
Proceedings of the

14th European Lisp Symposium
Online, Everywhere

May 3 – 4, 2021

Marco Heisig (ed.)

ISBN-13: 978-2-9557474-3-8
ISSN: 2677-3465

ii ELS 2021

Preface

Message from the Program Chair

Welcome to the 14thth European Lisp Symposium!

I hope you are as excited for this symposium as I am. For most of you, these are the first minutes
of the symposium. But the reason why we have this symposium, the website, the Twitch setup,
and all the exciting talks and papers, is because of dozens of other people working hard behind
the scenes for months. And I want to use this opening statement to thank these people.

The most important person when it comes to ELS is Didier Verna. Year after year, Didier takes
care that other people are taking care of ELS. Thank you Didier!

Then there is the programme committee — brilliant and supportive people that spend count-
less hours reviewing each submission. These people help turn good papers into great papers,
and these people are the reason why our conference proceedings are such an interesting read.
Thanks everyone on the programme committee!

And then there are the local chairs — Georgiy, Mark, and Michał — that spent a large part of
the last week refining our technical setup. Without our local chairs, we just couldn’t have this
online ELS. Thank you Georgiy, Mark, and Michał!

And finally, we have the true stars of the symposium, our presenters. These people spent weeks
working on their papers, preparing slides, and recording their talks. And they will also be here
live during each talk to answer questions or to discuss ideas. Thanks, dear presenters!

I had the honor of working with all these people over the last few months. And while doing so,
I actually learned something new about Lisp, too. I learned that the best part about Lisp is not
the uniform syntax, or the macros, or the ability to redefine functions at run time. The best part
about Lisp is the Lisp community. And as long as we have such a great community, I am very
optimistic about the future of Lisp.
In this sense, I wish you an inspiring symposium and happy hacking!

Röthenbach an der Pegnitz, May 1, 2021 Marco Heisig

ELS 2021 iii

Message from the Local Chairs

During the previous ELS, we have wished for an European Lisp Symposium organized live,
just like before the pandemic. These wishes did not yet have a chance to materialize, so it is our
need - but, most importantly, also an honor - to invite you to the second online European Lisp
Symposium!
People who have attented the previous year should feel at home; we have not made many
modifications to the technology behind the conference. The video feed is streamed via Twitch,
just like last year; it is possible to view it via VLC without using the official Twitch web client.
The Twitch feed will start an hour before the opening ceremony to let everyone tune in ahead
of time; we will be available to help with any technical issues.
The textual Twitch chat is going to be bridged to #elsconf on Freenode for people who would
prefer to participate in the chat via IRC.
We have an official Jitsi instance (along with an unofficial backup) for breakout rooms, chats
during coffee and lunch breaks, and the get-together after the conference. Links to the official
break rooms will be posted during breaks, but new rooms can be created by all participants on
demand.
This year, we also have a small charity auction and print sales for supporting various Lisp-
related organizations; please stay tuned for the start of the auction during the conference’s
opening, and for the finish during the closing ceremony.
We wish you a good and satisfying Symposium, free of technical issues. See you during the
conference!
Georgiy Tugai, Mark Evenson, Michał Herda

iv ELS 2021

Organization

Programme Chair

• Marco Heisig, FAU Erlangen-Nürnberg, Germany

Local Chair

• Michał Herda

• Mark Evenson, RavenPack

• Georgiy Tugai, Configura

Programme Committee

• Breanndán Ó Nualláin, Machine Learning Programs, Netherlands

• Christophe Rhodes, Google, UK

• David McClain, SpectroDynamics LLC, USA

• Evrim Ulu, Istinye University, Turkey

• Ioanna Dimitriou, Igalia, Germany

• Irène Durand, LaBRI University of Bordeaux, France

• Jim Newton, EPITA Research Lab, France

• Jonathan Godbout, Google, USA

• Kai Selgrad, OTH Regensburg, Germany

• Kent Pitman, Harvard Medical School, USA

• Matthew Flatt, University of Utah, USA

• Michael Sperber, DeinProgramm, Germany

• Olin Shivers, Northeastern University, USA

• Paulo Matos, Igalia, Germany

• R. Matthew Emerson, toughtstuff LLC, USA

• Robert Smith, HRL Laboratories, USA

• Stefan Monnier, University of Montreal, Canada

ELS 2021 v

Sponsors

We gratefully acknowledge the support given to the 14thth European Lisp Symposium by the
following sponsors:

Franz, Inc.
2201 Broadway, Suite 715
Oakland, CA 94612
USA
www.franz.com

RavenPack
Urbanización Villa Parra Palomeras,
29602
Marbella, Malaga Spain
www.ravenpack.com

EPITA
14-16 rue Voltaire
FR-94276 Le Kremlin-Bicêtre CEDEX
France
www.epita.fr

vi ELS 2021

www.franz.com
www.ravenpack.com
www.epita.fr

Invited Contributions

Staged Relational Interpreters: Running Backwards, Faster

Nada Amin, Harvard SEAS, USA

Relational programming, as exemplified in miniKanren, strives to be a pure form of logic pro-
gramming. Relational interpreters enable turning functions into relations, as well as synthe-
sizing functions from partial specifications. However, however successful, the approach incurs
an interpretation overhead. We turn functions into relations, while removing all interpreta-
tion overhead thanks to a novel multi-stage programming mechanism. While partial evalu-
ation has a rich history in both functional and logic programming, multi-stage programming
has so far only been explored in a functional/imperative setting, with many success stories in
high-performance computing. Bringing multi-stage programming to relational programming,
we derive a relational compiler from the relational interpreter. Via this compiler, we gener-
ate relations from functions with no interpretation overhead. In addition to useful first-order
applications, we explore running staged relational programs backwards.
In this talk, I will introduce multi-stage programming in its traditional functional setting and
in the new relational setting. I will explain how to derive a compiler from an interpreter us-
ing generative programming. I will showcase the resulting staged-miniKanren system with a
theorem checker turned prover and various towers of interpreters for generating quines.

Nada Amin is an Assistant Professor of Computer Science at Harvard
SEAS. Previously, she was a University Lecturer in Programming Lan-
guages at the University of Cambridge; a member of the team behind the
Scala programming language at the Ecole Polytechnique Federale de
Lausanne (EPFL), where she pursued her PhD; and a software engineer
at Google, on the compiler infrastructure supporting Gmail and other
Google Apps. She holds bachelor of science and master of engineering
degrees from the Massachusetts Institute of Technology (MIT).

Symbolic expressions for cyber-physical programming

Andrew Sorensen, Australian National University, Australia

Cyber-physical programming gives programmers the ability to engage actively and proactively
in an experimental and experiential relationship with complex virtual, physical and cultural
systems. Cyber-physical programming offers programmers the opportunity to actively shape
and control these complex systems of events - to be engaged with them. Studying these natural
events is often only possible in situ, in-the-world, within their own temporal and spatial frames
of reference.
Cyber-physical programming posits that a causal connection to the world is valuable and that
it can be useful to privilege the present. To quote Rodney Brooks “It turns out to be better to use
the world as its own model”. One of cyber-physical programming’s tenets is that a program’s

ELS 2021 1

state is not only an internal property of the machine, but is also an external property-of-the-
world. This external, physical state, can be sensed and acted upon by both the machine and
the programmer. The programmer is actively engaged in both perceiving and acting upon the
world, directly, but also mediated through the machine. For the cyber-physical programmer,
the physical environment constitutes a meaningful component of a program’s state.

Andrew is an international keynote speaker, academic, performer, edu-
cator, computer scientist and software craftsman with over 20 years of
industry experience. With a diverse portfolio of interests, Andrew is as
likely to be found hacking code in nightclubs as programming compu-
tational physics simulations on high performance computing clusters.
As a Senior Research Fellow in the Computer Science department at
the Queensland University of Technology Andrew convened courses in
High Performance Computing and Enterprise Systems.
Andrew holds a PhD in Computer Science from the Australian Na-
tional University, as well as a Bachelor of Music and a Master of Music,
both from the Queensland University of Technology.

Producing News Analytics and Turning them into Actionable
Insights

Andrew Lawson and Inna Grinis, RavenPack, Spain
We will first look at the basics of RavenPack’s news analytics system, from incoming stories to
outgoing analytics and the technology involved. We will then look at several examples of how
RavenPack’s news volume, sentiment scores, events taxonomy, and connections functionality
can be leveraged to create data insights that can be used to make more informed decisions in
the finance industry and the corporate world.

2 ELS 2021

Program overview

Monday, 3.5.2021

09:00–09:15 Welcome Message
09:15–09:30 Auction Start
09:30–10:30 Andrew Sorensen: Symbolic expressions for cyber-physical programming (keynote)
10:30–11:00 Coffee break
11:00–11:30 Michael Wessel: A Tangram Puzzle Solver in Common Lisp
11:30–12:00 Jim Newton and Adrien Pommellet: A Portable, Simple, Embeddable Type System
12:00–14:00 Lunch
14:00–14:30 Eric Timmons: Common Lisp Project Manager
14:30–15:00 Antoine Hacquard and Didier Verna: A Corpus Processing and Analysis Pipeline for Quickref
15:00.-15:30 Coffee break
15:30–16:00 Lisp in the middle: using Lisp to manage a Linux system
16:00–17:00 Panel Discussion: Implementations of ANSI Common Lisp
17:00–17:30 Lightning talks
17:30 Get-together on Jitsi

Tuesday, 4.5.2021

09:30–10:30 Lawson, Grinis: Producing News Analytics and Turning them into Actionable Insights (keynote)
10:30–11:00 Coffee Break
11:00–11:30 Hayley Patton: A replicated object system
11:30–12:00 Eric Peterson and Peter Karalekas: aether: Distributed system emulation in Common Lisp
12:00–14:00 Lunch
14:00–14:30 Bélanger, Feeley: A Scheme Foreign Function Interface to JavaScript Based on an Infix Extension
14:30–15:00 Robert Strandh: Call-site optimization for Common Lisp
15:00–15:30 Coffee Break
15:30–16:30 Nada Amin: Staged Relational Interpreters: Running Backwards, Faster (keynote)
16:30–17:00 Lightning talks
17:00–17:15 Auction Stop
17:15–17:30 Closing Ceremony
17:30 Conference End

ELS 2021 3

4 ELS 2021

Monday, May 3 2021

ELS 2021 5

A Tangram Puzzle Solver in Common Lisp
Michael Wessel

lambdamikel@gmail.com
Lambda @ Home

Palo Alto, California, USA

ABSTRACT
In this demo, we present a Common Lisp program capable of solving
arbitrary geometric tiling problems. Well-known examples of such
problems are Tangram puzzles. The program is implemented in
Common Lisp, using the Common Lisp Interface Manager (CLIM)
for its GUI. It consists of an editor and solver. We describe and
demo the program and comment on its implementation as well as
employed techniques to make the approach feasible.

CCS CONCEPTS
• Computing methodologies → Discrete space search; Con-
tinuous space search; Spatial and physical reasoning; • Theory
of computation → Computational geometry; • Mathematics
of computing → Combinatoric problems; Solvers; • Human-
centered computing → Graphical user interfaces; User inter-
face programming.

KEYWORDS
Tiling problems, Tangram, Search, Common Lisp, Heuristics, Com-
mon Lisp Interface Manager (CLIM), Geometrical Reasoning, Com-
putational Geometry, NP-Hard Problems
ACM Reference Format:
Michael Wessel. 2021. A Tangram Puzzle Solver in Common Lisp. In Pro-
ceedings of the 14th European Lisp Symposium (ELS’21). 5 pages. https:
//doi.org/10.5281/zenodo.4711456

1 INTRODUCTION
Geometric tiling problems have always fascinated humanity. Tiling
problems occur naturally in many domains, from bathroom floor
designs, over new forms of matter organized in quasicrystals via
Penrose tilings [13, 19], to Turing-complete Domino systems used
for establishing undecidability of computational problems. Tiling
problems also provide for entertaining and challenging leisure time
activities in the form of dissection puzzles, most prominently, Tan-
gram puzzles [20].

A program capable of solving arbitrary finite – and hence decid-
able – tiling problems could be of great practical utility. The long
term goal of this endeavor is to create a program capable of solving
Penrose tilings, as shown in Fig.2. However, the more modest goal
of solving Tangram puzzles was selected as a first milestone on this
journey. A first version of this program was running in 2003 [17].
Given the tremendous advances in computer performance since
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’21, May 03–04 2021, Online, Everywhere
© 2021 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.4711456

Figure 1: Tangram Tiles & Tangram Problems with Solutions

2003, the author was curious whether the program would be more
successful in finding solutions, and hence resurrected, refursbished,
and reworked the heuristics of the original program.

Figure 2: Penrose Tiling (Source: Wikipedia, CC)

The set of standard Tangram tiles and some problems and their
solutions are shown in Fig.1. Only the outline (silhouette) of the
problem polygon is given, and the goal is to cover (or partition)
the silhouette polygon completely with the available tile polygons,
such that tiles do not overlap. Naturally, tiles can can be translated,
rotated, and reflected. In a standard Tangram problem, each tile
must be used exactly once.

Unlike many other classic search problems (8-Queens, Othello,
Checkers, . . .), which are standard AI textbook examples these days
[9], the geometric tiling problem addressed here is considerably
more complex from an implementation point of view, given its
geometric nature.

6 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere Michael Wessel

Figure 3: Solving Tiling Problems by Geometric Search

2 SOLVING GEOMETRIC TILING PROBLEMS
Given a set of tiles T such as the standard Tangram tiles shown
in Fig.1, and the outline (silhouette) of a tiling problem (note that
the concrete arrangements of tiles that constitute its outline is
unknown), one way of solving a tiling problem is by geometric
search.

The search space and process is illustrated in Fig.3. Starting with
the initial problem polygon as the current configuration polygon
(grey root at the top in Fig.3), possible successor configuration
polygons are generated by finding possible alignments of all the
remaining tiles T with the problem polygon C . Each aligned poly-
gon tile is then subtracted from the current configuration polygon.
The search continues with the remainder of the configuration poly-
gon, until it is empty, and has hence been completely covered – a
solution to the tiling problem has been found. Depending on the
tiling problem, for Tangram puzzles it is required that each tile must
be used exactly once, but the solver can also search for solutions
that admit less tiles or allow multiple copies of the same tile to be
used (e.g., for Penrose tilings).

Note that the current configuration polygon is potentially split
into multiple components, as illustrated with the bottom config-
uration in Fig.3. In our solver, a configuration C hence consists
of a set of (not necessarily convex) polygons without holes, and
their union represents the remaining area that still needs to be
partitioned: C = {P1, . . . ,P𝑛}.

A central function in every search algorithm is the successor
state generator. Here, given a selected tile and the current configu-
ration, the function find-possible-alignments finds reasonable
ways of aligning a tile with a configuration, and returns a set of
successor configurations: S C = {C1, . . . ,C𝑛}). The search is per-
formed either depth-first or breadth-first. As a central heuristics,
the successor generator will always try to align a tile with the outer
edges of the current configuration – this is a strategy that humans
use when solving Jigsaw puzzles, but it would probably fail for
Penrose tilings.

Figure 4: Generating Successor Configurations

The number of potential successor configurations 𝛽 (branching
factor) can be very large, and for given configuration C with a set
of (remaining) tiles T given by the formula

𝛽 =
∑︁
𝑐∈C

∑︁
𝑡 ∈T

find-possible-alignments(𝑡, 𝑐)

Heuristics are essential in order to make the search succeed. Three
types of selection heuristics are used to advise the search as follows:

Component selection heuristic: which of the component
polygons is tackled next?

Tile selection heuristic: which of the remaining tiles will be
tried next for alignment with the selected component poly-
gon?

Successor configuration selection heuristic: for the selected
component polygon and tile, which of the generated poten-
tial successor configurations (see Fig.3) will be tried next?

These heuristics are implemented as scoring functions, calculating
geometric characteristic of polygons such as polygon area, number
of polygon components, and compactness, which is defined as
the ratio of the polygon area to the area of a circle with the same
perimeter. These are passed as :key arguments to the sort function
for prioritization of the generated successor configurations, i.e.,
the ordered set S C = {C1, . . . ,C𝑛}). Configurations C𝑖 that yield
higher scores are prioritized in the search. Two configurations are
considered equal in this set if they are congruent.

We have implemented and experimented with an array of dif-
ferent geometric functions for these three types of heuristics and
found a configuration that ensures that many Tangram problems
can be solved in a reasonable amount of time.

The computation of successor configurations / possible align-
ments is illustrated in Fig.4. For a given tile 𝑡 ∈ T and configuration
polygon 𝑐 ∈ C , all possible pairings of segments from the config-
uration polygon and the tile polygon are considered. Each such
segment pair can result in a potential successor configuration. For
a chosen pair of segments, the tile polygon is first translated and

ELS 2021 7

A Tangram Puzzle Solver in Common Lisp ELS’21, May 03–04 2021, Online, Everywhere

Figure 5: Tangram Problem Editor

rotated to match the orientation of the configuration segment, and
then translated onto the configuration polygon. If the transformed
tile polygon then happens to lie completely on the inside of the
configuration polygon (note that it may also overlap or lie fully on
the outside as a result of the transformation), then the transformed
tile polygon is subtracted from the configuration polygon, yielding
a new successor configuration polygon. Polygon subtraction might
result in several (disconnected or only connected over a shared
single vertex, i.e., touching in a point) component polygons.

As a further complication, note that in order to accommodate
for reflections, the individual tiles in the tile set T = {T1, . . . ,T𝑛}
are actually sets of polygons themselves – each tile T𝑖 consist of
a set of (simple) non-congruent polygons which are its reflected
variants. Hence, T𝑖 = {T V 𝑖,1 . . . ,T V 𝑖,𝑚}, and the solver ensures
that only one variant is used of each tile. Note that # T𝑖 = 1 for all
but the parallelogram tile.

3 THE TANGRAM SOLVER APPLICATION
The GUI of the solver is written using the Common Lisp Inter-
face Manager, CLIM [5, 18]. The standard workflow for using the
program is the following:

(1) The graphical editor, see Fig.5, offers rapid construction of
Tangram problems. First, an active set of (construction) tiles
is determined from the “Available Tile Sets” pane. The se-
lected tile set then appears on the right side pane of the
editor, from where they can be pulled into the editor area.
Once in the editor area, tiles can be moved around, rotated
(by 45 degrees), reflected, etc. CLIM gestures and context
menus are available on the tiles. An active adaptive grid

Figure 6: Tangram Problem Library

for proper alignment makes precise problem construction a
breeze.

(2) Once the arrangement is complete, the “Problem” button
is pushed to record a Tangram problem. Only the polygon
outline of the arrangement is recorded, not the tiles and their
actual arrangements. The constructed problem appears in
the “Available Problems” pane, see Fig.6. From there, context
menus for selecting and deleting the problem are available.

(3) To start the problem solver, first the desired options are
determined (whether to compute all solutions or only one,
and if all tiles, fewer or more tiles are admissible). Then,
the “Solve!” button starts the engine. If “Show Thinking” is
checked, the tiling process is visualized and the program’s
progress can be witnessed, see Fig.7. Visualizing the program
at work comes with some performance penalties, but is very
helpful for judging the effectiveness of the solver’s heuristics.
The solver can be stopped at any time. Computed solutions
show up in the “Known Solutions” pane visible in Fig.7 as
soon as they are found.

The usual convenience functions are offered as well; e.g., problems
and solutions can be saved to (and loaded from) disk, and so forth.

3.1 Performance
We haven’t conducted extensive performance evaluations yet, but
let us consider the Tangram problem in Fig.6.

• With the heuristics enabled, an older 2012 iCore 7-2670QM
2.2 Ghz Xenial Ubuntu PC with 8 GBs of RAM finds the first
(dozen) solutions after 10 seconds, see Fig.8.

8 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere Michael Wessel

Figure 7: Watching the Solver at Work

• With the heuristics disabled, the author stopped the search
after 1.25 hours with no solution so far, nicely demonstrat-
ing the necessity of intelligent geometric heuristics for this
approach, even if these heuristics are expensive to compute
due to their geometric nature.

It is interesting to note that the solver frequently finds creative,
new solutions to problems, i.e. solutions that are different from the
original tile arrangement used to construct the problem. Search
sometimes leads to surprising and unexpected solutions. Novel
solutions to standard Tangram problems from the Internet, e.g. the
problems shown in Fig.1, are frequently found by the solver. A
concrete example of this is shown in Fig.8, where the first solutions
(in the “Known Solutions” pane) are clearly different from the tile
arrangement that was used for constructing the problem silhouette
shown in the editor in the first place.

4 IMPLEMENTATION DETAILS
The author has implemented the geometric substrate of the solver
over a number of years as part of his CS master and PhD thesis’
work, from 1996 to 2003 [15, 16]. This base layer encompasses CLOS
classes for geometric object representation (polygons, multiple-
component polygons, lines, chains, points, segments), and metric,
topological and geometric basic functions and methods (computa-
tion of angle, length, orientation, area, and compactness computa-
tion; line intersection, point-in-polygon test, methods for polygon
union, intersection and difference, etc.)

Importantly, qualitative spatial relationships (Cohn’swell-known
RCC8 relationships [2, 11, 12]) for polygons are used for determining
if a pair of polygons are congruent (RCC8 relation Equal), and if

Figure 8: Unexpected Solutions found by the Solver

a candidate tile alignment is valid. Valid aligned tiles must be in
a Tangential Proper Part Inverse relation like in Fig.3, unlike the
invalid Proper Overlap relation from Fig.7.

All of the geometric objects can be dynamically affected by
nested transformation matrices, similar to the ones found in CLIM
(with-translation, with-rotation). Rotating tiles causes float-
ing-point precision challenges, e.g., congruency tests might fail
because of inaccuracies from cos, sin multiplications. Hence, float-
ing point rounding and an epsilon equality predicate (=-eps) is
employed to compensate for these inaccuracies – note that some
rotations correspond to irrational numbers, which cannot be repre-
sented precisely by Common Lisp’s rational numbers.

Due to high-level support functions, the main covering algorithm
and its heuristics are only ≈ 500 Lines of Code (LOC). However,
the underlying geometric substrate implementation contributes ≈
3400 LOC (not all of its functionality is being used though), plus
another ≈ 1800 LOC for the CLIM GUI. There is also a library of
general purpose helper functions over ≈ 1000 LOC (only very few
are being used); as a rough overall estimate, the application consists
of ≈ 5000 LOC.

The program is OpenSource under GPL3 [7], and a YouTube
video of the program in action is available as well [8]. The cur-
rent version requires LispWorks (6 or 7) with CLIM, and runs on
Windows, Linux, and Mac. Windows and Linux executables can be
found in the GitHub repository as well [7].

5 RELATED & FUTUREWORK
This is a demo paper, so we do not attempt to survey the scien-
tific literature on solving dissection or assembly puzzles in depth.

ELS 2021 9

A Tangram Puzzle Solver in Common Lisp ELS’21, May 03–04 2021, Online, Everywhere

However, we would like to present some pointers for the inter-
ested reader for further study, and put our work into context and
perspective.

According to [22, 23], Tangram puzzles are an example of ir-
regular shape packing problems, which are known to be NP-hard.
Analyzing the computational complexity of special classes of (dis-
section) puzzles is an active field of computational geometry re-
search; for example, it was shown only recently that symmetric
assembly puzzles are NP-complete [3].

A plethora of Tangram puzzle game programs and apps is avail-
able on the Internet; however, with the notable exceptions of
[1, 6, 21], these programs are typically incapable of solving new
Tangram problems (without resorting to pre-recorded solutions).

The earliest approach for solving Tangram puzzles was given
by Deutsch & Hayes [4] in 1972. Similar to the author’s program,
their algorithm is geometric in nature, and geometric heuristics are
proposed. An early neural network-based approach is presented in
[10], and a solver utilizing raster-based mathematical morphology
in [23], working on bitmap raster representations. Interestingly,
geometric search is not always the preferred line of attack for
Tangram solving. In our opinion, it is the most straightforward and
most intuitive method though.

Our solver [17] was developed without knowledge of previous
work in the area, and precedes the papers [22, 23] as well as the pro-
grams [1, 6, 21]. It presents a somewhat naïve approach, mimicking
some aspects of human Tangram solving. As such, the performance
is probably not as good as some of the algorithms presented in the
literature, but an in-depth comparison has not been performed yet.
Our program performs surprsingly well on many standard Tangram
problems, but can certainly benefit from refined heuristics and fu-
ture research. A more thorough comparison of our approach with
algorithms and heuristics from the scientific literature should hence
be undertaken in the near future. Moreover, a set of Tangram bench-
mark problems is available [22] and could be used for comparative
performance and completeness evaluations in the future.

One limitation of our current algorithm is that it does not ac-
commodate for Tile scaling during the alignment process. The scale
of the tiles could probably be computed as the square root of the
quotient of the area of the silhouette polygon and the sum of the
Tangram tile areas, assuming the presented problem has a solution.
Another shortcoming of our current algorithm is that it cannot
deal with polygons with holes; standard Tangram problems don’t
require polygons with holes, but Tangrams problems with holes
exist as a variant of the game.

The author intends to develop this further, and will eventually
also consider more complex tiling problems than Tangrams, espe-
cially the aforementioned Penrose tilings. More complex matching
rules will have to be implemented then. A thorough effectiveness
evaluation of the already implemented geometric heuristics on dif-
ferent problems should be conducted before proceeding with more
sophisticated heuristics.

Another action item is to port the application to SBCL and Mc-
CLIM [14]; currently, it requires LispWorks CLIM 2.

ACKNOWLEDGMENTS
The author would like to thank Bernd Neumann for providing the
initial motivation and funding for this work [17], the anonymous
reviewers for thoughtful comments, and Rainer Joswig (aka Lispm)
for compiling the application with LispWorks 7.1 on a Silicon M1
Mac and streamlining the sourcecode for LispWorks application
delivery.

REFERENCES
[1] axel7083. Tangram solver in python 3, 2021. URL https://github.com/axel7083/

tangram-solver.
[2] A. G. Cohn, B. Bennett, J. M. Gooday, and N. Gotts. RCC: a calculus for region

based qualitative spatial reasoning. GeoInformatica, 1:275–316, 1997.
[3] Erik D. Demaine, Matias Korman, Jason S. Ku, Joseph S.B. Mitchell, Yota Otachi,

AndrÃ© van Renssen, Marcel Roeloffzen, Ryuhei Uehara, and Yushi Uno. Symmet-
ric assembly puzzles are hard, beyond a few pieces. Computational Geometry, 90:
101648, 2020. ISSN 0925-7721. doi: https://doi.org/10.1016/j.comgeo.2020.101648.
URL https://www.sciencedirect.com/science/article/pii/S0925772120300420.

[4] E.S. Deutsch and K.C. Hayes. AHeuristic Solution to the Tangram Puzzle.Machine
Intelligence, 7:205–240, 1972.

[5] Franz Inc. Common Lisp Interface Manager (CLIM) 2.0: User Guide, 1994.
[6] Rachel Eaton (Invisibility17). Tangram solver written in python 3 using opencv,

2019. URL https://github.com/Invisibility17/tangram_solver.
[7] Michael Wessel (LambdaMikel). Tangram github repository, mar 2021. URL

https://github.com/lambdamikel/Common-Lisp-Tangram-Solver.
[8] Michael Wessel (LambdaMikel). Tangram youtube demo video, mar 2021. URL

https://www.youtube.com/watch?v=UUn_np8I3zg.
[9] P. Norvig. Artificial Intelligence Programming: Case Studies in Common Lisp.

Morgan Kaufmann, 1992.
[10] K. Oflazer. Solving Tangram Puzzles: A Connectionist Approach. Journal of

Intelligen Systems, 8(5):603–616, 1993.
[11] D. A. Randell, Z. Cui, and A. G. Cohn. A Spatial Logic based on Regions and Con-

nections. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowledge
Representation and Reasoning, pages 165–176, 1992.

[12] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on
regions and connection. pages 165–176, 1992.

[13] P. Steinhardt. The Second Kind of Impossible: The Extraordinary Quest for a New
Form of Matter. Simon & Schuster, 2019.

[14] Robert Strandh and Timothy Moorey. A Free Implementation of CLIM. 10 2002.
URL https://common-lisp.net/project/mcclim/static/documents/clim-paper.pdf.

[15] Michael Wessel. Flexible und konfigurierbare Software-Architekturen für datenin-
tensive ontologiebasierte Informationssysteme. doctoralthesis, Technische Univer-
sität Hamburg, 2008. URL http://tubdok.tub.tuhh.de/handle/11420/834.

[16] Michael Wessel and Ralf Möller. Flexible software architectures for ontology-
based information systems. Journal of Applied Logic, 7(1):75–99, 2009. ISSN
1570-8683. doi: https://doi.org/10.1016/j.jal.2007.07.006. URL https://www.
sciencedirect.com/science/article/pii/S157086830700064X. Special Issue: Em-
pirically Successful Computerized Reasoning.

[17] Michael Wessel and Bernd Neumann. Ein Tangram-spielendes LISP-Programm,
2003. URL https://www.michael-wessel.info/papers/tangram-poster.pdf. Ex-
ponat auf der "Informatik-Expo 2004", Fachbereich Informatik, Univeristät Ham-
burg.

[18] Wikipedia. Common lisp interface manager (clim), mar 2021. URL https://en.
wikipedia.org/wiki/Common_Lisp_Interface_Manager.

[19] Wikipedia. Quasicrystal, mar 2021. URL https://en.wikipedia.org/wiki/
Quasicrystal.

[20] Wikipedia. Tangram, mar 2021. URL https://en.wikipedia.org/wiki/Tangram.
[21] Ziyi Wu (Wuziyi616). Tangram solver written in python 3 using opencv, 2019.

URL https://github.com/Wuziyi616/Artificial_Intelligence_Project1.
[22] Fernanda Yamada and Harlen Batagelo. A comparative study on computational

methods to solve tangram puzzles. In 30th Conference on Graphics, Patterns and
Images (SIBGRAPI), 10 2017.

[23] Fernanda Yamada, Joao Gois, and Harlen Batagelo. Solving tangram puzzles
using raster-based mathematical morphology. In 32th Conference on Graphics,
Patterns and Images (SIBGRAPI), pages 116–123, 10 2019.

10 ELS 2021

A Portable, Simple, Embeddable Type System
Jim E. Newton

jnewton@lrde.epita.fr
EPITA/LRDE

Le Kremlin-Bicêtre, France

Adrien Pommellet
adrien@lrde.epita.fr

EPITA/LRDE
Le Kremlin-Bicêtre, France

ABSTRACT
We present a simple type system inspired by that of Common
Lisp. The type system is intended to be embedded into a host lan-
guage and accepts certain fundamental types from that language
as axiomatically given. The type calculus provided in the type sys-
tem is capable of expressing union, intersection, and complement
types, as well as membership, subtype, disjoint, and habitation (non-
emptiness) checks. We present a theoretical foundation and two
sample implementations, one in Clojure and one in Scala.

CCS CONCEPTS
• Theory of computation→Data structures design and anal-
ysis; Type theory.
ACM Reference Format:
Jim E. Newton and Adrien Pommellet. 2021. A Portable, Simple, Embeddable
Type System. In Proceedings of the 14th European Lisp Symposium (ELS’21).
ACM, New York, NY, USA, 10 pages. https://doi.org/10.5281/zenodo.4709777

1 INTRODUCTION
1.1 Long-term Motivations
The motivation for this research is two-fold. In the larger sense we
will lay the groundwork, so that in a future publication we will be
able reason about the regularity of heterogeneous sequences [28]
in programming languages which support them. By heterogeneous
sequence, we mean a sequence of arbitrary, finite length for which
elements are of various types such as ["Alice" 12 "Bob" 54
"Eve" -3]. Typically, such a sequence does not contain completely
random data, but rather data which follows a pattern: each element
of the sequence must in turn be of a type determined by some sort
of specification.

By reason about the regularity of these sequences we mean some-
how specifying regular (in the sense of regular expressions) se-
quences of types, and to ask questions such as whether a given
sequence (at run-time) belongs to this set. The theory of finite
automata [20] describes how such a question can be answered in
linear time, regardless of the complexity of the expression, provided
that membership of the so-called alphabet can be determined in
constant time for any element of the sequence in question. Other
forms of reasoning might be to ask (at compile-time) whether an
arbitrary sequence in one such set also belongs to another simi-
larly specified set, or to compute a specifier for the intersection of
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’21, May 03–04 2021, Online, Everywhere
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.4709777

such sets and ask whether that intersection is inhabited or empty.
These latter questions can be answered by exploiting an algebra of
operations defined on deterministic finite automata (DFA).

Novice, non-Java-savvy Scala [33, 34] users may be surprised
that the pattern matcher can distinguish between Int and Double
and between List and Array, but cannot distinguish between
List[Int] and List[Double] as this distinction is obviated by
Java type-erasure [6]. We see sequences of constant type as a spe-
cial case of type patterns which may also appear in input data such
as JSON [37] or as s-expression [27].

The theory of deterministic finite automata is a powerful tool for
such verification: however, it can only handle sequences on a finite
alphabet instead of arbitrary values from the infinite set of objects
representable in a programming language. A reasonable intuition
would thus be to consider a finite alphabet of decidable types: each
type representing a potentially infinite set of values. However, these
types may intersect and thus violate the determinism requirement
if a value in the sequence belongs to two overlapping types that
lead to different branches of a given algorithm. Because of their
nice algebraic properties, we wish to employ deterministic finite
automata (DFA), as opposed to non-deterministic (NFA). We must
thus avoid such non-determinism at DFA construction time.

In a smaller sense, we want to be able to compute a proper
partition of the type space (defined formally in Definition 3.1) in
order to decompose large types into smaller non-overlapping types.
By compute a partition of the type space, we mean to express the set
of all objects in the programming language as a disjoint union of
subsets, where each subset is expressed in terms of intersections,
unions, and complements of more fundamental types.

We state clearly that in this article, we will not describe
how to recognize sequences of heterogeneous types yet such as
Array<Int>: this goal would be premature. In [29] we addressed a
generalization of this problem, but only for Common Lisp. Our long
term goal is to extend that approach to work with any programming
language for which SETS has been implemented.

To do so, we need to define beforehand a simple embeddable type
system (SETS) which can be used in such a recognition flow. This
type system is intended to be simple, and not intended to replace
that of Common Lisp, nor is it intended to be powerful enough
to implement the Common Lisp type system. The type system
encapsulates just enough of the Common Lisp type system needed
to implement the regular sequence recognition flow as described
in [28] to other languages.

1.2 Goals and Contributions
We will therefore present in this article the first necessary step to
address the goal of type-based sequence recognition. We introduce
a simple type system (SETS) that defines fundamental types, and

ELS 2021 11

ELS’21, May 03–04 2021, Online, Everywhere Jim E. Newton and Adrien Pommellet

which makes it possible to compute a partition of a type space us-
ing a given set of types and set-theoretic operations (∪,∩, , ∈ , ⊂).
This simple type system will be used as a building block for later
development in a future publication, but deserves careful consider-
ation in its own right.

Our previous work addressed this problem for Common Lisp, as
described in [28]; we begin in this article our goal of generalizing
the method to a larger class of languages. We demonstrate the SETS
type system by implementing it in three programming languages.

• Clojure [18, 19] was chosen because it is a lisp, and we hoped
that it would provide a logical transition for a theory based
in Common Lisp.

• Scala runs on the same JVM [25] as does Clojure, thus al-
lows similar sequences and type reflection operations despite
syntactic differences.

• Python [48] is a dynamic language that makes different as-
sumptions about types than do JVM based languages.

All three of these languages support heterogeneous sequences,
and provide a type system with reflection. The implementation in
Python is in its infancy, and the details of its implementation are
discussed sparingly in this article.

The current article lays a foundation by defining a portable,
Simple, Embeddable Type System (SETS). The principles of SETS,
defined formally in Section 3.2, are inspired by the type system of
Common Lisp, which we outline in Section 2.4. We have identified
some limitations of the Common Lisp type system in Section 4.5
and propose solutions in SETS. We then present two sample imple-
mentations of SETS, one in Clojure and one in Scala in Sections 4.2
and 4.3 respectively.

2 PREVIOUS WORK
2.1 Type-based Sequence Recognition
In [28] we discussed the flow for developing type based sequence
recognition in the explicit context of Common Lisp [2], as Com-
mon Lisp provides a built-in type system capable of expression
Boolean combinations of types of arbitrary complexity. We pre-
sented several algorithms for computing Maximum Disjoint Type
Decomposition (MDTD) [30], but those algorithms make heavy
use of the assumption that the underlying type system is that of
Common Lisp.

A notable implementation detail of rational type expressions in
Common Lisp [29] is that the type definition makes reference to the
satisfies type. This use of satisfies means that in many cases,
subtypep cannot reason about the type. In the current work, we
define the building blocks of a type system which can be extended
(without resorting to satisfies) in a future publication which will
be able to more easily reason about such types.

2.2 Types as Boolean Combinations
Castagna et al. [7] argue that many programmers are drawn to the
flexibility and development speed of dynamically typed languages,
but that even in such languages, compilers may infer types from the
program if certain language constructs exist. The authors argue that
adding set theoretical operations (union, intersection, complement)

to a type system facilitates transition from dynamic typing to static
typing while giving even more control to the programmer.

Researchers in early programming languages experimented with
set semantics for types. Dunfield [13] discusses work related to
intersection types, but omits acknowledging the Common Lisp type
system. He mentions the Forsythe [39] language from the late 1980s,
which provides intersection types, but not union types. Dunfield
claims that intersections were first developed in 1981 by Coppo et
al. [9], and in 1980 by Pottinger [38] who acknowledges discussions
with Coppo and refers to Pottinger’s paper as forthcoming. Work
on union types began later, in 1984 by MacQueen et al. [26].

Languages which support intersection and union types [7, 8, 36],
should also be consistent with respect to subtype relations. Frisch et
al. [15] referred to this concept as semantic subtyping. In particular,
the union of types 𝐴 and 𝐵 should be a supertype of both 𝐴 and 𝐵,
the intersection of types𝐴 and 𝐵 should be a subtype of both𝐴 and
𝐵, and if 𝐴 is a subtype of 𝐵, then the complement of 𝐵 should be a
subtype of the complement of 𝐴. While Coppo and Dezani [10] dis-
cuss intersection types in 1980, according to a private conversation
with one of the authors, Mariangiola Dezani, theoretical work on
negation types originates in Castagna’s semantic subtyping.

The theory of intersection types seems to have influenced mod-
ern programming language extensions, at least in Java [16] and
Scala. Bettini et al. [4] (including Dezani, mentioned above) discuss
the connection of Java 𝜆-expressions to intersection types.

The standard library of Scala language [33, 34] supports a
type called Either. This type serves some of the purpose of
a union type. Either[A,B] is a composed type, but has no
subtype relation neither to 𝐴 nor to 𝐵. Either lacks many of
the mathematical properties of union; it is neither associative
Either [Either [𝐴, 𝐵],𝐶] ≠ Either [𝐴, Either [𝐵,𝐶]], nor commutative
Either [𝐴, 𝐵] ≠ Either [𝐵,𝐴]. Sabin [44] discusses user level exten-
sions to the Scala type system to support intersection and union
types. Yet, Sabin [43] recommends that no one use his implementa-
tion in real code. Doeraene [12, 22] introduces pseudo-union types
in Scala.js. Scala 3 [1, 31, 42] supports intersection and union types
in a type lattice, but not complementary types. However, according
to the Scala 3 specification1, the type inferencer may not consider
union types while computing the least upper bound of two types.

2.3 Difficulties with the Subtype Relation
Grigore [17] addresses subtype decidability in Java [16]: deciding
whether one type is a subtype of another is equivalent to the halt-
ing problem. Kennedy2 and Pierce [24] identify several restrictions
which when imposed, make the question decidable. They investi-
gate the effect of restricting these capabilities in different ways in
Java [16], Scala [32, 33], C#, and .NET Intermediate Language.

In Scala, the operator <:< attempts to compute the subtype rela-
tion, returning true if this relation can be proven, else false. Thus,
the Scala <:< conflates cannot compute with computed to be false.
The method isAssignableFrom defined on java.lang.Class is
also available to the Scala programmer. This (decidable) method

1See https://dotty.epfl.ch/docs/reference/new-types/union-types.html for a description
of the behavior of Union Types in Scala 3
2Curiously, Kennedy [24] from Microsoft Research gives citations for Java and Scala,
but not for C# and .NET Intermediate Language. Perhaps authors believe the reader is
more familiar with C# and .NET IL than with other languages.

12 ELS 2021

A Portable, Simple, Embeddable Type System ELS’21, May 03–04 2021, Online, Everywhere

unsigned-byte
bit

fixnum

rational

float

number

Figure 1: ExampleCommonLisp typeswith intersection and
subset relations

computes the subtype relation, returning true if the subtype relation
is provided by the class hierarchy, and false otherwise.

Bonnaire [5] presents typed Clojure, but does not rigorously
define a Clojure type, and does not implement anything as ambitious
as Common Lisp’s subtypep. The Clojure [18, 19] language offers
an isa? predicate, which is simple and decidable but is ultimately
based on isAssignableFrom which is provided by the JVM [16].

In Common Lisp [2] subtypep can be computationally intensive
in general. Even in cases where the subtype relation is decidable, a
Common Lisp implementation is allowed to return don’t know in
cases deemed to be too computationally intensive. [3, 47]

2.4 Types in Common Lisp
A detailed discussion of Common Lisp types can be found in the
Common Lisp specification [2, Section 4.2.3]. A summary thereof
emphasizing peculiarities of function types can be found in [28]. We
present here a shorter version of that exposé, emphasizing features
potentially portable to other programming languages.

In Common Lisp, a type is a (possibly infinite) set of objects at
a particular point of time during the execution of a program [2].
As illustrated in Figure 1, Common Lisp programmers may take
many ideas about types from the intuition they already have from
set algebra. An object can belong to more than one type. Two
given types may intersect, such as the case of unsigned-byte
and fixnum in the figure, (unsigned-byte ∩ fixnum) ≠ ∅. Types
may be disjoint such as float and fixnum, (float ∩ fixnum) = ∅.
Types may have a subtype relation such as fixnum and number,
(fixnum ⊂ number) or more complicated relations such as

(
bit ⊂

(fixnum ∩ unsigned-byte) ⊂ rational
)
.

Types are never explicitly represented as objects by Common
Lisp. Instead, a type is referred to indirectly by so-called type speci-
fiers, which designate types. The symbol string and the list (and
number (not bit)) are type specifiers [2]. Since types are not ob-
jects specified in the language, but rather designated by specifiers, it
becomes challenging to reason about types. I.e., programmers must
construct algorithms to determine whether designated types are
inhabited vs. empty, and to efficiently represent types designated
by composing type specifiers in various ways.

