describe
the context of our work and describe its relation to estab-
lished approaches.

Code generation in C is most frequently implemented us-
ing the C preprocessor (and template meta programming in
C++ [1]). These generators are most commonly used be-
cause they are ubiquitous and well known. They are, how-
ever, neither simple to use nor easily maintained [25, 8].

The traditional compiler tools, Yacc [12] and Lex [20],
generate C from a very high level of abstraction while still
allowing for embedding arbitrary C code fragments. Using
our framework such applications could be remodelled to be
embedded in C (similar to [7]), instead of the other way
around. For such specialized applications (and established
tools) this may, however, not be appropriate.

Our approach is more comparable to general purpose code
generators. As detailed in Section 1 we divide this area into
two categories: ad hoc string-based generators, very popu-
lar in dynamic languages (e.g. the Python based frameworks
Cog [4] and Mako [5]); and large-scale systems (e.g. Clang
[28], an extensible C++ parser based on LLVM[19]; Aspect-
C++ [26], an extension of C++ to support aspect-oriented
programming (AOP)1; XVCL [30], a language-agnostic XML-
based frame processor) which are most appropriate when
tackling large-scale problems. An approach that is concep-
tually similar to ours is “Selective Embedded JIT Special-
ization” [6] where C code is generated on the fly and in a
programmable fashion and Parenscript [24], an S-Expression
notation for JavaScript.

Regarding the entry barrier and our system’s applicabil-
ity to implement simple abstractions in a simple manner

1The origins of AOP are from the Lisp community, see [16].

our system is close to string and scripting language-based
methods. Due to homoiconicity we do not, however, suffer
from problems arising because of mixed languages. Fur-
thermore our approach readily supports layering abstrac-
tions and modifying generated code to the extent of imple-
menting domain-specific languages in a manner only pos-
sible using large-scale systems. The key limitation of our
approach is that the macro processor does not know about
C types and cannot infer complicated type relations. Using
the CLOS [13] based representation of the AST generated
internally after macro expansion (see Section 4), any appli-
cation supported by large-scale systems becomes possible;
this is, however, not covered in this paper.

3. AN S-EXPRESSION SYNTAX FOR C
The key component facilitating our approach is a straight-

forward reformulation of C code in the form of S-Expressions.
The following two examples, taken from the classic K&R [14],
illustrate the basic syntax.

The first example, shown in Figure 1, is a simple line
counting program. Even though the syntax is completely
S-Expression-based, it still resembles C at a more detailed
level. Functions are introduced with their name first, fol-
lowed by a potentially empty list of parameters and (nota-
tionally inspired by the new C++11 [27] syntax) a return
type after the parameter list. Local variables are declared
by decl which is analogous to let.

1 (function main () -> int
2 (decl ((int c)
3 (int nl 0))
4 (while (!= (set c (getchar)) EOF)
5 (if (== c #\ newline)
6 ++nl))
7 (printf "%d\n" nl))
8 (return 0))

1 int main(void) {
2 int c;
3 int nl = 0;
4 while ((c = getchar ()) != EOF) {
5 if (c == ’\n’)
6 ++nl;
7 }
8 printf("%d\n", nl);
9 return 0;

10 }
11

Figure 1: A simple line counting program, followed
by the C program generated from it.

1 (function strcat ((char p[]) (char q[])) -> void
2 (decl ((int i 0) (int j 0))
3 (while (!= p[i] #\null)
4 i++)
5 (while (!= (set p[i++] q[j++]) #\null))))

1 void strcat(char p[], char q[]) {
2 int i = 0;
3 int j = 0;
4 while (p[i] != ’\0’)
5 i++;
6 while ((p[i++] = q[j++]) != ’\0’);
7 }
8

Figure 2: Implementation of the standard library’s
strcat, followed by the generated code.

ELS 2014 81

The resemblance of C is even more pronounced in the sec-
ond example presented in Figure 2, which shows an imple-
mentation of the standard strcat function. The use of ar-
rays, with possibly simple expressions embedded, is a short-
hand syntax that is converted into the more general (aref
<array> <index>) notation. This more elaborate notation
is required for complicated index computations and ready
to be analyzed in macro code.

To illustrate the application of simple macros we show how
to add a function definition syntax with the same ordering
as in C.