Two important Common Lisp functions pertaining to types are
typep and subtypep. The function typep, a set membership test,

⊥

symbol

fixnum

string

bignum

float

T

number

integer

Figure 2: Example hierarchy of hosted types. Arrows point
from subtype to supertype.

is used to determine whether a given object is of a given type. Type
specifiers indicating compositional types are often used on their
own, such as in the expression (typep x ’(or string (eql 42))),
which evaluates to true either if x is a string, or is the integer 42.
The function subtypep, a subset test, is used to determine whether
a given type is a recognizable subtype of another given type. The
function call (subtypep T1 T2) distinguishes three cases: (1) that
T1 is a subtype of T2, (2) that T1 is not a subtype of T2, or (3) that
the subtype relationship cannot be determined. Newton [28] and
Valais [46] discuss scenarios which fall into this third case.

3 PORTABLE AND EMBEDDABLE
Here we present a type systemwhich exhibits some notable features
of the Common Lisp type system, in particular, union, intersection,
and complement types, type membership and subtype predicates.
The type system we present is intended to be implementable in
other languages, and should allow run-time code to reason about
sets of values. We present our assumptions with respect to the host
language in Section 3.1, an abstract definition of SETS in Section 3.2,
explain some subtleties of the subset relation in Section 3.4, then dis-
cuss different subset algorithms in Section 3.5. Sections 4.2 and 4.3
present sample implementations in Clojure and Scala respectively.

3.1 Hosted Types
We are interested in embedding a simple type system into a
host language. We will assume that said host language provides
a set of fundamental types which we will accept as given as
well as a distinct set Υ0 of designators for those fundamental
types. Just as Common Lisp distinguishes between types and
type specifiers, we will also distinguish between the types (sets
of values) and their designators (syntactical elements). E.g. con-
sider Υ0 = {symbol, string, number, integer, float, bignum, fixnum}
as shown in Figure 2. See Section 4.1 for a discussion of parameter-
ized types such as List<Int>.

ELS 2021 13

ELS’21, May 03–04 2021, Online, Everywhere Jim E. Newton and Adrien Pommellet

We further assume that the host language provides membership
and subset relations with respect to Υ0. The membership relation
must be decidable and properly implemented in the host program-
ming language. For example, we must be able to determine that
"hello world" ∈ string and that 1.2 ∉ integer .

We also require that the programming language provide a sub-
type query mechanism with respect to Υ0. For example, in Figure 2,
we see that fixnum ⊂ integer ⊂ number and that string ⊄ integer .
Even if the subtype relation is sometimes undecidable, we intend
to exploit the cases when it is decidable. See Section 2.3 for further
discussion of the decidability of the subtype relation.

In Common Lisp, the typep and subtypep functions are built-in,
and symbols implement type designators (called type specifiers in
Common Lisp) for built-in types.

In Clojure, the functions instance? and isa? correspond re-
spectively to the Common Lisp functions typep and subtypep as
far as low level types are concerned. In Python, the functions are
isinstance and issubclass.

In Scala, a class is an object that belongs to a sort of meta-class,
java.lang.Class, and that class has methods named isInstance
and isAssignableFrom. We have access to the (meta-)class object
via that classOf[] syntax.

1 // membership test in Scala
2 classOf[java.lang.String]
3 .isInstance("hello world")
4 // subtype test in Scala
5 classOf[java.lang.Number]
6 .isAssignableFrom(classOf[java.lang.Integer])

3.2 Formal definition of SETS
Different programming languages make different assumptions
about types. We assume a type system in accord with Definition 3.2.

Definition 3.1 (type, type space). Let Σ denote the set of all values
expressible in a given programming language. A type space is the
set 2Σ of subsets of Σ. Each subset of Σ is called a type.

Definition 3.2 (simple embedded type system). A simple embed-
ded type system (SETS) consists in a set Υ of type designators, two
operators ∈ and ⊂, and a type designation function ⟦⟧ : Υ → 2Σ.
Intuitively, each 𝜐 ∈ Υ designates a type which is the set ⟦𝜐⟧. For-
mally, the set Υ and the function ⟦⟧ are defined inductively, using
the following atomic elements:

• Hosted types: let Υ0 be a set of native type designators of
the host language, such that to each 𝑣 ∈ Υ0, a native type 𝜎𝑣
can be matched. Then Υ0 ⊂ Υ and ∀𝑣 ∈ Υ0, ⟦𝑣⟧ = 𝜎𝑣 .3

• Universal type: there is a symbol ⊤ ∈ Υ, and ⟦⊤⟧ = Σ.
• Empty type: there is a symbol ⊥ ∈ Υ, and ⟦⊥⟧ = ∅.
• Singletons: ∀𝑎 ∈ Σ, there is a matching element {𝑎} ∈ Υ,
and ⟦{𝑎}⟧ = {𝑎}.

• Predicates: for any decidable function 𝑓 mapping Σ to
{true, false}, there is a symbol 𝔖𝔞𝔱𝑓 ∈ Υ, and ⟦𝔖𝔞𝔱𝑓 ⟧ =
{𝑥 ∈ Σ | 𝑓 (𝑥) = true}.

And the following constructors:

3Recall from Section 3.1 that we axiomatically assume that this makes sense.

• Union: if 𝜐1, 𝜐2 ∈ Υ, then 𝜐1 ∪ 𝜐2 ∈ Υ and ⟦𝜐1 ∪ 𝜐2⟧ =
⟦𝜐1⟧ ∪ ⟦𝜐2⟧.

• Intersection: if 𝜐1, 𝜐2 ∈ Υ, then 𝜐1 ∩𝜐2 ∈ Υ and ⟦𝜐1 ∩𝜐2⟧ =
⟦𝜐1⟧ ∩ ⟦𝜐2⟧.

• Complement: if 𝜐 ∈ Υ, then 𝜐 ∈ Υ and ⟦𝜐 ⟧ = Σ \ ⟦𝜐⟧.
Moreover, the relations ∈ and ⊂ on Υ should verify the following

properties:
(1) The operator ∈ defines a decidable membership relation be-

tween values and type designators. Formally, given 𝜐 ∈ Υ
and 𝑎 ∈ Σ, 𝑎 ∈ 𝜐 holds if only if 𝑎 ∈ ⟦𝜐⟧, and 𝑎 ∈ 𝜐 if and
only if 𝑎 ∉ ⟦𝜐⟧.

(2) There is a partial subset relation ⊂ on types. Given 𝜐1, 𝜐2 ∈ Υ,
⟦𝜐1⟧ ⊂ ⟦𝜐2⟧ if and only if 𝜐1 ⊂ 𝜐2. However, this subset
relation may be undecidable. See Sections 2.3 and 3.4. △

The 𝔖𝔞𝔱𝑓 type is capable of defining many of the same sets
definable by other types in SETS by clever enough choices of 𝑓 .
However, doing so will limit reasoning power. For example, given
two predicates 𝑓 and 𝑔 it is not possible in general to determine
whether𝔖𝔞𝔱𝑓 ⊂ 𝔖𝔞𝔱𝑔 or whether 𝔖𝔞𝔱𝑓 ∩ 𝔖𝔞𝔱𝑔 is inhabited.

We do not specify how the programming language represents
type designators: possibly as part of the language specification [45,
Chapter 4] as in Common Lisp, or as an Algebraic Data Type
(ADT) [21] implemented as an add–on library.

3.3 Relating SETS to Common Lisp
SETS as described in Section 3.2 is based on the type system of
Common Lisp but simplified, and omitting some features which
make the subtype relation difficult to compute. For example, we
omit interval (such as (float -1.0 (2.0))), mod, and member types
as well as composed forms such as (vector double-float 100).
Whereas Common Lisp defines a member type, SETS represents
such types as a finite union of singleton types.

The hosted types of SETS correspond to the types designated
by the atomic forms of the type specifiers mentioned Figure 2-4 of
Section 4.2.3 in the Common Lisp specification [2] as well symbolic
names of Common Lisp classes, conditions, and structures. List
forms of types mentioned in Figure 4-3 of Common Lisp specifi-
cation Section 4.2.3 are omitted in SETS, such as (cons float),
(function (t)), and (simple-array * 4).

The universal and empty types of SETS are respectively des-
ignated by t and nil in Common Lisp. Singleton types in SETS
are represented by eql in Common Lisp. Predicates in SETS are
represented by satisfies in Common Lisp. Union, intersection,
and complement in SETS are represented respectively by or, and,
and not in Common Lisp.

The ∈ operation in SETS is implemented by the Common Lisp
typep function. The ⊂ operation in SETS is implemented by the
Common Lisp subtypep function, which returns two values. A
second such value of nil means the subtype relation undecidable;
otherwise a first value of true or false correspond to the decidable
true and false.

3.4 A Challenging Subtype Relation
Note that the subtype relation is the atomic function for detecting
intersection, disjointness, and emptiness [3, Sec 6]. We need these

14 ELS 2021

A Portable, Simple, Embeddable Type System ELS’21, May 03–04 2021, Online, Everywhere

checks in order to minimize a partition of the type space. Although
we use functions such as disjoint? and inhabited? in our code,
these are merely semantic wrappers around subtypep?, at least
from the API perspective, if not from the internal implementation
perspective.

However, the subset relation may not always be decidable. Thus,
the decision function in SETS should be allowed to return dont-
know in a manner appropriate to the host language, although we
would like it to be as decisive as possible. We discuss here three
scenarios when such an indecision might occur.

The most obvious situation involves𝔖𝔞𝔱 . Given two arbitrary
decidable predicates 𝑓 and 𝑔, it is not possible to know whether
𝔖𝔞𝔱𝑓 ⊂ 𝔖𝔞𝔱𝑔 . This is a direct consequence of not being able to
decide whether a given recursive language is a subset of another.

A second scenario involves a hidden empty set. Consider disjoint
sets 𝐴 and 𝐵. 𝐴 ∩𝐶 ⊄ 𝐵 if and only if 𝐴 ∩𝐶 ≠ ∅. However, it may
be impossible to decide whether𝐴∩𝐶 is empty, as it is undecidable
to determine whether a given recursive language is empty.

Consider a third scenario featuring two types 𝐴 and 𝐵 that are
disjoint such as the number types Double and Long in the JVM.
We wish to confirm that 𝐿𝑜𝑛𝑔 ⊂ 𝐷𝑜𝑢𝑏𝑙𝑒 . Note that 𝐴 ⊂ 𝐵 if
𝐴 ∩ 𝐵 = ∅ and 𝐴 ≠ 𝐵. If we want to determine whether 𝐴 ⊂ 𝐵 ,
testing whether 𝐴 = 𝐵 would be a mistake: we would have to test
both 𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴, thus introducing an infinite loop in our
subtype procedure.

We consider the subtype procedure inaccurate if it returns dont-
know in a decidable case. We use the term inaccurate deliberately
after considering alternative terminology. The only way we have of
knowing whether the subtype relation is satisfied is to determine
so (or not so) algorithmically. Given two algorithms, 𝑋 and 𝑌 , if
𝑋 determines that 𝐴 ⊂ 𝐵 or that 𝐴 ⊄ 𝐵, but 𝑌 returns dont-know
then we consider 𝑌 less accurate then 𝑋 in this regard. Thus, in
some cases, it is algorithmically impossible to distinguish between
an inaccurate answer and an undecidable problem.

Our current solution to the question of whether 𝐿𝑜𝑛𝑔 ⊂ 𝐷𝑜𝑢𝑏𝑙𝑒
is to include an admittedly inaccurate special case in the subtype
procedure which checks whether it is dealing with hosted types
and their complements. We may then use known properties of
hosted types, as in Algorithm 1 of Section 4.4, to determine that
𝐷𝑜𝑢𝑏𝑙𝑒 ⊄ 𝐿𝑜𝑛𝑔. We may however not be able to directly handle
relations involving more complex types such as {0} ⊂ {1} ∪ {0} .

Undetermined cases can cause a cascade effect in in-
creasing the complexity of a procedure. Indeed, consider
two types 𝐴 and 𝐵. Their standard partition is defined as
{𝐴 ∩ 𝐵,𝐴 ∩ 𝐵 , 𝐴 ∩ 𝐵, 𝐴 ∩ 𝐵 } \ {∅}. The automata-theoretic ap-
proach, alluded to in Section 5.2, heavily relies on such partitions.
The maximum size of this partition is 4, but various subtype rela-
tions may decrease it: as an example, if 𝐴 ⊂ 𝐵 then 𝐴 ∩ 𝐵 = ∅.
Given that the size of standard partitions can grow exponentially
with the number of types involved, it is of the utmost importance
to keep it as small as possible. Thus an inaccuracy in the algorithm
may cause unnecessary performance problems when constructing
finite automata.

3.5 Computing the Subtype Relation
The specification of SETS does not impose any particular algorithm.
We discuss here three known approaches which have been used
to compute subtypep in Common Lisp: (1) Baker’s algorithm, (2)
Binary Decision Diagrams, and (3) Symbolic Boolean manipulation.

Baker’s [3] algorithm (approach 1) was presented anew by
Valais [47] in attempt to make it more understandable. At a high
level, the algorithm attempts to represent every type designator
by a bit-mask, allowing union, intersection, and complement to be
computed by Boolean operations of bit-vectors. Equivalent types
have the identical bit-masks; the empty type has an all zero bit-
mask. Baker’s algorithm decides whether 𝐴 is a subtype of 𝑋 by
computing the bit-wise AND of 𝑎 and 𝑥 given a bit-vector 𝑎 of 𝐴
and a bit-vector 𝑥 of 𝑋 . If the result is 0, then 𝐴 ⊂ 𝑋 . The ECL [41]
Common Lisp compiler uses a variant of Baker’s algorithm.

We [30] presented Binary Decision Diagrams (BDDs) (approach
2) as computation tools for manipulating Common Lisp type speci-
fiers. BDDs are a powerful tool for manipulating Boolean functions.
A BDD can represent a type specifier, and Boolean operations be-
tween BDDs compute canonical forms for union, intersection, and
complement types.

Approach 3 employs a symbolic Boolean manipulation approach.
A type designator represents an abstract syntax tree (AST) for
a Boolean expression. Computing the subtype relation involves
checking a long but inexhaustive series of conditions, some neces-
sary, some sufficient, and some both necessary and sufficient. If a
necessary condition fails, false is returned. If a sufficient condi-
tion succeeds, true is returned. If all these conditions fail to decide
the result, then dont-know is returned. The SBCL[40] Common
Lisp compiler’s implementation of subtypep relies on a similar yet
augmented procedure [23].

The sample implementations of SETS presented in Section 4 rely
on the third approach. In the Scala implementation (Section 4.3)
of SETS, dynamic dispatch is used on the class of the type des-
ignator object to direct the computation away from tests known
to be irrelevant. In the Clojure implementation (Section 4.2), type
designators are represented by s-expressions, which are examined
by an ad-hoc pattern matcher which determines according to the
first element (and, or, not, etc) which irrelevant checks it should
eliminate. Examples of such conditions are:

• necessary and sufficient: 𝐴 ⊂ 𝑋 if and only if 𝑋 ⊂ 𝐴.
• sufficient: 𝑋 ⊂ 𝐴 ∪ 𝐵 if 𝑋 ⊂ 𝐴 or 𝑋 ⊂ 𝐵.
• sufficient: 𝐴 ∩ 𝐵 ⊂ 𝑋 if 𝐴 ⊂ 𝑋 or 𝐵 ⊂ 𝑋 .
• necessary: 𝑋 ⊂ 𝐴 ∩ 𝐵 only if 𝑋 ⊂ 𝐴 and 𝑋 ⊂ 𝐵.

We must also take into account the computational complexity
of the solution. Our representation of a type designator is an ex-
pression tree. Some operations on such a tree have exponential
complexity in terms of the height of the tree. It is possible to mini-
mize the depth of the tree by converting the expressions to DNF
(disjunctive normal form) or CNF (conjunctive normal form), but
the conversion itself has an exponential worst case complexity. Yet,
conversion to a normal form can significantly increase the accuracy
of the decision procedures, as we will demonstrate in Section 5.1.

ELS 2021 15

ELS’21, May 03–04 2021, Online, Everywhere Jim E. Newton and Adrien Pommellet

4 IMPLEMENTATIONS OF SETS
Three implementations of SETS are currently available, one in
Clojure as described in Section 4.2, a second in Scala as described
in Section 4.3, and a third which is currently under development
in Python. The Python implementation (called Genus) is publicly
available at https://gitlab.lrde.epita.fr/jnewton/python-rte, but we
do not discuss specific details thereof in this article.

4.1 Java Subclass vs. SETS Subtype
In order to avoid confusion later, we clarify here that types in SETS
are not the same as what a Java programmer might otherwise think
of as a type, nor the Scala or Clojure programmer.

The Clojure and Scala implementations of SETS both fundamen-
tally manipulate the same low-level objects within the JVM, albeit
the derived classes of objects expressible in each language are dif-
ferent. Both at the Scala level and the Clojure level, no substantial
difference is made between classes and interfaces—a fact which
might be unfamiliar to the Java programmer. The Scala and Clojure
implementations of SETS treat interfaces and classes identically in
the sense that a type (in the SETS sense) is a set of objects which
share a particular java.lang.Class in a particular list of super
classes.

If 𝐶𝐶 is a class in Java, then SETS associates with 𝐶𝐶 the set
of all (Scala or Clojure) objects whose java.lang.Class contains
𝐶𝐶 in its list of super classes. Similarly, if 𝐶𝐼 is an interface in
Java, then SETS associates with 𝐶𝐼 the set of all objects whose
java.lang.Class contains 𝐶𝐼 in its list of super classes. In this
sense 𝐶𝐼 ⊂ Object in SETS even though a Java programmer might
insist that 𝐶𝐼 is not a subclass of Object. That is to say, when we
speak of subtype-ness in SETS, we are strictly referring to whether
one set of objects is a subset of another set, not whether Java
considers the classes as subtypes.

In order to avoid confusion, we state explicitly that we have not
extensively experimented with parameterized Java types such as
List<String>. Java type-erasure makes some such introspection
impossible, but we do not know to what extent (if at all) it is pos-
sible to query such types at run-time via the Java reflection API.
Furthermore, we do not know to what extent a user of Genus can
confuse the system by using such parameterized types.

4.2 Genus, SETS in Clojure
The Clojure implementation of SETS is called Genus. The documen-
tation is available publicly, at https://gitlab.lrde.epita.fr/jnewton/
clojure-rte/-/blob/master/doc/genus.md. The source code is avail-
able as part of a larger project called clojure-rte at https://gitlab.
lrde.epita.fr/jnewton/clojure-rte. Readers familiar with the Com-
mon Lisp type system will find Clojure Genus to be intuitive, and
will recognize that we are, in user space, imposing a simplified
version of the Common Lisp type system onto Clojure.

4.2.1 How Clojure-Genus is used. The API of Genus consists of
an implicit data structure which implements the type designators,
following the pattern described in Definition 3.2. In Clojure Genus,
a type designator is one of the following:

• Hosted types:A symbol, 𝑠 for which (resolve s) has type
java.lang.Class. E.g., String or clojure.lang.Symbol.

• Universal: :sigma.
• Empty: :empty-set.
• Singletons: A list of the form (= x). E.g., (= 0).
• Predicates: A list of the form (satisfies f). f is a symbol
resolving to a function. E.g., (satisfies odd?).

• Union: A list of the form (or ...). Operands are type
designators. E.g., (or String (satisfies keyword?)).

• Intersection: A list of the form (and ...). Operands are
type designators. E.g., (and Long (satisfies pos?)).

• Complement: A list of the form (not x). Operand is a type
designator. E.g., (not (or Long String)).

As required by Definition 3.2, two functions typep and subtype?
on type designators implement the ∈ and ⊂ operators. The typep
(binary) function can be used as in (typep "hello" ’(or String
clojure.lang.Symbol)), and returns true or false.

The subtype? function is more complicated; it accepts two ar-
guments 𝐴 and 𝐵, and returns one of true, false, or :dont-know.
If subtype? proves that 𝐴 ⊂ 𝐵, it returns true; if it proves that
𝐴 ⊄ 𝐵, it returns false. Otherwise, it returns :dont-know.

In addition to subtype? two other functions are provided for
reasoning about types via type designators:

• disjoint?, returns true, false, or :dont-know indicating
whether two types are disjoint, i.e. their intersection is empty.

• inhabited? returns true, false, or :dont-know indicating
whether the type is not empty.

The disjoint? and inhabited? functions are not required by
the SETS specification. We have implemented them here to facil-
itate the implementation of the subtype predicate. In fact, given
a fully functional, self-contained implementation of subtypep?,
disjoint? and inhabited?, if needed, could be implemented in
terms of subtype?. Two types are disjoint if their intersection is a
subtype of the empty type. A type is inhabited if it is not a subtype
of the empty type. Special care would need to be taken for the case
that subtype? returns dont-know.

4.2.2 How Clojure-Genus is implemented. The implementation
of the public API (including the functions typep, subtype?,
disjoint?, and inhabited?) is around 1600 lines of Clojure code.
Space does not permit a full explanation of all the code. We invite
the reader to peruse the code. We will summarize some details of
the functions typep and disjoint?.

The typep function is implemented as a multi-method, where
each method implements the type membership decision for a par-
ticular type designator. Two such methods are shown here.

1 (defmethod typep 'not [a-value [_a-type t]]
2 (not (typep a-value t)))
3

4 (defmethod typep 'and [a-value [_a-type & others]]
5 (every? (fn [t1] (typep a-value t1)) others))

Whereas methods implement typep directly, other functions are
implemented with a shadow function; e.g., -subtype?, -disjoint,
and -inhabited. These are not methods in the normal Clojure
sense, but rather are called according to a Common Lisp-like
method-combination [35]. The method-combination calls each of
the methods in turn. Each method attempts to prove sufficient

16 ELS 2021

A Portable, Simple, Embeddable Type System ELS’21, May 03–04 2021, Online, Everywhere

conditions or disprove necessary conditions as explained in Sec-
tion 3.5 and thus return true, false, or :dont-know. The method-
combination continues to call the methods until one is conclusive,
returning :dont-know as a last resort. The disjoint? function is
an exception. Its method-combination assures that (disjoint A
B) returns the first conclusive value of either (-disjoint? A B)
or (-disjoint B A), or :dont-know as a last resort.

1 (defmethod -disjoint? 'or [t1 t2]
2 (cond (not (gns/or? t1))
3 :dont-know
4 ;; sufficient
5 (every? (fn [t1'] (disjoint? t1' t2 false))
6 (rest t1))
7 true
8 ;; necessary
9 (some (fn [t1'] (not (disjoint? t1' t2 true)))
10 (rest t1))
11 false
12 :else :dont-know))
13

14 (defmethod -disjoint? :subtype [sub super]
15 (cond (and (subtype? sub super false)
16 (inhabited? sub false))
17 false
18 :else :dont-know))

In the -disjoint? ’or method above, the code asks whether
the first argument called is a type designator of the form (or ...).
If it is not of this form, then :dont-know is returned. Otherwise
other necessary and sufficient conditions are tested. If they are
inconclusive, :dont-know is returned, indicating to the caller to
continue with other methods of the method combination.

Two tests are made (in the 2nd and 3rd clause of the cond). First,
a sufficient condition examines each of operand (or ...) to detect
whether all of them designate a type which is disjoint from t2; if
so, then the types are deemed to be disjoint. Second, a necessary
condition examines each operand of (or ...) to detect whether
at least one of them is definitely NOT disjoint from t2; if such a
type is found, then we conclude that that t1 and t2 are not disjoint.
Finally, if the tests were inconclusive we return :dont-know.

The -disjoint :subtype method shown above checks an ex-
pensive but general condition. The method attempts to detect
whether the two designated types are in a subtype relation. If𝐴 ⊂ 𝐵
then the types are not disjoint, except in the case that𝐴 = ∅. Since ∅
is disjoint from every type, including itself, we must assure that the
type in question is inhabited, via a call to the inhabited? method.

We show the implementation of this method to partially justify
the reason we have included the inhabited? method in our pro-
tocol. During our implementation of Clojure Genus we found the
existence of inhabited? simplifies the logic of certain subtype and
disjoint decisions, even if not strictly necessary. In Common Lisp
(not (subtypep A nil)) serves a similar purpose, understand-
ing the caveat that if Common Lisp (subtypep A nil) returns a
second value of nil then (not (subtypep A nil)) still evaluates
to true, even though A may not really be inhabited.

The method-combination assures that once the method above
with dispatch value ’or returns true or false, then the method
whose dispatch value is :subtype is averted.

4.3 Genus, SETS in Scala
The Scala Genus implementation is about 1500 lines of Scala code—
roughly the same size as the Clojure version. The code is avail-
able publicly at https://gitlab.lrde.epita.fr/jnewton/regular-type-
expression/-/tree/master/cl-robdd-scala/src/main/scala/genus.

In Scala Genus a type designator is implemented as an abstract
class named SimpleTypeD (simple-type-designator), and several
leaf classes which extend the abstract class. There is one leaf class
per type designator, e.g. the case class SAnd defines the type desig-
nator implementing intersection, and analogously SOr for union.
There are also two singleton objects STop and SEmpty representing
the top and bottom types in the type lattice. The class SAtomic
serves to implement the hosted types, interfacing the Genus system
with the class system of the JVM. Finally, the classes SEql (single-
tons), SCustom (predicates), SNot (complements) complete the list
of cases required in Definition 3.2.

The class, SimpleTypeD, declares methods named typep,
disjoint, inhabited, and subtypep, and each subclass overrides
the methods in these protocols to implement case specific logic.
The method typep returns type Boolean; however, whereas the
corresponding methods in Clojure return true/false/:dont-know,
these Scala methods return Option[Boolean] with Some(true)
and Some(false), and None. That these methods return an Option
as opposed to a Boolean alleviates the temptation to the program-
mer of treating the return value as a Boolean, as further discussed
in Section 4.5.

We omit more details of the Scala implementation in this article,
and invite the curious reader to download the Scala code.

4.4 Disjoint decision on JVM hosted classes.
In Section 3.1 we explained how the Clojure function isa? and the
Scala method isAssignableFrom are used to determine the sub-
type relation for JVM classes which are the classes we are hosting
in our simple, embedded type system.

We wish now to discuss how the disjoint decision is computed.
Note that we are not trying to ask whether the two classes have a
common superclass. The question, rather, is about the intersection
of two sets of objects: all the objects of class 𝑐1 and all the objects
of class 𝑐2. We ask whether it is provable that those sets have no
common elements. A simple example is that if 𝐴 and 𝐵 are two
distinct final classes. Then there is no object which is a member
of both classes simultaneously. I.e., the set of objects of class 𝐴 is
disjoint from the set of objects of class 𝐵. The question is trickier
when considering interfaces, abstract classes, and other classes.

Some readers may object to the fact that we refer to Java in-
terfaces and Java classes both as classes. In fact, within the JVM
both interfaces and classes are themselves objects whose type
is java.lang.Class, thus we unapologetically refer to them as
classes. Various flavors of Java classes may be distinguished us-
ing the Java reflection API which is available both from Clojure
and also Scala. The Clojure interface is a bit easier so we start
there. The Clojure clojure.reflect library provides a function

ELS 2021 17

ELS’21, May 03–04 2021, Online, Everywhere Jim E. Newton and Adrien Pommellet

type-reflect which returns a data structure (a map) with a
:flags field. We use the value of this field to distinguish between
four cases: :interface, :final, :abstract, and :public. The
code is shown here.

1 (defn class-primary-flag [t]
2 (let [r (refl/type-reflect (find-class t))]
3 (cond (contains? (:flags r) :interface) :interface
4 (contains? (:flags r) :final) :final
5 (contains? (:flags r) :abstract) :abstract
6 :else :public)

In Scala Genus, we have implemented the same ca-
pability using JVM methods directly. The Java library
java.lang.reflect.Modifier is available to the Scala pro-
grammer and provides methods Modifier.isFinal, and
Modifier.isInterface. These methods are sufficient as the
disjoint decision treats abstract and public classes identically.

Since we can detect whether a JVM class is an interface, final, or
abstract/public class, the disjoint decision follows Algorithm 1.

In Algorithm 1 we check on line 1 whether either class is a
subclass of the other, including whether the two classes are equal
(a potentially optimizable special case). If so, every object of one
type is in the other, so they are not disjoint.

The astute reader will recognize a loophole which line 1 ignores.
We are implicitly supposing the types are inhabited. If a given Java
class designates a vacuous type, our assumption will be violated.
An empty type is disjoint from every type, including itself. More
research is needed to accommodate Java classes for which they nor
any subclass thereof can be instantiated.

On line 3 we ask whether either is final, encompassing two cases:
exactly one is final, or both are final. If exactly one is final, then
we’ve already determined on line 1 that the final class does not
inherit from the non-final class. So in this case they are disjoint as
no object can be of both classes. Second case is if both classes are
final, which by definition designate disjoint sets.

On line 5 we ask whether either is an interface, knowing that
neither is final. Thus we have an interface and some other non-final
class. Here we chose to return false, because we cannot prove that
no class inherits from both of these. If both classes are interfaces,
then it is possible to create another class (abstract or final) which
extends both of them. If one, say 𝐼 , is an interface, and the other,
say 𝐶 , is public or abstract, then again is it possible declare a third
class which inherits from 𝐶 and implements interface 𝐼 .

Note that the decision at line 5 to return false is one which
determines the semantics of our system. It might happen be true
that there exists no class which includes both classes in its lineage
list. If this is the case, then indeed the two designated sets are in fact
disjoint. However, since new classes can be loaded at run-time, and
we cannot predict the future, we chose to return false saying that
there are cases when the two sets intersect, thus are non-disjoint.
The semantics of our system are currently undefined if classes are
modified at runtime or if an object is mutated in a way which
changes its type. See Section 5.2 for a discussion of defining these
system semantics differently.

Finally, on line 7, we are in a position that neither class is final,
neither is an interface, and neither is a subclass of the other; i.e., they

are either abstract classes or otherwise public classes in separate
hierarchies which cannot be further mixed using class inheritance.
Therefore we return true as they designate disjoint sets.

Algorithm1: Compute the disjoint relation between JVM classes
Input: 𝑐1, 𝑐2 : two JVM classes
Output: Boolean indicating whether the classes are disjoint

1 if 𝑐1 ⊂ 𝑐2 or 𝑐2 ⊂ 𝑐1 then
2 return false
3 else if 𝑐1 is final or 𝑐2 is final then
4 return true
5 else if 𝑐1 is interface or 𝑐2 is interface then
6 return false
7 else
8 return true

4.5 Perceived Limitations of CL Type System
SETS addresses some of our perceived limitations of the Common
Lisp type system. In the Genus implementations of SETS we have
separated the subtype predicate from the inhabited and disjoint
predicates. This distinction is not strictly necessary, as also dis-
cussed in Section 4.2.1; nevertheless we found the separation sim-
plifies some of the logic and facilitates unit testing in some cases.
For some types, such as hosted types, it is straightforward to define
disjointness and habitation and to define subtype in terms of those.

In Common Lisp, the return value of (subtypep (and string
A) number) depends on whether A designates an inhabited type. If
A is defined using satisfies, then (subtypep (and string A)
number) is apt to return dont-know. Genus allows the definition of
a new type to specify the behaviors of the subtype, inhabited, and
disjoint predicates with respect that that new type. In portable Com-
mon Lisp, user defined types cannot be integrated into subtypep.
There is simply no facility for doing so. In Genus, subtype is defined
in terms of extensible code allowing applications defining a type to
specify the behavior with respect to the new type.

Another problem (feature) of cl:subtypep is that it can acci-
dentally be used as a predicate. The user may make believe that it
returns true or false. But in reality such usage is prone to error as
the usage conflates dont-know with false. When (subtype A B)
returns false, the caller should not assume that A is not a subtype
of B. Nevertheless, this mistake is exceedingly easy to make.

Scala Genus defines subtypep with return type
Option[Boolean], rather than Boolean. Although this may
sometimes be an annoyance, it forces in the programmers to
remember that subtypep is not a 2-way predicate. Clojure Genus,
admittedly, does fall prey to this potential delusion. In Clojure,
subtype? takes three arguments, the third of which is the value
to return in the dont-know case, and is a gentle reminder to the
programmer of the 3-way nature of the function. Nevertheless, the
programmer can still accidentally use logic like: (if (subtype?
A B :dont-know) ...), which will follow the true path even
if :dont-know is returned, because :dont-know is considered a
truthy value in Clojure.

18 ELS 2021

A Portable, Simple, Embeddable Type System ELS’21, May 03–04 2021, Online, Everywhere

(1) (2) (3) (4)
Scala Scala Clojure Clojure

default inhabited default inhabited
accuracy % 66.6 57.8 49.4 52.9
accuracy DNF % 81.0 92.0 61.7 83.0
gain % 18.0 35.5 20.2 33.0
loss % 3.6 1.4 7.9 2.4

Table 1: Accuracy results of subtypep

5 CONCLUSION
5.1 Results
We have conducted experiments to measure the accuracy of the
SETS algorithm in Clojure and Scala. In both implementation host
languages the test proceeds similarly. We select two type designa-
tors, td1 and td2, by constructing them at random but limiting
them to a maximum depth. Next we test whether td1 is a subtype
of td2. At each iteration we remember whether this test returns
true, false, or dont-know. Thereafter, we canonicalize the two
type designators to DNF, dnf1 and dnf2; and perform the subtype
test on the new type designators. We repeat this procedure 10000
times and tally the results.

The use of randomly generated test cases without regard to
likelihood is a common practice in property based testing [14].

Column 1 of Table 1 summarizes the results when run in Scala.
Canonicalizing to DNF form gives an apparent 18% increase in
accuracy. However, we did notice that in 3.6% of the cases, subtypep
was able to determine the relation on the non-normalized forms,
but was lost that ability after converting to DNF.

These results are highly dependent on the generator of random-
ized type designators. We observed that about 50% of the time, a
type designator was generated for which it was impossible to de-
termine its habitation, and that td1 and td2 were equivalent types
20.5% of the time. In the second test we restricted the generator
to produced pairs of type designators which are inhabited and not
equivalent. Results of this second test are shown in column 2.

Columns 3 and 4 show similar results for Clojure Genus. We
notice that the percentages are different for Clojure as compared to
Scala. The subtype decision procedure is roughly 20 to 30 percent
more accurate if the type designators are canonicalized. However,
there is a small set of cases (2 to 8 percent) where the subtype
relation is computable before canonicalization but not after.

Recall that by accurate we are not referring to whether the sub-
type relation can be determined, but rather whether one algorithm
is able to determine it while another algorithm reports dont-know.

To help the reader understand some reasons why the testing
results differ for the two Genus implementations, we offer several
comments. (1) The random type generator for the intersection
and union types in the Clojure implementation, always generates
binary operations, while the Scala generator generates from 1 to 5
arguments, thus the random sample of types is different. (2) The
subtype? in Clojure diverges from the corresponding code in Scala
because they have been developed at different times. An audit of
the code is needed to verify that the two implementations have
exactly the same sets of necessary and sufficient conditions. (3) The

set of base types in the Scala Genus code base includes user defined
classes, to model the fact that Scala programs may make heavy use
of user defined types; whereas the Clojure Genus code base has no
such test cases, to model the fact that user defined types are much
rarer in Clojure programs.

5.2 Perspectives
In the next phase of our research, we will present a theory describ-
ing how symbolic finite automata [11, 49] can be used in pattern
recognition of heterogeneous sequences of types belonging to SETS.
In order to accept such sequences, we will consider finite automata
whose transitions are labeled by SETS. This possibly infinite alpha-
bet prevents a direct determinization process. However, the Boolean
operations provided by SETS will make it possible to computate
an appropriate partition that allows us to make these automata
finite and deterministic. This work already exists [28] for Common
Lisp, and we consider it important to generalize to a wider class of
programming languages with a sound theoretical foundation.

In Section 4.3 we defined the semantics of our subtype search to
allow for classes to be loaded at compile time. It would be interesting
to experiment with a model which assumes a disabled class loader.
Our current research involves investigating the question in the
Python Genus implementation of which we can walk down the
class graph, determining definitively whether two given classes
have a common subclass. We have not yet investigated whether the
JVM reflection API allows us to perform such a downward search
for classes currently defined.

In Section 4.1 we stated that the results are undefined if the
Genus user employs parameterized Java types such as Array[Int].
We would like to characterize to which extent, if any, such types
could be used, or at least whether such types could be detected
and explicit exceptions thrown rather than leaving the behavior
undefined.

As experimental support for our symbolic finite automata theory,
we will implement regular type expressions (RTEs) for Clojure and
Scala, and eventually also for Python. RTEs will allow us to specify
and efficiently recognize regular patterns in sequences, as was
alluded to in Section 1.1. The implementation in Clojure is well
underway and is available in its preliminary form.

Baker’s [3] algorithm contains many assumptions about the
Common Lisp type system, such as how to handle ranges, com-
plex numbers, and CLOS objects. SETS is by definition, a simpler
type system; nevertheless, it is currently unclear how to enhance
the SETS specification to make it possible to implement Baker’s
algorithm. We consider it a matter of ongoing research.

REFERENCES
[1] Nada Amin. Dependent Object Types. unknown, page 134, 2016.
[2] Ansi. American National Standard: Programming Language – Common Lisp.

ANSI X3.226:1994 (R1999), 1994.
[3] Henry G. Baker. A Decision Procedure for Common Lisp’s SUBTYPEP Predicate.

Lisp and Symbolic Computation, 5(3):157–190, 1992. URL http://dblp.uni-trier.de/
db/journals/lisp/lisp5.html#Baker92a.

[4] Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, Paola Giannini,
and Betti Venneri. Java & Lambda: a Featherweight Story. Logical Methods in
Computer Science, 2018. URL http://www.di.unito.it/~dezani/papers/bbdgv18.pdf.
to appear.

[5] Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. Practical
optional types for clojure, 2018.

ELS 2021 19

ELS’21, May 03–04 2021, Online, Everywhere Jim E. Newton and Adrien Pommellet

[6] Gilad Bracha. Generics in the java programming language. July 5, 2004. URL
http://www.cs.rice.edu/~cork/312/Readings/GenericsTutorial.pdf.

[7] G. Castagna and V. Lanvin. Gradual Typing with Union and Intersection Types.
Proc. ACM Program. Lang., unknown(1, ICFP ’17, Article 41), sep 2017.

[8] Giuseppe Castagna and Alain Frisch. A Gentle Introduction to Semantic Subtyp-
ing. In Proceedings of the 7th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP ’05, pages 198–199, New York,
NY, USA, 2005. ACM. ISBN 1-59593-090-6. doi: 10.1145/1069774.1069793. URL
http://doi.acm.org/10.1145/1069774.1069793.

[9] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional Characters of
Solvable Terms. Mathematical Logic Quarterly, 27(2-6):45–58, 1981. doi: 10.1002/
malq.19810270205. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.
19810270205.

[10] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic
functionality theory for the 𝜆-calculus. Notre Dame Journal of Formal Logic, 21
(4):685–693, 1980. doi: 10.1305/ndjfl/1093883253. URL https://doi.org/10.1305/
ndjfl/1093883253.

[11] Loris D’Antoni and Margus Veanes. The power of symbolic automata and trans-
ducers. In Computer Aided Verification, 29th International Conference (CAV’17).
Springer, July 2017. URL https://www.microsoft.com/en-us/research/publication/
power-symbolic-automata-transducers-invited-tutorial/.

[12] Sébastien Doeraene. Pseudo-union types in scala.js, August 2015. URL https:
//www.scala-js.org/news/2015/08/31/announcing-scalajs-0.6.5/.

[13] Joshua Dunfield. Elaborating Intersection and Union Types. SIGPLAN Not., 47
(9):17–28, September 2012. ISSN 0362-1340. doi: 10.1145/2398856.2364534. URL
http://doi.acm.org/10.1145/2398856.2364534.

[14] George Fink and Matt Bishop. Property-based testing: A new approach to testing
for assurance. SIGSOFT Softw. Eng. Notes, 22(4):74–80, July 1997. ISSN 0163-5948.
doi: 10.1145/263244.263267. URL https://doi.org/10.1145/263244.263267.

[15] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping:
Dealing set-theoretically with function, union, intersection, and negation types.
J. ACM, 55(4):19:1–19:64, September 2008. ISSN 0004-5411. doi: 10.1145/1391289.
1391293. URL http://doi.acm.org/10.1145/1391289.1391293.

[16] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. The
Java Language Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st
edition, 2014. ISBN 013390069X, 9780133900699.

[17] Radu Grigore. Java generics are turing complete. CoRR, abs/1605.05274, 2016.
URL http://arxiv.org/abs/1605.05274.

[18] Rich Hickey. The clojure programming language. In Proceedings of the 2008
symposium on Dynamic languages, page 1. ACM, 2008.

[19] Rich Hickey. A history of clojure. Proc. ACM Program. Lang., 4(HOPL), June 2020.
doi: 10.1145/3386321. URL https://doi.org/10.1145/3386321.

[20] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321455363.

[21] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of
haskell: Being lazy with class. In Proceedings of the Third ACM SIGPLAN Con-
ference on History of Programming Languages, HOPL III, page 12–1–12–55, New
York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595937667.
doi: 10.1145/1238844.1238856. URL https://doi.org/10.1145/1238844.1238856.

[22] Lionel Parreaux Jim Newton, Sébastien Doeraene. Union types in scala 3, feb
2020. URL https://contributors.scala-lang.org/t/union-types-in-scala-3/4046.

[23] Douglas Katzman. Email conversation with SBCL developer about the undocu-
mented subtypep implementation with SBCL, February 2021.

[24] Andrew Kennedy and Benjamin C. Pierce. On decidability of nominal
subtyping with variance. In International Workshop on Foundations and
Developments of Object-Oriented Languages (FOOL/WOOD), January 2007.
URL https://www.microsoft.com/en-us/research/publication/on-decidability-of-
nominal-subtyping-with-variance/.

[25] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition,
2014. ISBN 013390590X.

[26] David MacQueen, Gordon Plotkin, and Ravi Sethi. An Ideal Model for Recursive
Polymorphic Types. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’84, pages 165–174, New York,
NY, USA, 1984. ACM. ISBN 0-89791-125-3. doi: 10.1145/800017.800528. URL
http://doi.acm.org/10.1145/800017.800528.

[27] John McCarthy. Recursive functions of symbolic expressions and their computa-
tion by machine, part i. Commun. ACM, 3(4):184–195, April 1960. ISSN 0001-0782.
doi: 10.1145/367177.367199. URL https://doi.org/10.1145/367177.367199.

[28] Jim Newton. Representing and Computing with Types in Dynamically Typed
Languages. PhD thesis, Sorbonne University, November 2018.

[29] Jim Newton, Akim Demaille, and Didier Verna. Type-Checking of Heterogeneous
Sequences in Common Lisp. In European Lisp Symposium, Kraków, Poland, May
2016.

[30] Jim Newton, Didier Verna, and Maximilien Colange. Programmatic Manipulation
of Common Lisp Type Specifiers. In European Lisp Symposium, Brussels, Belgium,
April 2017.

[31] Martin Odersky. Dotty Documentation, 0.10.0-bin-SNAPSHOT, August 2018.
URL http://dotty.epfl.ch/docs/reference/overview.html.

[32] Martin Odersky and Matthias Zenger. Scalable component abstractions. vol-
ume 40, pages 41–57, 10 2005. doi: 10.1145/1103845.1094815.

[33] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Stphane Miche-
loud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. The
scala language specification, 2004.

[34] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Compre-
hensive Step-by-step Guide. Artima Incorporation, USA, 1st edition, 2008. ISBN
0981531601, 9780981531601.

[35] Andreas Paepcke. User-Level Language Crafting – Introducing the CLOS
metaobject protocol. In Andreas Paepcke, editor, Object-Oriented Program-
ming: The CLOS Perspective, chapter 3, pages 65–99. MIT Press, 1993. URL
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps. Download-
able version at url.

[36] David J. Pearce. Rewriting for sound and complete union, intersection and
negation types. In Proceedings of the 16th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences, GPCE 2017, Vancouver, BC,
Canada, October 23-24, 2017, pages 117–130, 2017. doi: 10.1145/3136040.3136042.
URL http://doi.acm.org/10.1145/3136040.3136042.

[37] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj
Vrgoč. Foundations of json schema. In Proceedings of the 25th International
Conference on World Wide Web, WWW ’16, page 263–273, Republic and Canton
of Geneva, CHE, 2016. International World Wide Web Conferences Steering
Committee. ISBN 9781450341431. doi: 10.1145/2872427.2883029. URL https:
//doi.org/10.1145/2872427.2883029.

[38] G. Pottinger. A type assignment for the strongly normalizable lambda-terms.
In J. Hindley and J. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 561–577. Academic Press, 1980.

[39] John C. Reynolds. Design of the Programming Language Forsythe. Technical
report, 1996.

[40] Christophe Rhodes. SBCL: A Sanely-Bootstrappable Common Lisp. In Robert
Hirschfeld and Kim Rose, editors, Self-Sustaining Systems, pages 74–86, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-89275-5.

[41] Juan Jose Garcia Ripoll. ECL 9 release notes, may 2003. URL https://mailman.
common-lisp.net/pipermail/ecl-devel/2003-May/000288.html.

[42] Tiark Rompf and Nada Amin. Type Soundness for Dependent Object Types
(DOT). SIGPLAN Not., 51(10):624–641, October 2016. ISSN 0362-1340. doi:
10.1145/3022671.2984008. URL http://doi.acm.org/10.1145/3022671.2984008.

[43] Miles Sabin. Miles sabin via twitter. URL https://twitter.com/milessabin/status/
953713425124818949?lang=en.

[44] Miles Sabin. Unboxed union types in Scala via the Curry-Howard isomorphism,
June 2011. URL http://milessabin.com/blog/2011/06/09/scala-union-types-curry-
howard/.

[45] Guy L. Steele, Jr. Common LISP: The Language (2nd Ed.). Digital Press, Newton,
MA, USA, 1990. ISBN 1-55558-041-6.

[46] Leo Valais. SUBTYPEP: An Implementation of Baker’s Algorithm. Technical
report, EPITA/LRDE, July 2018. URL https://www.lrde.epita.fr/wiki/Publications/
valais.18.seminar.

[47] Léo Valais, Jim Newton, and Didier Verna. Implementing baker’s SUBTYPEP
decision procedure. In 12th European Lisp Symposium, Genova, Italy, April 2019.

[48] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum voor Wiskunde
en Informatica Amsterdam, The Netherlands, 1995.

[49] Margus Veanes, Nikolaj Bjørner, and Leonardo de Moura. Symbolic automata
constraint solving. In Christian G. Fermüller and Andrei Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning, pages 640–654, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-16242-8.

20 ELS 2021

Common Lisp Project Manager
Eric Timmons

etimmons@mit.edu
CSAIL, Massachusetts Institute of Technology

Cambridge, MA, USA

ABSTRACT
In this paper we describe and demonstrate the Common Lisp Project
Manager (CLPM), a new addition to the Common Lisp dependency
management ecosystem. CLPM provides a superset of features pro-
vided by the Quicklisp client, the current de facto project manager,
while maintaining compatibility with both ASDF and the primary
Quicklisp project distribution. These new features bring the Com-
mon Lisp dependency management experience closer to what can
be achieved in other programming languages without mandating a
particular development workflow/environment and without sacri-
ficing Common Lisp’s trademark interactive style of development.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems; Software libraries and
repositories; Application specific development environments.
ACM Reference Format:
Eric Timmons. 2021. Common Lisp Project Manager. In Proceedings of the
14th European Lisp Symposium (ELS’21). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.5281/zenodo.4716466

1 INTRODUCTION
One way to manage the complexity of software is to reuse code
by packaging up a project and using it as a dependency in another.
Unfortunately, this ends up introducing another level of complexity:
you have to manage your dependencies and their versions as well!
In the Common Lisp world, this management is usually performed
by three interacting pieces: Another System Definition Facility
(ASDF) [2] to ensure all dependencies are compiled and loaded in
the right order and the version of each is sufficient, the Quicklisp
client [7] for installing the dependencies locally and configuring
ASDF to find them, and a Quicklisp distribution containing an index
that lists available projects and metadata about them.

While effective and widely used, this combination of components
is missing many features that are taken for granted in other pro-
gramming language specific package management ecosystems. In
this paper we describe the Common Lisp Project Manager (CLPM)1,
a potential replacement for the Quicklisp client in the Common
1CLPM is in the process of being renamed from the Common Lisp Package Man-
ager. While in most communities “package” typically refers to some installable unit
of software, it unfortunately collides with the use of “package” to describe symbol
namespaces in Common Lisp

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’21, May 03–04 2021, Online, Everywhere
© 2021 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.4716466

Lisp dependency management ecosystem that provides many of
these missing features.

We begin by first defining some terminology used throughout
the paper. We then provide an overview of the tasks a dependency
management solution must perform. Next we highlight several of
the key features that CLPM implements, along with the overarching
design philosophy. We then describe the high-level design of CLPM.
Last, we provide information on how to obtain CLPM and several
examples on how to use it.

2 TERMINOLOGY
In this section, we describe some of the terminology used through-
out the rest of the paper. While the broad ideas are general, we do
focus on Common Lisp and particularly on projects that use ASDF.

Project Primary development unit of code. Typically corre-
sponds to the contents of a single version control system
(VCS) repository, such as git.

Release A snapshot of a project. Typically identified using a
version number, date, or VCS commit identifier. May contain
multiple systems.

System Defined via ASDF’s defsystem. Describes components
(typically source code files) to be compiled/loaded, the ver-
sion of the system, and dependencies on other systems.

Dependency A tuple ⟨𝑓 , 𝑠, 𝑣⟩. 𝑓 is a feature expression, 𝑠 is a
system name, and 𝑣 is a version constraint. States that if 𝑓 is
satisfied when evaluated against *features*, then a system
with the name 𝑠 is required whose version satisfies 𝑣 .2

Source/Index A collection of project and system metadata.

3 DEPENDENCY MANAGEMENT OVERVIEW
Broadly speaking, there are three tasks that any dependency man-
agement solution must perform: dependencies must be resolved,
installed, and built. In this section, we explain each task, describe
the Common Lisp tools involved in each (when using the current de
facto workflow), and then provide further grounding by briefly ex-
plaining what tools are used for each task in selected other language
ecosystems.

In the building phase, every dependencymust be compiled and/or
loaded, in the correct order. Additionally, there should be some
feedback if dependencies are not met (for instance, system A needs
version 2 of system B, but only version 1 is available). In current
practice, ASDF performs this function. It uses system definitions
to determine what dependencies any given system. Then it finds
every dependent system, checks the version constraints, produces
a plan that contains an ordered set of operations to perform, and
executes it.

2Currently, ASDF only supports version constraints that specify a minimum version
number.

ELS 2021 21

ELS’21, May 03–04 2021, Online, Everywhere Eric Timmons

However, ASDF has no support for installing dependencies; they
must be placed on the file system or in the Lisp image by another
tool. While it could be done manually, this installation phase is
routinely performed by the Quicklisp client. The client fetches
tarballs from the internet, unpacks them to the local file system,
and configures ASDF so that it can find them.

Deciding which releases need to be installed is called dependency
resolution. A highly manual approach to dependency resolution is
to install a single release, try building it, see what’s missing, install
another release, and repeat. However, the process can be sped up
using an index that specifies a list of known systems and their direct
dependencies. The index can then be consulted recursively for each
direct dependency (and their dependencies, and their dependencies,
and so on) to produce a complete list of releases that need to be
installed, before even attempting to build anything. This is the
approach taken by Quicklisp. The client downloads a set of files
containing this index from any distributions that it is configured to
consult (such as the primary distribution, also named “quicklisp”,
hosted at https://beta.quicklisp.org/dist/quicklisp.txt).

While we have described each of these tasks as happening in
distinct stages, in reality the tasks can be jumbled together. For
instance, ql:quickload attempts to resolve and install all depen-
dencies before invoking ASDF operations. However, it’s possible
that the Quicklisp distribution’s index is missing some informa-
tion (for example, if a local project is used that has no info in the
index). Therefore, ql:quickload handles conditions that ASDF
signals corresponding to missing dependencies by another round
of resolution and installation.

3.1 Comparison to Other Languages
To further ground these concepts, we briefly describe the compo-
nents responsible for each of these tasks in the Python and Ruby
ecosystems.

In Python [18], building is mostly performed by the Python
interpreter itself. When a package is imported, it is byte compiled
if needed and then loaded into the interpreter. Pip [17] is the tool
predominately used for dependency installation and resolution.
During resolution, pip uses metadata gathered from the Python
Package Index (PyPI) [10] and a setup.py file for packages not in
the index.

In Ruby [16], building is performed by a combination of the
gem tool [11] and the Ruby interpreter. Gem handles building na-
tive extensions (foreign libraries) while the Ruby interpreter loads
required packages much like Python’s interpreter. Dependency
resolution and installation is typically handled with a combina-
tion of gem and bundler [4]. Gem is largely used for installing
releases locally, while bundler is used for project specific installs.
Both gem and bundler can consult indices such as the one hosted
at https://rubygems.org/.

4 FEATURES AND PHILOSOPHY
CLPM has a set of features that, while commonly found in language
specific package managers for other languages, have not seen wide
adoption in the Common Lisp community. The most important of
these include:

(1) the ability to download over HTTPS,

(2) the ability to reason over dependency version constraints
during resolution,

(3) the ability to manage both global and project-local contexts,
(4) the ability to “lock” (or “pin”, “freeze”, etc.) dependencies to

specific versions and replicate that setup exactly on another
machine,

(5) the ability to compile to a standalone executable with a ro-
bust command line interface (CLI) for easy interfacing with
shell scripts and other languages,

(6) and the ability to install development releases directly from
a project’s VCS.

While CLPM is not the first to implement most of these features
for Common Lisp, we believe it is the first to do so in a complete
package that also places minimal constraints on the workflow of
the developer using it. For example, the quicklisp-https [14] project
adds HTTPS support to the Quicklisp client, but it does so at the
cost of requiring Dexador [8] (and all of its dependencies, including
foreign SSL libraries) are loaded into the development image.

Another example is the qlot [9] project. It adds project-local
contexts (but not global), locking, a CLI, and installing directly
from VCS. However, it still requires that the Quicklisp client is
installed and loaded. Until very recently its executable and CLI
required Roswell [15]. To date its executable is not distributed and
must be built locally.

To our knowledge, no other solution exists that attempts to in-
clude version constraints during resolution. To wit, Quicklisp’s
index format completely elides the version constraint in its de-
pendency lists. So no project manager that uses only Quicklisp
style indices for dependency resolution can ensure that a system’s
version constraints are satisfied.

As just alluded, the most important guiding principle of CLPM
is that it should place minimal constraints on developer workflow.
An example of this principle in action is illustrated by how CLPM is
distributed. For Linux systems, a static executable is provided that
runs on a wide variety of distributions with no dependencies on
foreign libraries (some features, such as VCS integration, require
other programs, such as git, to be installed). For MacOS systems, a
binary is provided that requires only OS provided foreign libraries.
And on Windows, CLPM is distributed using a standalone installer
and again depends only on OS provided foreign libraries.

Perhaps the secondmost important principle is that CLPM should
be highly configurable, yet provide a set of sane and safe defaults.
A concrete example of this is shown by CLPM’s behavior when
installing or updating projects. By default, CLPM will describe the
change about to be performed and require explicit user consent
before making the modification. However, this behavior can be
changed for developers that like to live on the edge or otherwise
have complete trust in CLPM and the projects they are installing.

5 DESIGN
CLPM participates in both the installation and resolution phases
of dependency management. It leaves building completely up to
ASDF. In this section we discuss the design of CLPM and how it
completes both of these tasks. First, we describe the overall archi-
tecture, including the three main CLPM components. Second, we
describe some of the benefits the architecture provides and how

22 ELS 2021

Common Lisp Project Manager ELS’21, May 03–04 2021, Online, Everywhere

CLPM leverages them. Third, we describe where CLPM locates
the metadata needed for dependency resolution. Last, we describe
global and project-local contexts in CLPM.

5.1 Architecture
CLPM is split into two user facing components: the worker and
the client, as well as one internal component: the groveler. The
worker is a standalone executable that is responsible for all the
heavy lifting. The worker interacts with the network to download
releases and metadata, performs dependency resolution, unpacks
archives, and manages contexts. The worker is implemented in
Common Lisp and distributed both as a precompiled executable
(static executable for Linux) and source code for those that want to
compile it themselves. It exposes both a CLI interface and a REPL
interface. The CLI interface allows for easy integration with tools
such as shell scripts and continuous integration services. The REPL
interface is used primarily by the CLPM client.

The client is a small system, written in portable Common Lisp,
with ASDF/UIOP as its only dependency. The client is meant to be
loaded into a Lisp image to facilitate the interactive management
of dependencies and development of code. It does this by exposing
a set of functions corresponding to the operations the worker can
perform as well as integrating with ASDF’s system search functions.
Additionally, it has functionality to remove itself from an image if
it is no longer required (such as when dumping an executable). In
order to interact with the worker, the client spawns a new worker
process, starts its REPL, and they communicate back and forth with
S-expressions.

The last component is the groveler. Ideally users never inter-
act directly with this component. Instead, it is used by the worker
to gather the metadata needed for dependency resolution from
systems that are not present in any index. For example, the grov-
eler is used to extract dependencies from development versions of
projects.

An aspect that makes extracting this metadata difficult is ASDF
system definition files can contain arbitrary code and can require
that certain dependencies be loaded before a system can even be
correctly parsed. As such, it may not be possible to extract this
metadata without running arbitrary code.

To address this, the groveler consists of a small set of portable
Common Lisp functions that the worker loads into a fresh Common
Lisp instance. Once loaded, the groveler and worker communicate
via S-expressions, with the worker specifying which systems to
load and extract information from and the groveler reporting back
the information as well as any errors. If there is an error, the worker
addresses it by recording any missing dependencies in the depen-
dency resolution process, loading them into the groveler, and trying
again. The worker keeps track of the systems loaded in the groveler
and starts a new groveler process if needed (e.g., the groveler has
v1 of system A loaded, but a dependency determined later in the
resolution process requires v2).

Additionally, CLPM has experimental support to run the groveler
in a sandbox. This sandbox has reduced permissions and cannot
write to much of the file system. This sandbox is currently imple-
mented using Firejail [6] on Linux, but we desire to add support for
other OSes and sandbox solutions.

5.2 Dependencies and Non-portable Code in
the Worker

One benefit of the worker/client split is that it enables the worker
to freely leverage both dependencies (Common Lisp and foreign)
and non-portable implementation features.

There are two benefits with respect to dependencies in the
worker. First, the worker can reuse code without worrying about in-
terfering with the code the user wishes to develop. This interference
may manifest itself in many ways, including package nickname
conflicts, version incompatibilities (CLPM needs version x of a sys-
tem, but the user’s code needs version y), or image size (e.g., the
user’s code uses few dependencies and they care about the final
size of the image for application delivery).

Second, the worker can use foreign libraries that it is unlikely
the user needs loaded for their development. A prime example of
this is libssl, which CLPM uses on Linux and MacOS systems to
provide HTTP support. A second-order benefit of this approach is
that CLPM can statically link foreign libraries into the worker so
that the user does not even need to have them installed locally (if
they install a pre-compiled version of CLPM at least).

The ability for the worker to freely use dependencies has an
additional knock-on effect: the development of CLPM can help
improve the state of Common Lisp libraries at large. To date, the
development of CLPM has resulted in at least ten issues and merge
requests being reported to upstream maintainers, eight of which
have been merged or otherwise addressed. Additionally, it has
been the motivating factor behind several contributions to SBCL to
improve musl libc support.

The worker routinely needs to perform operations that require
functionality beyond the Common Lisp specification. For example:
loading foreign libraries, interfacing with the OS to set file time
stamps when unpacking archives, and network communication to
download code. While portability libraries exist for many of these
features, they are not perfect and do not necessarily extend support
to all implementations [12]. The worker/client split allows us to
choose a small number of target implementations and focus our
testing and distribution efforts using only those implementations
while not worrying about restricting what implementation the user
uses to develop their code.

Currently, CLPM targets only SBCL [3] for worker support. This
is due to SBCL’s broad compatibility with OSes and CPU archi-
tectures. We look to extend worker support to at least one other
implementation before CLPM reaches v1.0. The next implemen-
tation targeted by the worker will likely be ABCL [1] due to the
ubiquity of the Java Virtual Machine.

5.3 Indices
Project indices are used to advertise projects and metadata about
those projects, such as their released versions, what systems are
available in each release, and the version number and dependencies
of those systems. The most widely used project index in the Com-
mon Lisp community is the primary Quicklisp distribution. CLPM
is tested against this index and has full support for interacting with
it.

While there are other Quicklisp-like project indexes in the wild
that work with the Quicklisp client, such as Ultralisp [5], CLPM

ELS 2021 23

ELS’21, May 03–04 2021, Online, Everywhere Eric Timmons

may not work with all of them. This incompatibility is largely due
to a lack of formal specification as to what constitutes a Quicklisp
distribution, including what files are required and their contents.
For instance, at the time of writing CLPM does not work with the
Ultralisp distribution because Ultralisp does not publish a list of
all its historical versions, unlike the primary Quicklisp distribution
(see: https://beta.quicklisp.org/dist/quicklisp-versions.txt).

As discussed above, the Quicklisp distributions strip the version
constraints from dependencies. However, CLPM actually supports
reasoning over those constraints. This was the main motivation to
develop and support Common Lisp Project Indices (CLPI). CLPI is
part of the overarching CLPM project and seeks to fully document
an index format as well as add features that CLPM can take advan-
tage of that are missing from Quicklisp distributions. CLPI adds
fields to record both a system’s version (Quicklisp indices provide
only the date at which the project snapshot was taken) and the
version constraints of its dependencies.

A secondmajor difference is that projects and systems are the top-
level concepts in CLPI instead of distribution version. Additionally,
CLPI defines the majority of its files to be append-only. These
properties allow CLPM to be more efficient in terms of network
usage as only the metadata for projects potentially needed in the
context are transferred andmetadata on new releases can be fetched
incrementally over time.

5.4 Contexts
CLPM manages both global and project-local contexts. A context
is defined as a set of project indices in use, a set of constraints
describing the projects (and their versions) that should be available
in the context, and a set of project releases that satisfy both the
explicit constraints and the implicit constraints added by every
project in the context (i.e., transitive dependencies).

Each global context is named by a string. CLPM provides tools
that generate ASDF source registry configuration files so that you
can add these global contexts to your default registry and have
access to all projects installed in them without the need for CLPM
at all (after installation, at least).

A project-local context (also known as a bundle) is named by a
pathname that points to a file containing the first two elements of a
context (the indices and constraints). After this context is installed,
all of the context information is located in a file next to the file that
names the context. The names of these files are typically clpmfile
and clpmfile.lock. Both of these files are designed to be checked
into a project’s source control and contain enough information to
reproduce the context on another machine.

Both CLPM’s CLI and the client provide commands to add new
constraints to a context, update an entire context so that every
project is at the latest release that satisfies all constraints, or update
just a subset of the projects in the context. Additionally, the CLI
provides commands that can execute other, arbitrary, commands in
an environment where ASDF is configured to find only the projects
installed in the desired context.

Global contexts are largely inspired by Python virtual environ-
ments created by the virtualenvwrapper project [13]. Project-local
contexts are largely inspired by Ruby’s Bundler project [4].

6 USE
In this section we provide some examples of how to use CLPM. We
focus on project-local contexts (bundles) as we believe these are a
more broadly useful feature than global contexts.

6.1 Installing CLPM
Tarballs (and MSI installers) of the most recent CLPM release, along
with up to date documentation, can be found at https://www.clpm.
dev. Windows users merely need to run the installer. Linux and
MacOS users need to only unpack the tarball in an appropriate
location (typically /usr/local/). If you wish to install from source,
the CLPM source code (as well as its issue tracker) can be found
on the Common Lisp Foundation Gitlab instance at https://gitlab.
common-lisp.net/clpm/clpm.

After installing CLPM, it is recommended that you configure
ASDF to find the CLPM client. To do this, simply run clpm client
source-registry.d and follow the instructions printed to the
screen.

Last, you may wish to consider loading the CLPM client every
time you start your Lisp implementation. You can determine the
currently recommended way of doing so by running clpm client
rc and reading the printed instructions. The remainder of this
section assumes you have CLPM installed and have a REPL where
the CLPM client is loaded.

6.2 Configuration
CLPM reads its configuration files from the ~/.config/clpm/ folder
on non-Windows OSes and %LOCALAPPDATA%\clpm\config\ on
Windows. The file clpm.conf contains most of the configuration,
but the defaults should be sufficient for this demo.

The file sources.conf contains a list of sources for CLPM to
use when finding projects and their metadata. For this demo, it
will be easiest if we populate this file with a pointer to the primary
Quicklisp distribution. Place only one of the following forms in
sources.conf.

This form uses the primary Quicklisp distribution directly. Note
that we are fetching it over HTTPS. All of the primary Quicklisp
distribution’s files are served over both HTTPS and HTTP, even
though the Quicklisp client itself can only use HTTP.

(:source "quicklisp"
:url "https://beta.quicklisp.org/dist/quicklisp.txt"
:type :quicklisp)

This form uses a mirror of the primary Quicklisp distribution.
This mirror exposes the same data, formatted using the CLPI spec-
ification. Using this source will result in CLPM performing some
operations faster (because it can download only the needed data).
However, this source may take some time to be updated after a new
version of the Quicklisp distribution is released.

("quicklisp"
:url
"https://quicklisp.common-lisp-project-index.org/"
:type :ql-clpi)

24 ELS 2021

Common Lisp Project Manager ELS’21, May 03–04 2021, Online, Everywhere

6.3 Downloading the Demo System
We have a simple project designed for use in CLPM demos. It is
located at https://gitlab.common-lisp.net/clpm/clpm-demo. Clone
it anywhere on your file system and checkout the els-21 branch.

6.4 Creating a Bundle
We will now create a bundle for the demo system. The simplest
possible bundle is one that uses a single project index and specifies
that all constraints come from .asd files. To create such a bundle
you need to perform two actions. First, a clpmfilemust be created.
This can be done at the REPL by evaluating:
(clpm-client:bundle-init
#p"/path/to/clpm-demo/clpmfile"
:asds '("clpm-demo.asd" "clpm-demo-test.asd"))

After evaluating this, you will have a clpmfile that looks similar
to the following:
(:api-version "0.3")

(:source "quicklisp"
:url "https://beta.quicklisp.org/dist/quicklisp.txt"
:type :quicklisp)

(:asd "clpm-demo.asd")
(:asd "clpm-demo-test.asd")

Notice that the first statement in the clpmfile declares the
bundle API in use. This allows for the file format to evolve over
time while maintaining backward compatibility. Second, notice
that every directive is simply a plist. This makes it trivial for any
Common Lisp project to read and manipulate the file.

After the clpmfile is created, the bundle dependencies must
be resolved and installed. To do this, evaluate the following at the
REPL:
(clpm-client:install
:context #p"/path/to/clpm-demo/clpmfile")

CLPM does not believe in modifying a context without explicit
permission from the developer. As such, the client will by default
produce a condition before it performs any modifications. This
condition describes the actions that are about to be performed and
has two restarts established for it: one to approve and perform the
changes, and one to abort. Therefore, upon evaluating the above
form, you will be dropped into the debugger to approve the changes.
Of course, this behavior can be customized.

This will create a file clpmfile.lock. This file should not be
modified by hand. It contains all the information necessary for
CLPM to reproduce the bundle on another machine, including a
complete dependency graph.

6.5 Activating the Bundle
Once a bundle has been installed, the next step is to activate it. The
activation process configures ASDF so that it can locate all systems
in the bundle. The activation process also optionally integrates the
CLPM client with ASDF. This allows CLPM to notice when you try
to find a system that is not present in the bundle and can provide
options on adding it to the bundle. This integration is enabled by

default and discussed more next. You can activate the bundle by
evaluating:
(clpm-client:activate-context
#p"/path/to/clpm-demo/clpmfile")

The CLPMCLI has an equivalent command that configures ASDF
using only environment variables. This feature is particularly useful
when running scripts or when running tests via CLI. For example,
to run an SBCL process where ASDF is configured to use only the
systems in the bundlewithout also needing to have the client loaded,
simply run clpm bundle exec -- sbcl in the same directory as
the clpmfile.

You can now load the demo system by evaluating:
(asdf:load-system "clpm-demo")

6.6 Modifying the Bundle
The most common modification made to a bundle is to add more
dependencies to it. If your system acquires a new dependency you
have two options on how to add it to the bundle. The first option is
to explicitly reinstall the bundle using install. This will find any
new dependency and install it, while trying its best to not change
the installed versions of the projects already in the bundle.

The second option is to just use asdf:load-system to reload
your system. If you have the client’s ASDF integration enabled, the
client will notice that the system is missing from the bundle and
take action. The default action is to signal a condition informing
the developer of the situation with several restarts in place. Fol-
lowing CLPM’s guiding principles, however, this behavior can be
modified to, for example, automatically install the dependency à la
the Quicklisp client.

To see this in action, open the file clpm-demo-test.asd and
add "fiveam" to the :depends-on list. Then try to run the sys-
tem’s test suite by evaluating (asdf:test-system "clpm-demo").
Fiveam was originally not part of the bundle so ASDF signals
a condition when it tries to load it. However, we can use the
reresolve-requirements-and-reload-config restart to install
fiveam and then see the tests pass.

6.7 Using Development Versions
Now, let’s say that fiveam’s author has added a really cool new fea-
ture that you want to start using before it’s released into Quicklisp.
You can easily do this by telling CLPM to install fiveam directly
from git. Simply add the following directive to your clpmfile.
(:github "fiveam"
:path "lispci/fiveam"
:branch "master")

Then evaluate (clpm-client:install). Note that you do not
have to specify the context if you have already activated it. If you
evaluate (asdf:test-system "clpm-demo") again, you can see
that it loads fiveam from a different path than it did previously.

6.8 Developing a Dependency
Last, let’s say that you would like to add a new feature to fiveam
and use it in clpm-demo. You should not modify any files installed
by CLPM, as they may be reused between projects and the .git

ELS 2021 25

ELS’21, May 03–04 2021, Online, Everywhere Eric Timmons

folder is stripped from any dependencies installed directly from
their git repo.

Instead, you should clone the project you want to work on your-
self and tell CLPM to use that checkout instead of the one it installs.
To demonstrate this, clone fiveam (https://github.com/lispci/fiveam)
so that it is next to the clpm-demo repository. Then, create the file
.clpm/bundle.conf inside the clpm-demo repository with the fol-
lowing contents:
(version "0.2")

((:bundle :local "fiveam")
"../fiveam/")

This tells CLPM to not install fiveam (as you have already done
it) and to use the git repository located at ../fiveam/ (relative to
clpm-demo’s clpmfile) when resolving dependencies.

A clpm-client:hack function that performs these steps auto-
matically is currently being developed. It is slated for inclusion in
CLPM v0.5.

7 CONCLUSION AND FUTUREWORK
We have presented CLPM — the Common Lisp Project Manager.
CLPM introduces many features to the Common Lisp community
that are taken for granted in other programming language specific
package managers. Key among these features are HTTPS support,
a standalone CLI to the worker, global and project-local context
management, and lock files. Additionally, CLPM adds these features
without forcing a particular development practice or environment
and without sacrificing “Lispy-ness” or interactive development.

We plan to continue developing CLPM and continue adding
useful features. Two planned features of note are an extensible
architecture for client/worker communication and the ability to add
scripts from an installed project to a user’s PATH. The former would
enable a myriad of new configurations, including CLPM workers
deployed as persistent daemons that communicate with clients over
network sockets or setups that are Dockerized or otherwise isolated
from other processes on the system.

In addition to improvements to CLPM itself, we aim to continue
contributing back to the upstreams of our dependencies. Notably,
we are in the process of interacting with the ASDF developers to
add support for more expressive version numbers and dependency
version constraints in defsystem forms.

Last, it is our strong preference to enable developers to use
the complete power of CLPM without introducing a split in the
community with regards to project indices. Therefore, we would
like to take ideas and lessons learned from CLPI and integrate them
into Quicklisp distributions.

REFERENCES
[1] Armed Bear Common Lisp. https://abcl.org/.
[2] ASDF – Another System Definition Facility. https://common-lisp.net/project/

asdf/.
[3] Steel Bank Common Lisp. http://www.sbcl.org/.
[4] André Arko and Engine Yard. Bundler: The best way to manage a Ruby applica-

tion’s gems. https://bundler.io/.
[5] Alexander Artemenko. Ultralisp - Fast Common Lisp Repository. https://ultralisp.

org/.
[6] Firejail Authors. Firejail Security Sandbox. https://firejail.wordpress.com/.
[7] Zach Beane. Quicklisp. https://www.quicklisp.org/beta/.
[8] Eitaro Fukamachi. Dexador. https://github.com/fukamachi/dexador/, .

[9] Eitaro Fukamachi. Qlot. https://github.com/fukamachi/qlot/, .
[10] Python Software Foundation. The Python Package Index. https://pypi.org/.
[11] Chad Fowler, Rich Kilmer, Jim Weirich, et al. Rubygems. https://github.com/

rubygems/rubygems.
[12] Nicolas Hafner. Common Lisp Portability Library Status. https://portability.cl/.
[13] Doug Hellmann. virtualenvwrapper. https://virtualenvwrapper.readthedocs.io/

en/latest/.
[14] SANOMasatoshi. Quicklisp-HTTPS. https://github.com/snmsts/quicklisp-https/,

.
[15] SANO Masatoshi. Roswell. https://github.com/roswell/roswell/, .
[16] Yukihiro Matsumoto. Ruby. https://www.ruby-lang.org/.
[17] The pip developers. pip - The Python Package Installer. https://pip.pypa.io/en/

stable/.
[18] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,

Scotts Valley, CA, 2009. ISBN 1441412697.

26 ELS 2021

A Corpus Processing and Analysis Pipeline for Quickref
Antoine Hacquard

EPITA
Research and Development Laboratory

Le Kremlin-Bicêtre, France
antoine.hacquard@lrde.epita.fr

Didier Verna
EPITA

Research and Development Laboratory
Le Kremlin-Bicêtre, France

didier@lrde.epita.fr

ABSTRACT
Quicklisp is a library manager working with your existing Common
Lisp implementation to download and install around 2000 libraries,
from a central archive. Quickref, an application itself written in
Common Lisp, generates, automatically and by introspection, a
technical documentation for every library in Quicklisp, and pro-
duces a website for this documentation.

In this paper, we present a corpus processing and analysis pipeline
for Quickref. This pipeline consists of a set of natural language pro-
cessing blocks allowing us to analyze Quicklisp libraries, based
on natural language contents sources such as README files, doc-
strings, or symbol names. The ultimate purpose of this pipeline is
the generation of a keyword index for Quickref, although other ap-
plications such as word clouds or topic analysis are also envisioned.

CCS CONCEPTS
• Information systems → Information extraction; Retrieval
effectiveness; Presentation of retrieval results; • Software and
its engineering→ Software libraries and repositories.

KEYWORDS
Natural Language Processing, Indexing, Documentation

ACM Reference Format:
Antoine Hacquard and Didier Verna. 2021. A Corpus Processing and Analy-
sis Pipeline for Quickref. In Proceedings of the 14th European Lisp Symposium
(ELS’21). ACM, New York, NY, USA, 9 pages. https://doi.org/10.5281/zenodo.
4714443

1 INTRODUCTION
Common Lisp [21] is a dialect of the Lisp family of programming
languages. It was standardized in 1994 by the American National
Standards Institute. It is an industrial-strength, multi-paradigm lan-
guage. Languages in the Lisp family are among the very few to
be homoiconic [8, 13], a property through which both introspec-
tion and intercession are achieved in a relatively homogeneous
and simple way. The dynamic and highly introspective nature of
Lisp makes it straightforward to extract information about the pro-
gram structure and components, for example, for documentation
purposes. Additionally, Common Lisp lets the programmer attach

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’21, May 03–04 2021, Online, Everywhere
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-5-2.
https://doi.org/10.5281/zenodo.4714443

so-called “docstrings” (documentation strings) to almost all soft-
ware components: variables, functions, classes, etc.When available,
docstrings are a valuable source of information that can also be
extracted very easily from an existing program.

1.1 The Paradox of Choice
In a somewhat paradoxical way, the technical strengths of the lan-
guage bring drawbacks to its community of programmers [20, 24].
Lisp usually makes it so easy to “hack” things away that every
Lisper ends up developing his or her own solution, inevitably lead-
ing to a paradox of choice. The result is a plethora of solutions for
every single problem that every single programmer faces. Most
of the time, these solutions work, but they are either half-baked
or targeted to the author’s specific needs and thus not general
enough. Furthermore, it is difficult to assert their quality, and they
are usually not (well) documented.

In this context, an important tool, community-wise, is Quicklisp.
Quicklisp is both a central repository for Common Lisp libraries
(there are currently around 2000 of them) and a programmatic
interface for it. With Quicklisp, downloading, installing, compiling
and loading a specific package on your machine (dependencies
included) essentially becomes a one-liner. What Quicklisp doesn’t
solve, however, is the documentation problem.

1.2 Quickref
Quickref [22, 23] is a global documentation project for the Com-
mon Lisp ecosystem. It generates reference manuals for libraries
available in Quicklisp automatically. Quickref is non-intrusive, in
the sense that software developers do not have anything to do to
get their libraries documented by the system: mere availability in
Quicklisp is the only requirement.

Quickref works by introspecting libraries, and generating cor-
responding documentation in Texinfo format. The Texinfo files
may in turn be converted into human-readable documentation, for
example in PDF or HTML. Quickref may be used to create a local
website documenting your current, partial, working environment,
but it is also used in production, to maintain a global public website
of technical reference manuals for all Quicklisp libraries. The site
is kept in sync with Quicklisp.

1.3 Library Access
In order to provide access to the two thousand or so reference
manuals available on the website, Quickref provides two indexes:
a library index and an author index. The former is most likely to
be used when looking for a library in particular, while the latter is
probably only useful for people wanting the check out the generated
documentation for their own work.

ELS 2021 27

ELS’21, May 03–04 2021, Online, Everywhere Antoine Hacquard and Didier Verna

Suppose however that someone is looking for some functionality,
without any prior idea or knowledge about which library may be
appropriate. Quickref, as it is right now, is impractical for such a
mining task, hence the idea of enriching it with a keyword index, a
word cloud, etc. In order to generate such things automatically, it is
necessary to process and analyze each library’s corpus, that is, the
bits of textual information providing some description of function-
ality (README files, docstrings, sometimes even symbol names,
etc.). Fortunately for us, Declt, the reference manual generator on
which Quickref is based, makes it very easy to access the corpuses
in question. The purpose of this paper is to describe the natural
language processing pipeline that we are currently building into
Quickref to analyze the extracted corpuses, and ultimately provide
library access by functionality.

Given the universal availability of very efficient internet search
engines these days, one may wonder whether an indexing project
specific to Quickref is really needed or pertinent. The following
remarks answer that question.

First of all, a general search engine doesn’t know about such
or such library’s availability in Quicklisp. On the other hand, a
local index will necessarily point to readily-available libraries only.
Next, and as opposed to search engines considering plenty of, and
indiscriminate information sources, our indexing process is based
on each library’s documentation only. Therefore, it will have a
natural tendency to favor well documented ones, which can be an
important factor, when choosing which tool to use in your own
project.

Finally, and beyond providing new kinds of indexes, other appli-
cations of this project could be envisioned later on, such as topic
analysis, distribution, and visualization (a topography of the centers
of interest in the Lisp community, of sorts).

1.4 Pipeline Overview
Figure 1 depicts the pipeline used to process and analyze the cor-
puses extracted from each library by Declt.

(1) Each corpus is first tokenized, that is, split into chunks which
usually (but not necessarily) correspond towords. The tokens
are then tagged, meaning that they are associated with their
syntactical class (noun, verb, etc.). After this stage, we are
able to filter specific token classes (e.g. retain only nouns,
verbs, etc.).

(2) Next, the retained tokens are stemmed, meaning that their
lexical root is extracted, and used to attempt matching with
a canonical form found in a dictionary. This process is called
lemmatization. After this stage, only the canonicalized known
lemmas (i.e., found in said dictionary), are retained.

(3) A TF-IDF (Term Frequency / Inverse Document Frequency)
value is computed for every such lemma. This value is a
statistical indication of how relevant each lemma is to the
corresponding library. Only the most pertinent ones are
kept around (the exact number of such retained lemmas may
vary).

(4) Finally, the (possibly intersecting) sets of most pertinent
keywords describing each library are aggregated in order
to produce the desired output (keyword index, word cloud,
etc.).

It is worth mentioning right away that in this pipeline, two
out of four blocks (the first two) are pre-processing steps, devoted
to sanitizing the corpuses, while only stages three and four actu-
ally perform the job of information processing. The importance of
pre-processing in this pipeline is due to TF-IDF working on syn-
tactic tokens only, without any semantic information. For example,
without pre-processing, tokens such as “test”, “tests”, and “testing”
would be treated independently, as if they meant different things.

At the time of this writing, the first three blocks in this pipeline
are fully operational. Keyword aggregation, on the other hand,
is a difficult problem, and the aggregator block is still subject to
experimentation. Also, note that we intend, at a later time, to release
the code of each block as independent, open-source libraries.

The remainder of this paper is organized as follows. Sections 2
to 5 provide a more in-depth description and discussion of the to-
kenizer / PoS-Tagger, stemmer / lemmatizer, and TF-IDF blocks
respectively. Section 6 describes the challenges posed by the key-
word index generation problem, the experiments already conducted,
and some possible ideas for further experimentation.

2 POS-TAGGING
PoS-Tagging (for “Part-of-Speech” tagging) is a technique allowing
to determine the syntactic class of words, that is, whether they are
common nouns, verbs, articles, etc. The syntactic classes of words
may be important information to perform semantic analysis of a
corpus for different reasons. For example, some categories of words,
like determinants, convey very little or no useful meaning at all, so
we want to filter them out early, rather than carrying them around
until the TF-IDF block makes the same decision (although for a
different reason: they appear frequently, but everywhere). Also, in
the aim of generating a keyword index, it may be interesting to
experiment with different sets of retained information, such as only
nouns, nouns and verbs, etc.

2.1 Implementation
There are many ways to implement a PoS-Tagger, notably with
HMMs (Hidden Markov Models), unsupervised learning, or ma-
chine learning [9]. In the Common Lisp ecosystem, we are aware
of one PoS-Tagger library, namely “Tagger” [5], written by Xerox
in 1990, which uses HMMs.

HMMs are statistical Markov Models used to learn an unknown
Markov Process with hidden states, by observing another process,
known this time, and depending on it. HMMs are widely used in
PoS-Tagging to disambiguate syntactic classification. The biggest
problem of PoS-Tagging is that a word can have several syntactic
classes associated with it, depending on the context. For example,
the word “can” may be either a verb, or a noun (as in “soda can”).
Using HMMs, a PoS-Tagger first learns the probability of a certain
sequence of syntactic classes occurring. Then, it disambiguates
unknown words by using the syntactic class sequence with the
highest probability.

Suppose for example that after an article such as “the”, the class
probabilities for the next word are 40% noun, 30% adjective, and
20% number. When seeing “The can”, a PoS-Tagger will thus cor-
rectly classify “can” as a noun.

28 ELS 2021

A Corpus Processing and Analysis Pipeline for Quickref ELS’21, May 03–04 2021, Online, Everywhere

lib1 corpus

lib2 corpus

lib3 corpus

To
ke
ni
ze
r

PO
S-
Ta

gg
er

St
em

m
er

Le
m
m
at
iz
er

TF
-ID

F

Ag
gr
eg
at
or

keyword index

. . .

word cloudsy
nt
ac
tic

fil
te
r

kn
ow

n
le
m
m
as

pe
rt
in
en
ce
fil
te
r

Figure 1: Keyword index generation pipeline

Because HMM-based PoS-Tagging needs a word’s surrounding
context in order to decide on its syntactical class, it must appear very
early in the pipeline, namely, before such contextual information is
removed. On the other hand, the input of the tagger needs to have
been tokenized already. Therefore, the tokenization and tagging
steps are tightly coupled, which is why they appear as a single
block in our pipeline.

The aforementioned Tagger library happens to offer a powerful
and highly customizable tokenizer, and a PoS-Tagger linked with it.
The tokenizer uses an automaton to parse sentences, and can be
customized with rational expressions. Our two biggest customiza-
tions on the tokenizer were to accept dashes in tokens rather than
considering them as separators (otherwise, words like “command-
line” would have been split), and to add a rational expression to
recognize URLs as unique tokens (many URLs exist in our corpuses,
even in plain text documentation).

The Tagger library poses a problem however: it accepts ASCII
characters only. In the majority of the cases, this is not so much
of a problem because the natural language in use is almost exclu-
sively English, and a purely ASCII text encoded in Unicode remains
readable as-is. On the other hand, some libraries do have special
characters in their README files, breaking the tagger. A good ex-
ample of this, is the April [18] library, which compiles a subset of
the APL language. Many special characters in there are APL tokens,
which are not ASCII.