1 (defmacro function* (rt name params &body body)
2 ‘(function ,name ,params -> ,rt
3 ,@body))

With this the following two definitions are equivalent:

1 (function foo () -> int (return 0))
2 (function* int foo () (return 0))

As another example consider an implementation of swap

which exchanges two values and can be configured to use
an external variable for intermediate storage. This can be
implemented by generating a call to an appropriately sur-
rounded internal macro.

1 (defmacro swap (a b &key (tmp (gensym) tmp-set))
2 ‘(macrolet ((swap# (a b tmp)
3 ‘(set ,tmp ,a
4 ,a ,b
5 ,b ,tmp)))
6 (lisp (if ,tmp-set
7 (cgen (swap# ,a ,b ,tmp))
8 (cgen (decl ((int ,tmp))
9 (swap# ,a ,b ,tmp)))))))

The lisp form is outlined in Section 4. The following ex-
amples illustrate the two use cases (input code left, corre-
sponding output code right).

1 (decl ((int x)
2 (int y))
3 (swap x y))
4

5

6

7

8 (decl ((int x)
9 (int y)

10 (int z))
11 (swap x y :tmp z))
12

13

int x;
int y;
int g209; // gensym
g209 = x;
x = y;
y = g209;

int x;
int y;
int z;
z = x;
x = y;
y = z;

Note the use of a gensym for the name of the temporary vari-
able to avoid symbol clashes. More advanced applications
of the macro system are demonstrated in Section 5 and 6.

4. IMPLEMENTATION DETAILS
Our system is an embedded domain-specific language for

generating C code, tightly integrated into the Common Lisp
environment. The internal data structure is an AST which is
constructed by evaluating the primitive CGen forms. This
implies that arbitrary Lisp forms can be evaluated during
the AST’s construction; consider e.g. further syntactic en-
hancements implemented by cl-yacc [7]:

1 (function foo ((int a) (int b) (int c)) -> int
2 (return (yacc -parse (a + b * a / c))))

All CGen top level forms are compiled into a single AST
which is, in turn, processed to generate the desired C output.
The following listing shows the successive evaluation steps

of a simple arithmetic form which is converted into a single
branch of the enclosing AST.

1 (* (+ 1 2) x)
2 (* #<arith :op ’+ :lhs 1 :rhs 2>
3 #<name :name "x">)
4 #<arith :op ’*
5 :lhs #<arith :op ’+ :lhs 1 :rhs 2>
6 :rhs #<name :name "x">>

Naturally, the implementation of this evaluation scheme
must carefully handle ambiguous symbols (i.e. symbols used
for Lisp and CGen code), including arithmetic operations
as shown in the example above, as well as standard Com-
mon Lisp symbols such as function, return, etc. We chose
not to use awkward naming schemes and to default to the
CGen interpretation for the sake of convenience. If the Lisp
interpretation of an overloaded name is to be used, the cor-
responding form can be evaluated in a lisp form. Similarly
the cgen form can be used to change back to its original
context from inside a Lisp context. This scheme is imple-
mented using the package system. CGen initially uses the
cg-user package which does not include any of the standard
Common Lisp symbols but defines separate versions default-
ing to the CGen interpretation. Note that while ambiguous
names depend on the current context, unique symbols are
available in both contexts.

Considering the above example, we see that the symbol
x is converted into a node containing the string "x". While
Lisp systems usually up-case symbols as they are read, this
behavior would not be tolerated with C, especially when
the generated code is to interact with native C code. To
this end we set the reader to use :invert mode case conver-
sion (:preserve would not be desirable as this would require
using upper case symbol names for all of the standard sym-
bols in most Common Lisp implementations). This scheme
leaves the symbol names of CGen code in an inverted state
which can easily be compensated for by inverting the symbol
names again when they are printed out.

The AST itself is represented as a hierarchy of objects
for which certain methods, e.g. traversal and printing, are
defined. Naturally, this representation is well suited for ex-
tensions. To this end we implemented two different lan-
guages which we consider able to be classified as part of the
family of C languages. The first language is a notation for
CUDA [22], a language used for applying graphics process-
ing units (GPUs) to general purpose computing. Support
for CUDA was completed by adding a few node types, e.g.
to support the syntax for calling a GPU function from the
host side. The second extended C language is GLSL [15], a
language used to implement GPU shader code for computer
graphics applications. Supporting GLSL was a matter of
adding a few additional qualifiers to the declaration syn-
tax (to support handling uniform storage). These examples
show how easily our method can be used to provide code
for heterogeneous platforms, i.e. to support generating code
that can run on different hardware where different (C-like)
languages are used for program specification.