In order to solve this problem, we pre-process all of our docu-
ments with “Free Recode”, an open source tool to transliterate files
between many encodings. Non-ASCII characters are replaced with
interrogation marks. This side-effect actually has little or no impact
on our pipeline at all, because our current corpus contains only Eng-
lish documentation. Most of it is already plain ASCII, and the few
non-ASCII characters we found were either fancy “prettification”
of README files (e.g. smileys), or in code snippets.

2.2 Tests and Results
In order to get an early feedback on the behavior of this pre-
processing stage, we ran our complete pipeline in different PoS-
Tagger modes. Sample results are presented in Table 1. That table
displays the 10 keywords appearing the most frequently after the
TF-IDF block (all libraries included). The numbers in parentheses
are the number of libraries associated with each keyword. In all
cases, the Tagger library’s tokenizer is used.When tagging is turned
off, there is no filtering on the syntactic classes of the tokens. Oth-
erwise, the table presents results when only common nouns, or a
combination of common nouns and verbs are retained.

All tokens Only nouns Nouns and Verbs
lisp (110) library (175) test (110)
test (63) file (150) file (108)
message (51) function (138) license (107)
common-lisp (51) license (133) library (107)
name (49) value (117) function (92)
file (48) document (117) name (81)
value (47) package (114) value (81)
stream (46) name (114) package (78)
function (46) test (102) stream (69)
server (45) project (101) load (69)
Table 1: Top 10 keywords w/ different syntactic filters

We observe that even without tagging, we don’t see “noisy”
words such as articles appearing in the top 10 list. That is because
at the end of the pipeline, the TF-IDF pass will detect that such
words, being frequent basically everywhere, are in fact not specific
to any library in particular. On the other hand, the PoS-Tagger
would help filtering those words earlier in the pipeline. It is also
apparent that PoS-Tagger helps filtering out uninteresting tokens
such as “lisp” or “common-lisp”. Indeed, these end up being filtered
out as either proper nouns (as in “Lisp is a . . . ”), or adjectives (as in
“a Lisp library”).

Whether to keep verbs around, or only common nouns, remains
an open question. Verbs may contain useful information for de-
scribing what a library does. For example, it is likely that a library
for unit testing will make frequent use of the word “test” both as
a noun, and as a verb. If we keep both around, the final weight
of “test” as a unique lemma will increase (which is a good thing
in that particular case, and is in fact visible in Table 1). This will
also happen every time a verb and a noun are slightly different, but
are lemmatized identically. On the other hand, many verbs are also
uninteresting (“be”, “get”, “come”, etc.), and it is impossible to know
in advance whether their distribution across all libraries would be
such that the TF-IDF block would filter them out. Finally, there are
also problematic cases in which a verb and a noun convey different
meanings, which would hinder the accuracy of our results. One
possible solution to this problem would be to tag nouns and verbs
in order to keep them as separate entities, but as mentioned before,
there are also cases where keeping them separate is undesirable.

3 STEMMING
Stemming is the process of reducing a word to its root, or canonical
form in the linguistic sense, notably by removing prefixes or suffixes.

ELS 2021 29

ELS’21, May 03–04 2021, Online, Everywhere Antoine Hacquard and Didier Verna

No stemmer Porter Snowball Lancaster
node node node nam
server elem elem parsable
test src src node
stream parse server src
template stream parse byte
event server stream stream
trivial trivial see trivia
x byte trivial el
connection test test x
image x byte test

Table 2: Stemmer-dependent results for the final index

Although stemming does not constitute a block in our pipeline per
se, it still is an important part of the process, for reasons that will
become apparent in the next section.

Because a stemmer removes everything but the linguistic root
of a word, the resulting “stem” may not be a complete word at all.
This is a potential problem for us, because in the end, we want an
index composed of actually existing words, so the stems themselves
can’t always be used directly.

3.1 Implementation
Many stemming algorithms exist, and they are usually quick and
straightforward to implement. The two most popular approaches
are based, either on rule systems, or on training of stochastic al-
gorithms [7]. The rule-based approach offers a better trade-off
between simplicity of implementation and quality of the produced
stems, so this is the approach we favor.

Figure 2 illustrates a typical use-case of a rule-based stemmer.
There are usually two categories of rules: transformation rules and
deletions rules. A transformation rule transforms a prefix (respec-
tively, a suffix) into a simpler version. A deletion rule deletes the
prefix (respectively, the suffix).

Three notable suffix stemmers exist in the literature: Porter [15],
Snowball [16] (a.k.a. Porter 2), and Lancaster [14]. These stemmers
are well suited to process English, as most of the word variations
occur at their end in this language. We implemented the three of
them in Common Lisp, and we used NLTK [3] as a reference point
for debugging our implementations. NLTK is the most well known,
and de facto standard Python library for NLP (Natural Language
Processing), and incorporates a large number of stemmers. Note
that we are aware of only one pre-existing Common Lisp imple-
mentation of a stemmer [6], a Porter stemmer, more specifically. We
still decided to write our own because it is rather straightforward,
and also because the NLTK implementation, which we want to fol-
low, sometimes departs from the original specification in ways that
would have been difficult to implement in the existing Common
Lisp implementation, which is not very flexible.

3.2 Tests and Results
In order to get an early feedback on the behavior of stemming, we
ran our complete pipeline which each of them, and also without
stemming at all, that is, using the output of the PoS-Tagger directly.

Sample results are presented in Table 2. We notice a global improve-
ment of the final index when stemming is used. Indeed, interesting
words (such as “parse”) are brought up, while less interesting ones
(such as “x”) are brought down. We also notice that the results
with the Lancaster stemmer are not so good: many final words are
in fact not actual words. This is due to the fact that Lancaster is
a “strong” stemmer: it has a tendency to over-stem words, which
leads to the same root for words and typos. The Snowball stemmer
is considered to give the best results, as it is the only one which
manages to bring down “x” to not be in the first ten words.

4 LEMMATIZATION
Besides stemming, the other classical approach to word normal-
ization in the literature is lemmatization, which consists in using
the dictionary form of a word as its canonical representation (in-
stead of a stem). The main advantage of this approach is that in
the aim of building a word index, the output of a lemmatizer can
be used directly, as opposed to that of a stemmer which requires
reconstructing a word afterwards.

4.1 Implementation
Lemmatization can be implemented in many different ways. Ap-
proaches range from rule-based systems (similar to stemmers, but
withmore complicated rules), dictionary look-up, machine-learning,
etc. As our bibliographical research didn’t reveal anything satis-
factory in terms of Lisp implementation of a lemmatizer (either
not in Quicklisp or part of a larger library), we decided to imple-
ment our own. The approach we chose is that of dictionary look-up,
as described in [10]; a solution both elegant and easy to imple-
ment. In short, a word is compared with all words in a dictionary
of “lemmas”, and the closest one (according to a so-called “edit
distance”) is chosen as its canonical form. A pre-processing step
consisting of stemming the word before measuring its edit distance
is discussed in the paper, and shown to give better results (hence
the importance of stemming anyway). The Common Lisp library
mk-string-metrics offers a set of built-in edit distances. We use
this library to implement our lemmatizer.

We conducted a set of experiments in order to decide on the best
combination of stemming algorithms (among the 3 described in
the previous section), edit distances (we choose to only test the 5
available in mk-string-metrics but there are plenty of others in
the literature [12], [4], [2], [19]), and dictionaries. The following
sections report on those experiments.

4.2 Stemmer / Edit Distance Selection
In order to decide on which stemmer algorithm and which edit
distance to use, we tested the possible combinations and counted the
number of correct lemmas generated by the lemmatizer. The ground
truth (i.e. the correct lemmas for each word) was simply found on
the internet, where a lot of resources related to lemmatization exist
for verifying the correctness of an implementation[1].

Table 3 shows the obtained results. These results confirm one of
the paper’s claims, which is that the use of a stemmer has a huge
impact on the quality of the results. The other noticeable thing
is that the Lancaster stemmer performs quite poorly. This, again,
can be explained by the fact that Lancaster tends to produce very

30 ELS 2021

A Corpus Processing and Analysis Pipeline for Quickref ELS’21, May 03–04 2021, Online, Everywhere

(1) Transformation rule
computational -> computate

(2) Deletion rule
computate -> comput

Word
“computational”

Stem
“comput”

Figure 2: Ruled-based stemming

Distance
Stemmer Jaccard Jaro-Winkler Damerau-Levenshtein Levenshtein Overlap
None 428 659 655 656 25
Porter 840 934 970 970 132
Snowball 842 934 970 970 132
Lancaster 483 612 590 591 32

Table 3: Number of correct lemmas on a list of 1226 words

16.000 lemmas 30.000 lemmas 33.249 lemmas
clause (54) clause (52) library (167)
client (40) server (38) file (145)
server (39) client (35) function (134)
project (37) hotel (34) license (124)
value (37) project (34) document (113)
message (35) value (33) value (110)
node (34) node (31) name (105)
user (33) message (29) package (103)
test (30) begin (29) test (100)
begin (30) aside (27) project (96)

Table 4: Dictionary-dependent results for the final index

short stems, which skews the edit distance computation. Finally,
we can see that the best results are obtained with Porter or Snow-
ball stemmers, and with Levenshtein or Damereau-Levenshtein
edit distances. As Snowball is an improvement over Porter, and
Damereau-Levenshtein over Levenshtein, it is only logical that
these four have approximately the same results. At that point, we
decided to retain the Snowball stemmer, as it also performed more
efficiently, time-wise, and the Levenshtein distance, because it is
slightly faster than the Damereau-Levenshtein one.

4.3 Dictionary Selection
For dictionary selection, we started by experimenting with two
dictionaries of 16.000 and 30.000 lemmas respectively, found on
the internet (unfortunately, we lost track of the source of these
dictionaries in the process, but we will publish them later, along
with the code).

Sample results are presented in Table 4 (the third dictionary /
column will be described in a few paragraphs). The indexes gen-
erated with those dictionaries have a big flaw: they contain words
that are not in the base corpus. The most obvious example of this is

the word “hotel” occurring at the fifth position in the second index.
These words appear somewhat “magically” for a conjunction of two
events: they exist in the dictionary but not in the corpus, and we’re
trying to lemmatize a word that is (obviously) in the corpus, but
not in the dictionary. Because every word in the corpus needs to be
matched to a word in the dictionary, such words will be lemmatized
weirdly.

More specifically, lemmas are chosen by optimizing the edit
distance (minimizing or maximizing it, depending on the actual
distance in use), which is a continuous measure. This means that
while a lemma will always be found, the edit distance may still be
bad. In other words, there are times when even the best solution is
a bad one.

4.3.1 White-Listing. A natural solution to this problem is to use the
dictionary as some sort of “white-list”, by imposing a threshold on
the computed edit distance. Whenever a normalized edit distance is
found to be lower than the selected threshold, the confidence in the
lemmatization process is considered too low, and theword discarded
from the subsequent TF-IDF statistic. Using such a threshold is a
convenient way tomake a distinction betweenwords which do have
a lemma in the dictionary, and words which don’t (hence, words
which we don’t want to keep around). After some experimentation
(mostly, looking at the results), we decided that a threshold of 0.8
is appropriate for making a decision.

4.3.2 Custom Dictionary. An even better solution to this problem
would be to make sure that the dictionary we use does not contain
words absent from our corpuses in the first place. This leads to the
idea of generating a custom dictionary, from the lemmatization of
the words present in our corpuses directly. Of course, creating such
a dictionary leads to a bootstrapping problem, as lemmatizing our
corpus would require using the dictionary we are trying to create.
Thus, we need an external lemmatizer.

Here, again, we used the one from NLTK (in fact, we also tried
the lemmatizer from the Stanford NLP library [11], written in Scala

ELS 2021 31

ELS’21, May 03–04 2021, Online, Everywhere Antoine Hacquard and Didier Verna

No lemmatization Lemmatization
library (96) library (175)
file (82) file (150)
function (79) function (138)
data (74) license (133)
value (71) value (117)
license (70) document (117)
documentation (67) package (114)
test (65) name (114)
name (64) test (102)
body (57) project (101)

Table 5: Indexes obtained with and without lemmatization

out of curiosity). The generated dictionary contains approximately
33.500 lemmas. Note that in theory, we should rebuild it every time
Quicklisp is updated. Whether this is a critical issue remains to
be seen however. Indeed, Quicklisp is already quite large, so the
probability that an update induces a very important change in the
corpus is likely to be low. On the other hand, an outdated custom
dictionary may start to miss words, or contain irrelevant ones
again, so it is still important to continue using the aforementioned
threshold-based white-listing step.

Finally, note that with this custom dictionary, we are certain to
only get lemmas existing in our corpuses, but we are not completely
sure that the “technical jargon”, frequent in our community’s spe-
cialized version of English is fully recognized by NLTK. It is difficult
to evaluate the risk of an unknown technical word being weirdly
lemmatized by NLTK, but we’re hopeful that if it happens at all,
it remains marginal. NLTK uses the Wordnet database, which is
very large, and also encodes relations between words (such as sin-
gular/plural, synonyms, etc.). A possible path to get more insight
into this problem could be to evaluate the behavior of NLTK on the
Common Lisp Hyperspec’s glossary (which is likely to be a quite
complete reference for technical jargon), and maybe adjust the ref-
erence dictionary accordingly. Another one would be to properly
recognize code pieces from markup information (see Section 8).
Finally, it would be highly beneficial to keep even non-Lisp jargon
around. Pseudo-words such as “cmdline”, acronyms such as “GUI”,
etc., behave just like regular words in our communities, and should
probably be treated as such. How to collect them into our custom
dictionary is yet another problem.

The third column in Table 4 shows the top 10 keywords obtained
with this custom dictionary, and confirms that the results are better.
For example, irrelevant words such as “begin” or “aside” are gone,
even though our dictionary contains more lemmas in total than the
two other ones.

4.4 Final tests and results
In order to get an early feedback on the behavior of this pre-
processing stage, we ran our complete pipeline with and without
lemmatization. Recall that without lemmatization, it is the output
of the PoS-Tagger which is processed by the TF-IDF block directly.
Sample results are presented in Figure 5. The question of whether
lemmatization is useful, and under which precise conditions re-
mains open. In general, lemmatization is expected to be useful

because it allows to treat variations on a single keyword together.
On the other hand, a lemmatized keyword may not be the most
informative, and we believe that this is exactly what happens with
“documentation” and “document” in Figure 5. Assuming that docu-
mentation libraries (such as Quickref and Declt) are those which
bring the keyword “documentation” up, it is unfortunate that in
the lemmatized case, this keyword is transformed into “document”
which, in fact, is less informative. This problem suggests that using
an ad-hoc, carefully tuned dictionary may turn out to be important.

5 TF-IDF
Even though most of the delicate work actually happens during the
pre-processing phase, the heart of our pipeline consists in extracting
meaningful words from our corpus. By “meaningful”, we mean
words which convey the most relevant and decisive information.
For this task, we use the TF-IDF statistic [17].

TF-IDF is a measure that aims at reflecting the importance of
a word in a document. It uses two parameters to operate: the fre-
quency of the word in the document and the number of documents
containing this word. The main idea behind this approach is that a
word both frequent in a document and frequent in all documents
is not very specific to the document in question, and thus, is not a
good descriptor for this document. On the other hand, a word that
is very frequent in one document, but which appears nowhere else,
brings a great amount of information on the document in question,
and can thus be used as a keyword representing it.

In the Quickref context, a “document” corresponds to the corpus
of text extracted by Declt from one specific library. TF-IDF is run
on each library, for which the best 𝑥 words are retained, 𝑥 being an
adjustable parameter.

5.1 Tests and Results
An important question, before running a TF-IDF on each library’s
corpus, is to decide on what we actually use as a corpus for each
library. As mentioned before, README files and docstrings are a
natural choice, but we can also think of using symbol names (of
functions, variables, etc.) as the code is also usually explicit about
what it does. We could also use ASDF’s system descriptions, when
provided, but we haven’t tried that yet. More specifically, we ran
our pipeline on the following corpus variations.

(1) README files only.
(2) README files, plus docstrings for all exported functionality

(public API).
(3) The above, plus the symbol names for all exported function-

ality. The rationale is that carefully chosen API names may
be indicative of the library’s purpose.

(4) The above, plus docstrings for the library’s internals (so,
essentially all docstrings available).

(5) The above, plus the library’s internals symbol names (so,
essentially all symbols).

Sample results are presented in Table 6. As more or less expected,
it is probably not a good idea to add the documentation of a library’s
internals in the corpuses, as the text found there most probably
deals more with the implementation of the library’s functionality,
than the functionality itself. This is visible, for example with the
appearance of keywords such as “string”, “vector”, or “class” in the

32 ELS 2021

A Corpus Processing and Analysis Pipeline for Quickref ELS’21, May 03–04 2021, Online, Everywhere

README + Docstrings + Symbols

Pu
bl
ic
A
PI

library (175) file (148) stream (123)
file (150) string (142) file (117)
function (138) value (139) value (105)
license (133) stream (132) string (105)
value (117) object (125) name (105)
document (117) name (118) user (105)
package (114) license (109) object (95)
name (114) function (108) test (90)
test (102) type (106) type (90)
project (101) test (104) error (88)

+
In
te
rn
al
s

library (175) string (145) string (140)
file (150) stream (138) file (136)
function (138) file (137) stream (133)
license (133) value (118) object (110)
value (117) object (114) value (109)
document (117) name (102) vector (101)
package (114) class (100) class (96)
name (114) test (97) test (94)
test (102) license (96) function (92)
project (101) function (95) message (91)

Table 6: Results for different corpus variations

top 10, which are likely to be related to typing information known
statically, and advertised as such.

Even when restricting ourselves to the public API’s corpus, in-
cluding docstrings and / or symbol names doesn’t seem to add much
to the pertinence of the results. Even public docstrings are in fact
likely to contain static typing information (such as “string”), func-
tion parameters descriptions (such as “object”), etc. In fact, we have
ultimately no control whatsoever on the type, quality, or quantity
of documentation (if any) provided by the developers, which makes
keyword extraction a very hard problem.

6 AGGREGATION
An even harder problem is how to aggregate an appropriate selec-
tion of keywords coming from different libraries (probably with
some overlap), into a sufficiently descriptive and pertinent index.
The difficulty here comes from the fact that we would like 100%
library coverage (we want every Quicklisp library to be pointed to
by at least one keyword) but we also want a reasonably sized final
index. How to achieve this goal is still mostly unanswered, but we
have already conducted some experiments, reported below, and we
also have some ideas that yet remain to be tested.

6.1 Histogram-Based Selection
The first approach we have experimented with is based on the cross-
library keyword appearance histogram. For each of the retained
𝑥 keywords from every library, we count the number of libraries
it appears in, and we sort them by decreasing frequency. We then
select the minimum number of keywords required to reach a 100%
coverage.

This process is very simple to implement, and as a side-effect,
can also be the base for generating a word cloud. Indeed, if a key-
word is representative of many libraries, it probably means that the
corresponding topic is subject to a lot of activity. On the other hand,
this approach also poses accuracy problems, and makes it hard to
adjust the relevant parameters properly (this is where a choice on
the value of 𝑥 becomes crucial). More specifically, because we want
every library to be indexed, a trade off is to be made between the
number of keywords retained per library (hence, accuracy), and the
size of the final index.

If, for example, we keep only one keyword per library, this key-
word will indeed be very descriptive of that particular library, and
so is less likely to apply to many of them. Consequently, it is very
probable that the final index will be very large (at worst, one differ-
ent keyword for every single library, that is, approximately 2.000).

If, on the other hand, we keep a large number of keywords for
every library, there is more likelihood that the retained keywords
will overlap from one library to another, letting us reach a 100%
coverage faster. However, we also risk retaining keywords that are
not so relevant.

Figure 3 contains plots of the library coverage (in percentage) as
a function of the final index size, for different values of 𝑥 , that is,
when retaining different numbers of keywords per library. These
plots confirm what intuition tells. When 𝑥 = 50 for example, a 100%
library coverage is reached with a final index of 200 keywords, but
those keywords are likely to not be so specific. When 𝑥 = 5, on the
other hand, the final index will require more than 3.000 words, all
probably quite relevant.

As mentioned before, because of the inherent structure of the
histogram we use, the top 1 keyword will have many libraries
associated with it, the next one slightly fewer, and so on. This is
important, and problematic, for two reasons.

(1) When a user searches a library for a specific use, a keyword
leading to a hundred different choices is likely to be of little
help.

(2) The number of libraries associated with a keyword is not the
same for all keywords, which makes the final index some-
what heterogeneous.

This is why we also plan to investigate other approaches.

6.2 Other Potential Solutions
A first alternative approach could be to sort the output of TF-IDF
not by decreasing frequency, but by a pertinence factor of some
sort (doing in some sense a meta-TF-IDF on top of the original
one), and keep enough of the top ones to reach a 100% coverage.
The pertinence factor in question could be the inverse of average
ranking of a keyword in each library’s top list, a normalized sum
of all TF-IDF values, or any other measure yet to be thought of.

Yet another possibility would be to take a completely opposite
approach, and start from the fact that in order to be usable, a key-
word shouldn’t point to more than, say, 𝑛 = 10 libraries. We could
then arrange to select all such keywords until we reach a 100%
coverage (probably adjusting 𝑛 to get a reasonably sized index in
the process).

ELS 2021 33

ELS’21, May 03–04 2021, Online, Everywhere Antoine Hacquard and Didier Verna

Figure 3: Library coverage vs. final index size, for different values of 𝑥

7 CONCLUSION
In this paper, we presented a natural language processing pipeline
for Quickref, allowing us to analyze corpus extracted fromQuicklisp
libraries docstrings, README files, or symbol names. This pipeline
is relatively lightweight, as it amounts to no more than 2000 lines
of code.

As part of this process, we have used an existing PoS-Tagging
library, and we have developed our own native Common Lisp imple-
mentations of stemming and lemmatization algorithms. As of this
writing, the code is not in production yet, but we plan to cleanup,
package, and release our stemmers and lemmatizer as standalone
libraries in short term.

The complete pipeline, including the histogram-based aggrega-
tion approach, is currently integrated in an experimental version
of Quickref, but other solutions remain to be tested before putting
the whole thing in production.

8 PERSPECTIVES
Apart from the aggregation problem, some other plans for future
work are worth mentioning.

Our pipeline is currently unaware of anymarkup used in README
files notably (Markdown, HTML, etc.). A number of specific tweaks
are in place in order to remove markup tags from the corpus (for
example, by recognizing and filtering URLs out during the tokeniza-
tion phase). Also, in the case of frequently used markup formats
(such as Markdown), the syntactic “noise” produced by the tags
is likely to be filtered out as non-pertinent by the TF-IDF block,
precisely because of its frequency in many libraries. Yet, it would
be better to be aware of the markup formats in use, and use that
information during the tagging process. The first advantage that
comes to mind is to be able to properly differentiate natural lan-
guage parts from code samples, in order to select what we want
to keep around for TF-IDF (see Section 5.1). Correctly identifying
markup tags could also be useful to spot inline code excerpts (or
just words) embedded in natural language paragraphs, and give

them special treatment (for instance, considering them as “technical
jargon”; see Section 4.3.2). More generally, it could be interesting to
think about the kind of information that other tags, such as bold or
italics, provide. For instance, bold or italics may be an incentive to
give more weight to the targeted textual part. Even more generally,
potentially useful information can sometimes be extracted from
pure, tagless, text. For example, it is customary to render Lisp ref-
erences (function parameters, variables, etc.) in uppercase in plain
docstrings.

Previously, we mentioned that we use a suffix stemmer because
that is where most of the variations occur in English. We could not
find any prefix stemmer in the literature, and we currently don’t
know if that would be worth looking for, even for English, and
perhaps in combination with the current suffix one.

As far as dictionaries are concerned, we mentioned that the best
results were obtained by creating our own custom dictionary with
the help of an external lemmatizer. Another possibility would be to
start from an existing dictionary, but keep track of missing words,
and create only a custom addition to the original dictionary with
those words. Even if we gain a little in terms of dictionary boot-
strapping time, it is not very likely that this solution would get
us anything more in terms of pertinence, notably because exist-
ing dictionaries are still likely to contain a lot of words that are
uninteresting for us, or that actually never occur in our corpus.

Finally, one final question that could arise eventually is that of
the actual language in use. Currently, we assume English (which
is unlikely to pose any problem with Quicklisp), but if we even
want to handle other languages, the problem will become more
complicated. In particular, our current PoS-Tagger will not be usable
anymore.

REFERENCES
[1] Lemma lists. https://lexically.net/wordsmith/support/lemma_lists.html. Accessed:

2021-03-06.
[2] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence

algorithms. In Proceedings of the Seventh International Symposium on String
Processing and Information Retrieval. SPIRE 2000, pages 39–48, September 2000.

34 ELS 2021

A Corpus Processing and Analysis Pipeline for Quickref ELS’21, May 03–04 2021, Online, Everywhere

doi: 10.1109/SPIRE.2000.878178.
[3] Steven Bird, Edward Loper, and Ewan Klein. Natural language processing with

python. https://www.nltk.org/book/, 2009.
[4] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison

of string distance metrics for name-matching tasks. In Proceedings of the 2003
International Conference on Information Integration on the Web, IIWEB’03, pages
73–78. AAAI Press, 2003. doi: 10.5555/3104278.3104293.

[5] Doug Cutting and Jan Pedersen. The Xerox part-of-speech tagger version 1.2.
https://github.com/g000001/tagger, 1993.

[6] Steven M. Haflich. The Porter stemming algorithm, a Common Lisp implementa-
tion. https://github.com/varjagg/porter-stemmer, 2002.

[7] Anjali Jivani. A comparative study of stemming algorithms. International Journal
on Computer Technology and Applications, 2:1930–1938, November 2011.

[8] Alan C. Kay. The Reactive Engine. PhD thesis, University of Hamburg, 1969.
[9] Deepika Kumawat and Vinesh Jain. Pos tagging approaches: A comparison.

International Journal of Computer Applications, 118(6):32–38, May 2015. ISSN
09758887. doi: 10.5120/20752-3148.

[10] Dimitrios P. Lyras, Kyriakos N. Sgarbas, and Nikolaos D. Fakotakis. Using the
levenshtein edit distance for automatic lemmatization: A case study for modern
greek and english. In 19th IEEE International Conference on Tools with Artificial
Intelligence(ICTAI 2007), volume 2, page 428–435, Oct 2007. doi: 10.1109/ICTAI.
2007.41.

[11] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,
and David McClosky. The stanford corenlp natural language processing toolkit.
In Proceedings of 52nd Annual Meeting of the Association for Computational Lin-
guistics: System Demonstrations, page 55–60. Association for Computational Lin-
guistics, 2014. doi: 10.3115/v1/P14-5010.

[12] Andrew McCallum, Kedar Bellare, and Fernando Pereira. A conditional random
field for discriminatively-trained finite-state string edit distance. In Proceedings
of the Twenty-First Conference on Uncertainty in Artificial Intelligence. UAI2005,

Jul 2012.
[13] M. Douglas McIlroy. Macro instruction extensions of compiler languages.

Communications of the ACM, 3:214–220, April 1960. ISSN 0001-0782. doi:
10.1145/367177.367223.

[14] Chris D. Paice. Another stemmer. ACM SIGIR Forum, 24(3):56–61, Nov 1990. ISSN
0163-5840. doi: 10.1145/101306.101310.

[15] M. F. Porter. An algorithm for suffix stripping. Program: Electronic Library and
Information Systems, 14(3):130–137, 1980. doi: 10.1108/eb046814.

[16] M. F. Porter and Richard Boulton. Snowball stemmer. 2001.
[17] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic

text retrieval. Information Processing and Management, 24(5):513–523, Jan 1988.
ISSN 03064573. doi: 10.1016/0306-4573(88)90021-0.

[18] Andrew Sengul. April: Array programming re-imagined in lisp. https://github.
com/phantomics/april, 2019.

[19] Syeda ShabnamHasan, Fareal Ahmed, and Rosina Surovi Khan. Approximate
string matching algorithms: A brief survey and comparison. International Journal
of Computer Applications, 120(8):26–31, Jun 2015. ISSN 09758887. doi: 10.5120/
21247-4048.

[20] Mark Tarver. The bipolar Lisp programmer. http://marktarver.com/bipolar.html,
2007.

[21] Ansi. American National Standard: Programming Language – Common Lisp.
ANSI X3.226:1994 (R1999), 1994.

[22] Didier Verna. Quickref: Common Lisp reference documentation as a stress test
for Texinfo. In Barbara Beeton and Karl Berry, editors, TUGboat, volume 40,
pages 119–125. TEX Users Group, September 2019.

[23] Didier Verna. Parallelizing Quickref. In 12th European Lisp Symposium, pages 89–
96, Genova, Italy, April 2019. ISBN 9782955747438. doi: 10.5281/zenodo.2632534.

[24] Rudolf Winestock. The Lisp curse. http://winestockwebdesign.com/Essays/Lisp_
Curse.html, April 2011.

ELS 2021 35

Lisp in the middle
using Lisp to manage a Linux system

Michael Raskin∗
raskin@mccme.ru,raskin@in.tum.de

Technical University of Munich
Garching bei München

ABSTRACT
In the Lisp community one can still find some nostalgia for the time
of Lisp machines. The defining feature that has been since lost is
having a powerful programming language as the main method of
controlling the system behaviour.

Unfortunately, to the best of our knowledge, there are few mod-
ern systems that try to revive this approach. Moreover, regardless of
the configuration language in use, managing the system as a whole
is usually associated purely with managing a global persistent state,
possibly with parts of it getting enabled or disabled in runtime.

We present a system design and a description of a partial imple-
mentation of Lisp-in-the-middle, a system based on the common
GNU/Linux/X11 stack that uses Common Lisp for runtime system
policy and per-user policy. We prioritise ease of achieving com-
patibility with niche workflows, low rate of purely maintenance
changes, and minimising the unnecessary interactions between the
parts of the system unless requested by user.

CCS CONCEPTS
• Software and its engineering → Operating systems; Applica-
tion specific development environments;

KEYWORDS
operating systems, Linux, Lisp machines
ACM Reference Format:
Michael Raskin. 2021. Lisp in the middle: using Lisp to manage a Linux
system. In Proceedings of the 14th European Lisp Symposium (ELS’21). ACM,
New York, NY, USA, 9 pages. https://doi.org/10.5281/zenodo.4724166

1 INTRODUCTION
Since the timewhen Lispmachines were in use, a variety of software
has emerged that allows to use some flavour of Lisp to control some
subset of the computer environment.

Among these projects, Emacs [1] probably enjoys the widest
adoption. While many people use it mainly for editing text, there
are plugins that add functionality ranging from email client to
a window manager. Other projects used as parts of their main
environment by some people are StumpWM [2] (window manager
∗The author is supported by an ERC Advanced Grant (787367: PaVeS)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’21, May 03–04 2021, Online, Everywhere
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.4724166

for X11) and Guix/Guix-SD [3] with Shepherd [4] (package manager
based on Guile Scheme, a service management tool based on Guile,
and a GNU/Linux distribution based on them).

There are interesting projects implementing entire bare-hardware
OS in Lisp, such as Mezzano [5], Movitz [6] and LOSAK [7]. To the
best of our knowledge, all of them were (and Mezzano currently is)
developed inside virtual machines.

We experiment with using Common Lisp for access policies and
glue code in the context of runtime system management. Unlike
many modern tools for system state management and system policy
management, we consider the case of a user with programming
experience and explicit preferences about the details of the work-
flows and access control. Thus we do not consider the simplicity
of a language used to be important, but the expressive power of a
language is an important advantage. As the user has specific pref-
erences related to the workflows, interactions working without the
need to enable them explicitly are not as important as the reduction
of unexpected changes caused by the updates. Additionally, tools
to explicitly restrict unwanted interactions can be useful.

We aim to provide an environment close to the range of exotic
GNU/Linux distributions with some access to the Lisp-implemented
system functionality to shell-based workflows.

The Lisp code in the system generally implements the answers
to the two main questions. What things should happen together,
and what access control is necessary for privileged operations.

For example, when opening a laptop at home, one might want
multiple things to happen. After a WiFi connection is established,
the instant messaging client should reconnect and set the status. If
the password manager has been locked, it should ask for the master
password. If email fetching is paused for some reason, it should
be enabled again. Screen brightness that matches the environment
should be set. At the same time, screen brightness change and WiFi
reconfiguration are operations requiring root access, so there should
be some policy describing under which condition these changes
are allowed to happen. Both parts are usually managed via a mix
of manual actions, shell scripts, and service configuration settings
in various languages.

Another example requiring configurable combination of system
management operations with a subset of them being privileged is
launching an application in a restricted and partially isolated envi-
ronment. This is desirable both from the point of view of reducing
the average impact of vulnerabilities in unreasonably complex ap-
plications such as office suites and modern graphical web browsers,
and from the point of view of restricting unintended interactions
between simultaneously running applications or the runs of the
same application.

36 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere M. Raskin

For example, a user might want to launch a Firefox instance that
only has network access via the university proxy, no access to most
of the user files, and read/write access to a specified directory with
article PDF files.

A large part of the impulse for experimentation was getting
tired of keeping track of changed systemd default settings that
needed to be reconfigured back to the previous default values or
worked around. Note that such motivations raises importance of
some negative requirements, i.e. a tool not doing undesired things
is no less important than the tool having the desired features.

In the current state the Lisp-in-the-middle system replaces some
configuration and tools with Lisp code and keeps the general struc-
ture of a GNU/Linux environment. As it is intended to adapt to
niche workflows, it does not impose much of a global structure; it
is more a collection of tools that turned out to be convenient for
specific tasks. We believe that experiments with alternative system
structures or alternative interaction approaches require either a
massive upfront investment, or something that can be almost imme-
diately used as a day-to-day environment and gradually extended
from the inside. While the former approach might allow a much
better eventual outcome in the case of success, we follow the latter
one to reduce the risk. We hope that future expansion of the Lisp
layer in the Lisp-in-the-middle system will lead to accumulation of
tools and experience useful both for building a non-standard system
on top of the standard low-level parts of GNU/Linux software stack,
and for providing isolated and controllable instances of software
packages required for interoperability. Examples of hard-to-replace
packages are web browsers and office file format editors.

Centralised management of the system by interoperating dae-
mons is what systemd does after expanding its scope from being
an init system and daemon supervisor. Unlike systemd, we aim to
provide configuration by defining or replacing the functions that
make policy decisions. We also want to allow multiple replaceable
daemons to manage different parts of the system without tight
coupling between the daemons.

Currently the system exists as a small set of libraries and tools,
some in Common Lisp, some in amix of Nix/Shell/C, and an example
system definition using these libraries and tools.

2 AN EXAMPLE INTERACTION: REDUCING
POWER CONSUMPTION

We proceed to describe a small example of the events triggered
when a user requests to reconfigure the system in the runtime. The
user has unplugged the laptop from an AC power supply and plans
to use the laptop without AC power supply for a significant amount
time. Thus the user wishes to reduce the power consumption of the
system. To achieve that, the user calls the disconnect function in
an unprivileged Common Lisp image. This might be done via a REPL
or via a command-line parameter to a newly started image. The
disconnect function is defined in a way similar to the following.
(defun disconnect

(&key kill-ssh kill-wifi kill-bg (brightness 1)
(cpu-frequency "min") kill-matrixcli
standby-options standby kill-mounts)

(when kill-mounts
(loop for d in (directory (~ "mnt/*/")) do

(& fusermount -u (namestring d))))
(alexandria:write-string-into-file "10"
(format nil "~a/.watchperiod" (uiop:getenv "HOME"))
:if-exists :supersede)

(! web-stream-updater-starter quit)
(uiop:run-program "rm ~/.update-web-streams-*"

:ignore-error-status t)
(ask-with-auth

(:presence t)
`(list

(set-cpu-frequency ,cpu-frequency)
(set-brightness ,brightness)
,@(when kill-wifi `((kill-wifi "wlan0")))))

(when kill-ssh
(ignore-errors (stumpwm-eval `(close-ssh-windows)))
(! pkill "-HUP" ssh-fwd) (! pkill "-HUP" -f /ssh-fwd))
(when kill-bg (kill-background-process-leaks))
(when kill-matrixcli
(! pkill -f /matrixcli) (! pkill -f " matrixcli"))

(! x-options)
(when standby (apply 'standby standby-options)))

Depending on the current needs, it might stop unnecessary back-
ground processes (SSH sessions, stuck Firefox instances in the back-
ground X session, IM clients, retrieval of web feeds), unmount net-
work filesystems, change the refresh rate of the status bar, reduce
CPU frequency and screen brightness, turn off the WiFi interface,
reconfigure the X session in case an external monitor has been
disconnected, and suspend the laptop to RAM. Some of these oper-
ations are performed using previously written shell scripts, some
are implemented inside this function, some are called from another
part of the configuration.

Some parts of the disconnect functions require privileged op-
erations. In particular, we will consider the part corresponding to
the change in the CPU frequency and the screen brightness. As
the function is executed inside a non-privileged process, it asks the
system management daemon to perform the privileged operations.

2.1 Inter-process requests
If the disconnect function is called with the default arguments,
the following form gets executed.
(ask-with-auth

(:presence t)
`(list

(set-cpu-frequency "min")
(set-brightness 1)))

The ask-with-authmacro expands to the code that connects to
the system management daemon socket to send the request, possi-
bly wrapping it into some authentication or authorisation exchange.
In this section we describe how the requests are represented and
sent.

The main Common Lisp system management daemon creates
a listening socket with an address on the file system to receive
requests. The requests are s-expressions, containing strings and
numeric literals. Symbols (except NIL) are deliberately not allowed
for two reasons. First, there are differences in symbol treatment
between Lisps (mainly related to representing packages or modules

ELS 2021 37

Lisp in the middle ELS’21, May 03–04 2021, Online, Everywhere

when serialising a symbol), while lists, strings and most numbers
are represented in the sameway. The identical representation across
the Lisp language family should make migration (as well as using
multiple policy daemons in different languages for managing dif-
ferent parts of the system) easier. Second, one of the obvious use
cases for allowing some symbols in the requests is passing some
part of the request as keyword parameters to a function. We want
to discourage such an approach, because policies defined in such a
way are likely to allow more than intended. Utility functions for
personal use are likely to gain additional keyword parameters over
time, and expanding their interface should not require complete
review of all the possible requests. As a simple example, a function
that converts files to a different format might eventually gain an
extra keyword argument to remove original files in case of success.
In that case, the right to pass it arbitrary keyword arguments might
become more sensitive.

There is a special package for request handlers. The request must
be a list; the first element must be a string, which is looked up (after
converting to the upper case) in the package to find the handler
that will be executed with the rest of data as parameters. Each
connection also has a hashtable of extra data. This extra data can be
used, for example, in the process of authentication of requests. The
extra data can be freely read and modified by the request handlers.

For example, a request ("SET-CPU-FREQUENCY" "min") will
lead to a call
(socket-command-server-commands::set-cpu-frequency

context "min")

where context might contain, for example, information whether
this is a part of a larger request that has been authorised by the
physically present user.

For convenience, the ask-with-auth macro allows the user to
pass symbols inside the requests. Each symbol is replaced with a
string representing its name. Hence calling the disconnect func-
tion leads to the following request content after replacing the sym-
bols with their names.
("LIST"

("SET-CPU-FREQUENCY" "min")
("SET-BRIGHTNESS" 1))

However, we do not allow these operations to be requested by
an arbitrary process without confirmation from the user, thus the
conversations with the server is more complicated.

2.2 Authentication and authorisation
Before executing a request the daemon usually needs to check if
the policy allows such a request. The policies are defined by Lisp
code executed by the daemon. The management daemon provides
a few ways to either verify the client’s claims about its identity or
to ask the physically present user whether the command should be
permitted.

The simplest and fully automatic way of authentication is verify-
ing that the client has the claimed user ID. This is done by writing a
random token into a file readable only by the target UID and asking
the client process to provide the token. A simple way of authorising
a request with slightly larger impact is to ask the physically present
user to confirm that the request should be executed.

Consider for example the ask-with-auth invocation inside the
disconnect function. This macro always performs UID authenti-
cation, and additional authorisation by the physically present user
is requested in this case. First the client process sends a request to
confirm having access to the files only readable as user raskin.
("REQUEST-UID-AUTH" "raskin")

The server replies with the filename containing the key. The
client reads the key and uses it to send an authenticated request,
which requires additional authorisation via confirmation from the
physically present user. Here the timeout for the user reaction is
15 seconds. The request demands to change two settings: CPU
frequency and screen brightness.
("WITH-UID-AUTH" "JDPBTP56Y3LALB6FMA54"

("WITH-PRESENCE-AUTH" "T"
("PROGN" ("SET-CPU-FREQUENCY" "min")

("SET-BRIGHTNESS" 1))
15))

The daemon switches to a specially reserved virtual terminal
to separate the communication between the daemon and the user
from the programs in the normal user session. After a switch to
a dedicated virtual terminal, the user is presented with the list of
operations to confirm or cancel. If the user confirms the request, the
daemon adjusts CPU frequency and screen brightness using sysfs
virtual filesystem provided by the Linux kernel for interaction with
drivers. Afterwards the daemon reports the success or failure to
the client process.

As screen resolutions vary in a wide range, but font size config-
uration in plain Linux kernel-rendered virtual terminal using the
fbcon driver is limited, we use a reduced interface to graphics on
virtual terminals (framebuffer) provided by the Linux kernel with
fbterm, a framebuffer terminal emulator with vector font support.

2.3 Integration with existing scripts
Sometimes an existing script in another programming language
is modified to use management daemon requests instead of, for
example, sudo.

We mainly use a saved Lisp image with all the relevant library
code loaded and allow the scripts to just execute it passing the
Lisp code for performing a request. A shell script can then include
something similar to the following.
lisp-shell.bin --eval '(ask-with-auth (:presence t)

`("SET-BRIGHTNESS" 1))'

3 OBTAINING INFORMATION FROM THE
WEB

Web browsing is performed in a tiered manner: in the best case,
plain HTML is downloaded, then it is parsed using
cl-html5-parser [12], and then the parsed data is converted to a
plain text representation using our Thoughtful Theridion library
[13]. The download might be automated using Throughful Therid-
ion’s web page walker DSL. If the page requires Javascript to fetch
the content, a background Firefox instance with Marionette remote
control is started to obtain the data, save the HTML and also the
corresponding text representation. In the unfortunate case where
an interactive web browser is required, an isolated (typically per

38 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere M. Raskin

site) instance of Firefox (or Chromium for sites failing to work in
Firefox) is used.

The latter two cases include starting a browser in an isolated
environment. This happens with the assistance of the system man-
agement daemon. As an example, evaluating the following code in
an unprivileged Lisp instance will start a virtual X session, launch
Firefox with full network access and limited file system access, open
the ELS page, select the current year, wait for the second page to
load and return the URL of the image.
(uiop:launch-program "xdummy :9")
(with-new-firefox-marionette

() (() :netns nil :display 9)
(prog1 (progn

(marionette-set-url
"https://european-lisp-symposium.org/")

(ask-marionette-parenscript
`(ps:chain document document-element

(query-selector "a.current") (click))
:wait-ready t)

(first
(ask-marionette-parenscript
`(return (ps:chain

document document-element
(query-selector "span.imagery img")
src)))))

(marionette-close)))

While the substance of the task is the code passed to the calls to
ask-marionette-parenscript, we are interested in the request to
the daemon that happens due to the with-new-firefox-marionette
macro.

The main part of the expansion is a call to the firefox function
that launches Firefox in an isolated environment with limited file
system access and, if requested, network access restricted to ac-
cessing the selected proxy. The function also tells Firefox to enable
the Marionette external control framework. This framework has
been initially implemented for automated testing of Firefox itself.
Marionette is also used as a foundation for Geckodriver, a tool for
automated testing of websites in Firefox. The instance can be used
for interactive browsing or for automated interaction with some
websites.

To run Firefox (or any other command) in an isolated environ-
ment, the client process sends a request to the system management
daemon. We do not show a complete request here because it has
too many parameters. The request contains the configuration for
the files that should be available inside, which devices such as
sound cards and video cameras should be made accessible to the
application, what network access should be provided, etc.

3.1 Sandboxing
The request to run some command in an isolated environment al-
lows a client process to claim a fresh user ID and run some code
under this UID for partial access control. It is also possible to re-
quest isolation using some of the technologies developed for Linux
containers. For example, many vulnerabilities in the desktop pro-
grams when opening a malformed document have significantly less
impact if the corresponding program has neither network access

nor write access to anything outside the current directory. Using
a unique UID also allows controlling the scope of daemons like
PulseAudio that insist to be run only once in a user session and are
required by some software. This functionality permits controlling
the interaction between the non-Lisp components of the system.

The user has access to launching programs in isolated environ-
ments via a normal Lisp function, similar in purpose to uiop:run-program
but with numerous keyword arguments to describe the desired en-
vironment and functionality available to the program.

3.2 Window management integration
If the firefox function was called with the :stumpwm-tags key-
word argument, all the windows created by this Firefox instance will
be automatically assigned the specified window tags by StumpWM.
These tags can be used to manipulate the windows as desired. The
implementation is as follows.

GUI applications launched in isolated environments can be distin-
guished, for example, by the internal host name of the environment.
We have expanded StumpWM support of the X11 protocol window
properties and provide functions to assign window tags based on
window properties. In particular, the Inter-Client Communication
Conventions Manual standard provides access to the hostname of
the client application and the Extended Window Manager Hints
standard provides access to the process ID and hostname of the
client application via X11 window properties.

On the StumpWM side we add a socket with an address on the
file system. Before launching the isolated application, we evaluate
code in StumpWM that establishes correspondence between the
chosen hostname of the isolated environment and the desired tags.

4 UPDATING THE SYSTEM
An important operation on most systems is updating the system
itself. When a user updates the system, there are two parts of the
task: a new persistent state of the system needs to be constructed,
and a subset of runtime state needs to be reinitialised based on
the new persistent state. The user initialises the system update by
calling full-refresh function in an unprivileged Lisp instance.

For the first part we use Nix package manager [8]. First we
call Nix from the unprivileged client process to prepare the new
persistent state. As Nix installs each package, from glibc to the
overall system state, into its own path, asking the Nix daemon
(provided by Nix) to construct the new persistent state is non-
destructive and can be done without special privileges. Then the
client process asks the daemon to set the newly created system state
as the active system state. This is a privileged operation; unlike
more frequent operations like adjusting the screen brightness here
the user is asked to enter the system root password for confirmation
instead of just pressing enter. This operation essentially just changes
the target of one symbolic link on the filesystem.

To update the runtime state of the daemon, the client process
sends the request to the daemon to exit; a new instance of the
daemon is automatically started whenever the old one exits. Any
data that needs to survive such restarts is stored in external SQLite
databases, mostly on RAM-backed filesystems. Such external stor-
age of the runtime daemon state reduces the risks in case of errors
in policy code leading to unhandled conditions in the daemon, as

ELS 2021 39

Lisp in the middle ELS’21, May 03–04 2021, Online, Everywhere

well as makes it easier to share the runtime state with a different
daemon. In addition to the fully functional Common Lisp system
daemon, updating the system is also supported a proof-of-concept
Guile system daemon.

Some of the other daemons running in the system can also be
restarted after the update by normal requests to the daemon.

5 LISP IMPLEMENTATION LIMITATIONS AND
WORKAROUNDS

Common Lisp implementations (including SBCL), as well as porta-
bility libraries such as uiop, often expect that spawning other pro-
grams will be done in a relatively limited way. There are two kinds
of cases where we currently choose to use a workaround.

The first case is starting programs that need access to the termi-
nal input. The most annoying situation is the case of a long running
program that we might want to interrupt. Unix shells intended to
spawn such a case have special code for handling interruptions
while a program is running in the foreground. However, if the pro-
gram is launched from an SBCL REPL using sb-ext:run-program
or uiop:run-program, pressing Ctrl-c leads to a different, less
desirable behaviour. Both the program and the Lisp session inter-
pret Ctrl-c normally; the program exists as desired, and the REPL
starts a debugger caused by an interactive interrupt. Similarly, it is
also possible to break some expectations regarding the input/output
stream (for example, Ctrl-d can be caught both by the program
invoked and the Common Lisp implementation).

A simple way to avoid this problem is to make sure the spawned
program has its own separate pseudo-terminal. Using a terminal
multiplexer like screen and running interactive programs in a new
screen window is usually an acceptable workaround. We provide a
macro !! which interprets its argument in the same as the ! macro
does, but asks screen to start the command in a new window
instead of starting it directly. Of course, an obvious way to avoid
that is to run workflows in a traditional shell, spawning a Lisp
instance when necessary.

The second case is using special system functionality, for exam-
ple file locks. For Common Lisp implementations it is more natural
to implement concurrency as multiple threads in a shared address
space. However, this means that system APIs intended for use in a
multi-process model are not fully usable. We use existing wrapper
programs for such functionality or write small helper executables in
C. For example, if the use of POSIX flock function for file locking
is desired, we spawn a separate process that acquires a lock, reports
success when the lock is acquired, then waits for the command to
release the lock.

6 OVERALL STRUCTURE OF THE SYSTEM
The initial boot is performed in a way pretty similar to other
GNU/Linux distributions. The customisation of this stage is done
via a shell script. Once the system runs with the normal storage
properly set up, a minimalistic init process sinit is launched for
the core system tasks (releasing the process memory structures
of the processes that terminate after their corresponding parent
processes has terminated, and handling the system shutdown), and
the main Lisp process is started.

The Lisp process starts the login processes on the virtual termi-
nals, and launches the daemons (such as CUPS printing daemon
and OpenSSH) according to the policy. Afterwards the system Lisp
daemon starts listening on a Unix domain socket on the file system
for requests. The requests are used for operations requiring special
access in a way similar to the way sudo or doas are used. Using a
Unix domain socket for communication instead of e.g. a local HTTP
server allows us to send file descriptors. Passing file descriptors is
used in the context of isolated environments.

A large part of the scripts for launching the daemons and of the
daemon configuration files is generated using the code from NixOS
GNU/Linux distribution.

We do not currently use any service supervision system, mostly
because restricting the global interactions leads to a limited set
of system-wide services with failure modes that are invisible to a
service supervision system anyway.

A small library is provided for writing both the system-wide
policy code and the user-level policy code. We will now describe
the provided functionality.

7 OTHER RELATED FUNCTIONALITY
7.1 Authentication and authorisation
Request authorisation by the physically present user supports some
extra features.

The client can provide extra text to explain to the user why
the request has been sent. Sometimes authorising the request will
require the user to enter a password, either their own, or belonging
to a specified other user on the system (usually the root user).
The password request and entry will happen in the same reserved
virtual terminal to prevent abuse of input interception in the X11
protocol. The same mechanism can be used by a client process to
request an application-specific password from the user without the
password going through the normal input channels of the current
session.

7.2 Isolated environments
Our protocol for requests supports forwarding some status mes-
sages to the client as they happen without waiting for the entire
request to finish. For example, when starting a command in an
isolated environment, it is possible to have the standard output
(or the exit code of the program) as a return value, but forward
the error messages as they appear. This is based on sending the
file descriptors through the socket and thus requires the socket to
be a Unix domain socket as opposed to a TCP socket. The same
functionality also allows to run a command-line program in an
isolated environment but provide it with the input from the current
pseudo-terminal.

While the client process has a lot of freedom in configuring
what files are accessible inside the sandbox, it may be sensible to
impose some limitations. For example the following policy says
that an empty tmpfs (temporary memory-based filesystem) can be
mounted wherever the requesting process wishes, but real files and
directories can either be provided at their true location, or inside
/tmp/ or /home/, or at a location without any well-knownmeaning.
This restricts the possibilities for requesting access to an installed

40 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere M. Raskin

setuid program inside the sandbox and confusing the program with
fake entries inside /etc/.
(defun nsjail-mount-allowed-p (from to type)

(or
(equal type "T") (equal from to)
(and

(or
(alexandria:starts-with-subseq "/home/" from)
(alexandria:starts-with-subseq "/tmp/" from))

(or
(alexandria:starts-with-subseq "/home/" to)
(alexandria:starts-with-subseq "/tmp/" to)
(equal "/tmp" to)
(not (find

(second (cl-ppcre:split "/" to))
well-known-directories :test 'equalp))))))

On the current system the risks of abusing setuid binaries are
further reduced by having only 4 setuid binaries. There is some
separate support for generating safe contents for specific files inside
/etc/ such as /etc/passwd (but not /etc/shadow).

7.3 Miscellaneous Lisp utilities
For many system administration tasks, the simplest way to perform
them on GNU/Linux involves invoking utility programs and parsing
their output. We provide some tools to simplify manipulating shell
commands, and tool-specific wrappers for some commands.

We provide a function to parse the network address list returned
by the ip network configuration tool, as well as a few trivial wrap-
pers for the most common network configuration modifications,
including WiFi state control via wpa_supplicant. We currently
assume that the configuration of wpa_supplicant is managed sep-
arately.

We wrap some of the basic Nix package management operations,
basic user account manipulation operations, power management
etc.

In the spirit of the standard with-open-file macro and multi-
ple with-. . . macros provided by Lisp libraries, we implement
shell-with-mounted-devices macro that attaches a file system
or multiple file systems on removable devices, launches a speci-
fied shell command (by default it opens a new shell window in
the current screen session) and detaches the file systems when
the command finishes. Many graphical environments based on
GNU/Linux offer graphical shortcuts to attach a file system on the
USB drive and to launch a file manager or a terminal for that file
system, but we are not aware of environments that provide an op-
tion to tie automatic disconnection of a file system with the lifetime
of the corresponding terminal or file manager.

Of course, the functionality provided for lifetime tracking of a
non-blocking command can be used for implementing other related
functionality, such as deactivating the screen saver for the lifetime
of a video player when the video player doesn’t implement screen
saver interaction on its own. From the low-level point of view,
the lifetime tracking of the child process is based on letting it
inherit an open file descriptor; in most cases the file descriptor will
be inherited by any descendant processes, which we consider a
desirable behaviour.

7.4 Tracking process windows with StumpWM
We also provide the automatic-tagging functionality for unsand-
boxed applications, however this only works if the initially started
process is the one creating windows. This restriction is absent when
isolation is used for launching the application, because we can as-
sign a unique hostname to the container and the application will not
change it. Note that the hostname and process ID are reported by
the application who can deliberately violate the protocol, but most
applications use some GUI libraries that reveal the data correctly.

8 COMPARISON TO OTHER APPROACHES
8.1 Similarities and differences with Guix-SD

goals
While Guix and Guix-SD also use a Lisp (namely, Guile Scheme)
to configure the system, our goals are different. Guix and Guix-SD
are intended to provide Lisp-based management and Lisp APIs for
constructing the system. GNU Shepherd manages the system in the
runtime, but it is intended for managing only the set of running
daemons, and for use via command-line. It also provides APIs that
mirror the command line invocations.

In our case, the goal is to experiment with controlling the run-
time state of a system and with providing Lisp APIs for runtime
fine-tuning as opposed to building a preconfigured system once.
An example of a difference is access to privileged commands. Guix-
SD uses the standard sudo mechanism and allows to specify the
contents of the /etc/sudoers configuration file. Our system im-
plements a custom protocol for requesting privileged operations,
and the access policy is configured by defining Lisp functions.

Guix could have been used instead of Nix for package manage-
ment; the choice of Nix here was motivated by package availability.

8.2 Request authentication and authorisation
A custom protocol for checking the UID of the other process is
providing functionality pretty similar to the getsockopt system
call with SO_PEERCRED option. However, we verify the current user
ID of the client. In contrast, getsockopt checks the identity of the
process that has initially established the connection; this could be,
for example, the parent process of the current one that did not close
the socket before spawning the current process. The behaviour we
use is more similar to the behaviour achieved when using sudo. (As
an aside, iolib does not have full support for SO_PEERCRED.)

Our protocol allows authorising multiple operations as a batch.
In this case the user will need to take an action only once, but full
information about all the actions will still be provided. This differs
from the typical situation with sudo where either each operation
requires separate authorisation, or authenticating a session leads
to all requests in the next few minutes are granted.

In many cases, the physical presence of a user is relevant: for
example, a user with physical access can shutdown the system
using the power button, so physical presence can be enough to
initiate safe shutdown; but the same user logged in via SSH might
not want to be able to shutdown the system too easily. Our solution
seems to be more robust than the usual ones when a user has
both SSH and physical login session and also has some programs
running in a pseudo-terminal accessed from both of the sessions

ELS 2021 41

Lisp in the middle ELS’21, May 03–04 2021, Online, Everywhere

(e.g. using screen). In such a setup the standard policy mechanisms
of checking whether a user has any physical session, or whether
the current program is a descendant of physical login do not answer
the question whether the request comes from a physically present
user.

8.3 Isolated environments
The goals of the system include running software in isolated envi-
ronments. Linux namespaces support permits to construct some
isolated environments even without administrator access. It is still
desirable to assign single-use user IDs to different isolated envi-
ronments as an extra layer of protection. However, for things like
network isolation it does not matter whether the namespace has
been constructed as root or as user. This allows us to run a relay
for limited network access in an environment that is almost fully
isolated save for the networking, then create a nested sandbox with
access to the relay socket but not the host networking (figure 1).

Thus it would be convenient to have a tool with nested isolation
support. This makes service-oriented isolation options, including
Shepherd service sandboxing, less attractive. An intermediate op-
tion would be something like systemd-nspawn, but it requires that
the entire system is managed by systemd.

Standalone options range from pretty limited unshare to fully
featured options such as Firejail, nsjail, Bubblewrap, and others.

We use nsjail [9] tool for the low-level work necessary for cre-
ation of isolated environments, as it supports many various options
and seems stable. For example, nsjail supports presenting speci-
fied parts of filesystem inside the isolated environment, choosing
whether to use or not each kind of isolation supported by the Linux
kernel, resource limits, user and group ID handling, etc. As the
invocations of nsjail are generated by the Common Lisp code,
flexibility and feature availability are more important than conve-
nience of manual invocations of availability of predefined isolation
profiles.

8.4 Integration with shell scripts
Of course, it is possible to reimplement the authentication protocol
in the language of the script. On the other hand, maintaining im-
plementations of the protocol in multiple programming languages
increases the cost of updating the protocol.

Another approach is to have a separate management daemon
running with the user’s permissions, and use file system access
control to allow requests to such a daemon only from the client
programs with the same user ID. The user daemon will execute
the requests. It can have access to both the user Lisp scripts not
requiring special permissions and to sending a request to the system
management daemon.

A benefit of the chosen approachwith starting a saved Lisp image
is the possibility to see the parent process ID. Another benefit, which
is only relevant for scripts running in a terminal, is that the Lisp
image providing the communication with the system management
daemon can write to the terminal. A possible drawback is a higher
memory use, although most of the data in a saved Lisp image is
mapped read-only from the image on the disk and can be shared
between multiple process.

8.5 Package management
Most system-wide package managers such as dpkg and rpm typi-
cally contain some notion of package conflicts, leading to annoying
interactions between the parts that we would prefer to keep sepa-
rated and not interacting.

To have a solid foundation for managing the runtime state, we
choose a tool for managing the packages that minimises unwanted
interactions such as package conflicts, and ensure a requested state
regardless of the previous state. If we want these properties to
apply to the base system, the most natural options are Nix [8]
and GNU Guix [3]. Both the Nix package manager and the Guix
package manager inspired by Nix restrict the notion of package
conflicts by installing each package into its own directory. That
way, installation of a package is not seen as a change in the globally
shared mutable system state; instead, the installed packages are
treated as a garbage-collected pool of immutable data structures.
Updating the system with this approach is closer to constructing a
new list out of cons cells (reusing some of list elements), than to
updating the elements in-place in a sequence.

Both package managers have distributions based on them, NixOS
and GuixSD; in this case the entire system is defined as a package
with some dependencies, allowing to keep multiple versions of the
entire system and choose between them on boot without unnec-
essary duplication of the installed packages. This allows both to
install individual packages and to reuse parts of the system (e.g.
configuration files and service definitions) without running the
entire distribution.

Of course some persistent data such as PostgreSQL databases
needs to be converted to newer formats during some upgrades, so
the abstraction is not perfect. However, the cost and the risk of a
typical update of a system with some exotic packages installed are
lowered significantly.

We use the Nix [8] package manager. While Guix, which has
started as a rewrite of Nix into Guile, seems to be a natural choice for
a package manager in a Lisp OS, we currently use Nix [8] because
of a larger packaging community. In particular, Nixpkgs have better
Common Lisp package coverage than GuixPkgs. However, we use
only some parts of NixOS, because NixOS uses systemd.

8.6 Communication with StumpWM
There are alternative ways to send commands to StumpWM. One
of them relies on setting the window properties of the root window.
Unfortunately, this approach has no access control and cannot
handle concurrent commands. The generic SWANK [14] debugging
interface is often used for a similar purpose. However, it uses a
local network port that also can be accessed by all the applications
granted unconstrained network access.

8.7 Choice of implementation language
The overall design of the system and the supporting tools do not
require specifically Common Lisp or a Lisp-family language. How-
ever, many languages in the Lisp family possess all the strong sides
we consider required for comfortable use in such a setup, such as
REPL and macro support.

While scsh [10] would be a natural choice for migrating Shell
workflows into a REPL with a more powerful language, Common

42 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere M. Raskin

firefox socat socat
University

proxyTCP
(local)

FS
socket

TCP

Network isolation

FS isolation

Figure 1: Providing limited network access inside isolated environment

Lisp library availability provides an advantage for some parts of the
system, as libraries such as SQLite3 FFI are readily available. An-
other language option could be Julia [11], which has macro support
and REPL, as well as solid FFI support and a very active ecosys-
tem. However, a higher level of activity comes with a drawback
as breaking changes happen more often. A tangible benefit of the
Common Lisp ecosystem is the tendency to expand the tools more
often than to change them with an impact on existing use.

In any case, we want to avoid a system design that would lock in
too many decisions. We want to make gradual migration between
multiple different system management daemons reasonably easy,
including the case when they are written in different languages
(maybe even outside the Lisp family). In particular, we want to
allow running two system management daemons simultaneously
and making requests to both of them. Moreover, it would be nice
to allow the daemons to have overlapping areas of control.

Note the system also has some small utility programs imple-
mented in C specifically to be invoked from Common Lisp code.
Such programs are useful when it is desirable to invoke low-level
system functionality from a separate process, not just a separate
thread, for example due to thread-safety concerns.

9 FUTURE DIRECTIONS
There are many things that need to be wrapped in a Lisp API; too
many to attempt listing them.

We will introduce support for more authentication checks, such
as a protocol for confirming the process ID of the program that
makes a request and looking up the corresponding executable. On
the one hand, this requires adding support for getsockopt with
SO_PEERCRED to some FFI library; on the other hand, the race con-
ditions need to be evaluated to avoid the case where a program
sends a request and immediately uses exec to replace itself with
a different executable. This can be useful to provide some reliable
context.

Implementing service supervision could be useful for some cases.
A modern computing environment often consists of multiple

interacting devices. Our model already includes multiple commu-
nicating agents without complete trust between them. It would
be interesting to try managing a multi-device environment using
interacting policy daemons.

An interface to prevent a denial of service by a misbehaving
program issuing too many requests requiring user confirmation is
needed.

Some alternative interfaces based on JSON or XML could be pro-
vided for easier integration with client code in different languages.

Providing an option to use lightweight VMs instead of containers,
probably reusing some of the SpectrumOS [15] work, would expand
the options for isolation.

Two daemons could be used to make it easier to fix broken
updates without reboot and without logging in as root.

10 CONCLUSIONS AND LESSONS LEARNED
Using a system management daemon running Lisp policy code is a
simple way for gradually increasing the part of the environment
managed in runtime via Lisp, reducing the amount of necessary
upfront work. Unlike existing solutions, authorisation policies for
privileged system reconfiguration actions are written in a high-level
general-purpose programming language (in our case, Common
Lisp). Another atypical feature naturally arising from our use of an
extensible protocol is the possibility to authorise multiple related
actions via a single user interaction without loss of transparency.
Tools developed for isolation and testing can be reused by such a
system for reducing unwanted interaction between the non-Lisp
system parts. We think such an approach will be an integral part of
a realistic project to regain some of the benefits of Lisp OS on the
modern hardware without losing the ability to interact with the
full range of tools and formats considered portable.

In general we observe that the optimistic expectations about the
effort of making a system managed by Lisp code the day-to-day
system were not too far from truth.

We observe that implementing the system-level and user-level
policies in Lisp immediately suggests convenient system-level func-
tionality in the spirit of idiomatic Lisp code that is usually over-
looked in other environments. An example is the use of with-. . .
macros.

In a somewhat disappointing way, it turned out that for many
tasks the author finds Shell workflows running Common Lispwhere
needed more convenient than alternative workflows based on the
Common Lisp REPL.

The current code of the system is available at
https://github.com/7c6f434c/lang-os.

ELS 2021 43

Lisp in the middle ELS’21, May 03–04 2021, Online, Everywhere

ACKNOWLEDGMENTS
The author would also like to thank the anonymous referees for
their valuable comments and helpful suggestions on presentation.

REFERENCES
[1] GNU Emacs project page. Retrieved on 16 February 2018. https://www.gnu.org/

software/emacs
[2] StumpWM project page. Retrieved on 16 February 2018. https://github.com/

stumpwm/stumpwm
[3] Ludovic Courtès. Functional Package Management with Guix. European Lisp

Symposium 2013, Madrid, Spain. Retrieved on 16 February 2018. https://arxiv.
org/abs/1305.4584

[4] GNU Shepherd project page. Retrieved on 07 March 2021. https://www.gnu.org/
software/shepherd

[5] Mezzano project page. Retrieved on 16 February 2018. https://github.com/froggey/
Mezzano

[6] Movitz project page. Retrieved on 16 February 2018. https://www.common-lisp.
net/project/movitz/

[7] LOSAK project page. Retrieved on 18 February 2018. http://losak.sourceforge.net/
[8] Eelco Dolstra, Merijn De Jonge, Eelco Visser. Nix: A Safe and Policy-free Sys-

tem for Software Deployment. Large Installation System Administration Con-
ference 2004. Retrieved on 16 February 2018. http://nixos.org/~Eeelco/pubs/
nspfssd-lisa2004-final.pdf

[9] nsjail project page. Retrieved on 07 March 2021. https://github.com/google/nsjail
[10] Olin Shivers, Brian D. Carlstrom, Martin Gasbichler, and Mike Sperber. Scsh

Reference Manual Retrieved on 07 March 2021. https://scsh.net/docu/html/man.
html

[11] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman. Julia: A Fast
Dynamic Language for Technical Computing. Retrieved on 07 March 2021.
https://arxiv.org/abs/1209.5145

[12] cl-html5-parser project page. Retrieved on 07 March 2021. https://github.com/
rotatef/cl-html5-parser

[13] Thoughtful Theridion project page. Retrieved on 07 March 2021. https://gitlab.
common-lisp.net/mraskin/thoughtful-theridion

[14] Superior Lisp Interaction Mode for Emacs project page. (Includes Swank debug-
ging protocol implementation) Retrieved on 07 March 2021. https://common-lisp.
net/project/slime/

[15] SpectrumOS project page. Retrieved on 22 March 2021. https://spectrum-os.org/

44 ELS 2021

Tuesday, May 4 2021

ELS 2021 45

A replicated object system
Hayley Patton

hayley@applied-langua.ge

ABSTRACT
We describe Netfarm, a replicated object system, in which various
kinds of objects can be stored across a network. These objects are
instances of schemas (themselves also objects), which describe the
representation of objects, and their behaviour, using a portable
bytecode. Objects affect each other by running scripts using the
bytecode, which in turn produce effects on multi-sets of computed
values. Arbitrary access to effects is restricted by an object capability
system on the object scale, and by capability lists on a larger scale,
allowing untrusted objects to communicate, and for many untrusted
applications to run on nodes and client programs. Objects may exist
on multiple nodes of the network to make the system fault-tolerant,
as their behaviour is explicated to the system and thus reproducible.
Replication of the actions generated by scripts cause Netfarm to
exhibit strong eventual consistency. This programming model allows
for supporting many programs on one object system, which can
use efficient replicated algorithms and data structures.

CCS CONCEPTS
•Computingmethodologies→Distributed programming lan-
guages; • Computer systems organization → Redundancy; •
Information systems→ Distributed storage.

ACM Reference Format:
Hayley Patton. 2021. A replicated object system. In Proceedings of the 14th
European Lisp Symposium (ELS’21). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.5281/zenodo.4712699

1 INTRODUCTION
There is a growing trend of using decentralised networks and sys-
tems for online communication and information storage. Such sys-
tems have many servers or nodes, operated and hosted by different
parties, and thus do not have central points of failure. Many of
these systems exist today, with vastly different applications and
network models. These systems can become stifling with their focus
on individual applications; while some persistent users may work
out how to re-use the infrastructure of a system for another use
case, they are invariably going to find difficulties, as they are unable
to replace features of the system with their own. Some systems
also cannot detect errors and invalid transactions on the system
sufficiently, often putting too much trust on a server or node to not
misbehave on behalf of the users of that server. For example, some
systems may be unable to detect spoofed messages, which were not

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’21, May 3–4 2021, Online
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.4712699

actually sent by their authors, but were sent by someone else with
access to the server.

Our initial intentions were to create some sort of fault-tolerant
and “accountable” decentralised communication application, and
avoid failures caused by server failure and bad operators and users
on the network. The system would be accountable in the sense
that any computation made could be reproduced, so that a server
publishing incorrect results of some computation (perhaps due to a
hardware fault, or a malicious operator) could be detected. These
intentions are well served by a distributed and replicated network.

After implementing a basic system with these properties, we
found it would be convenient for the system to verify invariants on
behalf of an application, and for the system to be capable of storing
information for many applications. These goals culminated into a
replicated object system, in which objects can validate their current
states, refusing to be instantiated if they are invalid, and objects
can communicate to add “after the fact” references to each other.

1.1 Distribution
We will discuss properties of existing networks in Previous Work,
but an abstract understanding of how these networks are formed
will be useful.

Many programs and protocols on a network have many clients
and one server. Larger systems may use many servers, but usually
maintain the illusion that there is only one server somehow. Ei-
ther form of system is a centralised system, as all information is
centralised on infrastructure owned by one party. Managing the
infrastructure and data is also entirely the duty of that party, which
may be unacceptable for some users.

A decentralised system partitions such duties to multiple parties.
There are two general techniques for decentralisation: federation
and distribution. A federated system has users pick a server to use
as part of a kind of identity for information stored on the network.
(This server is sometimes called a homeserver or instance.) An iden-
tity provides an unambiguous reference format for any other user
of the protocol to retrieve the information. Such an identity usually
is made from some pseudo-random string and the name of the
server. For example, the Netfarm room on the Matrix messaging
protocol has the identity of !YUbZBUZUxCNnDAlxsZ:matrix.org.
The dependence on a server is an immediate drawback of a feder-
ated system; that server is the only source of some information,
and failure of a server can make the protocol unusable for users of
that server.

A distributed system avoids this failure mode, as the identity
of information is independent of a server on which it is stored.
Typically, an identity is instead formed using a cryptographic hash
of the information; and it can be efficiently searched for using a
distributed hash table, which provides an algorithm for searching
for a node which stores some information. Using a hash to create an
identity precludes mutable objects per se, as modifying the state of
an object would change its hash. Mutable data must be implemented

46 ELS 2021

ELS’21, May 3–4 2021, Online Hayley Patton

using a different mechanism, and Netfarm provides computed values
to simulate mutable data, by computing side effects from the rest
of the state of the network.

1.2 Replication
Data on a networked system is either replicated or not replicated.
In this paper, we will be specific and define a replicated system as
one where data may be retrieved from multiple sources, and any
source is as valid as another. This definition excludes some systems
where one server is the primary source of some data, and other
servers cache that data, where only the former server would be
able to accept updates to the data. Any data can be retrieved and
updated from any server in a replicated system which has a copy
of the data.

To our knowledge, replicated systems must be distributed. A
centralised system would not be able to replicate, and the server
component of object identity in a federated replicated systemwould
have to be useless in order for any server to be able to serve requests
for any object. We have not found any non-replicated distributed
systems, but replication is a useful property in itself, and sometimes
less confusing to discuss (we discuss “distributed” object systems
in Previous Work).

Much like decentralised and centralised systems, a replicated
system exhibits better fault tolerance than a non-replicated system;
if 𝑛 servers can be used to service a request with a 𝑝 probability
of failing on one server, and failures are independent events, then
there is a 𝑝𝑛 probability that all servers fail, and a request can-
not be serviced. It is thus preferable to have a replicated system,
as to minimise the occurrence of faults which render the system
inoperable.

However, replicated systems require careful synchronisation
and consistency measures, which are further complicated by hav-
ing to handle node failures, and intentional attempts to manipu-
late the state of a system. Such measures often lead to difficult-
to-understand programs, and programmer experiences not unlike
debugging low-level concurrent programs. Netfarm allows a pro-
grammer to write replicated systems using a small set of features;
but said features can capture the behaviour of many systems, and an
object model and message passing can make the resulting program
easier to comprehend and more adaptable.

2 PREVIOUS WORK
2.1 Distributed ledgers
2.1.1 Bitcoin. A blockchain creates consensus over the ordering
of a transaction log, while allowing for substantial fault tolerance.
Typically, blockchains are used to handle digital currencies, or
cryptocurrencies, but we are more interested in the consensus mech-
anism and programming techniques they provide. (Although such
mechanisms often assume, in part, that there is some currency to
compensate honest users with.)

Bitcoin has a simple scripting system for transactions. Scripts
are written in a bytecode, which executes on a stack machine. A
script is usually used to verify that the user attempting to spend
some currency is allowed to spend it. The bytecode includes in-
structions for basic arithmetic, hashing and verifying signatures;
but the bytecode is not Turing-complete, nor particuarly expressive.

Some non-essential instructions were removed as part of a (fairly
lousy) fix for an incorrect implementation of bit-shifting, which
would cause nodes to crash sometimes.1 The bytecode has never
supported any looping; it would not be suitable for programming
many other uses of the Bitcoin network.

2.1.2 Ethereum. The Ethereum network has extended the script
system, to allow for clients to program smart contracts, which allow
for implementations of many complex systems on a blockchain
using a Turing-complete language, such as additional currencies,
decentralised exchanges, voting systems and some games. The pro-
gram in a smart contract is executed when it receives a transaction,
and the program is described using a bytecode, which has access
to a stack, temporary memory in the form of an octet vector, and
a permanent map from 256-bit unsigned integers to 256-bit un-
signed integers (as described in Chapter 9 of [19]). Contracts can
communicate by calling methods of other contracts.

2.1.3 Holochain. The Holochain project can be seen as a modifica-
tion of the blockchain paradigm. Instead of providing consensus on
one global transaction log, a user of a Holochain network maintains
their own transaction log, and transactions provide cross-references
between logs. Verifying a transaction between two parties consists
of verifying the logs belonging to either party [5]. By using many
separate logs, such a network can scale using the partitioning pro-
vided by a distributed hash table. (The Ethereum developers intend
to improve scaling by sharding transactions over 64 smaller chains
[8], but nodes in a distributed hash table can scale their contribution
to the network at a more fine-grained level.) Scripts for Holochain
are written in theWebAssembly portable assembler.

2.1.4 Proof of work. Many blockchains use a proof of work tech-
nique, which makes falsifying the transaction log very computa-
tionally expensive [15]. This process requires creating blocks of
transactions, which will only be accepted by the network if hashes
of blocks have sufficiently small values. Such blocks have to be
generated by brute force, and the act of generating blocks is called
mining. It is assumed that only an honest majority of users would
have the majority of computing power, so an honest network would
be able to produce blocks faster than a user attempting to tamper
with the order of transactions.

Many parties are interested in dedicating huge computer farms
to mining, as they are paid with cryptocurrency when they are
first to produce an acceptable block. Unfortunately, a system based
on perpetually brute-forcing values, especially at this scale, has
the drawback of requiring significant amounts of electrical energy.
At the time of writing, [6] estimates the electrical consumption
of Bitcoin to be somewhat greater than that of the country of Fin-
land. There are other methods of implementing verification for
blockchains, but they all require the well-behaving users of a net-
work to have a majority of some scarce resource, such as other
currency or storage.

We do not believe we require the strict consistency measures
blockchains provide, so we did not use a blockchain to implement
Netfarm. However, the ability for clients to program a distributed
system can be very useful, so we have taken some inspiration
1This is better documented in CVE-2010-5137 and https://en.bitcoin.it/wiki/Common_
Vulnerabilities_and_Exposures#CVE-2010-5137.

ELS 2021 47

A replicated object system ELS’21, May 3–4 2021, Online

from how blockchains are programmed when implementing our
programming system.

2.2 Federated networks
As mentioned before, federated applications delegate data storage
and maintaining identity to many servers, although a user will be
dependent on one server. In general, cross-server communications
only authenticate servers and not users, so servers could falsify
messages and state without detection; and while federated systems
provide collections of events that are general enough to support
multiple forms of presentation, they are still inextensible and cannot
support the implementation of new programs.

It can be observed on both systems that large numbers of users
are on very few homeservers, allowing much of those networks to
be unusable should only those few servers become unavailable.2
There are many factors influencing the population distribution
(which we attempt to examine in the introduction to [2]) but the
decentralisation and fault tolerance of federated systems appears
to be very questionable.

2.2.1 Matrix. Matrix is a federated chat protocol, which offers a
convenient web client, end-to-end encryption, integration with
some other protocols (such as IRC and Discord), and integration
with some other tools frequently used by its users, such as receiving
GitLab and Grafana notifications in a room.

It uses a room as an aggregation of messages, which is a conve-
nient abstraction for a messaging application, but it is awkward
for many other applications. This situation is not unlike, say, im-
plementing the Common Lisp tagbody special operator using the
condition system. It is certainly possible, but it is strange, and likely
inefficient and difficult. Some new applications have been created,
such as a script which renders a blog out of the messages in a
room;3 but they do not modify the semantics or structure of Matrix
significantly, merely changing the presentation of a room. Instead,
we provide a lower-level abstraction, a computed value system, but
it is capable of implementing rooms (and we will describe how to
implement it in An example use).

Furthermore, when a user is not using end-to-end encryption, it
is possible for a server operator to spoof messages; claiming that a
user sent a message which they had not actually sent. Even a simple
authorisation mechanism, such as optionally digitally signing mes-
sages, would be preferable for sending sensitive announcements,
where the message cannot be falsified, but it must still be published
publicly.

2.2.2 ActivityPub. ActivityPub is a federated micro-blogging pro-
tocol, which is used to post short text messages, with optional
visual and audio attachments. Well known implementations of
ActivityPub include Mastodon and Pleroma; although it has had
many implementations which change the mode of communication
somewhat, such as focusing on image or video sharing, or present-
ing messages in an online forum layout. These deviations from

2https://social.coop/@Stoori/100542845444542605 shows the usage of ActivityPub
servers on a log-log graph. https://the-federation.info/ estimates the total users of the
Fediverse to be around 4 million, and the top 12 servers on https://instances.social/
list/advanced have around 1.75 million users.
3This project is named the “Matrix blog” and is described on https://matrix.org/docs/
projects/client/matrix-blog.

the usual micro-blogging style, however, remain mostly cosmetic,
where messages and aggregations of messages are presented to
the user in different ways, and different (arbitrary) restrictions are
placed on the forms of messages which a server will publish for a
user.

2.3 Distributed object systems and Actors
E and Spritely are examples of distributed object systems. Object
identity is based off server identity in these systems, so it could
be argued that distributed object systems of this type are really
federated by our definitions, but users of these systems call them
distributed anyway. It follows that they do not replicate objects.
There are also separate instructions for sending messages to local
objects, which cannot fail, and sending messages to foreign objects,
which can fail, as network-related faults can happen.

Erlang may or may not be a distributed object system, depending
on who4 you ask. It is less contentious to call Erlang anActor system.
Actors (processes in Erlang parlance) also have node addresses in
their identity, but there is only one asynchronous message send-
ing construct [3, p. 66], which can always potentially fail. Again,
processes are not replicated in Erlang, but failure detection and re-
placement is still a design goal of Erlang; which is instead achieved
by respawning processes which crash. This sort of fault tolerance
is orthogonal to replication, as it generally is used to work around
a program generating an invalid state, and not to work around the
disappearance of a node.

3 OUR TECHNIQUE
Objects are stored across a distributed hash table, in which it is
possible to store objects, retrieve objects by hash, and subscribe to
observe side effects induced on objects. We provide a class-based
object system, where objects are instances of schemas, which in turn
are objects themselves. These schemas contain lists of slots, com-
puted slots, and scriptswhich describe the behaviour of instances of a
schema. A schema is an instance of the schema schema, which is an
instance of itself (c.f. the Common Lisp metaclass standard-class,
which is an instance of itself).

All information which a node presents has been verified and/or
produced by itself, so nodes do not have to trust each other to
make progress when synchronising objects. The faultable nature
of the network is hidden from Netfarm objects, as nodes perform
all of the computation on behalf of an object. If an object attempts
to retrieve another object that the node does not currently store,
the computation is paused until that object has been retrieved. We
believe this may introduce some storage overhead, as objects that
the node is not expected to store will be verified to satisfy requests
on behalf of scripts, but this overhead has not been measured.

We use a Kademlia-based distributed hash table [13] to search
and retrieve objects, but the design of Netfarm is not dependent on
any object storage mechanism. The only requirements of Netfarm
on the object storage mechanism are that it must be able to retrieve
objects which it would not otherwise retrieve, enabling scripts to
4 . . . and also when you ask. Joe Armstrong was initially critical of object-oriented
programming, leading to an infamous quote starting with “you wanted a banana”; but
then his thesis supervisor had convinced him that Erlang was the only really object-
oriented language, as it exhibits strong isolation and polymorphism using message
passing and independent “object” processes.

48 ELS 2021

ELS’21, May 3–4 2021, Online Hayley Patton

Figure 1: An object is an instance of a schema, which is in
turn an instance of the schema schema. We draw objects
with box-and-arrow diagrams, using dashed arrows for com-
puted values, and labelling arrows with the names of the
slots they represent.

retrieve any referenced object on the network, and to provide some
metadata about objects for synchronisation.

Objects can be verified using digital signatures, associating them
with the users that signed them. Such signatures can be used as an
authentication mechanism, which allows some actions on objects
to be performed only by specific users. (Users are just objects; they
do not have any special status in the Netfarm system, except that
Netfarm is able to retrieve public keys from user objects.) A key
exchange mechanism is also provided, using elliptic-curve Diffie
Hellman (a variant of [7]) keys associated with users of Netfarm,
which could be used to encrypt private objects, but it is not used
by Netfarm itself.

Objects can contain references to other objects in their slots,
which are usually named by hashes of the referenced objects, to
create references to other objects (excluding inbuilt objects, which
are named with symbolic names starting with inbuilt@). This
would prohibit mutating non-inbuilt objects, as changing the slot
values of an object would change its hash, and thus break identity,
and it would prohibit creating circular references, as there would
be infinite recursion when attempting to compute the hash of any
object in the cycle. Side effects are instead caused by running scripts
which produce side effects, adding and removing computed values
from computed slots in objects, which contain multi-sets of values.
These computed values allow for “after the fact” references, which
do not affect the hash, and thus identity, of an object; so a client
will observe the computed slots of the object change.

3.1 Side effects
When designing a system where changes must be replicated over
many copies of an object, it is possible that users will observe
changes in different orders; so the order in which changes are
applied should not affect the result, i.e. the changes are commutative,
and the data type which is affected by said changes is a commutative
replicated data type (or CRDT). It is also possible to use a conflict
resolution mechanism to resolve the ordering of effects, freeing
effects of having to be commutative, but we have chosen to use a
conflict-free replicated data type, as conflict resolution mechanisms
are frequently very specialised, and sometimes hard to get right.

The actions on a computed value system are the addition or
removal of a value to a computed slot (herein called a computed
value). A computed slot is a variation of a multiset, which also
allows for negative counts of a value, in order for actions to always
be commutative. If we disallowed negative counts, for example,
removing a value that was not present in a computed value set, then
and then adding it would create a different count to adding a value
then removing it, and so side effects would not be commutative.
The computed value set is a CRDT, which makes Netfarm exhibit
strong eventual consistency. [17] provides a proof that using CRDTs
will provide eventual consistency, so we only need to show how
side effects on computed values are commutative, to show that
computed values can be used in a system with strong eventual
consistency.

Theorem 3.1. Actions on computed values are commutative.

Proof. Recall that an action on a computed value system is ei-
ther the addition of a value to a computed slot of an object, or the
removal of such a computed value. We could model the state of a
computed value system as a mapping of tuples ⟨object, slot, value⟩
to an integer count of values, each tuple initialized to 0. Adding
a computed value causes the count associated with the value to
be incremented, and removing a computed value causes the re-
spective count to be decremented. Incrementing and decrementing
are special cases of addition (𝜆𝑥.1 + 𝑥 and 𝜆𝑥.−1 + 𝑥 respectively),
and addition on integers is known to be commutative. Thus our
computed value system has commutative actions. □

3.2 Scripts
For side effects to be replicated, we must explicate the behaviour
of objects to a Netfarm network. Scripts are run using a virtual
machine based on the SECD machine [12] and the Smalltalk inter-
preter [9]. This virtual machine provides first-class functions and
immutable data, and message-passing based polymorphism. The
behaviour of objects is aggregated into scripts,5 and schemas have
lists of scripts, which are searched to find applicable methods. The
behaviour of the virtual machine is entirely deterministic, and thus
the complete object system is deterministic.