As noted previously, our system’s AST representation is
easily extensible to support any operation expected from
a compiler. Our focus is, however, the application of the
supported macro system and we therefore leave most of the
backend operation to the system’s C compiler. Since the
AST is only available after macro expansion compilation er-
rors are reported in terms of the expanded code.

82 ELS 2014

5. APPLICATION
In this section we demonstrate how our generator can be

applied to a number of different problems. We chose to
show unrelated examples on different abstraction levels to
illustrate its broad spectrum.

5.1 Ad Hoc Code Generation
A key aspect of our method is the support for ad hoc code

generation, i.e. the implementation of localized abstractions
as they become apparent during programming.

A simple example of this would be unrolling certain loops
or collecting series of expressions. This can be accomplished
by the following macro (defcollector) which generates mac-
ros (unroll, collect) that take as parameters the name of
the variable to use for the current iteration counter, the
start and end of the range and the loop body which will be
inserted repeatedly.

1 (defmacro defcollector (name list -op)
2 ‘(defmacro ,name ((var start end) &body code)
3 ‘(,’,list -op
4 ,@(loop for i from start to end collect
5 ‘(symbol -macrolet ((,var ,i))
6 ,@code)))))
7

8 (defcollector unroll progn)
9 (defcollector collect clist)

The above defined collect macro can be used, e.g., to gen-
erate tables:

1 (decl ((double sin [360]
2 (collect (u 0 359)
3 (lisp (sin (* pi (/ u 180.0))))))))

The resulting code is entirely static and should not require
run-time overhead to initialize the table:

1 double sin [360] = {0.00000 , 0.01745 , 0.03490 , ...};

Clearly, many more advanced loop transformation methods
could be applied, such as ‘peeling’ as demonstrated in Sec-
tion 6.2.

5.2 Configuring Variants
The most straight-forward application of variant-selection

is using templates. This can be as simple as providing basic
type names, e.g. in a matrix function, and as elaborate as
redefining key properties of the algorithm at hand, as shown
in the following as well as in Section 6.

Figure 3 shows a rather contrived example where the man-
ner in which a graph is traversed is decoupled from the action
at each node. This is not an unusual setup. In our approach,
however, there is no run-time cost associated with this flex-
ibility. In this example the traversal method used is given
to a macro (find-max) which embeds its own code into the
body of the expansion of this traversal. This kind of ex-
pansion is somewhat similar to compile-time :before and
:after methods.

We assert that having this kind of flexibility without any
run-time costs at all allows for more experimentation in
performance-critical code (which we demonstrate in Sec-
tion 6.2). This is especially useful as changes to the code
automatically propagate to all versions generated from it,
which enables the maintenance of multitudinous versions
over an extended period of time. Another application of
this technique is in embedded systems where the code size
has influence on the system performance and where run-time
configuration is not an option.

1 (defmacro find -max (graph trav)
2 ‘(decl ((int max (val (root ,graph))))
3 (,trav ,graph
4 (if (> (val curr) max)
5 (set max (val curr))))))
6

7 (defmacro push -stack (v)
8 ‘(if ,v (set stack [++sp] ,v)))
9

10 (defmacro preorder -traversal (graph &body code)
11 ‘(decl ((node* stack[N])
12 (int sp 0))
13 (set stack [0] (root ,graph))
14 (while (>= sp 0)
15 (decl ((node* curr stack[sp --]))
16 ,@code
17 (push -stack (left curr))
18 (push -stack (right curr))))))
19

20 (defmacro breath -first -traversal (graph &body code)
21 ‘(decl ((queue* q (make -queue)))
22 (enqueue q ,graph)
23 (while (not (empty q))
24 (decl ((node* curr (dequeue q)))
25 ,@code
26 (if (left curr)
27 (enqueue q (left curr)))
28 (if (right curr)
29 (enqueue q (right curr)))))))
30

31 (function foo ((graph *g)) -> int
32 (find -max g
33 preorder -traversal))

Figure 3: This example illustrates the configuration
of an operation (find-max) with two different graph
traversal algorithms. Note that this setup does not
incur run-time overhead.