We decided to use our own virtual machine for a few reasons:
• it is not difficult to write a compiler for a mostly-functional
language targeting the SECD machine,

• a virtual machine which exposes some sort of in-memory
representation of data, such as WebAssembly, reduces the
number of possible techniques that could be used to optimise
an implementation of the virtual machine, such as hash con-
sing intermediate data (apparently first performed in [10]),
and passing host objects into the virtual machine without
copying, and

• the virtual machine can enforce various invariants which
make cross-object communication significantly less difficult,
such as checking function signatures, and ensuring method
dispatch works as expected.

5The provider of behaviour of an actor in the Actor model is sometimes cutely named
a program script. We did not know of this usage before choosing to call our programs
scripts.

ELS 2021 49

A replicated object system ELS’21, May 3–4 2021, Online

A message-passing system appeared to be the simplest system
which would enforce encapsulation: only the methods of an object
can affect the object, a requisite for running multiple programs on
one network, without malicious programs being able to clobber
the state of other programs. Objects send messages, consisting of a
method name and argument list, to other objects, and a receiving
object dispatches on the method name. The receiver searches for
all methods with the method name defined by scripts, and calls the
first applicable method. If a method cannot be found, the process is
repeated for a special does-not-understand method (much like
in Smalltalk), and the method is called with the method name and
arguments. Messages can be authenticated, as the receiving object
can retrieve the sender of a message. If it is necessary to obfuscate
the sender of a message, it is not difficult to create a proxy object,
which re-sends all messages sent to it to another object.

When a node retrieves a new object, either by replicating it
from another node, or by receiving it from a client, it sends an
initialize message to the object, before it allows other nodes to
read its copy of the object. The initialize method can thus be
used to prevent invalid objects from being created.

Scripts can also induce a partial ordering on the creation of
objects in the network. Recall that, if a script attempts to access
an object that the node does not yet store, execution of the script
is paused. Thus the creation of a referred object always happens
before the creation of a referring object.

Using a scripting system with a Turing-complete language and a
suitable CRDT could make a replicated system into a sort of “univer-
sal simulator” for replicated systems; it is possible to re-implement
the core algorithms and data structures of some decentralised sys-
tems, includingMatrix and Holochain, in Netfarm. However, execut-
ing arbitrary untrusted code without any safety measures is a very
large security and safety problem; we must provide some bound-
aries on what programs may do in order to guarantee determinism
and safety.

3.2.1 Limiting script misuse. It may be useful to run scripts to
present objects and content for clients, and allow clients to interact
with objects in a more convenient manner for each object. Conven-
tional “wisdom” surrounding the state ofWeb browsers, which have
run applets written in Java, Flash, and now run larger programs
written in JavaScript, suggests that this is only a convenient man-
ner to exploit a client’s computer, steal their information, or use
their computers to perform computing for another party without
consent; but we can make these forms of misuse impossible, with
little effort.

The behaviour of scripts is restricted by a capability list, which
prohibits using some runtime features when they are inappropri-
ate; for example, a script run by initializing an object cannot read
computed values, as that would allow creating behaviour which is
dependent on script execution order, and thus not commutative; but
it may write them, and a script run by a client can read computed
values, but cannot write computed values. No instructions are ever
provided to affect the outside world, and we have implemented the
interpreter in safe Common Lisp code, so it should not be possible
for a script to escape its environment.

Scripts follow an object capability model, where they cannot
construct arbitrary references, and can only be given references

by other scripts and objects. (This is not the case for users of the
Netfarm protocol themselves; replication requires being able to
locate all objects, to our knowledge.) Limiting the execution time
given to scripts also reduces the computing wastage a malicious
script can perform; object initialization must terminate in 300,000
instructions (which can currently be executed in about 5 millisec-
onds on a relatively new desktop processor), and an interactive
client should require significantly fewer than even a million in-
structions per second to process information for the user; excluding
graphical rendering and user input, which are better done in the
host environment. There is no situation in which it is possible to
perform any significant computation, and then have it transmit-
ted off a client; nor is there a situation where a program could
somehow steal confidential information, and then transmit it, nor
is there a situation where a network can be misused to perform any
significant computation.

4 AN EXAMPLE USE
We have been designing some programs to test the usability of
Netfarm. One of these programs is a chat program named Catfood,6
which requires storing messages in a way that allows relatively fast
sequential access.

We use an event stream data structure, which provides a partial
ordering of events added to the event stream. Such a stream consists
of the stream object, and many event objects which are added to
the stream.

Figure 2: A queue may be constructed using head and tail
references into a linked list.

The event stream resembles how a queue data structure may
be constructed from a linked list. (However, we do not remove
events from an event stream; we only define adding new events
and iterating over all events.) Such a queue would hold references
to the first and last conses of the linked list. Similarly, an event
stream contains a slot for the first event, and a wavefront computed
slot. This wavefront provides a fast method to retrieve the latest
messages; when an event is created, it is added to the wavefront,
and all events observed in the wavefront are removed. Each event
contains a slot with the previously observed wavefront, forming a
directed acyclic graph of events.

With zero latency and no partitioning, this graph will be a linked
list, and the wavefront always contains exactly one event. In the
presence of latency or a partition, the entire wavefront may not
6This program might be used to “eat our own dogfood”, should we test it and entrust it
with real discussions, but we aren’t really dog people. After the bunny, which we used
as a logo for Netfarm, the next most loved animal in the early Netfarm community
was the cat.

50 ELS 2021

ELS’21, May 3–4 2021, Online Hayley Patton

be observed, and only part of the wavefront will be removed by a
new event. The true wavefront thus can contain multiple events.
Creating another event will return the wavefront to containing only
one event. It is not necessary for the wavefront to be consolidated
as such, but it will minimise the number of events that a user must
sort when iterating over the events of the stream in order.

Figure 3: Two writers raced to add events to an event stream.
The wavefront contained two events while they were racing;
though either writer observed only their last event in the
wavefront due to network latency. After they finish racing,
another event is added, which stores the previouswavefront,
and now the current wavefront contains exactly one event.

Netfarm schemas can be created using a special metaclass. The
event class and schema could be defined with:
(defclass event ()

((last-wavefront :initarg :last-wavefront

:reader last-wavefront)

(stream :initarg :stream :reader stream)

(successors :computed t :reader successors))

(:scripts (program-from-local-file "Stream/event.scm"))

(:metaclass netfarm:netfarm-class))

(Note that program-from-local-file is defined to compile the
source code of a script to a script object, as described later.)

4.1 Searching for a timestamp
Some operations we may require are displaying some of the most
recent messages, and displaying messages sent around a given time.
These sorts of operations can be performed by traversing the graph,
and using a data structure like a priority queue to sort events we
have not traversed yet, popping them off in order.

One illustrative example is searching for an event at a times-
tamp; we can work our way back from the wavefront, traversing
previous wavefronts, and eventually reach that event. We could
choose whether most of the code for this system should be written

in Common Lisp (or another host language), or be written to run on
the Netfarm script machine. There are advantages to using either
language; using Netfarm scripts allow for other users to provide
objects subject to some extensions to a protocol, without having to
modify a client, but the facilities provided by Common Lisp, includ-
ing the standard library and compilers7 may make programming
in the host language more favourable.

A function to find an event at a particular timestamp may be
defined as:
(defun find-timestamp (stream timestamp)

(labels ((older? (e) (< (timestamp e) timestamp))

(newer (events) (remove-if #'older? events)))

(loop with q = (make-queue (newer (wavefront stream)))

until (empty? q)

do (let ((e (pop-oldest q)))

(when (= timestamp (timestamp e))

(return-from find-timestamp e))

(insert-all (newer (last-wavefront e)) q)))

(event-not-found)))

The performance of searching could be improved by storing the
older wavefronts of previous events, forming a skip list of predeces-
sors, allowing faster access to older events to search. The algorithm
would otherwise remain the same.

4.2 Programming Netfarm
While a client can be programmed in any mixture of the host lan-
guage and Netfarm scripts, to replicate side effects and verification
of objects, we must write some scripts. These scripts, fortunately,
can be compiled from a language which is not as tedious as SECD
assembly.We could use the Slacker compiler8, which generates code
for our virtual machine from a language which looks superficially
like Scheme. The script for an event could be written like:
(define (curry f x)

(lambda (y)

(f x y)))

(define (map f xs)

(if (null? xs)

'()

(cons (f (car xs))

(map f (cdr xs)))))

(define (remove-event! s e)

(call-method s 'remove-from-wavefront e)

(call-method e 'add-successor (self)))

(define-method (initialize)

(let ([stream (object-value (self) 'stream)])

(map (curry remove-event! stream)

(object-value (self) 'last-wavefront))

(call-method stream 'add-to-wavefront (self))))

(define-method (add-successor event)

(add-computed-value 'successors event))

7We are considering writing a dynamic compiler for Netfarm scripts which would
generate Common Lisp code, which would then be compiled to a faster representation
using compile.
8https://gitlab.com/Theemacsshibe/slacker-compiler

ELS 2021 51

A replicated object system ELS’21, May 3–4 2021, Online

Some helper functions (which probably should exist in a standard
library) have had to be defined, but they demonstrate that the
Netfarm script machine is capable of computing with higher order
functions, and returning closures.

The Netfarm implementation represents Netfarm objects as Com-
mon Lisp instances, and schemas are translated9 to Common Lisp
classes. It is thus possible to dispatch on the schema of an object
from Common Lisp code; the implementation uses this feature to
allow for clients to provide methods to duplicate Netfarm slots with
specialised representations of Netfarm values, and it has proven use-
ful while testing Netfarm code. During manual testing, we wrote a
short method to present an event graph visually using the Common
Lisp Interface Manager [14], (using format-graph-from-root) to
quickly verify if the graph was being modified as expected.

4.3 Other decentralised log implementations
Our design is mostly based on the state resolution graph used in
Matrix, described in [1]. Matrix maintains a similar directed acyclic
graph of some events, where any event references the power level
events which allow it to occur. (Power level events change the
power levels of users, which are used to grant permissions to them,
such as the ability to invite or kick other users.) The events are
then topologically sorted to determine all power levels, and then
other events can be verified based on the computed levels. The
operation of the wavefront (which is also called the set of forward
extremities in Matrix) is programmed as part of a Matrix server
implementation, whereas the event graph in Netfarm is an ordinary
application, for which node implementations do not have to have
any special implementation code to support.

[11] offers a proof that the Matrix event graph is a CRDT, as well
as analysis of how the data structure handles network latency and
partitions. However, the implementation in Netfarm is a sort of
proof by reduction, as it is possible to rewrite event graph actions
into actions on a computed value system, which we have already
proven is a CRDT. This proof may be considerably simpler than the
aforementioned proof; but it only proves that actions are commuta-
tive, not that the data structure works as intended, or is particularly
efficient.

[16] is a similar event log, which is implemented atop IPFS, based
on a grow-only set. This log does not maintain a wavefront or previ-
ous wavefronts. Instead, events contain Lamport timestamps, where
an event contains a timestamp greater than the timestamps of all
observed previous events. To access the log sequentially, a list of
events and their timestamps is retrieved; which may cause signif-
icant space overhead if only retrieving a small subset of events.
However, the runtime of sufficiently large accesses will be domi-
nated by the latency of resolving references. A balance between
being bottlenecked on network latency, or bottlenecked on network
throughput can be made, by allowing the observed wavefront to
grow to a relatively large number of events, and only clearing the
wavefront when it grows further than that. The previous wave-
fronts of events would then contain many events, which can be
retrieved in parallel.

9Schemas themselves are not classes. If that were the case, the class of the schema
schema/class would have to be itself, which is not possible to construct in CLOS.

5 CONCLUSIONS AND FURTHERWORK
We have described how we have designed the Netfarm replicated
object system, which is notable for providing a programming sys-
tem, allowing many distributed programs to be implemented on
one Netfarm network. We then demonstrated programming with
Netfarm by designing a simple event log, demonstrating that it is
possible to replicate the behaviour of other decentralised systems
on Netfarm easily.

A replicated object system,which has demonstrated itself capable
of implementing other decentralised systems, has several benefits.
The infrastructure used to implement multiple decentralised sys-
tems and networks can be simplfied. It would only be necessary
to implement each decentralised system using the object system,
and then one network and one node process could be used to host
all the systems. An easily accessible network would lower the cost
of entry to developing and deploying a new replicated program,
as already existing networks and node implementations could be
reused. A replicated system designed around objects communicat-
ing with protocols of messages allows for more extension than in
systems with protocols consisting of bare data. Still, some additional
features and changes would facilitate using more applications on
Netfarm, and would make the programming model provided more
understandable.

5.1 Protocols
A sufficiently large distributed system will contain multiple im-
plementations of some concept. These implementations may be
abstracted over by programming against protocols. However, it is
very likely these implementations are going to use different proto-
cols. [18] bluntly states this problem as “names don’t scale well [. . .].
So, [. . .] we are looking for ways to get things to happen without
[. . .] having to tell any object to ‘just go do this’”. Names are the
least of our problems though; we are more likely to find protocols
which have methods with completely different meanings, than the
same meanings attached to different names. Some kind of inference
strategy may be useful to figure out how to express one protocol in
terms of another.

Netfarm does not have an inheritance mechanism, because the
techniques used for inheritance can varywildly. A subtle variation is
how a class precedence list is computed – Common Lisp uses a simple
topological sort for instances of standard-class, and Dylan and
Python (among other languages) use C3 linearization. A much
larger variation is how slots and methods interact; in Common Lisp
and Smalltalk (among others), slots andmethods are orthogonal and
methods cannot override slots, but in Self and Newspeak, methods
can override slots. The absence of an inheritance mechanism leaves
how to implement inheritance to the user, for better or worse.

5.2 Object identity
Using hashes to form the identity of objects is typical for distributed
hash tables, but it can create some strange situations with mutabil-
ity of any form. It suffices to say that two objects with the same
initial state are considered to be the same object, as hashing either
object will result in the same hash. This notion of identity can of-
ten confuse a programmer, whom is used to creating objects that
have the same slot values, but are certainly different; modifying

52 ELS 2021

ELS’21, May 3–4 2021, Online Hayley Patton

computed values of one object should not make visible changes to
another object.

It may be possible to implement a naming system, like the system
described in [4], where each node names each object with a random
but unique identifier specific to each node, and additionally main-
tains tables of what other nodes have named each object stored.
The usual searching used in distributed hash tables could still be
employed, by having references contain the usual content hash, as
well as the name one node provided. The content hash would be
used to locate nodes which likely store the object required, then
the name could be translated to retrieve the correct object.

REFERENCES
[1] Neil Alexander. State resolution v2 for the hopelessly unmathematical, 2020.

URL https://matrix.org/docs/guides/implementing-stateres.
[2] Applied Language. The Netfarm book, 2020. URL https://cal-coop.gitlab.io/

netfarm/documentation/.
[3] Joe Armstrong. Making reliable distributed systems in the presence of software

errors. PhD thesis, KTH Royal Institute of Technology, 2003. URL http://erlang.
org/download/armstrong_thesis_2003.pdf.

[4] Ganesha Beedubail and Udo Pooch. Naming consistencies in object oriented
replicated systems, 1996. URL https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.19.8209&rep=rep1&type=pdf.

[5] Arthur Brock and Eric Harris-Braun. Holo: Cryptocurrency infrastructure for
global scale and stable value, 2017. URL https://files.holo.host/2017/11/Holo-
Currency-White-Paper_2017-11-28.pdf.

[6] Cambridge Centre for Alternative Finance. Cambridge Bitcoin electricity con-
sumption index, 2020. URL https://cbeci.org/cbeci/comparisons.

[7] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Trans. Inf. Theor., 22(6):644–654, September 1976. ISSN 0018-9448. doi: 10.1109/
TIT.1976.1055638.

[8] Ethereum developers. Shard chains, 2021. URL https://ethereum.org/en/eth2/
shard-chains/.

[9] Adele Goldberg and David Robson. Smalltalk-80: The language and its imple-
mentation, 1983.

[10] Eiichi Goto. Monocopy and associative algorithms in extended Lisp. University
of Tokyo Technical Report TR-74-03, 1974.

[11] F. Jacob, C. Beer, N. Henze, and H. Hartenstein. Analysis of the Matrix event
graph replicated data type. IEEE Access, 9:28317–28333, 2021. doi: 10.1109/
ACCESS.2021.3058576.

[12] P. J. Landin. The Mechanical Evaluation of Expressions. The Computer Journal, 6
(4):308–320, 01 1964. ISSN 0010-4620. doi: 10.1093/comjnl/6.4.308. URL https:
//doi.org/10.1093/comjnl/6.4.308.

[13] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information
system based on the XOR metric, 2002. URL https://pdos.csail.mit.edu/~petar/
papers/maymounkov-kademlia-lncs.pdf.

[14] Scott McKay. CLIM: The Common Lisp interface manager. Commun. ACM, 34(9):
58–59, September 1991. ISSN 0001-0782. doi: 10.1145/114669.114675.

[15] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2007.
[16] OrbitDB. Append-only log CRDT on IPFS, 2016. URL https://github.com/orbitdb/

ipfs-log.
[17] Marc Shapiro and Nuno M. Preguiça. Designing a commutative replicated data

type. CoRR, abs/0710.1784, 2007. URL http://arxiv.org/abs/0710.1784.
[18] Viewpoints Research Institute. STEPS towards the reinvention of programming,

2007. URL http://www.vpri.org/pdf/tr2007008_steps.pdf.
[19] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger,

2020. URL https://ethereum.github.io/yellowpaper/paper.pdf.

ELS 2021 53

aether: Distributed system emulation in Common Lisp
Eric C. Peterson

Eigenware
Berkeley, CA, USA

peterson.eric.c@gmail.com

Peter J. Karalekas
Eigenware

Berkeley, CA, USA
peter@karalekas.com

ABSTRACT
We describe a Common Lisp package suitable for the design, speci-
fication, simulation, and instrumentation of real-time distributed
algorithms and hardware on which to run them. We discuss various
design decisions around the package structure, and we explore their
consequences with small examples.

CCS CONCEPTS
• Computer systems organization→ Real-time system spec-
ification; • Computing methodologies → Distributed program-
ming languages.

ACM Reference Format:
Eric C. Peterson and Peter J. Karalekas. 2021. aether: Distributed system
emulation in Common Lisp. In Proceedings of the 14th European Lisp Sympo-
sium (ELS’21). ACM, New York, NY, USA, 9 pages. https://doi.org/10.5281/
zenodo.4713971

1 INTRODUCTION
In this paper, we consider the dual problems of modeling and de-
signing a complex distributed system, at the levels of both hardware
and software. Those working in this problem space labor under an
overwhelming number of variables: the structure and properties
of the network, the structure and properties of the compute nodes
on the network, the precise behavior of the software on the nodes,
and so on. These variables have complex interdependencies, and
the relative sizes of their effects depend strongly on the ultimate
application and its performance requirements. Meanwhile, build-
ing a physical system to verify the performance of any collection
of settings can be prohibitively expensive. Thus, this problem is
especially well-suited for simulation.

Common Lisp is exceptional at incrementally modeling complex
systems whose full set of constraints is not known at start. Its fea-
tures allow one to nonuniformly increase the fidelity of the model
in whatever areas make the most impact. While Common Lisp is
not initially well-suited specifically to distributed programming, it
is both generally adaptable and organizable, so that one can make
a principled account of the augmentations needed to support this
style of programming and its simulation. We offer here a Common
Lisp framework for the design, programming, and analysis of dis-
tributed systems which are, in a variety of senses, not fully specified
at the inception of the project.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’21, May 03–04 2021, Online, Everywhere
© 2021 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.4713971

To set the stage more concretely, let us discuss the specific ap-
plication which drove the initial development of this framework.
In quantum computing, our domain of interest, the classical elec-
tronics which drive a typical system are a fleet of processors and
programmable radio-frequency waveform generators and receivers.
These are highly concurrent systems which operate on micro- or
nanosecond timescales, and they must solve coordination problems
to determine the next step in a program. Basic forms of coordination
(e.g., time synchronization) are required for any kind of operation,
but they are especially critical for quantum error correction [8, 9].
Syndrome decoding and error correction require active communi-
cation and joint processing of feedback from different areas of the
quantum device in hard real-time. Meanwhile, because the practice
of quantum computing is so nascent and “artisinal”, the details of
the device, its steering electronics, and even the decoding scheme
itself are all in flux—indeed, their design has the potential to be
driven by the predicted performance characteristics of a specified
decoding procedure.

To analyze the behavior of such systems, it is valuable to have a
flexible emulation framework available which can accommodate
myriad hardware components with varying levels of detail:
Network The structure, protocol, and properties should all be

programmable.
Compute nodes The architecture of a particular node may be

specified in complete detail, e.g., its behavior can be modeled
by an instruction-by-instruction emulator with fully specified
timing. Similarly, the amount of computational power available
to a node should be configurable.

System composition In all aspects, it should be possible to work
with heterogeneous components, e.g., different processors with
different microarchitectures and different clock rates.

Macroscopic defaults In all aspects, it should be possible to ig-
nore implementation details by falling back on default behaviors.
These defaults may be unrealistic in a limited-resource regime
(e.g., infinite network transmission capability), but they must
nonetheless be fully specified.

We designed our software package, aether [14], with these kinds
of flexibility in mind: aether provides support for the time-domain
emulation of components with user-defined behavior, communica-
tion among these components, the steady offloading of execution se-
mantics from standard Common Lisp to an application-specific DSL,
the debugging of such software, and the analysis of performance
effects in the forms of time, compute, and network requirements.

In sequels to this paper, we describe an application to topological
quantum error correction, provide an implementation using aether,
and apply aether’s performance analysis features [13].

Remark 1. aether is not suitable for performant concurrent pro-
gramming in Common Lisp, but this is not its goal. There are many

54 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere Eric C. Peterson and Peter J. Karalekas

such libraries available, including cl-actors [16], cl-muproc [6],
erlangen [15], memento-mori [12], and simple-actors [1], though
this list is in no way exhaustive. Ours differs in that it intends to
capture the performance features of distributed software running
atop emulated hardware, whereas these others are concerned with
performing the distributed computation itself as quickly as possible.

2 MANY-COMPONENT SIMULATION
The bedrock of aether is in its simulation loop. A key quality of a
digital system is that its components operate against various clocks,
where on each tick they enact some operation before delaying
until the next tick. Additionally, information passed through one
component (e.g., a network interface or a memory bus) may arrive
at some other component for reading after a possible delay.

The two key data types facilitating this kind of simulation are:
event A callback and a time at which to trigger it. In addition to

any other side effects, the callback returns a list of future events
to reinject into the simulation.

simulation A collection of events yet to be run and a time value,
called the horizon, which tracks the time before which history
has been fully fixed. In particular, no events in the collection
may have trigger times before the horizon value.

The utility function simulation-add-event can be used to set up
the initial contents of a simulation, and simulation-run can be
used to process events in time order1 either until exhaustion or
until a user-specified condition has been met (e.g., a timeout).

To facilitate the authoring of event callbacks, aether provides
the context macro with-scheduling, which executes its body in
sequence while offering the following convenience forms to collect
events to be returned at the close of the macro:2

schedule Stashes an event for return at the close of the macro.
schedule* Consumes the results of another callback and adjoins

its events to the current list of events to be returned.
finish-with-scheduling Exits with-scheduling, either with a

specified return value or with the events collected thus far.

Example 2. In Figure 1, we illustrate using these constructs to
generate a few callback events.

Often, the components of a simulation are properly thought of as
objects, each of which has a default behavior associated with it. For
example, a particular simulation component may be responsible for
emulating the behavior of a processor, which on each tick decodes
and enacts the instruction at its program counter. To facilitate
this, the generic function define-object-handler captures the
default callback behavior of an object class, and when a simulation
processes an event whose “callback” is an object, its callback is
instead supplied by define-object-handler.

Example 3. In Figure 2, we define a processor emulator’s heartbeat
loop by using default object callbacks.

Remark 4. A simulation as described above can be neatly imple-
mented via a priority queue. However, such an implementation
1Events scheduled for the same time are run serially, but not according to any conven-
tion. It could be useful for debugging race conditions to expose a programmable hook
when breaking such ties.
2Compare SBCL’s define-vop’s local macro inst.

(defun g (now)
(with-scheduling (format t "g: ~a~%" now)))

(defun f (now)
(with-scheduling

(format t "f: ~a~%" now)
(schedule #'g (+ now (/ (random 4) (1+ (random 4)))))
(schedule #'f (+ now 1))))

(let ((simulation (make-simulation)))
(simulation-add-event simulation (make-event :callback #'f))
(simulation-run simulation :canary (canary-until 2))
(values))

;; f: 0
;; f: 1
;; g: 5/4
;; g: 3/2
;; f: 2

Figure 1: Example event callback fwhich triggers itself after
a fixed delay and another function g after a random delay.

(defstruct processor
"State of a simple CPU."
(data-stack nil :type list)
(program-counter 0 :type (integer 0))
(instructions nil :type vector :read-only t))

(define-object-handler ((self processor) now)
;; NOTE: passing the bare object "self" to schedule
(schedule self (+ now (/ *processor-rate*)))
(destructuring-bind (operator &rest arguments)

(aref (processor-instructions self)
(1- (processor-program-counter self)))

(incf (processor-program-counter self))
(ecase operator

;; example definitions of instruction behavior
(halt ; halts processor execution
(finish-with-scheduling))

(push ; place constant on stack
(push (first arguments) (processor-data-stack self)))

(muli ; stack-constant multiplication
(push (* (pop (processor-data-stack self))

(first arguments))
(processor-data-stack self)))

;; ...
)))

Figure 2: define-object-handler used to describe the transi-
tion rule for a toy microprocessor.

turns out to be under-performant in cases of interest: for large
collections of processors with identical start times and identical
clock frequencies, there are very few distinct key values in the
priority queue. For this reason, aether’s default implementation of
a simulation uses a data structure with the interface of a priority
queue but whose internals take advantage of repeated keys.

3 MESSAGES AND MESSAGE PASSING
While we have discussed some aspects of time-domain simulation,
we have not made any particular reference to the communicative
aspect of distributed computation. We make the following funda-
mental assumption: typical communication channels are physically
synchronous (although perhaps lossy), but their access is subject
to contention and hence appears as asynchronous. Accordingly,

ELS 2021 55

aether: Distributed system emulation in Common Lisp ELS’21, May 03–04 2021, Online, Everywhere

aether’s networking capabilities are split into two halves: the sim-
ulation of a “physical” layer, which processes serially-supplied data
against a constant clock; and primitives which communicate over
this layer, which may appear to be asynchronous as delay accumu-
lates in the simulation. We discuss the two layers in turn.

The physical network is made up of courier objects. As an in-
terface to the communication API, each courier maintains a set of
inboxes, indexed by address, which collect packets to be retrieved.
Additionally, each courier maintains a transmission queue of pack-
ets to be sent: if the destination address resides on this courier, the
message is stashed in the appropriate inbox; if not, it is routed to
the next courier on the transmission path. The default courier class
implements a network with all-to-all connectivity: every courier
on the network is one hop away from every other. We also provide
a more specialized example implementation where the couriers are
arranged in a grid, direct communication is only allowed between
nearest neighbors, and the couriers route packets accordingly.3 One
informs aether which courier services a block of code by binding
the dynamic variable *local-courier*, which allows the code to
interact with the networking layer.4

The communication API then provides a point of contact be-
tween this physical networking layer and the distributed program-
mer. It defines the following primitives:
register Opens a new inbox at the local courier and returns the

key to that inbox.
send-message Sends a payload to a specified address. Any mes-

sage may be sent to any inbox, provided the address of that inbox
is known.

receive-message Checks the indicated inbox for messages of a
specified type. If there is such a message, it binds it and executes
an associated block of code. If no message is found, the receive
terminates and execution resumes as before.5 The key associated
to an inbox is required to receive messages from it.

unregister Releases an inbox resource from the courier. A re-
leased inbox address can never again be used to retrieve mes-
sages.

Example 5. These primitives are enough to build various conve-
nience methods. For example, Figure 3 illustrates an implemen-
tation of a “synchronous receive”, which waits to resume execu-
tion until a receive has been successful.6 aether also provides

3More explicitly, each destination address consists of a courier ID and an inbox ID
registered at that courier. In the gridded example, a courier’s ID is its coordinate
position in the grid, and couriers route packets according to logic such as: if the
requested address’s x–coordinate is to the left of this one, forward this packet to the
courier to the immediate left, so that the routing table is procedurally generated.
4In practice, this binding is done automatically.
5More exactly, the body of receive-message can carry different branches which
specialize on different message types. The inbox is first scanned for instances of the first
message type. By default, the entire inbox is considered, and if one or more messages
is found, the indicated place is bound to the first (i.e., oldest) matching message, the
associated block of code is executed, and then control exits from receive-message
without trying its other branches. By toggling the peruse-inbox? argument, the user
can tell it to only consider the first message in the inbox, rather than the entire inbox.
If no message of the first type is found, then it proceeds to search for messages of the
second type. Message processing continues in this way until all the message types are
exhausted. In the case of exhaustion, receive-message executes an otherwise block
if one is available, and then cedes control to its caller either way.
6In the next section, we discuss a standard implementation within aether of waiting
for receive-message to complete.

(defun busy-wait (address continue-computation now)
(with-scheduling

(receive-message address message-place
;; if there's a done-message available,
(done-message

;; pass it to continue-computation and finish
(schedule* (funcall continue-computation message-place)))

;; otherwise, delay and loop
(otherwise

(schedule (a:curry #'busy-wait address continue-computation)
(+ now *busy-wait-delay*))))))

Figure 3: An example callback that performs a busy-wait.

send-message-batch, a utilitywhich sendsmessages to a sequence
of target addresses.

Remark 6. Message passing in aether comes with significant guar-
antees: messages are always delivered, and messages sent from the
same source to the same target are received in order. Neglecting
the effects of transmission delay (e.g., when working with a single
courier), aether acquires the semantics of the LOCALmodel of dis-
tributed computing [11]. With transmission and processing delays
incorporated, aether acquires the semantics of the DECOUPLED
model [3, 4].

Additionally, each message is optionally tagged with a “reply ad-
dress”. This is available for user-defined behavior, but it is also used
automatically by the networking layer in the case that the message
is sent to an address which does not exist (e.g., if unregister has
since been called to close its destination inbox). In this event, the
destination courier will automatically generate a “return to sender”
message and send it to the reply address so as to signal the failure.

Remark 7. Neither the simulation framework nor the messaging
framework provide a built-in mechanism for communicating with
the outside world. Instead, we leave it up to the user to decide
how information should be extracted from the simulation. Typi-
cal options include direct inspection of simulated objects or via a
user-supplied object that converts simulation-internal messages to
simulation-external side effects.

4 ACTORS AND PROCESSES
A robust message-passing system opens the door for actor-based
distributed computing [7]. Each actor, which might be thought of as
a physical processor or as a green thread on some ambient physical
processor, is responsible for some component of a computation,
which it completes by communicating with other actors through
the network.

The basic notion of an actor is captured in aether as a process.
In order to render invisible the difference between processes resid-
ing on the same ambient processor and those residing on different
nodes in the network, processes ought not to modify each oth-
ers’ state directly. Instead, each process registers an inbox with
the courier to serve as its “public” address, and processes com-
municate with one another via these inboxes. The processes then
proceed to act at regular intervals, with the pace of each set by
its process-clock-rate. On each such tick, a process services in-
bound requests at its public address through user-defined handlers
and makes progress on its own computations through user-defined
procedures.

56 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere Eric C. Peterson and Peter J. Karalekas

Service handlers are specified using define-message-handler,
which takes as arguments the process (specialized by type), the mes-
sage (specialized by type), and the current clock value. The body of a
handler might access or modify the process’s state, cause it to jump
to a new code segment to perform a computation, generate mes-
sages, and more. The main constraint is that handlers function as
“interrupts”, in the sense that they are given a fixed amount of time
(viz., one tick) to perform computation before they are required to
terminate. Apart from the individual specification of these handlers,
define-message-dispatch specifies the ordered list of service
handlers that a process employs to act on messages received at
its public address (by repeatedly calling out to receive-message).
Each handler is optionally guarded by a predicate that is computed
from the current state of the process, so that services can be selec-
tively enabled.

The computational trajectory of a process is captured by its
“command stack”, which is a stack of commands yet to be performed,
each specified as a cell of shape (COMMAND-NAME . ARGS). On each
tick, a process automatically pops the next command off of its stack
and performs the specified action, whose behavior is set out by
define-process-upkeep. Typical command behaviors include:

Local state modification The command might modify the local
state of the process, e.g., by changing some of its slot values.

Message-passing The command might send new messages or
draw waiting messages out of inboxes.

Intermediate computation The command might perform inter-
mediate computation, e.g., collating values received from differ-
ent network sources.

Procedure continuation The command might push more items
onto the command stack (viz., using process-continuation).
This has the effect of delaying the command that was to be
processed immediately next, in favor of performing some other
command (or sequence of commands) first.7

In this way, the command stack simultaneously serves the pur-
pose of a traditional call stack, a program counter, and executable
memory.8

Because define-process-upkeep describes a region of code
which belongs to a particular active process, we again have the
opportunity to define some utility macros.

sync-receive Busy-waits for a message of a specified type to
arrive on a specified inbox. Its syntax is identical to that of
receive-message.

with-replies Gathers a family of responses, potentially from
many different inboxes, by busy-waiting until they all arrive.
It then proceeds with the computation housed in its body.

7For instance, one may implement a while loop by testing the loop predicate and,
conditionally on the test coming back positive, pushing the loop body and the while
loop back onto the command stack.
8While not set in stone, this unusual design choice is a direct consequence of the
flexibility we have elected for in process semantics. In order to make use of a program
counter to track program state, one needs the ability to jump (so, in particular, to return)
to an arbitrary instruction location. However, in the case where the granular behavior
of a process has not been fully specified, we permit Common Lisp itself to shoulder
its execution semantics, and it is difficult to jump to the middle of a Lisp-defined
procedure. To accommodate this, we essentially limit jumps to occur only at the end
of each procedural step. In effect, this becomes a form of continuation-passing style:
each step in a procedure organizes only the code needed to continue its computation.

(defclass processor (process)
()
(:documentation "State of a simple CPU."))

(define-process-upkeep ((self processor) now) (HALT)
(process-die))

(define-process-upkeep ((self processor) now) (PUSH value)
(push value (process-data-stack self)))

(define-process-upkeep ((self processor) now) (MULI value)
(push (* value (pop (process-data-stack self)))

(process-data-stack self)))

(define-message-dispatch processor
)

Figure 4: Re-implementation of Figure 2 using a process.
The program-counter and instructions slots have been ab-
sorbed into the command stack.

(defclass arithmetic-server (processor) ())

;;; act like a server

(define-process-upkeep ((self arithmetic-server) now) (START)
"This process sits in a loop, waiting to serve."
(process-continuation self `(START)))

(define-process-upkeep ((self arithmetic-server) now) (EMIT address)
"Generic instruction for emitting a message."
(let ((result (pop (process-data-stack self))))

(send-message address (make-message-rpc-done :result result))))

;;; factorial-specific functionality

(defstruct (message-factorial (:include message))
"Message which requests a factorial computation."
(n nil :type (integer 0)))

(define-process-upkeep ((self arithmetic-server) now) (FACTORIAL n)
"Computes n!, leaves result on the data stack."
(cond

((zerop n)
(process-continuation self `(PUSH 1)))

(t
(process-continuation self

`(FACTORIAL ,(1- n))
`(MULI ,n)))))

(define-message-handler handle-message-factorial
((self arithmetic-server) (message message-factorial) now)

"Handles a inbound factorial request."
(process-continuation self

`(FACTORIAL ,(message-factorial-n message))
`(EMIT ,(message-reply-channel message))))

;; advertises the factorial handler to externals
(define-message-dispatch arithmetic-server

(message-factorial 'handle-message-factorial))

Figure 5: Extends the processor defined in Figure 4 to allow
it to serve requests for computing factorials.

Example 8. In Figure 4 we revise the example given in Figure 2 to
use the process framework, and in Figure 5 we extend it to service
interprocess communication requests to perform a simple compu-
tation. We also give a fresh example in Figure 6 of a distributed
algorithm solving a standard problem in graph theory.

ELS 2021 57

aether: Distributed system emulation in Common Lisp ELS’21, May 03–04 2021, Online, Everywhere

(defclass process-coloring (process)
((stopped? ...)
(color ...)
(neighbors ...)))

(defstruct (message-color-query (:include message)))

(define-rpc-handler handle-message-color-query
((process process-coloring)
(message message-color-query)
now)

(process-coloring-color process))

(define-message-dispatch process-coloring
(message-color-query 'handle-message-color-query))

(define-process-upkeep ((process process-coloring) now) (START)
(process-continuation process `(QUERY)))

(define-process-upkeep ((process process-coloring) now) (QUERY)
(when (process-coloring-stopped? process)

(process-continuation process `(IDLE))
(finish-with-scheduling))

(let (listeners)
(with-slots (color neighbors stopped?)

process
(process-continuation process `(QUERY))
(setf color (random 3))
(setf listeners

(send-message-batch #'make-message-color-query
neighbors))

(with-replies (replies) listeners
(setf stopped? (not (member color replies)))))))))

(define-process-upkeep ((process process-coloring) now) (IDLE)
(process-continuation process `(IDLE)))

Figure 6: Randomized algorithm for 3-coloring a line which
uses only local network structure [11, 17]. Leverages some
features of the standard library discussed in Section 5.

Remark 9. There is no centralized directory service by which pro-
cesses on a network can discover one another. Instead, processes
become aware of each others’ existence in three ways:

(1) The user can directly intervene (e.g., before simulation start)
and write a process’s public address into the slot of another.

(2) When a process spawns a subprocess, it can record the sub-
process’s public address.

(3) Addresses can be sent over channels, so that processes can
tell each other about addresses of which they’re aware. (So,
a programmer could write their own directory service.)

5 A STANDARD LIBRARY
All of this scaffolding permits us to write actor-based distributed
algorithms with relative ease. Such algorithms follow certain stan-
dard patterns to enable easy interprocess coordination, and aether
provides built-in support for some of these patterns in the form of
a standard library.

5.1 Remote procedure calls
One such pattern is the remote procedure call: one process queries
one or more other processes, then awaits the result (or, at least, a
signal that they have finished) before using it to continue its own
computation. This is typically implemented in terms of aether
primitives as:

(1) The caller registers an inbox, the “private reply inbox”.9
(2) The caller forms an RPC request with the private inbox listed

as the return address and sends it to the public address of
the remote process.

(3) The caller then performs a blocking receive, waiting to find
a response in the private inbox.

(4) The remote process services the request, which triggers the
desired computation.

(5) At the conclusion of the computation, the remote process
prepares a message-rpc-done, which it sends back to the
private address.

(6) Upon receiving that message, the caller unregisters the reply
inbox and proceeds with its own computation.

This involves some boilerplate code on both sides of the protocol,
the caller and the callee. On the side of the caller, we have:
with-replies Manages the blocking receive. It also supports the

automatic unboxing of the replies it receives (e.g., by mapping
#’message-rpc-done-result over the message objects), wait-
ing on multiple mailboxes in parallel, and gracefully handling
return-to-sender replies.

On the side of the callee, we have:
define-rpc-handler Extends define-message-handler by test-

ing whether the return address of the inbound message is non-
null and, if so, returning the result of its body computation via a
message-rpc-done envelope.

define-message-subordinate Defines a non-interrupting mes-
sage handler. A limitation of define-message-handler is that
it functions akin to an interrupt: it cannot perform any opera-
tions that take nontrivial simulation time, and at its completion
control passes back to the next frame on the call stack. In order
to perform computations which require simulation time (e.g.,
if they need to perform RPC calls of their own), the handler
can install call stack frames of its own, interrupting whatever
procedure was being worked on previously and blocking it from
continuing until the call resolves. As this blocking behavior can
also be undesirable, define-message-subordinate provides an
alternative: it spawns a parallel thread to handle the message,
with all the features of define-process-upkeep available (e.g.,
with-replies).

5.2 Broadcast and convergecast
We also provide tools for common patterns in the domain of dis-
tributed graph algorithms. In that context, processes correspond
to problem graph nodes, and communication channels correspond
to problem graph edges. As an algorithm progresses, nodes com-
municate and form graph structures (e.g., rooted trees), and these
structures may have to internally coordinate to take further action.
This coordination is conveniently accomplished via broadcast and
convergecast protocols [2, 5].

The goal of a broadcast is to announce a message across a net-
work, e.g., an instruction to enact some effect. When a process
receives a broadcast message, it performs an associated action,
calculates the next set of targets (e.g., all adjacent nodes except
9This automatically associates the reply message with the particular query which
generated it, where wemay otherwise have had to distinguish between several inbound
replies at the process’s public address.

58 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere Eric C. Peterson and Peter J. Karalekas

the sender), and then forwards the message along to those tar-
gets.10 Thus, a broadcast can be thought of as a way to recur-
sively act on a distributed graph structure. To facilitate this oper-
ation, we provide an extension to the standard message handler
called define-broadcast-handler, which pushes a BROADCAST
command onto the command stack before executing the body of
the handler. This command forwards the broadcasted message to
the next round of targets, optionally awaiting their reply and ac-
knowledging the broadcaster in the form of a message-rpc-done.

When a process wants to gather some information from across
the network, it can do so using convergecast. This protocol is simi-
lar to broadcast, with an additional step: each process reports the
result of performing its action, and as reports are sent back to the
convergecast originator, they are summarized by a user-specified
computation in order to produce a final result. As a trivial exam-
ple, convergecast can be used to count the number of nodes in a
distributed tree, where each node reports the number 1 and the
reports are summed as they are relayed back to the root.

5.3 Locking
Some process interactions are nonatomic, in the sense that they
might interleave with other process interactions. Nonatomicity is
why a distributed algorithm achieves a speedup over a sequential
algorithm: a completely atomic system is essentially indistinguish-
able from a sequential system. Nonetheless, atomicity also remains
a valuable property, as it is often critical to the correctness of an
algorithm. One then wants to confer atomicity onto those sections
of the algorithm which require it for correctness, called critical
sections, and to otherwise work nonatomically to take advantage of
parallel process interactions. Any mechanism by which we can con-
fer controlled atomicity is called a lock. The broadcast lock, a cousin
of Lamport’s mutual exclusion mechanism [10], and a special case
of the more general broadcast operation described previously, is a
particular form of locking which appeared often in our application
work. As such, we have included it as part of aether’s standard
library.

To begin the protocol, the process which wishes to hold the lock
calculates the set of clients it must lock and sends them each a lock
request. Each client either replies with a failure, or it gathers locks
from its sub-clients, and so on. When each client hears successful
replies from each of its sub-clients, it opens a new, private inbox
and sends that address to the lock holder as its signal of success.
Upon success, the lock holder then does its critical work; upon
failure, it knows to avoid the critical work, perhaps to try again
later. In either case, it unwinds any client locks it did acquire by
sending a finish message to the private addresses, then awaiting
signals from each that they have finished.

The subclass process-lockable of process implements this
algorithm within aether. The relevant hooks are as follows:
BROADCAST-LOCK A command used to initiate lock requests.
message-lock-request A message type used to deliver lock re-

quests, replete with message handlers.
process-lockable-targets A generic function used to calculate

the clients on which to acquire recursive locks.

10We use the word “broadcast” to capture the recursive, potentially multi-target nature
of this operation. The message need not be forwarded to all targets on the network.

(defclass writer (process-lockable)
((transmit-list ...)
(target ...)))

(defclass reader (process-lockable)
((receive-list ...)))

(defstruct (message-write (:include message))
payload)

(define-process-upkeep ((process reader) now) (START)
(process-continuation process `(START)))

(define-process-upkeep ((process writer) now) (START)
(unless (endp (writer-transmit-list process))

(with-slots (target) process
(process-continuation process

`(BROADCAST-LOCK (,target))
`(TRANSMIT)
`(BROADCAST-UNLOCK)
`(START))))))

(define-process-upkeep ((process writer) now) (TRANSMIT)
(let ((next (pop (writer-transmit-list process))))

(unless (or (process-lockable-aborting? process)
(null next))

(send-message (writer-target process)
(make-message-write :payload next))

(process-continuation process `(TRANSMIT)))))

(define-rpc-handler handle-message-write
((process reader) (message message-write) now)

(push (message-write-payload message)
(reader-receive-list process)))

(define-message-dispatch writer
)

(define-message-dispatch reader
(message-lock 'handle-message-lock)
(message-write 'handle-message-write))

(defmethod process-lockable-targets ((process reader))
nil)

Figure 7: Writer processes mutually exclude their transmis-
sion sequences to a commonly held reader process by first
acquiring its lock.

Example 10. In Figure 7, we provide an example of a pair of pro-
cesses that use a broadcast lock to manage a race condition. Several
writer processes which want to transmit data to a single reading
process first acquire a lock on it before transmitting their multi-part
payloads, retrying if their lock is denied. In this way, the reading
process receives the payloads without interleaving, though they
may arrive in any order relative to one another.

6 INSTRUMENTATION
Much of the value in writing simulation software is having a low-
cost environment in which to do software development: one can
implement complex software and verify at least some of its behav-
iors before testing it on a true physical system, which may itself be
expensive to build. As previously discussed, another large source
of value comes from the opportunity to design the physical system
itself: if the simulation is faithful enough to give an estimate of re-
source consumption, then its analysis can be used to set hardware
performance requirements. Toward both of these goals, aether

ELS 2021 59

aether: Distributed system emulation in Common Lisp ELS’21, May 03–04 2021, Online, Everywhere

2 3

7 1

15
6

13

5

12
9

1810 4

17

8
16

11

MSG-REPORT: 21 MSG-ACCEPT: 7 MSG-REJECT: 9
MSG-TEST: 24 MSG-INITIATE: 12 MSG-CONNECT: 12
TOTAL: 85

Figure 8: (top) Weighted problem graph (10 nodes, 17 edges)
with minimum-weight spanning tree indicated by red solid
edges. (bottom) Output of the print-message-report logging
mechanism when running the GHS algorithm [5] on the
above graph. In particular, we find a message total of 85,
which is indeed less than the upper bound of 200.

provides tools for analyzing the behavior of programs that use its
simulation framework.

In sequel work, we describe an elaborate application of these
tools to a hardware design problem in quantum computing.

6.1 Logging
A significant challenge in designing distributed software is diag-
nosing errors that arise: the effect of an error can be very far from
its source, both in terms of position in the code base as well as in
simulation state. To help with this, aether provides a structured
logging service which aggregates log entries in the form of Lisp
objects. Many of the aether primitives automatically emit these
log messages, and log-entry allows the programmer to emit addi-
tional user-defined messages. Because these messages are retained
as Lisp objects, they are relatively easy to query and filter, allowing
the programmer to “zoom in” on particular process interactions in
a sea of other information.

Example 11. In Figure 8 we provide an example of using some of
the built-in logging facilities to verify that an implementation of
the GHS algorithm runs using fewer messages than the predicted
upper bound of 5N logN + 2E. See Appendix A for implementation
details.

6.2 Dereferencing
Part of the conceit of distributed programming is that processes
are unable to modify each others’ states except by communication
through agreed-upon protocols. To enforce this within a simulated
context, where a programmer could use the host language’s ability
to inspect objects directly, we make a concerted effort to retain
only the public addresses of processes. These are decoupled from
the processes that own them, and hence they prevent their owner
processes from being directly manipulated by the host language.

While necessary for the basic semantic validity of a distributed
application, one frequently wants to dissolve exactly this barrier
when debugging that application. Diagnosing and tracing errors

almost always requires inspection of the states of several processes—
but which processes can only be known at runtime, and even then
they are known only by their public address. We provide in aether
an optional debugging utility for marrying public addresses to their
owners, enabling this critical form of state tracing.

6.3 Call tracing
In addition to understanding in detail the behavior of particular
interactions, it is also useful to understand the aggregate statistics of
interactions, as this has a direct impact on algorithm performance.
To this end, aether provides a “tracing” mechanism that records a
set of performance statistics for interprocess queries, e.g., number
of targets in a batch send, or time spent waiting for a query to
resolve (and, so, distinct from behavioral logging). This, too, can be
further instrumented to suit a user’s needs.

7 AVENUES FOR IMPROVEMENT
We close with some comments about the framework’s shortcomings
and indicate clear areas for improvement.

7.1 Granular processor simulation
While we have used the time-domain simulation features of an
aether-like library to emulate the behavior of a family of proces-
sors at the microarchitecture level, we have not done so in the same
project where communication and high-level algorithms are rele-
vant. Because of this, we have not exploredwhat amicroarchitecture-
specific DSL for algorithm specification looks like, having instead
relied on Common Lisp to set process command semantics. One
would surely learn a lot by pursuing this, and it would probably
motivate nontrivial changes in the definition of an aether process,
and perhaps to the framework generally.

Additionally, without a concrete specification of the “compute”
power available to each process (even in an example!), it is impos-
sible to faithfully simulate compute-bound behavior of systems.
Instead, the simulations with aether described in this document
tacitly assume that they are I/O-bound, so that the compute power
does not matter relative to the network delay.

7.2 Procedure delineation
In current practice we break “procedures” into sequences of “com-
mands” in a way that is pleasing to the conscious programmer,
but unstructured and unenforced from within the framework. It
would be preferable to have a language-level method for delineating
procedures, as well as for calling and returning from them.

Another side effect of manual manipulation of procedure bodies
is that the validity of the command stack is not checked at compile
time. Whereas the Common Lisp compiler can check whether a
static procedure call comports to its type signature, we have not
provided aether with the ability to warn a programmer whether
the commands to be injected are defined at all, much less whether
they match any advertised type signatures.

In a different but related direction, the locking system is not
robust to malicious use.Without further programming intervention,
a locked process continues to respond to all messages, including in
particular messages sent by actors other than the lock holder and
messages which may belong to some other critical section. Better

60 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere Eric C. Peterson and Peter J. Karalekas

segmentation of procedures is not a prerequisite for improving on
these problems, but it would make that work simpler.

7.3 A middleware DSL
Apart from setting out the details of a microarchitecture, it is a
separate problem to specify a useful DSL for writing distributed
algorithms in an actor-based framework. There are many obvious
constraints to consider here, including flexibility, user-friendliness,
and compiler-friendliness for mapping onto any potential microar-
chitecture embodiment. We have only begun to describe such a
DSL here in the form of the framework around process.

A less obvious and extremely promising aspect of designing a
DSL is the possibility of introducing a type system suitable for
analyzing the interactions of processes and enabling a compiler
targeting a microarchitecture to reason about programs and opti-
mize them. A likely key starting point for such a project is a “closed
world” hypothesis: process-based typing systems are difficult to
govern when the processes can receive arbitrary queries from un-
known third parties, but if the ingress points for such third parties
are explicitly marked, initial progress seems possible.

7.4 Granular network components
Network specification is somewhat underexplored. While it is cur-
rently very featureful—one can enact nontrivial routing strategies
on nontrivial networks—it has not ever been pressured to become
a “faithful” emulation of real networked electronics. For instance,
aether presently measures the concept of network pressure by the
packet count a node is processing, but the size and contents of those
packets are not taken into account. Serialization and deserialization
strategies would increase the fidelity of this aspect of the simula-
tion. In a different direction, phenomena such as network noise (so:
dropped packets, unpredictable delays, and so on) are not modeled.
Modifying the simulator to support this, modifying the messaging
system to be robust against it, and exposing a networking layer
where the user is not obligated to use the message-passing system
would each be a valuable project.

ACKNOWLEDGEMENTS
The authors owe debts of gratitude to several collaborators, friends,
and family. Separately and at different times, Charles Hadfield and
Sergio Boixo both suggested that we take an interest in a particular
form of topological quantum error correction, which ultimately led
to this project and its sequels. We are grateful to Colm Ryan for
providing valuable guidance early in the course of this project, and
to Erik Davis and Michael J. Fischer for feedback on a draft of this
manuscript. We would also like to thank Jade Lilitri for keeping
our spirits “up”. Lastly, the first author would like to thank Samrita
Dhindsa for all manner of support as this work was carried out.

REFERENCES
[1] simple-actors - The actor model implemented with closures. https://github.com/

j3pic/simple-actors. Accessed: 2020-09-01.
[2] James Aspnes. Notes on theory of distributed systems, 2020.
[3] Armando Castañeda, Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajs-

baum, and Michel Raynal. Making local algorithms wait-free: the case of ring col-
oring. Theory Comput. Syst., 63(2):344–365, 2019. doi: 10.1007/s00224-017-9772-y.
URL https://doi.org/10.1007/s00224-017-9772-y.

[4] Carole Delporte-Gallet, Hugues Fauconnier, Pierre Fraigniaud, and Mikaël Rabie.
Distributed computing in the asynchronous LOCALmodel. CoRR, abs/1904.07664,
2019. URL http://arxiv.org/abs/1904.07664.

[5] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algo-
rithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst., 5
(1):66–77, 1983. doi: 10.1145/357195.357200. URL https://doi.org/10.1145/357195.
357200.

[6] Klaus Harbo et al. CL-MUPROC - Erlang-inspired multiprocessing in Common
Lisp. https://common-lisp.net/project/cl-muproc/. Accessed: 2020-09-01.

[7] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A universal modular
ACTOR formalism for artificial intelligence. In Nils J. Nilsson, editor, Proceedings
of the 3rd International Joint Conference on Artificial Intelligence. Standford, CA,
USA, August 20-23, 1973, pages 235–245. William Kaufmann, 1973. URL http:
//ijcai.org/Proceedings/73/Papers/027B.pdf.

[8] A Yu Kitaev. Quantum computations: algorithms and error correc-
tion. Russian Mathematical Surveys, 52(6):1191–1249, dec 1997. doi:
10.1070/rm1997v052n06abeh002155. URL https://doi.org/10.1070%
2Frm1997v052n06abeh002155.

[9] A. Yu. Kitaev. Quantum Error Correction with Imperfect Gates, pages 181–
188. Springer US, Boston, MA, 1997. ISBN 978-1-4615-5923-8. doi: 10.1007/
978-1-4615-5923-8_19. URL https://doi.org/10.1007/978-1-4615-5923-8_19.

[10] Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem.
Communications of the ACM, 17(8):453–455, 1974.

[11] Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):
193–201, 1992. doi: 10.1137/0221015. URL https://doi.org/10.1137/0221015.

[12] Kat Marchán et al. memento-mori - Robustness through actors, for Common
Lisp. https://github.com/zkat/memento-mori. Accessed: 2020-09-01.

[13] Eric C. Peterson and Peter J. Karalekas. A distributed blossom algorithm for
minimum-weight perfect matching. In preparation, 2021.

[14] Eric C. Peterson, Peter J. Karalekas, et al. dtqec/aether - Distributed system
emulation in Common Lisp. https://github.com/dtqec/aether. Accessed: 2021-04-
23.

[15] Max Rottenkolber et al. eugeneia/erlangen - Distributed, asychronous message
passing system for Clozure Common Lisp. https://github.com/eugeneia/erlangen.
Accessed: 2020-09-01.

[16] Naveen Sundar et al. naveensundarg/cl-actors - An actor system for Common
Lisp. https://github.com/naveensundarg/Common-Lisp-Actors. Accessed: 2020-
09-01.

[17] Jukka Suomela. Distributed Algorithms (online textbook). https://jukkasuomela.
fi/da/, 2014.

A IMPLEMENTATION OF GHS ALGORITHM
Below we have an implementation of a canonical distributed al-
gorithm using aether’s process framework. As indicated by the
docstrings, each command or message handler definition maps di-
rectly to a section of the pseudocode algorithm in the appendix of
the GHS paper [5]. The snippet is truncated for brevity—for the full
implementation, please refer to the file distributed-mst.lisp in
the tests/examples directory of the aether repository [14].

(define-process-upkeep ((node fragment-node) now) (START)
"Section 1: Response to spontaneous awakening."
(process-continuation node `(START))
(when (eql (slot-value node 'node-state) ':SLEEPING)

(process-continuation node `(WAKEUP))))

(define-process-upkeep ((node fragment-node) now) (WAKEUP)
"Section 2: Procedure WAKEUP."
(let ((address (process-public-address node)))

(with-slots (adjacent-edges find-count fragment-level) node
(when (eql (slot-value node 'node-state) ':SLEEPING)

(let ((minimum-weight-edge
(find-minimum-weight-edge adjacent-edges)))

(with-slots (edge-state)
(gethash minimum-weight-edge adjacent-edges)

(setf edge-state ':BRANCH find-count 0 fragment-level 0
(slot-value node 'node-state) ':FOUND)

(send-message minimum-weight-edge
(make-msg-connect :edge address

:level 0))))))))

ELS 2021 61

aether: Distributed system emulation in Common Lisp ELS’21, May 03–04 2021, Online, Everywhere

(define-message-handler handle-msg-connect
((node fragment-node) (message msg-connect) time)

"Section 3: Response to receipt of Connect(L) on edge j."
(let ((address (process-public-address node)))

(with-slots (fragment-level fragment-weight node-state) node
(with-slots (edge level) message

(with-slots (edge-state edge-weight)
(gethash edge (slot-value node 'adjacent-edges))

(cond
((< level fragment-level)
(setf edge-state ':BRANCH)
(send-message edge (make-msg-initiate

:edge address
:level fragment-level
:state node-state
:weight fragment-weight))

(when (eql node-state ':FIND)
(incf (slot-value node 'find-count))))

((eql edge-state ':BASIC)
(send-message address message))

(t
(send-message edge (make-msg-initiate

:edge address
:level (1+ fragment-level)
:state ':FIND
:weight edge-weight)))))))))

(define-message-handler handle-msg-initiate
((node fragment-node) (message msg-initiate) time)

"Section 4: Response to receipt of Initiate(L, F, S) on edge j."
(let ((address (process-public-address node)))

(with-slots (adjacent-edges find-count) node
(with-slots (edge level state weight) message

(setf (slot-value node 'best-edge) nil
(slot-value node 'best-weight) most-positive-fixnum
(slot-value node 'fragment-level) level
(slot-value node 'fragment-weight) weight
(slot-value node 'in-branch) edge
(slot-value node 'node-state) state)

(let ((edges (find-specific-edges adjacent-edges
:desired-state ':BRANCH
:not-edge edge)))

(flet ((payload-constructor ()
(make-msg-initiate :edge address :level level

:state state :weight weight)))
(send-message-batch #'payload-constructor edges))

(loop :repeat (length edges) :when (eql state ':FIND)
:do (incf find-count)))

(when (eql state ':FIND)
(process-continuation node `(TEST)))))))

(define-process-upkeep ((node fragment-node) now) (TEST)
"Section 5: Procedure TEST."
(with-slots (adjacent-edges test-edge) node

(let ((minimum-weight-edge
(find-minimum-weight-edge adjacent-edges

:desired-state ':BASIC)))
(setf test-edge minimum-weight-edge)
(if minimum-weight-edge

(send-message test-edge
(make-msg-test
:edge (process-public-address node)
:level (slot-value node 'fragment-level)
:weight (slot-value node 'fragment-weight)))

(process-continuation node `(REPORT))))))

(define-message-handler handle-msg-test
((node fragment-node) (message msg-test) time)

"Section 6: Response to receipt of Test(L, F) on edge j."
(let ((address (process-public-address node)))

(with-slots (adjacent-edges test-edge) node
(with-slots (edge level weight) message

(with-slots (edge-state) (gethash edge adjacent-edges)
(cond

((> level (slot-value node 'fragment-level))
(send-message address message))

((/= weight (slot-value node 'fragment-weight))
(send-message edge (make-msg-accept :edge address)))

(t
(when (eql edge-state ':BASIC)
(setf edge-state ':REJECTED))

(if (or (null test-edge) (not (address= test-edge edge)))
(send-message edge (make-msg-reject :edge address))
(process-continuation node `(TEST))))))))))

(define-message-handler handle-msg-accept
((node fragment-node) (message msg-accept) time)

"Section 7: Response to receipt of Accept on edge j."
(with-slots (adjacent-edges best-edge best-weight test-edge) node

(with-slots (edge) message
(with-slots (edge-weight) (gethash edge adjacent-edges)

(setf test-edge nil)
(when (< edge-weight best-weight)

(setf best-edge edge best-weight edge-weight))
(process-continuation node `(REPORT))))))

(define-message-handler handle-msg-reject
((node fragment-node) (message msg-reject) time)

"Section 8: Response to receipt of Reject on edge j."
(with-slots (adjacent-edges) node

(with-slots (edge) message
(with-slots (edge-state) (gethash edge adjacent-edges)

(when (eql edge-state ':BASIC) (setf edge-state ':REJECTED))
(process-continuation node `(TEST))))))

(define-process-upkeep ((node fragment-node) now) (REPORT)
"Section 9: Procedure REPORT."
(with-slots (best-weight find-count in-branch test-edge) node

(when (and (zerop find-count) (null test-edge))
(setf (slot-value node 'node-state) ':FOUND)
(send-message in-branch (make-msg-report

:edge (process-public-address node)
:weight best-weight)))))

(define-message-handler handle-msg-report
((node fragment-node) (message msg-report) time)

"Section 10: Response to receipt of Report(w) on edge j."
(with-slots (best-edge best-weight find-count in-branch) node

(with-slots (edge weight) message
(cond

((not (address= edge in-branch))
(decf find-count)
(when (< weight best-weight)

(setf best-weight weight best-edge edge))
(process-continuation node `(REPORT)))

((eql (slot-value node 'node-state) ':FIND)
(send-message (process-public-address node) message))

((> weight best-weight)
(process-continuation node `(CHANGE-ROOT)))

((and (= weight best-weight) (= weight most-positive-fixnum))
(process-continuation node `(HALT)))))))

(define-process-upkeep ((node fragment-node) now) (CHANGE-ROOT)
"Section 11: Procedure CHANGE-ROOT."
(let ((address (process-public-address node)))

(with-slots (adjacent-edges best-edge fragment-level) node
(with-slots (edge-state) (gethash best-edge adjacent-edges)

(cond
((eql edge-state ':BRANCH)
(send-message best-edge

(make-msg-change-root :edge address)))
(t
(send-message best-edge

(make-msg-connect :edge address
:level fragment-level))

(setf edge-state ':BRANCH)))))))

(define-message-handler handle-msg-change-root
((node fragment-node) (message msg-change-root) time)

"Section 12: Response to receipt of Change-root."
(process-continuation node `(CHANGE-ROOT)))

62 ELS 2021

A Scheme Foreign Function Interface to JavaScript Based on
an Infix Extension

Marc-André Bélanger
Université de Montréal

Montréal, Québec, Canada
marc-andre.belanger@umontreal.ca

Marc Feeley
Université de Montréal

Montréal, Québec, Canada
feeley@iro.umontreal.ca

ABSTRACT
This paper presents a JavaScript Foreign Function Inter-
face for a Scheme implementation hosted on JavaScript and
supporting threads. In order to be as convenient as possible
the foreign code is expressed using infix syntax, the type
conversions between Scheme and JavaScript are mostly im-
plicit, and calls can both be done from Scheme to JavaScript
and the other way around. Our approach takes advantage of
JavaScript’s dynamic nature and its support for asynchronous
functions. This allows concurrent activities to be expressed
in a direct style in Scheme using threads. The paper goes
over the design and implementation of our approach in the
Gambit Scheme system. Examples are given to illustrate its
use.

CCS CONCEPTS
• Software and its engineering → Interoperability; Compil-
ers;

KEYWORDS
Foreign function interface, Macros, JavaScript, Scheme

1 INTRODUCTION
In this paper we relate our experience designing, implement-
ing and using a Foreign Function Interface (FFI) in the
context of a Scheme implementation hosted on JavaScript.
Our system avoids the cumbersome syntax and boilerplate
declarations found in typical FFIs and offers a lightweight
interface that is both easy to use and expressive.

Cross-language interoperability is a desirable feature of
any language implementation. It allows building applications
using multiple languages and expressing each part with the
most appropriate language. Important factors in the choice
of language are the availability of libraries and APIs for
the tasks to be done. In a Scheme implementation running
in a web browser the support of a JavaScript FFI opens up
many interesting possibilities such as accessing the Document
Object Model (DOM) and handling events in Scheme code.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’21, May 03–04 2021, Online, Everywhere
© 2021 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.4711424

FFIs are notoriously implementation-dependent and code
using a given FFI is usually not portable. Consequently,
the nature of FFI’s reflects a particular set of choices made
by the language’s implementers. This makes FFIs usually
more difficult to learn than the base language, imposing
implementation constraints to the programmer. In effect,
proficiency in a particular FFI is often not a transferable
skill.

In general FFIs tightly couple the underlying low level
data representation to the higher level interface provided to
the programmer. This is especially true of FFIs for statically
typed languages such as C, where to construct the proper
interface code the FFI must know the type of all data passed
to and from the functions. As a simple example, here is a
program using Gambit Scheme’s C FFI[9] to interface to the
C library’s ldexp(x,y) function computing 𝑥× 2𝑦:

(c-declare "#include <math.h>") ;; get ldexp C prototype
(define ldexp (c-lambda (double int) double "ldexp"))
(println (ldexp 10.0 -3)) ;; prints 1.25

Note the use of type specifiers in the c-lambda to indicate the
type of the arguments (double and int) and result (double).
The FFI defines some mapping between the Scheme data
and the C types, and raises an error for incompatible types
(e.g. the Gambit C FFI will raise an error when a C double is
expected and a value other than a Scheme inexact real is used).
There is even wider variation in how different FFIs handle
more complex constructs like variadic functions, higher order
functions, multiple return values, pointers, arrays, structures,
classes, continuations and threads (a notorious hard case
is interfacing to the C library’s qsort function which uses
universal pointers and a callback). FFIs are also difficult to
use from the REPL and interpreted code, if at all possible.

There is an opportunity to simplify the interfacing code
when the host language is a dynamically typed language that
supports dynamic code evaluation (i.e. eval). By interfac-
ing through expressions rather than the function level, we
can leverage a Scheme reader extended with infix notation
support to generate and evaluate host language expressions.
Our work proposes a new FFI design based on those ideas
for interfacing Scheme and JavaScript that is easy to use in
the common case yet also supports more complex use cases
including asynchonous execution and threads. Our design
enables natural cross-language programming that program-
mers can pick up quickly. We first go over our design and its
implementation, followed by an exposition of potential uses.

ELS 2021 63

ELS’21, May 03–04 2021, Online, Everywhere Marc-André Bélanger and Marc Feeley

2 SYNTAX AS INTERFACE
Programmers using an FFI are expected to be knowledge-
able in both the foreign and native languages; in our case
JavaScript and Scheme respectively. We use the term native
as the opposite of foreign and not to mean machine code.

Some Lisp/Scheme FFIs cast the foreign constructs to a
parenthesized syntax to make them usable within the native
language. As an illustrative example, JScheme[1] interfaces
to Java using functions whose names follow the “Java Dot
Notation” containing special characters: (.method obj . . .)
for calls to methods, (Constructor. . . .) for calls to construc-
tors, Class.field $ for static field members, etc. For exam-
ple: (.println System.out$ "hello") performs the same
operation as the Java code System.out.println("hello").

This decoupling of syntax and semantics can be confusing
to the programmer who must essentially write semantically
foreign code but with a more or less contrived mapping
of foreign constructs to the native syntax (e.g. there are
9 different but similar looking Java Dot Notation rules in
JScheme). This adds an intellectual burden and prevents cut-
and-paste of existing foreign code snippets and idioms into
native code. Our point of view is that the foreign language’s
syntax should be preserved as much as possible in native
code in order to express naturally the foreign constructs
which don’t map well to the native language, such as method
calls and accessing member fields. Moreover, the difference in
syntax helps distinguish which of the two languages is being
used at various points in the program. This works particularly
well in languages such as Scheme and JavaScript that have
easily distinguishable syntaxes: prefix and infix notation.

2.1 Scheme Infix eXtension
In our FFI, infix expressions within Scheme code are consid-
ered to be foreign code. A single backslash must precede the
infix expression to escape temporarily from the prefix syntax.
As a simple example the following native code will print the
current day of the week twice to the JavaScript console:
(define date \Date().slice(0, 15))
(define day (substring date 0 3))
\console.log(`day)
\console.log(`(substring \Date().slice(0, 15) 0 3))
The first line calls out to JavaScript to retrieve the date
as a Scheme string (stripped of the time of day using the
JavaScript slice method). The second line extracts the day
of the week with a Scheme call to substring. The third
line reads the Scheme variable day and uses the JavaScript
console.log method to print it out. The last line is similar
but with an inline Scheme call to substring. Note the use of
a backquote to switch back to the prefix syntax temporarily
within the infix form. The expressions marked with a back-
quote are evaluated in the Scheme environment whereas the
rest of the infix form is evaluated in the JavaScript global
environment. This is why the identifiers Date and console
refer to JavaScript globals and the identifiers date, day, and
substring refer to Scheme variables. As shown in the last
line it is possible to nest prefix and infix forms.

The FFI’s implementation is simplified by Gambit’s ex-
isting reader which supports reader macros and which has
a default setup to invoke the Scheme Infix eXtension (SIX)
parser when a backslash is encountered. After a complete
infix form is read the reader continues parsing using the
prefix syntax. Note that the Gambit reader does not use \ to
escape symbols as in Common Lisp and some other Scheme
implementations. Vertical bars are the only supported symbol
escaping syntax.

Similarly to other reader macros, the SIX parser constructs
an s-expression representation of the infix form’s AST. This
representation can easily be viewed by quoting the infix form
and pretty printing it, for example (pp '\console.log(`day))
prints:

(six.infix
(six.call
(six.dot (six.identifier console)

(six.identifier log))
(quasiquote day)))

The system achieves the JavaScript FFI semantics by defining
a six.infix macro, as explained in the next section.

The grammar supported by the SIX parser is given in the
Gambit user manual and the details are mostly uninteresting
here. Two aspects are nevertheless noteworthy.

First of all the grammar combines syntactic forms from
multiple languages including C, JavaScript, Python and Pro-
log (without implementing any of those grammars fully) and
has a few extensions, such as `X to parse `X using the prefix
syntax. The choice of using ` to switch back to prefix is mo-
tivated by the fact it is seldom used in the grammars of infix
based languages. It is also evocative of Scheme’s quasiquote
notation, but with \ and ` in place of ` and ,.

The infix operators have the precedence and associativity
of the JavaScript language. The SIX parser was originally
designed to be used in an undergraduate course on compilers
to easily construct ASTs. Even though the parser supports
multiple syntaxes, it is problematic to force the parser to
restrict the syntax to a subset, or to extend the grammar
itself, as this introduces a phasing problem. It would require
introducing a read-time mechanism (such as Racket’s #lang
feature[10]) to select the grammar, which is something we
want to avoid so that a source file can combine code for
multiple host languages (possibly guarded by a cond-expand
dependent on the compilation target).

Secondly, supporting infix forms within prefix forms re-
quired a few syntactic concessions related to identifier syntax
and whitespace handling. Whitespace is significant when
it is outside of infix form parentheses and braces. The ex-
pression (list \1+2 \3+4-5) evaluates to (3 2) whereas
(list \(1 + 2) \3+4 -5) evaluates to (3 7 -5). This is
important to keep the syntax lightweight. In an earlier ver-
sion of the SIX parser whitespace was not significant and
infix forms were required to end with a semicolon, but this
was less visually pleasing, so the current parser makes the
semicolons optional outside of infix braces.

64 ELS 2021

A Scheme Foreign Function Interface to JavaScript Based on an Infix Extension ELS’21, May 03–04 2021, Online, Everywhere

The use of a Scheme identifier immediately after a ` can
cause issues because Scheme allows many more characters in a
symbol than in JavaScript. Consequently the SIX parser will
have the surprising behaviour of treating \`x-f(y) as an ex-
pression containing a reference to the identifier x-f. The pro-
grammer can circumvent this issue by using \(`x - f(y)),
\(`x)-f(y), or \`|x|-f(y) that unambiguously reference x.

2.2 The six.infix Macro
As with any FFI there is a need to bridge the semantic gap
between the native and foreign languages. An important as-
pect is the conversion of values between the languages so that
a value generated in the Scheme code gets converted to the
appropriate value in JavaScript. Conversion from JavaScript
values to Scheme values is also needed for returning results
back to Scheme. Conversions in both directions are also
needed to allow JavaScript code to call Scheme procedures.
Scheme procedures and JavaScript functions are themselves
considered to be data with a mapping to the other language.

The FFI must also bridge the semantic gap of the con-
trol features of the languages. Specifically, Gambit Scheme
supports proper tail calls, first class continuations, and thread-
ing (SRFI-18 and SRFI-21) thanks to a green thread sched-
uler implemented in Scheme using first class continuations.
JavaScript does not support these features. However it does
offer asynchronous functions which are similar to threading
in that they allow concurrent activities. The details of the
mapping between languages is explained in Section 4.

The FFI’s semantics are implemented using a suitable
definition of the macro six.infix. This macro traverses the
SIX AST of the expression and extracts all the Scheme ex-
pressions wrapped in a quasiquote. These are the Scheme
parameters of the expression. These Scheme parameters are
given names by generating JavaScript identifiers (___1, ___2,
...). The SIX AST gets translated to a string of JavaScript
code representing an asynchronous function whose parame-
ters are these identifiers and where the body of the function
computes the expression using these identifiers. As an exam-
ple, the SIX expression \(`s).repeat(10), that can be used
to repeat a Scheme string s 10 times, leads to the creation
of this JavaScript function:

async function (___1) { return ___1.repeat(10); }

Using the standard data mapping this JavaScript function will
be converted to a Scheme procedure p and \(`s).repeat(10)
expands to code that performs the call (p s).

There is a concern with this approach related to phas-
ing. The six.infix macro is expected to work in compiled
code and also through the REPL and Scheme’s eval. This
is solved by a JavaScript eval of the function definition
to create dynamically the JavaScript function and the cor-
responding Scheme procedure. This dynamic evaluation is
required because at Scheme compilation time the JavaScript
environment has not yet started running (for example the
Scheme program could be compiled on a desktop computer
ahead of time).

Scheme JavaScript
#!void undefined
() null
#f/#t false/true
fixnum, e.g. 12 number, e.g. 12
flonum, e.g. 1.2 _Flonum
bignum, e.g. 999999999 _Bignum
ratnum, e.g. 1/2 _Ratnum
cpxnum, e.g. 1+2i _Cpxnum
character, e.g. #\a _Char
pair, e.g. (1 . 2) _Pair
string, e.g. "abc" _ScmString
symbol, e.g. abc _ScmSymbol
keyword, e.g. abc: _ScmKeyword
structure, port, table, ... _Structure
vector, e.g. #(1 2) Array, e.g. [1,2]
u8vector, e.g. #u8(1 2) _U8Vector
... other homogeneous vectors
f64vector, e.g. #f64(1.2 3.4) _F64Vector
procedure of n parameters parameterless function

Figure 1: GVM’s representation of the Scheme types in
JavaScript

To avoid a call to the JavaScript eval at every evaluation
of a given six.infix call site, the expansion uses a simple
caching mechanism to remember the Scheme procedure ob-
tained during the first evaluation. A Scheme box is used as a
cache. It initially contains a string of the JavaScript function
definition, and on the first execution it is mutated to contain
the result of calling the JavaScript eval on that string and
converting the result to a Scheme procedure. This is done by
the procedure ##host-function-memoized which takes the
box as its sole parameter and returns the Scheme procedure.
So to be precise, \(`s).repeat(10) expands to:

((##host-function-memoized
'#&"async function (___1)

{ return ___1.repeat(10); }")
s)

with ##host-function-memoized defined as:
(define (##host-function-memoized descr)

(let ((x (unbox descr)))
(if (string? x)

(let ((host-fn (##host-eval-dynamic x)))
(set-box! descr host-fn)
host-fn)

x)))

3 GAMBIT VIRTUAL MACHINE
Before discussing in more detail the implementation of the
FFI it is important to briefly go over the Gambit Virtual
Machine (GVM) which is the Gambit compiler’s intermediate
language. Thanks to this abstraction it is possible to retarget
the compiler with moderate effort, and indeed there are
backends for several languages both high-level (C, JavaScript,
Python, ...) and machine languages (x86, arm, riscv, ...). In

ELS 2021 65

ELS’21, May 03–04 2021, Online, Everywhere Marc-André Bélanger and Marc Feeley

the case we are concerned with here, the compiler translates
GVM instructions to JavaScript.

To support the GVM each Scheme type is mapped to
a corresponding representation as a JavaScript type. The
mapping for some types is direct when a JavaScript type
supports the same operations. This is the case of #f, #t, (),
#!void, vectors, and fixnums which are mapped to false,
true, null, undefined, Array, and numbers respectively. It
is important for performance to use JavaScript numbers as a
representation of fixnums so that operations on small integers
can be done without an extra layer of boxing/unboxing.

Figure 1 gives a list of the Scheme types and their repre-
sentation in JavaScript. All the JavaScript classes supporting
the GVM are prefixed with _. In most cases a class is used to
group the information related to a type, for example a _Pair
contains the car/cdr fields of a Scheme pair and a _Char
contains the Unicode code of a Scheme character. Scheme
strings are not mapped to JavaScript strings because those
are immutable. Instead a _ScmString contains an Array of
Unicode codes. Scheme symbols are not mapped directly
to the (relatively new) JavaScript Symbol type because the
GVM stores a hash code and other information in symbols.

Scheme procedures are mapped to parameterless JavaScript
functions. What is peculiar about this mapping is that the
JavaScript function is used to represent a control point in the
code, similarly to a code label in assembly language. These
control point functions take no parameters and return a new
control point function or null. Jumping from one point in
the code to another is the job of the trampoline which is the
loop while (pc) pc = pc(); where pc is the current con-
trol point function. A control point function can jump to a
new control point by returning this new control point to the
trampoline which will transfer control to it. This approach
is needed to support tail calls properly and also to perform
strict checking of the parameter count (JavaScript does not
check or report parameter count mismatches). When Scheme
code calls a procedure the parameters, a parameter count
and a return address (another control point function) will
be stored in registers and the stack of the GVM (JavaScript
global variables) before returning the procedure’s control
point function to the trampoline to jump to it.

Control point functions, the trampoline and an explicit
representation of the stack are the basic elements needed to
implement closures, continuations and threads similarly to
implementing these types in machine language. The thread
type is a structure with several fields, one of which is the
continuation of the thread. When a thread needs to be sus-
pended, its current continuation is captured and stored in
the thread structure so that it can be invoked later when the
thread’s execution needs to resume. Mutexes and condition
variables are structures which contain a queue of threads,
which are the threads blocked on them. A thread scheduler
implemented in Scheme keeps track of a queue of runnable
threads and moves threads out of this queue when the threads
block on a mutex or condition variable. The scheduler is pre-
emptive, forcing the current runnable thread to the end of
the runnable thread queue when it has been the currently

Scheme JavaScript
#!void ←→ undefined
#f/#t ←→ false/true
fixnum, flonum ←→ number, e.g. 12, 1.2
bignum, e.g. 999999999 −→ number, e.g. 999999999
ratnum, e.g. 1/2 −→ number, e.g. 0.5
character, e.g. #\a −→ number, e.g. 97
exact integer, e.g. 42 ←− BigInt, e.g. 42n
string, e.g. "abc" ←→ string, e.g. "abc"
symbol, e.g. abc −→ string, e.g. "abc"
keyword, e.g. abc: −→ string, e.g. "abc"
vector, e.g. #(1 2) ←→ Array, e.g. [1,2]
() −→ Array, e.g. []
pair, e.g. (1 . 2) −→ Array, e.g. [1,2]
pair, e.g. (1 2 3) −→ Array, e.g. [1,2,3]
table −→ object, e.g. {a:1,b:2}
u8vector ←→ Uint8array
... other homogeneous vectors
f64vector ←→ Float64Array
procedure of n parameters ←→ function of n parameters

Figure 2: FFI mapping of types between Scheme and
JavaScript

running thread for more than a small time interval (typically
0.01 second).

4 FFI MAPPING OF TYPES
The FFI defines the mapping of types between the native and
foreign languages. The mapping is designed to be convenient
and intuitive to allow commonly used values to be be mapped
to the other language to what is expected by a programmer,
and be consistent. The conversions need not have a link with
the GVM’s mapping of Scheme to JavaScript types, which
was chosen to achieve good execution speed of pure Scheme
code. The mapping is given in Figure 2.

4.1 Simple Types
The conversion functions which implement this mapping, the
JavaScript functions _scm2host and _host2scm, are called
when there is an inter-language call when converting the
parameters and the result. It is desirable for values to be in-
variant when they are sent to an identity function in the other
language (i.e. that the round-trip does not change the value
in the sense of equal?). However this is not possible for all
values. The Scheme values #!void, #f, #t, strings and homo-
geneous vectors are bidirectionally mapped to the JavaScript
values undefined, false, true, strings and typed arrays re-
spectively, so they have ideal round-trip behaviour. Scheme
vectors are bidirectionally mapped to JavaScript Arrays, how-
ever the elements of the array need to be recursively converted.
So the round-trip behaviour of vectors/Arrays will depend
on the round-trip behaviour of their elements.

Numbers need to be mapped carefully because JavaScript
has two numerical types, number and BigInt, that correspond
to Scheme’s inexact reals and exact integers respectively.

66 ELS 2021

A Scheme Foreign Function Interface to JavaScript Based on an Infix Extension ELS’21, May 03–04 2021, Online, Everywhere

However, they are not consistently used that way in typical
code (for example JavaScript arrays are almost never indexed
with BigInt which is a fairly recent addition to the language).
For that reason it is more convenient for Scheme exact integers
to be mapped to JavaScript numbers. When a JavaScript
number is converted to Scheme, it will become a fixnum value
if it has an integer value falling in the fixnum range, otherwise
(if it has a fractional part or is outside the fixnum range)
it becomes a flonum value. When a JavaScript BigInt is
converted to Scheme, it will become an exact integer (either
a fixnum or bignum depending on its value). Scheme bignums
and rationals are also mapped to numbers. Scheme characters
are mapped to the number that is their Unicode code.

Scheme symbols and keywords are converted to JavaScript
strings. Scheme pairs and lists are converted to JavaScript
Arrays with recursively converted elements.

4.2 Procedures
Scheme procedures are mapped bidirectionally to JavaScript
functions and they accept the same number of parameters.
In the conversion from one language to the other, calls to the
appropriate conversion functions are added to convert the
parameters and the result. In other words, when a Scheme
procedure p is converted to the JavaScript function f , a call
of f in JavaScript must pass JavaScript values that will be
converted to the corresponding Scheme value for processing
by p . When p delivers its Scheme result it will be converted
to JavaScript and returned for the call to f . The situation is
similar for a JavaScript function that is converted to Scheme.

Asynchronous functions and the Promise type were added
to JavaScript to avoid the deeply nested Continuation Passing
Style (CPS), aka. “callback hell”, that commonly occurs
when using CPS to perform asynchronous processing. In a
language with threads, such as Gambit Scheme, asynchronous
processing can instead be expressed in a direct style using
threads that wait for the availability of the next piece of
data or event. Our FFI implements a mapping of JavaScript
promises and asynchronous functions to Scheme threads,
making asynchronous processing easier to use.

It is important to realize that, due to the presence of
threads, Scheme procedures may take an arbitrary long time
to complete if they block the current thread on an I/O
operation or mutex or condition variable until some event
unblocks the thread and allows the procedure to return.
So for a smooth integration with the JavaScript execution
model, Scheme procedures must be mapped to JavaScript
asynchronous functions. Similarly, a JavaScript asynchronous
function may take an arbitrarily long time to deliver a result,
so if Scheme code calls a JavaScript asynchronous function
it may cause the current Scheme thread to effectively block.
However, this must not happen deep inside JavaScript code
because in that case the Scheme thread scheduler itself would
be unable to continue scheduling runnable threads (in effect
the scheduler itself would be blocked).

This is solved by using the Promise API and a JavaScript
to Scheme callback that notifies the Scheme thread scheduler

when a promise is settled (either fulfilled with a value or
rejected with an exception). An asynchronous JavaScript
function f is converted to a Scheme procedure p that ends
with a call to the ##scm2host-call-return procedure that
receives the promise result of the asynchronous function. The
Scheme thread must wait for the promise to be settled. This
is achieved with a mutex that is initially in a locked state
and that the Scheme thread tries to lock (thus blocking at
that point). When the promise is settled a Scheme callback is
called which stores the result (in the mutex specific field) and
unlocks the mutex, allowing the Scheme thread to determine
if the result is normal or an error. The following code shows
how this synchronization is implemented:

// JavaScript side

function _when_settled(promise, callback) {

function onFulfilled(value) {
// call the Scheme callback asynchronously
_async_call(false, false, // no result needed

callback,
[_host2scm([value])]);

}

function onRejected(reason) {
// call the Scheme callback asynchronously
_async_call(false, false, // no result needed

callback,
[_host2scm(reason.toString())]);

}

promise.then(onFulfilled, onRejected);
}

;; Scheme side

(define (##scm2host-call-return promise)
(let ((mut (make-mutex)))

;; Setup mutex in locked state
(mutex-lock! mut)

;; Add callback for when promise is settled
(when-settled ;; defined in JS as above
promise
(scheme ;; pass-through (see next section)
(lambda (result) ;; callback

(mutex-specific-set! mut result)
;; wake up waiting Scheme thread
(mutex-unlock! mut))))

(mutex-lock! mut) ;; Wait until settled
(mutex-unlock! mut) ;; Avoid space leak
(let ((msg (mutex-specific mut)))

(if (vector? msg) ;; Promise was:
(vector-ref msg 0) ;; fulfilled
(error msg))))) ;; rejected

ELS 2021 67

ELS’21, May 03–04 2021, Online, Everywhere Marc-André Bélanger and Marc Feeley

Non asynchronous JavaScript functions can be encountered
by _host2scm in a variety of situations, including converting
data structures containing functions and global functions such
as alert and fetch. The above code is a slight simplification
of the actual code which must also handle calling a non
asynchronous JavaScript function which (typically) does not
return a promise. This is done by dynamically testing the
type of ##scm2host-call-return’s parameter to determine
if it is a promise.