5.3 Domain-Specific Languages
To illustrate the definition and use of embedded domain-

specific languages we present a syntax to embed elegant and
concise regular expression handling in CGen code. Figure 4
provides a very simple implementation with the following
syntax.

1 (match text
2 ("([^.]*)" (printf "proper list.\n"))
3 (".*\." (printf "improper list.\n")))

The generated code can be seen in Figure 5. Note how
the output code is structured to only compute the regular
expression representations that are required.

1 (defmacro match (expression &rest clauses)
2 ‘(macrolet
3 ((match -int (expression &rest clauses)
4 ‘(progn
5 (set reg_err (regcomp ®
6 ,(caar clauses)
7 REG_EXTENDED))
8 (if (regexec ® ,expression 0 0 0)
9 (progn ,@(cdar clauses))

10 ,(lisp (if (cdr clauses)
11 ‘(match -int
12 ,expression
13 ,@(cdr clauses))))))))
14 (decl ((regex_t reg)
15 (int reg_err))
16 (match -int ,expression ,@clauses))))

Figure 4: An example of an embedded domain-
specific language for providing an elegant syntax for
checking a string against a set of regular expressions.

ELS 2014 83

1 regex_t reg;
2 int reg_err;
3 reg_err = regcomp (® , "([^.]*)" , REG_EXTENDED);
4 if (regexec (® , text , 0, 0, 0))
5 printf (" proper list.\n");
6 else {
7 reg_err = regcomp (® , ".*\." , REG_EXTENDED);
8 if (regexec (® , text , 0, 0, 0))
9 printf (" improper list.\n");

10 }

Figure 5: Code resulting from application of the syn-
tax defined in Figure 4.

Clearly, more elaborate variants are possible. Consider,
e.g., the popular CL-PPCRE [29] library which analyzes the
individual regular expressions and, if static, precomputes
the representation. This is not directly applicable to the C
regular expression library used here but can be understood
as selectively removing the call to regcomp.

5.4 Layered Abstractions
One of the canonical examples of aspect-oriented program-

ming is the integration of logging into a system. Without
language support it is tedious work to integrate consistent
logging into all functions that require it.

Figure 6 presents a macro that automatically logs function
calls and the names and values of the parameters, simply by
defining the function with a different form:

1 (function foo (...) ...) ; does not log
2 (function+ foo (...) ...) ; logs

With this definition in place the following form

1 (function+ foo ((int n) (float delta)) -> void
2 (return (bar n delta)))

evaluates to the requested function:

1 (function foo ((int n) (float delta)) -> void
2 (progn
3 (printf
4 "called foo(n = %d, delta = %f)\n" n delta)
5 (return (bar n delta))))

With this technique it is easily possible to redefine and
combine different language features while honoring the sepa-
ration of concerns principle. The most simple implementa-
tion facilitating this kind of combination would be defining a
macro that applies all requested extensions to a given prim-
itive. This could be managed by specifying a set of globally
requested aspects which are then integrated into each func-
tion (overwriting the standard definition).

1 (defmacro function+ (name param arr ret &body body)
2 ‘(function ,name ,param ,arr ,ret
3 (progn
4 (printf
5 ,(format
6 nil "called ~a(~{~a = ~a~^, ~})\n" name
7 (loop for item in parameter append
8 (list (format nil "~a"
9 (first (reverse item)))

10 (map -type -to-printf
11 (second (reverse item))))))
12 ,@(loop for item in parameter collect
13 (first (reverse item))))
14 ,@body)))

Figure 6: Implementation of the logging aspect.

6. EVALUATION

It is hard to overestimate the importance of con-
cise notation for common operations.

B. Stroustrup [27]

As already exemplified in Section 5.3, the quoted text is
certainly true, and we agree that the language user, not
the designer, knows what operations are to be considered
‘common’ the best.

In the following we will first present a natural notation
for SIMD expressions which are very common in high-per-
formance code. This is followed by an application of our sys-
tem to a classical problem of high-performance computing
which demonstrates how redundancy can be avoided with
separation of concerns thereby being applied.

6.1 A Natural Notation for SIMD Arithmetic
SIMD (single instruction, multiple data) is a very common

approach to data parallelism, applied in modern CPUs by
the SSE [10], AVX [11] and Neon [2] instruction sets. These
allow applying a single arithmetic or logic operation (e.g.
an addition) to multiple (2, 4, 8, or 16) registers in a single
cycle. Naturally, such instruction sets are very popular in
high-performance applications where they enable the system
to do more work in the same amount of time. The examples
in this section will make use of so-called intrinsics, which
are functions recognized by the compiler to map directly to
assembly instructions.

As an example the following code loads two floating point
values from consecutive memory locations into an SSE reg-
ister and adds another register to it.

1 __m128d reg_a = _mm_load_pd(pointer);
2 reg_a = _mm_add_pd(reg_a , reg_b);

Obviously, more complicated expressions soon become un-
readable and require disciplined documentation. Consider,
e.g., the expression (x+y+z)*.5 which would be written as:

1 _mm_mul_pd(
2 _mm_add_pd(
3 x,
4 _mm_add_pd(y, z)),
5 .5);

There are, of course, many approaches to solving this prob-
lem. We compare the light-weightedness and quality of ab-
straction in our method to a hand-crafted DSL implemented
in C using the traditional compiler tools, as well as to an ad
hoc code generator framework such as Mako [5]. We argue
that the scope of this problem (with the exception of the
extreme case of auto-vectorization [17]) does not justify the
application of large scale-systems such as writing a source
to source compiler using the Clang framework [28].

Traditional Solution.
Our first approach to supply a more readable and config-

urable notation of SIMD instructions employed traditional
compiler technology. The intrinsify program reads a file
and copies it to its output while transforming expressions
that are marked for conversion to intrinsics (after generat-
ing an AST for the sub expression using [12] and [20]). The
marker is a simple comment in the code, e.g. we transform
the following code

84 ELS 2014

1 __m128d accum , factor;
2 for (int i = 0; i < N; i++) {
3 __m128d curr = _mm_load_pd(base + i);
4 //#INT accum = accum + factor * curr;
5 }

to produce code that contains the appropriate intrinsics:

1 __m128d accum , factor;
2 for (int i = 0; i < N; i++) {
3 __m128d curr = _mm_load_pd(base + i);
4 //#INT accum = accum + factor * curr;
5 accum = _mm_add_pd(
6 accum ,
7 _mm_mul_pd(
8 factor ,
9 curr

10)
11);
12 }

The instruction set (SSE or AVX) to generate code for can
be selected at compile-time.

String-Based Approach.
Using Mako [5] we implemented an ad hoc code generator

which runs the input data through Python. In this process
the input file is simply copied to the output file and em-
bedded Python code is evaluated on the fly. The previous
example is now written as:

1 __m128d accum , factor;
2 for (int i = 0; i < N; i++) {
3 __m128d curr = _mm_load_pd(base + i);
4 ${with_sse(set_var "accum"
5 (add "accum"
6 (mul "factor" "curr ")))};
7 }

Note how all the data handed to the Python function is
entirely string based.

Using CGen.
With our system the extended notation is directly embed-

ded in the source language as follows:

1 (decl ((__m128d accum)
2 (__m128d factor))
3 (for ((int i 0) (< i N) i++)
4 (intrinsify
5 (decl ((mm curr (load -val (aref base i))))
6 (set accum (+ accum (* factor curr)))))))

Comparison.
The implementation of the intrinsify program is around

1,500 lines of C/Lex/Yacc code. Using those tools the cal-
culator grammar is very manageable and can be extended
in numerous ways to provide a number of different features.
Our use case is to automatically convert numeric constants
into SIMD format, i.e. converting //#INT x = 0.5 * x; to

1 _m128d c_0_500 = _mm_set1_pd (0.5);
2 x = _mm_mul_pd(c_0_500 , x);

Since keeping track of names that have already been gener-
ated is straight-forward, this is a robust approach to further
simplify the notation. Note that it is not easily possible to
move such temporaries out of loops as this would require the
construction of a rather complete AST which was clearly not
the intention of writing such a tool. This example demon-
strates that once the initial work is completed such a system
can be easily extended and maintained.

The string-based version, on the other hand, is very light-
weight and only takes up 60 lines of code. Even though

this shows that such abstractions can be constructed on de-
mand and the return on the work invested is obtained very
quickly, the resulting syntax is not very far from writing the
expressions themselves. The extension to extract numeric
constants heavily relies on regular expressions and can only
be considered maintainable as long as the code does not grow
much larger. Further code inspection and moving generated
expressions out of loops is not easily integrated.

The implementation of our intrinsify macro consists of
45 lines of code, which is comparable to the Python im-
plementation. The notation, however, is very elegant and
convenient and the extraction and replacement of constants
are simple list operations. As an example, obtaining the list
of numbers in an expression is concisely written as:

1 (remove -duplicates
2 (remove -if-not #’numberp (flatten body))

6.2 A Configurable Jacobi Solver
In the field of high performance computing a large class

of algorithms rely on stencil computations [3]. As a simple
example we consider a 2-D Jacobi kernel for solving the heat
equation. Hereby a point in the destination grid is updated
with the mean value of its direct neighbors from the source
grid. After all points have been updated in this way the
grids are swapped and the iteration starts over.

Whereas for the chosen example, shown in Figure 7, state-
of-the-art compilers can perform vectorization of the code,
they fail at more complicated kernels as they appear, e.g.
in computational fluid dynamics. This often leads to hand-
crafted and hand-tuned variants of such kernels for several
architectures and instruction sets, for example with the use
of intrinsics. In all further examples we assume that the
alignment of the source and destination grid differ by 8-
bytes, i.e. the size of a double precision value.

1 #define I(x, y) (((y) * NX) + (x))
2 double dest[NX * NY], src[NX * NY], * tmp;
3

4 void Kernel(double *dst , double *top ,
5 double *center , double *bottom ,
6 int len) {
7 for (int x = 0; x < len; ++x)
8 dst[x] = 0.25 * (top[x] + center[x-1] +
9 center[x+1] + bottom[x]);

10 }
11

12 void Iterate () {
13 while (iterate) {
14 for (int y = 1; y < NY - 1; ++y)
15 Kernel (&dest[I(1,y)], &src[I(1,y-1)],
16 &src[I(1,y)], &src[I(1,y+1)],
17 NX -2);
18 swap(src , dest);
19 }
20 }

Figure 7: A simple 2-D Jacobi kernel without any
optimizations applied.

Figure 8 shows how a hand-crafted version using intrinsics
targetting SSE may look. In this example double precision
floating point numbers are used, i.e. the intrinsics work on
two values at a time. At the end of the function there is a
‘peeled off’, non-vectorized version of the stencil operation
to support data sets of uneven width. Even for this very
simple example the code already becomes rather complex.

ELS 2014 85

1 void KernelSSE(double *d, double *top , double *center ,
2 double *bottom , int len) {
3 const __m128d c_0_25 = _mm_set_pd (0.25);
4 __m128d t, cl, cr, b;
5

6 for (int x = 0; x < len - (len % 2); x += 2) {
7 t = _mm_loadu_pd (&top[x]);
8 cl = _mm_loadu_pd (& center[x - 1]);
9 cr = _mm_loadu_pd (& center[x + 1]);

10 b = _mm_loadu_pd (& bottom[x]);
11

12 _mm_storeu_pd (&dst[x],
13 _mm_mul_pd(
14 _mm_add_pd(
15 _mm_add_pd(t, cl),
16 _mm_add_pd(cr, b)),
17 c_0_25));
18 }
19

20 if (len % 2) {
21 int x = len - 1;
22 dst[x] = 0.25 * (top[x] + center[x - 1] +
23 center[x + 1] + bottom[x]);
24 }
25 }

Figure 8: The same operation as shown in Figure 7
but targetting SSE.

A further optimized version could use the non-temporal
store instruction (MOVNTPD) to by-pass the cache when
writing to memory, which in turn would require a 16-byte
alignment of the store address. This would necessitate a
manual update of the first element in the front of the loop if
its address is incorrectly aligned. Further, for AVX-variants
of the kernel the loop increment becomes four since four
elements are processed at once. The peeling of elements in
front (for non-temporal stores) and after the loop (for left-
over elements) would make further loops necessary.

In the following we show how a simple domain-specific
approach can implement separation on concerns, i.e. sepa-
rate the intrinsics optimizations from the actual stencil used.
This frees the application programmer from a tedious reim-
plementation of these optimizations for different stencils and
cumbersome maintenance of a number of different versions
of each kernel.

We implemented a set of macros to generate the differ-
ent combinations of aligned/unaligned and scalar/SSE/AVX
kernels in 260 lines of code (not further compacted by meta
macros). The invocation

1 (defkernel KernelScalar (:arch :scalar)
2 (* 0.25 (+ (left) (right) (top) (bottom))))

produces the following kernel, virtually identical to Figure 7:

1 void KernelScalar(double *dst , double *top ,
2 double *center , double *bottom ,
3 int len) {
4 for (int x = 0; x < len; x += 1)
5 dst[x] = 0.25 * (center[x-1] + center[x+1]
6 + top[x] + bottom[x]);
7 return;
8 }

The invocation of

1 (defkernel KernelSSE (:arch :sse)
2 (* 0.25 (+ (left) (right) (top) (bottom))))

generates code very similar to Figure 8 (not shown again
for a more compact representation), and the most elaborate
version, an AVX kernel with alignment, can be constructed
using

1 (defkernel KernelAlignedAVX (:arch :avx :align t)
2 (* 0.25 (+ (left) (right) (top) (bottom))))

The resulting code is shown in Figure 9. Note how for each
kernel generated exactly the same input routine was spec-
ified. The vectorization is implemented analogous to the
method described in Section 6.1. In this version, however,
we extracted the numeric constants of the complete function
and moved them before the loop.

1 void KernelAlignedAVX(double *dst , double *top ,
2 double *center , double *bottom ,
3 int len) {
4 int x = 0;
5 const __m256d avx_c_0_25_2713
6 = _mm256_set1_pd (0.25);
7 __m256d avx_tmp1590;
8 __m256d avx_tmp1437;
9 __m256d avx_tmp1131;

10 __m256d avx_tmp1284;
11 int v_start = 0;
12 while (((ulong)dst) % 32 != 0) {
13 dst[v_start] = 0.25 * (center[v_start -1]
14 + center[v_start +1]
15 + top[v_start]
16 + bottom[v_start]);
17 ++ v_start;
18 }
19 int v_len = len - v_start;
20 v_len = (v_len - (v_len % 4)) + v_start;
21 for (int x = v_start; x < v_len; x += 4) {
22 avx_tmp1590 = _mm256_load_pd(center[x-1]);
23 avx_tmp1437 = _mm256_load_pd(center[x+1]);
24 avx_tmp1131 = _mm256_load_pd(top[x]);
25 avx_tmp1284 = _mm256_load_pd(bottom[x]);
26 _mm256_store_pd(
27 &dst[x],
28 _mm256_mul_pd(
29 avx_c_0_25_2713 ,
30 _mm256_add_pd(
31 _mm256_add_pd(
32 _mm256_add_pd(
33 avx_tmp1590 ,
34 avx_tmp1437),
35 avx_tmp1131),
36 avx_tmp1284)));
37 }
38 for (int x = v_len; x < len; ++x)
39 dst[x] = 0.25 * (center[x-1] + center[x+1]
40 + top[x] + bottom[x]);
41 return;
42 }

Figure 9: The same operation as shown in Figure 7
but targetting aligned AVX and generated by CGen.

7. CONCLUSION
In this paper we presented a code generator that enables

Common Lisp-style meta programming for C-like platforms
and presented numerous examples illustrating its broad ap-
plicability. We also showed how it can be applied to real-
world high-performance computing applications. We showed
how our approach is superior to simple string-based meth-
ods and to what extend it reaches towards large-scale sys-
tems requiring considerable initial overhead. Furthermore,
we showed that our approach is well suited for lowering the
entry barrier of using code generation for situations in which
taking the large-scale approach can’t be justified and simple
string-based applications fail to meet the required demands.

86 ELS 2014

8. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers

for their constructive feedback and suggestions, Christian
Heckl for insightful discussions and gratefully acknowledge
the generous funding by the German Research Foundation
(GRK 1773).

9. REFERENCES
[1] A. Alexandrescu. Modern C++ Design: Generic

Programming and Design Patterns Applied.
Addison-Wesley, 2001.

[2] ARM. Introducing NEON, 2009.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The landscape of parallel computing research: A view
from berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, Dec 2006.

[4] N. Batchelder. Python Success Stories.
http://www.python.org/about/success/cog/, 2014.

[5] M. Bayer. Mako Templates for Python.
http://www.makotemplates.org/, 2014.

[6] B. Catanzaro, S. A. Kamil, Y. Lee, K. Asanović,
J. Demmel, K. Keutzer, J. Shalf, K. A. Yelick, and
A. Fox. SEJITS: Getting Productivity and
Performance With Selective Embedded JIT
Specialization. Technical Report UCB/EECS-2010-23,
EECS Department, University of California, Berkeley,
Mar 2010.

[7] J. Chroboczek. The CL-Yacc Manual, 2008.

[8] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 2000.

[9] K. Datta, M. Murphy, V. Volkov, S. Williams,
J. Carter, L. Oliker, D. Patterson, J. Shalf, and
K. Yelick. Stencil computation optimization and
auto-tuning on state-of-the-art multicore
architectures. In High Performance Computing,
Networking, Storage and Analysis, 2008. SC 2008.
International Conference for, pages 1–12, Nov 2008.

[10] Intel. SSE4 Programming Reference, 2007.

[11] Intel. Intel Advanced Vector Extensions Programming
Reference, January 2014.

[12] S. C. Johnson. YACC—yet another compiler-compiler.
Technical Report CS-32, AT&T Bell Laboratories,
Murray Hill, N.J., 1975.

[13] S. E. Keene. Object-oriented programming in
COMMON LISP - a programmer’s guide to CLOS.
Addison-Wesley, 1989.

[14] B. W. Kernighan. The C Programming Language.
Prentice Hall Professional Technical Reference, 2nd
edition, 1988.

[15] J. Kessenich, D. Baldwin, and R. Randi. The OpenGL
Shading Language, January 2014.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. marc Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP.
SpringerVerlag, 1997.

[17] O. Krzikalla, K. Feldhoff, R. Müller-Pfefferkorn, and

W. Nagel. Scout: A source-to-source transformator for
SIMD-optimizations. In Euro-Par 2011: Parallel
Processing Workshops, volume 7156 of Lecture Notes
in Computer Science, pages 137–145. Springer Berlin
Heidelberg, 2012.

[18] M. Köster, R. Leißa, S. Hack, R. Membarth, and
P. Slusallek. Platform-Specific Optimization and
Mapping of Stencil Codes through Refinement. In In
Proceedings of the First International Workshop on
High-Performance Stencil Computations (HiStencils),
pages 1–6, Vienna, Austria.

[19] C. Lattner. LLVM: An Infrastructure for Multi-Stage
Optimization. Master’s thesis, Computer Science
Dept., University of Illinois at Urbana-Champaign,
Urbana, IL, Dec 2002. See http://llvm.cs.uiuc.edu.

[20] M. E. L. Lesk and E. Schmidt. Lex — a lexical
analyzer generator. Technical report, AT&T Bell
Laboratories, Murray Hill, New Jersey 07974.

[21] R. Membarth, A. Lokhmotov, and J. Teich.
Generating GPU Code from a High-level
Representation for Image Processing Kernels. In
Proceedings of the 5th Workshop on Highly Parallel
Processing on a Chip (HPPC), pages 270–280,
Bordeaux, France. Springer.

[22] NVIDIA Corporation. NVIDIA CUDA C
Programming Guide, June 2011.

[23] M. Pharr and W. Mark. ispc: A SPMD compiler for
high-performance CPU programming. In Innovative
Parallel Computing (InPar), 2012, pages 1–13, May
2012.

[24] V. Sedach. Parenscript.
http://common-lisp.net/project/parenscript/, 2014.

[25] H. Spencer and G. Collyer. #ifdef considered harmful,
or portability experience with C News. In Proceedings
of the 1992 USENIX Annual Technical Conference,
Berkeley, CA, USA, June 1992. USENIX Association.

[26] O. Spinczyk and D. Lohmann. The design and
implementation of AspectC++. Knowledge-Based
Systems, Special Issue on Techniques to Produce
Intelligent Secure Software, 20(7):636–651, 2007.

[27] B. Stroustrup. The C++ Programming Language, 4th
Edition. Addison-Wesley Professional, 4 edition, May
2013.

[28] The Clang Developers. Clang: A C Language Family
Frontend for LLVM. http://clang.llvm.org, 2014.

[29] E. Weitz. CL-PPCRE - Portable Perl-compatible
regular expressions for Common Lisp.
http://www.weitz.de/cl-ppcre/, 2014.

[30] H. Zhang, S. Jarzabek, and S. M. Swe. Xvcl approach
to separating concerns in product family assets. In
Proceedings of the Third International Conference on
Generative and Component-Based Software
Engineering, GCSE ’01, pages 36–47, London, UK,
2001. Springer-Verlag.

ELS 2014 87