Because the handling of SIX expressions creates a definition
of a JavaScript asynchronous function, a call to that function
always returns a promise. The expansion of the six.infix
macro will contain a Scheme call of the JavaScript asynchro-
nous function converted to Scheme. Consequently the Scheme
thread will implicitly wait for the asynchronous JavaScript
processing to complete before continuing. This decouples
the control flow of the Scheme thread scheduler and the
JavaScript task queue, allowing other Scheme threads to run
while the asynchronous call is executing.

A similar decoupling is necessary for Scheme procedures
that are converted to JavaScript asynchronous functions.
When called, the JavaScript function creates a promise and an
Array packaging the Scheme procedure to call, the parameters
and a JavaScript callback, and calls _async_call to add this
Array to a callback queue. A dedicated callback loop Scheme
thread reads this queue, performs the corresponding Scheme
call and settles the promise accordingly (fulfilled or rejected
depending on whether a Scheme exception was raised) by
calling the JavaScript callback.

4.3 Pass-Through Types
In some cases it is not desirable for values to be converted
implicitly according to the previously described rules. An
important case is when a value created by one language
needs to be stored by the other language for passing back
to the originating language unchanged at a later time. For
this purpose the FFI defines two pass-through types which
are treated specially by the conversion functions, represented
by the _Scheme and _Foreign JavaScript types. These types
simply box a Scheme and JavaScript value respectively. In
Scheme a _Scheme value is constructed with the procedure call
(scheme val). In JavaScript a _Foreign value is constructed
with the function call foreign(val).

The _scm2host conversion function acts as the identity
function when passed a _Scheme value. Similarly the _host2scm
conversion function acts as the identity function when passed
a _Foreign value. However, when passed a _Foreign, the
_scm2host conversion function unboxes the value to get back
the JavaScript value originally passed in the call foreign(val).
Similarly, when passed a _Scheme, the _host2scm conversion
function unboxes the value to get back the Scheme value orig-
inally passed in the call (scheme val). With these rules it
is possible for the programmer to achieve ideal round-trip be-
haviour (in the eq? sense) for any value by inserting explicit
calls to scheme and foreign when the normal conversion
must be disabled.

The foreign function can also be used to bypass the
implicit promise synchronization. If the programmer wants
the calling Scheme thread to continue execution without
waiting for the asynchronous call to complete then a Promise
object can be returned to Scheme by wrapping it in a call to
foreign. Waiting for a promise p to be settled is as simple
as writing \`p as shown in the following example:

;; define a JS function that takes time to complete

\sleep=function (ms) {
return new Promise(function (resolve) {

setTimeout(resolve,ms);
});

}

(define p \foreign(sleep(5000))) ;; does not wait

\sleep(1000) ;; pause Scheme execution for 1 sec

\`p ;; waits for the remaining part of 5 secs

The scheme procedure can also be used to write JavaScript
code that directly accesses the GVM’s value representation.
This can be useful to implement special operations or special
purpose conversions of Scheme values. A _Scheme value has
a scmobj field that contains the Scheme object (more pre-
cisely its GVM representation using JavaScript objects). For
example \`(scheme "abc").scmobj.codes[1] evaluates to
98, which is the Unicode code of the second character of the
Scheme string "abc".

For convenience, any Scheme object not mentionned in
Figure 2 is converted to a _Scheme value. Similarly, any
JavaScript object not mentionned is converted to a _Foreign
value. As a consequence, a data conversion between languages
always succeeds. For example a Scheme complex number
will be converted to a _Scheme value, allowing the GVM
representation to be accessed using JavaScript, as shown in
the following code:

(define num 1+2i)
(println \(`num).scmobj.real) ;; prints 1
\(`num).scmobj.imag=9 ;; mutate object
(println num) ;; prints 1+9i

This shows that by accessing its GVM representation the
complex number can be mutated even though it is a Scheme
constant. This clearly exposes implementation details to the
programmer, which is a double edged sword (useful in some
contexts but dangerous if not used properly). A programmer
should mainly rely on the FFI mapping shown in Figure 2
and seldom if ever use the GVM object representation details
given in Figure 1 that is more likely to change in future
versions of Gambit or when special compiler options are
used (indeed the Gambit compiler’s compactness setting
may cause the use of shorter names for the fields of GVM
objects).

68 ELS 2021

A Scheme Foreign Function Interface to JavaScript Based on an Infix Extension ELS’21, May 03–04 2021, Online, Everywhere

5 EXAMPLES
We can now show various examples that illustrate the quali-
ties of our design. We begin with a trivial hello world program
and move on to more involved use cases. We hope these exam-
ples convincingly show the simplicity of use and terseness of
the code interfacing Scheme and JavaScript. The reader may
want to try the examples on the online Gambit Scheme REPL
at https://gambitscheme.org/try/ using a cut-and-paste
of the code shown.

5.1 Interfacing with the DOM
One of the most obvious use cases for the FFI is interfacing
with the DOM. The browser effectively acts as a graphical
user interface for Scheme, just as it would for JavaScript. As
a first example, let’s consider inserting a DOM node in the
page to render some text, as shown in Figure 3.

(define msg "<h1>Hello!</h1>")
(define top "afterbegin")

\document.body.insertAdjacentHTML(`top, `msg)

Figure 3: Simple modification of the DOM.

This defines the HTML code to insert and then calls the
insertAdjacentHTML method of the body element of the page.
Note that this directly invokes the JavaScript DOM API with-
out writing Scheme wrappers. This code should feel natural
and be self-explanatory for any programmer knowledgeable
in JavaScript and Scheme, a stated goal of our design. The
example in Figure 3 could have been written as
(define body \document.body) ;; <-- foreign object
\(`body).insertAdjacentHTML(`top, `msg)

where the body element is stored as a foreign object in Scheme.
Such use still feels natural and allows for modularization in
more involved code, such as when developing a library.

5.2 Event Handling
Event handlers and listeners constitute the foundation of
interactive browser user interfaces. It is easy to register a
Scheme procedure as a callback to an event listener. Because
of the implicit mapping of Scheme procedures to JavaScript
functions, any Scheme procedure can be used as a callback to
process DOM events triggered on the page. The following code
will track the mouse movements and log the 𝑥, 𝑦 coordinates
to the console as the mouse is moved.

(define (handler evt)
(update \(`evt).clientX \(`evt).clientY))

(define (update x y)
\console.log(`(object->string (list x: x y: y))))

\document.addEventListener("mousemove", `handler)

Figure 4: Registering a Scheme procedure as an event listener
callback.

The handler event listener callback passes the mousemove
event’s clientX and clientY coordinates to the update proce-
dure. The latter simply logs the coordinates to the console
using JavaScript’s console.log.

5.3 Interfacing with Libraries
Modern web apps typically make use of multiple external
JavaScript libraries. Our FFI allows Scheme code to easily
interface to such libraries. JQuery is a widely used library
that facilitates interacting with the DOM. Figure 5 is a
representative example.

(define html
(string-append

"<button>Toggle visibility</button>"
"<p class='first visible'>First paragraph</p>"
"<p class='second hidden' "
"style='display: none'>Second paragraph</p>"))

\document.body.insertAdjacentHTML("beforeend", `html)

(define (toggle evt)
(let ((hidden \$("p.hidden"))

(visible \$("p.visible")))
\((`hidden).removeClass("hidden")

.addClass("visible")

.toggle())
\((`visible).removeClass("visible")

.addClass("hidden")

.toggle())))

\$("button").click(`toggle)

Figure 5: Interfacing Scheme with JQuery through the FFI.

After defining and inserting the HTML, the toggle event
handler is defined and assigned to the click event using
JQuery. The event handler uses JQuery’s $ function to find
the elements corresponding to a selector. In the example, the
selectors find every <p> element with class hidden or visible.
The toggle handler uses the JQuery removeClass, addClass
and toggle methods to hide or show the element in question.
An element with class hidden will see its class change from
hidden to visible, and its actual visibility toggled by JQuery’s
toggle method, and vice versa.

The SIX expressions in the body of the handler’s let
are wrapped in parentheses to allow writing a multi-line

ELS 2021 69

ELS’21, May 03–04 2021, Online, Everywhere Marc-André Bélanger and Marc Feeley

expression which is very similar to the conventional style
used in JavaScript. The pattern of selecting and mutating
DOM elements is very common and forms the basis of rich
user interfaces and web applications and is clearly easily
achieved with our FFI design.

5.4 Asynchronous Updates
Asynchronous processing is a useful approach to decouple the
UI and application logic. In this example we use JavaScript’s
fetch API to get resources from other web servers, specifically
the weather reports of New-York and Miami. The program
in Figure 6 uses the JavaScript fetch asynchronous function
to request a JSON formatted weather report from the server
forecast.weather.gov . The temperature is shown for each
city and is updated every 10 seconds.

The updating is handled for each city by creating one
Scheme thread per city. Each thread loops on the operations
that fetch the JSON weather report, transfers the temper-
ature to the DOM, and sleeps for 10 seconds. Note that
the Scheme code hides from view inside the fetch-json pro-
cedure the promises and asynchronous functions that are
operating at the JavaScript level.

(define (fetch-json url)
\fetch(`url).then(function (r) { return r.json(); }))

(define (url loc)
(string-append
"https://forecast.weather.gov/MapClick.php?"
"lat=" (cadr loc) "&lon=" (caddr loc)
"&FcstType=json"))

(define (html loc)
(string-append "<h3><span id='" (car loc)

"'>? F -- " (car loc) "</h3>"))

(define (show-weather loc)
\(document.body

.insertAdjacentHTML("beforeend", `(html loc)))
(let ((elem \document.getElementById(`(car loc))))

(thread (lambda ()
(update-weather elem loc 10)))))

(define (update-weather elem loc period)
(let loop ()

(let ((json (fetch-json (url loc))))
\(`elem).innerText=`(temperature json)
(thread-sleep! period)
(loop))))

(define (temperature json)
\(`json).currentobservation.Temp)

(for-each show-weather
'(("New-York" "40.78333" "-73.96667")

("Miami" "25.76000" "-80.21219")))

Figure 6: Asynchronously updating weather reports using
threads.

5.5 Parallelism
Figure 7 is our last example. It shows how the use of threads
for asynchronous processing can improve performance. The
program starts off by defining the future and touch forms
of Multilisp[11] to easily express parallelism. They are the
basis of the pmap procedure which is like map but processes
all elements concurrently. The rest of the code uses pmap to
fetch 43 images1 asynchronously and adds them to the web
page. This program is an order of magnitude faster than one
using plain map because it takes advantage of the inherent
external parallelism in the web servers and network.

(define-syntax future
(lambda (stx)

(syntax-case stx ()
((future expr)
#'(thread (lambda () expr))))))

(define touch thread-join!)

(define (pmap f lst) ;; "parallel" map
(map touch (map (lambda (x) (future (f x))) lst)))

(define memo
(string-append
"Scheme_-_An_interpreter_for_extended_"
"lambda_calculus.djvu"))

(define (page n)
(string-append
"https://upload.wikimedia.org/wikipedia"
"/commons/thumb/1/1e/" memo
"/page" (number->string n) "-593px-" memo ".jpg"))

(define (fetch-blob url)
\fetch(`url).then(function (r) { return r.blob(); }))

(define (->URL blob)
\URL.createObjectURL(`blob))

(define (show url)
\document.body.insertAdjacentHTML(
"beforeend",
""))

(define images
(pmap (lambda (n) (->URL (fetch-blob (page n))))

(iota 43 1)))

(for-each show images)

Figure 7: Downloading a set of images in parallel.

6 RELATED WORK AND CONCLUSION
C FFIs are offered by Scheme implementations such as
Racket[5], Chez Scheme[8], Larceny[12], Bigloo[14] and Gam-
bit Scheme[9]. These essentially propose a domain-specific

1The pages of the original Scheme report!

70 ELS 2021

A Scheme Foreign Function Interface to JavaScript Based on an Infix Extension ELS’21, May 03–04 2021, Online, Everywhere

language (DSL) to facilitate interfacing through foreign func-
tion declarations, something we wish to avoid.

FFIs to dynamically typed languages exist in languages and
software such as Hop[15], Haskell[7], Kotlin[2], PharoJS[6],
Pyodide[4] or Racket[5]. Of these, Haskell’s Foreign Expres-
sion Language, PharoJS and Racket’s facilities fall into the
DSL category. Hop, Pyodide and Kotlin allow seemingly
more natural access to JavaScript code. This is facilitated
by Kotlin and Python’s syntactic similarity to JavaScript.
However, these methods are in essence either like writing
Python to a string and passing it to Python’s eval in the
case of Pyodide (which is essentially CPython compiled to
WebAssembly), or evocative of the C FFI function declara-
tions in the case of Kotlin. JScheme[1] and LIPS[3] offer yet
another way of interfacing with JavaScript by leveraging a
dot notation, wherein Java or JavaScript semantics is mapped
to Scheme through syntactic convention.

Hop’s ability to syntactically distinguish computations that
should occur on the server or the client resembles our escaping
mechanism to switch between languages. This is reminiscent
of quotation/antiquotation in SML[16], which allows to splice
host-language expressions in foreign code. The `C (Tick
C)[13] language also offers a mechanism using a backquote
for escaping between languages which is reminiscent of our
own. Racket provides facilities for modifying its reader and
expander which can be used to read and execute custom
languages by using the #lang form[10]. These features, while
certainly powerful, are more complex than our solution, yet
share the quality of allowing a programmer to switch back
and forth between languages.

All things considered, our work distinguishes itself from
other FFIs most clearly by its use of a Scheme reader ex-
tended with an infix notation parser. This allows our FFI to
interface host and foreign languages at the expression level,
enabling a more concise and natural style. The FFI’s ability
to interface JavaScript asynchronous functions with Scheme
threads transparently also simplifies combining Scheme pro-
grams with asynchronous JavaScript code and libraries.

ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada.

REFERENCES
[1] JScheme Reference Manual. Retrieved March 15, 2021 from

http://jscheme.sourceforge.net/jscheme/doc/refman.html.
[2] Use JavaScript code from Kotlin | Kotlin. Retrieved March 15,

2021 from https://kotlinlang.org/docs/js-interop.html.
[3] LIPS: Powerful Scheme based lisp interpreter in JavaScript. Re-

trieved March 15, 2021 from https://lips.js.org/.
[4] Pyodide – Version 0.17.0. Retrieved April 22, 2021 from https:

//pyodide.org/en/0.17.0/.
[5] Eli Barzilay and Dmitry Orlovsky. Foreign interface for PLT

Scheme. In Proceedings of the Fifth ACM SIGPLAN Workshop
on Scheme and Functional Programming, pages 63–74, Snowbird,
Utah, 2004.

[6] Noury Bouraqadi and Dave Mason. Mocks, Proxies, and Tran-
spilation as Development Strategies for Web Development. In
Proceedings of the 11th edition of the International Workshop
on Smalltalk Technologies, pages 1–6, Prague Czech Republic,

August 2016. ACM. https://dl.acm.org/doi/10.1145/2991041.
2991051.

[7] Atze Dijkstra, Jurriën Stutterheim, Alessandro Vermeulen, and
S. Doaitse Swierstra. Building JavaScript Applications with
Haskell. In Ralf Hinze, editor, Implementation and Application
of Functional Languages, volume 8241 of Lecture Notes in Com-
puter Science, pages 37–52, Berlin, Heidelberg, 2013. Springer.
https://doi.org/10.1007/978-3-642-41582-1_3.

[8] R. Kent Dybvig. Chez Scheme Version 8 User’s Guide. Cadence
Research Systems, 2009. Retrieved March 15, 2021 from https:
//www.scheme.com/csug8/.

[9] Marc Feeley. Gambit v4.9.3 manual, 2019. Retrieved on March
15, 2021 from http://www.iro.umontreal.ca/~gambit/doc/gambit.
pdf.

[10] Matthew Flatt, Robert Bruce Findler, and PLT. The Racket
Guide. Retrieved April 22, 2021 from https://docs.racket-lang.
org/guide/index.html.

[11] Robert H. Halstead. Multilisp: A Language for Concurrent Sym-
bolic Computation. ACM Trans. Program. Lang. Syst., 7(4):
501–538, October 1985. https://doi.org/10.1145/4472.4478.

[12] Felix S. Klock II. The Layers of Larceny’s Foreign Function
Interface. In Workshop on Scheme and Functional Programming,
Vancouver, British Columbia, 2008.

[13] Massimiliano Poletto, Wilson C. Hsieh, Dawson R. Engler, and
M. Frans Kaashoek. ‘C and tcc: a language and compiler for
dynamic code generation. ACM Transactions on Programming
Languages and Systems, 21(2):324–369, March 1999. https://doi.
org/10.1145/316686.316697.

[14] Manuel Serrano. Bigloo, a Practical Scheme Compiler, March
2021. Retrieved March 15, 2021 from http://www-sop.inria.fr/
indes/fp/Bigloo/.

[15] Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a
Language for Programming the Web 2.0. In Proceedings of the
First Dynamic Languages Symposium, pages 975–985, Portland,
Oregon, 2006.

[16] Konrad Slind. Object language embedding in Standard ML of
New Jersey. In Proceedings of the Second ML Workshop, CMU
SCS Technical Report, Pittsburgh, Pennsylvania, 1991. Carnegie
Mellon University.

ELS 2021 71

Call-site optimization for Common Lisp

Robert Strandh
robert.strandh@u-bordeaux.fr
LaBRI, University of Bordeaux

Talence, France

ABSTRACT

A function call in a language such as Common Lisp can be
fairly costly. Not only is an indirection required so that a
redefinition of the callee can take effect for subsequent calls,
but several features of Common Lisp can have an even greater
impact on the performance of function calls. The presence
of optional parameters and/or keyword parameters requires
some non-trivial argument parsing in the callee. And when the
callee is a generic function, it must invoke the discriminating
function in order to dispatch to the effective method that
is determined by the arguments. Restrictions such as the
required boxing of all arguments can make function calls slow
for full-word integer and floating-point numbers.

In this paper, we propose a very general technique for
improving the performance of function calls in Common Lisp.
Our technique is based on call-site optimization, meaning that
each call site can be automatically customized for the callee
according to the number and the types of the arguments
being transmitted to the callee. Our technique is based on
the call site being implemented as an unconditional jump to
a trampoline snippet that is generated by the callee according
to information provided by the caller with respect to the
arguments. Thus, the callee is able to fully customize the call,
thereby avoiding many costly steps of a function call such as
indirections, boxing/unboxing, argument parsing, and more.

CCS CONCEPTS

� Software and its engineering � Software perfor-
mance; Runtime environments;

KEYWORDS

Common Lisp, Performance, Call-site optimization

ACM Reference Format:

Robert Strandh. 2021. Call-site optimization for Common Lisp.

In Proceedings of the 14th European Lisp Symposium (ELS’21).
ACM, New York, NY, USA, 7 pages. https://doi.org/10.5281/

zenodo.4709958

1 INTRODUCTION

Function calls in a dynamic language like Common Lisp can
be significantly more expensive in terms of processor cycles

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS’21, May 03–04 2021, Online, Everywhere

© 2021 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.4709958

than function calls in a typical static language. There are
several reasons for this additional cost:

(1) With late binding being a requirement, i.e., the fact
that functions can be removed or redefined at run-time,
and that callers must take such updates into account,
it is necessary to have some indirection that can be
modified at run-time. Mechanisms such as compiler
macros and inlining break this requirement, which is
often a serious drawback to their use.

(2) Common Lisp has a rich function-call protocol with
optional parameters and keyword parameters. Keyword
parameters, in particular, require some considerable
run-time parsing for every call to a function that has
such parameters.

(3) In general, a function that can honor its contract only
for certain types of its arguments must check such
types for each call.

(4) All objects must be boxed in order to be used as func-
tion arguments. For example, IEEE double-float values
will typically have to be allocated on the heap, though
so-called NaN-boxing [4] can eliminate that particular
case. Full-word integers still require boxing, however.
Similarly, boxing is required for values returned by a
function.

(5) Generic functions can be dynamically updated by the
addition or removal of methods. Thus, even when the
callee is a known generic function, callers can make no
assumptions about which methods might be applicable.

(6) The fact that a function can return multiple values
requires the callee to return additional information
about the number of return values, and callers that
accept multiple values must retrieve this information in
order to access the return values, and use default values
when it expects more values than the callee returned.

In a typical Common Lisp implementation, item number 1
is handled by an indirection in the form of a slot in the
symbol naming the function, requiring a memory access. On
modern processors a memory indirect branch is more costly
than a direct branch. Even if the branch-prediction logic of
the processor is able to make the right decision in the indirect
case, there is at least the additional cost of accessing the
cache.

Item number 2 can be mitigated by the use of compiler
macros. Essentially, the creator of a function with a non-
trivial lambda list can also create special versions of this
function for various argument lists. A call with an argument
list that is recognized by the compiler macro can then be
replaced by a call to such a special version, presumably with
a simpler lambda list.

72 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere Robert Strandh

Item number 3 can be handled by inlining, allowing the
compiler to take advantage of type inference and type dec-
larations to determine that some type checks can be elided.
However, inlining has the disadvantage that a redefinition
of the callee will not automatically be taken into account,
thereby requiring the caller to be recompiled for the redefini-
tion to be effective.

The problem indicated by item number 4 can be largely
eliminated by the use of more than one entry point for func-
tions, one of which would accept unboxed arguments. This
technique is used by Allegro Common Lisp1 which also allows
for functions to return a single unboxed value.

Concerning item number 5, the main difference between
function redefinition and generic-function updates is that a
generic function consists of independent effective methods,
only one of which is applicable for a particular call. To
determine which effective method is applicable, in the general
case some significant generic dispatch, based on the class or
the identity of arguments, may be required.

A common technique for handling item number 6 is to
recognize that most callers will use only a single return value.
Then, if the callee returns no values, the register holding the
first return value will nevertheless be initialized to nil. As
a result, callers that use a single return value never have to
test the number of values actually returned.

In this paper, we propose a very general technique for call-
site optimization that can handle many of the issues listed
at the beginning of this section. We plan to incorporate this
technique in the SICL2 implementation of the Common Lisp
language.

2 PREVIOUS WORK

To our knowledge, no work on call-site optimization has been
published in the context of Common Lisp, though some practi-
cal work exists in the form of code in certain implementations,
as explained in Section 2.2.

The absence of published work is perhaps due to the many
unique features of Common Lisp functions, that make the task
very difficult, such as keyword arguments, generic functions
with arbitrary method combinations, etc.

2.1 Inline caching

One technique that is fairly common is inline caching, pi-
oneered by Smalltalk [2]. This technique is used to avoid
repeated method selection in a particular call site. The key
observation is that, for a particular call site, often the same
method is concerned each time the call is made. By caching
the latest method, keyed by the distinguished class argument,
the system can often avoid a costlier computation.

The purpose of inline caching being to reduce the cost
of finding the applicable effective method, it is not directly
related to speeding up function calls, but it has the effect of
making calls to generic functions faster.

1https://franz.com/products/allegro-common-lisp/
2https://github.com/robert-strandh/SICL

2.2 Ctors

The CMUCL3 implementation of the Common Lisp language
uses a technique that they call ctors that can be used for call-
site optimization of certain functions. This optimization was
introduced by Gerd Moellmann in 2002, and has since been
included also in SBCL4, which is a derivative of CMUCL. In
particular, in CMUCL the technique is used for the function
make-instance which is often called with a literal class name
and literal keywords for the initialization arguments. When
the name of the class to instantiate is a literal, several steps
in the object-initialization protocol can be simplified.

Most importantly, checking the validity of the initialization
arguments can be done once and for all, subject only to added
or removed methods on the functions initialize-instance
and shared-initialize and to updates to the class being
instantiated.

CMUCL accomplishes the optimization by replacing (using
a compiler macro) the original call to make-instance by a
call to a funcallable object that is specific to the name of the
class and the literal keyword arguments given. The funcallable
instance function of the funcallable object is updated as a
result of added or removed methods and modified classes
as mentioned. This technique can be used on other, similar
functions. For example, slot-value is often called with a
constant slot name, and this fact has been explored by SBCL.

Since the optimization is done as a manual source-code
transformation, it is applicable mainly to standard functions
that can not change later on. The mechanism presented in
this paper can be seen as an automatic low-overhead version
of ctors.

A similar mechanism (called “constructor functions”) ex-
ists in Allegro Common Lisp. And the Clasp Common Lisp im-
plementation5 uses a similar mechanism for make-instance,
change-class, and reinitialize-instance.

2.3 Sealing

Sealing is a mechanism that allows the programmer to freeze
the definitions of various program elements such as classes and
generic functions. The work by Heisig [5] applies to Common
Lisp and can allow for certain call sites to be optimized to
different degrees, from bypassing generic dispatch to fully
inlining entire effective methods.

3 MAIN FEATURES OF THE SICL
SYSTEM

In this section, we give a quick overview of the main features
of our system SICL. The important aspect of our system in
order for the technique described in this paper to work is
that code is not moved by the garbage collector, as described
below.

SICL is a system that is written entirely in Common Lisp.
Thanks to the particular bootstrapping technique [1] that
we developed for SICL, most parts of the system can use

3https://cmucl.org
4http://www.sbcl.org/
5https://github.com/clasp-developers/clasp

ELS 2021 73

Call-site optimization for Common Lisp ELS’21, May 03–04 2021, Online, Everywhere

the entire language for their implementation. We thus avoid
having to keep track of what particular subset of the language
is allowed for the implementation of each module.

We have multiple objectives for the SICL system, including
exemplary maintainability and good performance. However,
the most important objective in the context of this paper is
that the design of the garbage collector is such that executable
instructions do not move as a result of a collection cycle. Our
design is based on that of a concurrent generational collector
for the ML language [3]. We use a nursery generation for
each thread, and a global heap for shared objects. So, for the
purpose of the current work, the important feature of the
garbage collector is that the objects in the global heap do
not move, and that all executable code is allocated in that
global heap.

The fact that code does not move is beneficial for the
instruction cache; moreover it crucially allows us to allocate
different objects in the global heap containing machine in-
structions, and to use fixed relative addresses to refer to one
such object from another such object.

4 OUR TECHNIQUE

4.1 Function call

A function call involves a first-class object called a function
object or a function for short. In general, a function may
refer to variables introduced in some outer scope, so that the
function is a closure. The (typically native) instructions to
be executed by the function must be able to refer to such
closed-over variables. But the values of such variables may
vary according to the flow of control at run time. This situa-
tion is handled by a compile-time procedure called closure
conversion whereby a static environment is determined for
each function object. A function object thus consists at least
of an entry point, which is the address of the code to be
executed (and which is shared between all closures with the
same code) and an object representing the static environ-
ment (which is specific to each function object). A function
call must therefore contain instructions to access the static
environment and put it in an agreed-upon place (typically a
register), before control is transferred to the entry point.

This work covers function calls to functions that are named
at the call site. The most common such case is when the
name of the function appears in the operator position of
a compound form. Less common cases include arguments
of the form (function name) to some standard functions
such as funcall and apply. In particular, expansions of
the setf macro are often of the form (funcall (function

(setf symbol)) ...) because function names like (setf

symbol) are not allowed in an operator position.
In general, with such named function calls, the function

associated with the name can be altered at run time, or
it can be made undefined by the use of fmakunbound. For
that reason, the caller can make no assumptions about the
signature of the callee. This issue is solved by a standardized
function-call protocol that dictates where the caller places
the arguments it passes to the callee.

Thus, for the purpose of this work, we define a function
call to be the code that accomplishes the following tasks:

(1) It accesses the arguments to be passed to the callee from
the places they have been stored after computation,
and puts the arguments in the places where the callee
expects them.

(2) It accesses the function object associated with the
name at the call site and stores it in some temporary
location.

(3) From the function object, it accesses the static envi-
ronment to be passed to the code of the callee.

(4) Also from the function object, it accesses the entry
point of the function, i.e., typically the address of the
first instruction of the code of the callee.

(5) It transfers control to the entry point, using an instruc-
tion that saves the return address for use by the callee
to return to the caller.

(6) Upon callee return, it accesses the return values from
the places they have been stored by the callee, and
puts those values in the places where the caller requires
them for further computation.

In a typical implementation, a function call is generated
when the code of the caller is compiled, and it then never
changes. As mentioned above, for this permanent code to
work, a particular function-call protocol must be observed,
and that protocol must be independent of the callee, as the
callee may change after the caller has been compiled.

Our technique optimizes function calls to functions in the
global environment such that the name of the callee is known
statically, i.e., at compile time. There are three different types
of forms that correspond to this description and that are
considered in this work:

(1) A function form where the operator is a symbol naming
a function in the global environment, and that does
not correspond to any of the following two form types.
We use the term ordinary function form for this case.

(2) A function form where the operator is the symbol
funcall and the first argument is either a literal symbol
or a function special form with a function name.

(3) A function form where the operator is the symbol apply
and the first argument is either a literal symbol or a
function special form with a function name.

The first type of form can be considered as special syntax for
a funcall form with a constant function name.

There are some other cases that we do not intend to cover,
in particular a call to multiple-value-call with a named
function argument. In fact, the third type of form could be
generalized to cover other functions that are commonly used
with a constant function argument, such as mapcar. At the
moment, we are not considering such additional cases.

With our suggested technique, for these three different
form types, the function call is created by the callee. We
discuss each form type separately.

74 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere Robert Strandh

unconditional
jump

instructions

global heap

call site

snippet

caller
code

callee
code

Figure 1: Caller, callee, and snippet in the global
heap.

4.2 Ordinary function form

The code emitted by the caller for a function call consists of
a single unconditional jump instruction. The target address
in that instruction is altered by the callee according to its
structure. The code for the function call is contained in an
object that we call a trampoline snippet, or just snippet for
short. The callee allocates an appropriate snippet in the
global heap as described in Section 3, at some available
location, and the unconditional jump instruction of the caller
is modified so that it performs a jump to the first instruction
of the snippet. The constellation of caller, callee, and snippet
is illustrated in Figure 1. We omitted an explicit indication of
a control transfer from the snippet to the callee code, because
such a control transfer is not always required.

When the callee changes in some way, a new snippet is
allocated and the jump instruction is altered to refer to the
position of the new snippet. The old snippet is then subject
to garbage collection like any other object. For the callee to
be able to alter the caller this way, a list of all call sites must
be accessible from the name of the callee. For an ordinary
Common Lisp implementation, the symbol used to name
the callee can store such a list. In SICL, this information
would be kept in the data structure describing the callee in
the first-class global environment [7]. Either way, to avoid
memory leaks, the call site should be referred to through a
weak reference.

When code containing a caller is loaded into the global
environment, and that caller contains a call site that refers to
a function that is not defined at the time the caller is loaded,
a default snippet is created. The default snippet contains the
same instructions that a traditional compiler would create
for a call to a function that might be redefined in the future.

callee
code

global heap

call site

caller
code

pass

process
values

call
instruction

return
instruction

default snippet
arguments

Figure 2: Default snippet.

Thus, the default snippet contains code to put arguments in
places dictated by the calling conventions, and it accesses
return values from predefined places. It also accesses the
function indirectly, either through a symbol object (as most
Common Lisp systems probably do) or through a separate
function cell as described in our paper on first-class global
environments [7]. The default snippet is illustrated in Figure 2.
The default snippet is also used when the definition of the
callee changes, as described below. A default snippet for each
call site can either be kept around, or allocated as needed.
The former situation is advantageous for a callee with many
call sites and for callees that are frequently redefined, as it
decreases the time to load a new version of the callee.

In order for the callee to be able to adapt the snippet to
its requirements, the caller, when loaded into the executing
image, must provide information about its call sites to the
system. Each call site contains information such as:

∙ The name of the callee.
∙ The number of arguments.
∙ The type of each argument. If the type is not known, it
is indicated as t. When an argument is a literal object,
its type is indicated as (eql ...).

∙ For each argument, whether the argument is boxed or
unboxed.

∙ For each argument, its location. The location can be
a register or a stack position in the form of an offset
from a frame pointer.

∙ The number of required return values, or an indica-
tion that all return values are required, no matter the
number.

∙ In case of a fixed number of return values, for each
such value, some limited information of the type of

ELS 2021 75

Call-site optimization for Common Lisp ELS’21, May 03–04 2021, Online, Everywhere

each value. See below for a more elaborate explanation
of the restrictions involved for this information.

∙ Also, in case of a fixed number of return values, for
each such value, the location where the caller expects
the value.

∙ Indication as to whether the call is a tail call, in which
case the snippet should deallocate the frame before
returning.

A callee can take advantage of this information to cus-
tomize the call. The default action is to generate a snippet
that implements the full function-call protocol, without tak-
ing into account information about the types of the argu-
ments.

While our technique allows for information provided by the
caller to be taken into account by the callee in various ways,
the opposite direction is not generally possible. The reason
is that the callee can change or be redefined in arbitrary
ways, and the caller code is fixed, so it can not adapt to such
changes in the callee. The only place where some limited
amount of adaptation is possible is in the snippet, after the
callee code returns.

A direct consequence to this one-directional dependency
is that the caller can not, in general, dictate the type of the
return values. The current callee will produce the values that
its code dictates, no matter what the caller needs. However, it
is quite advantageous to be able to return unboxed values of
certain types; in particular full-word floating point numbers.
For that reason, we allow some restricted type information to
be provided by the caller. Thus, if the caller indicates a type
other than t for some return value, it has to be one of a small
number of fixed types, for example double-float, character,
(signed-byte 64) and (unsigned-byte 64) (assuming a 64-
bit architecture). When one of these types is indicated by
the caller, the meaning is that the caller requires an unboxed
value of this type. Then, if the callee cannot supply such a
value, code is generated in the snippet to signal an error.

When a modification is made to a callee that alters its
semantics, care must be taken so as to respect the overall
semantics of all callers. In particular, a callee can be re-
moved using fmakunbound or entirely replaced using (setf

fdefinition). In that case, the following steps are taken in
order:

(1) First, every call site is de-optimized, which means that
a default snippet is allocated for each caller, or the
kept default snippet is reused. The unconditional jump
instruction is modified to refer to the default snippet.
As previously explained, this snippet contains code
for the full function-call protocol, and in particular,
it accesses the callee using an indirection through the
function cell.

(2) Next, the callee is atomically replaced by a new func-
tion, or entirely removed by a single modification to
the contents of the function cell.

(3) The new function is attached to the list of call sites,
and, depending on the nature of the new function, new

snippets can then be allocated in order to improve
performance of calls to the new function.

When new snippets are substituted, actions may be needed to
ensure that that processors do not use stale code. Depending
on the types of processors involved, such actions include
flushing instruction caches and prefetch pipelines.

The thread responsible for redefining the callee, blocks
until step 1 is accomplished. Without this blocking, some
callers may get the old version of the callee and some others
the new version, thereby violating the overall semantics of a
function redefinition. In some cases, it may be acceptable for
different callers to get different versions, but in the general
case, i.e., when it is observable which versions are used, it
is not acceptable. Because of this requirement, redefining
a function can be an expensive operation, but redefining a
function is expected to be infrequent compared to calling it.

Step 3, on the other hand can be accomplished asyn-
chronously, and even in parallel with caller threads, pro-
vided that appropriate synchronization prevents subsequent
simultaneous redefinitions of the callee.

4.3 funcall with known function name

There are two subcases for this type of form:

(1) The first argument is a special form quote with the
argument being a symbol. This case can occur as a
result of the programmer wanting to avoid capture of
the function name, and make sure the name refers to
the function with that name in the global environment.
It can also occur in the expansion of a macro form.

(2) The first argument is a special form function. This
case typically occurs as a result of expanding a setf

macro form and the function name is then of the form
(setf symbol). The expansion uses funcall simply
because a function name of this form can not be used
as the operator of a function form. This case can also
occur in the expansion of a macro form.

To handle this case, the compiler treats the symbol funcall
as a special operator. If the first argument corresponds to
any of the two subcases, then the call is treated in the same
way as an ordinary function form. Otherwise it generates a
call to the function funcall.

4.4 apply with known function name

As with funcall, the same two subcases exist for apply,
and for the same reason. Again, the compiler treats the
symbol apply as a special operator and generates a call to
the function apply whenever the first argument is neither
the special form quote nor the special form function.

However, the case of apply is of course more complex
than that of funcall. Recall that apply takes at least two
arguments. The first argument is a function designator as with
funcall. The remaining arguments represent a spreadable
argument list designator, which means that the last argument
is treated as a list of objects, and the arguments to the
callee are the objects in that list, preceded by the remaining
arguments to apply, in the order that they appear.

76 ELS 2021

ELS’21, May 03–04 2021, Online, Everywhere Robert Strandh

A very common subcase of this case is a call to apply with
exactly two arguments. It is used when the execution of some
code results in a list of objects, and these objects must be
passed as the arguments to some function, in the order that
they appear in the list. For this subcase, our technique can be
used to avoid the indirection to find the callee entry point as
usual. But it can also be used to access the callee arguments
directly from the list of objects, so as to avoid unpacking the
list to locations dictated by the full call protocol.

A more interesting subcase is that of some intermediate
function wanting to override some, but not all of the keyword
arguments that it was passed, before calling the callee. The re-
maining arguments to apply are then typically keyword/value
pairs. Our technique can then be used to avoid scanning the
last argument to apply for these keyword arguments. Recall
that the standard allows for multiple occurrences of the same
keyword argument in an argument list, and that the first
occurrence is then the one that is used.

Call-site information resulting from a call to apply must be
indicated as such, so that the call-site manager can process the
arguments as a spreadable argument list designator, rather
than as an ordinary suite of arguments.

5 BENEFITS OF OUR TECHNIQUE

Our technique makes possible several features that are not
possible when a function call is created by the caller, without
knowledge about the callee.

For starters, at least one indirection can be avoided, thereby
saving a memory access. When the call is generated by the
caller, there must be an indirection through some kind of
function cell, unless the callee is a function that is known
never to change. This indirection is required so that a re-
definition of the callee is taken into account by the next
call. A typical Common Lisp implementation uses a symbol
(the name of the function) for this indirection, whereas SICL
uses a separate cons cell, but the cost is the same. With our
technique, when a callee is altered, the snippet is modified.
As a result, no indirection6 is required. Furthermore, in SICL
all functions are standard objects, which requires another
indirection from the header object to the so-called rack where
the entry point is stored.

A more significant benefit than saving an indirection is
that argument parsing can be greatly simplified. Even in
the simple case where all parameters are required, it is no
longer necessary for the caller to pass the argument count,
nor for the callee to check that it corresponds to the number
of parameters. But the advantages are even greater in the
presence of optional parameters and in particular for keyword
parameters. In a typical call with keyword parameters, the
keywords are literals. The argument list can then be parsed
once and for all when the snippet is created, and the argu-
ments can be directly copied to the locations required by
the callee. This possibility largely eliminates the need for
separate compiler macros, as the purpose of a compiler macro
is precisely to take advantage of some known structure of the

6Though, the snippet is itself a kind of indirection, of course.

list of argument, in order to substitute a call to a specialized
version of the callee.

The specialized function call can admit unboxed arguments.
Avoiding boxing is particularly useful for applications that
manipulate floating-point values that are at least the size
of the machine word, say IEEE double or quadruple floats
in a 64-bit system. When a general-purpose function-call
protocol is used, each such argument must be encapsulated
in a memory-allocated object before the call, and often, the
argument will immediately be unboxed by the callee for
further processing.

Return values benefit from the same advantages as argu-
ments. Often, the number of values required by the caller is
known statically. The callee can then specialize the transfer
of those values to the right locations in the caller. And if
the caller requires fewer values than the callee computes, the
callee can sometimes be specialized so that extraneous return
values do not need to be computed at all. As with arguments,
return values can be unboxed, again avoiding costly memory
allocations.

When the callee is a generic function, a specialized discrim-
inating function can often be created, provided that enough
type information is made available by the caller for the argu-
ments that correspond to specializers of some methods of the
generic function. In the extreme (but common) case where
the callee is a slot accessor and the class of the specialized
argument is known, the snippet can contain the full code to
access the slot, without any need to call a particular method
function.

Often, inlining is used to improve the performance of
function calls, either by the application programmer or by the
system itself. But inlining some function necessarily increases
the code size of each caller of that function. Furthermore,
the semantics of inlining are such that the caller must be
recompiled for a modified callee to be taken into account. Our
technique can often provide enough performance improvement
to make inlining unnecessary. Total code size will then be
smaller, and the disadvantage of inlining with respect to
callee redefinition is eliminated.

Compared to the so-called ctor technique describe in Sec-
tion 2.2, our technique is more general, since it does not
involve any source-code transformations. Thus, it can be
used with functions defined by the application programmer,
and that can change at any point after the callee has been
compiled. Furthermore, the ctor technique still requires at
least one, probably two, indirections (one to access the fun-
callable object and another one to access the entry point).
However, our technique in itself can of course not accomplish
the entire optimization machinery required to optimize a func-
tion such as make-instance, as knowledge of its semantics
is required for such optimization.

6 DISADVANTAGES OF OUR
TECHNIQUE

The proposed technique is fairly complicated. In order for all
the advantages to be had, the callee must be represented in

ELS 2021 77

Call-site optimization for Common Lisp ELS’21, May 03–04 2021, Online, Everywhere

such a way that multiple versions can be created, depending
on different information provided by each caller. On the other
hand, most of the benefit of this technique can be obtained
with a limited amount of such flexibility. Bypassing argument
parsing in the presence of optional or keyword parameters will
already provide great benefits. For this benefit to be as useful
as possible, it is advantageous to compile a callee in two parts;
one part that allows for its parameters to be positioned in
any places (registers or stack frame locations) that makes the
remaining code as fast as possible, and one part that parses
arguments from their default locations into those places. The
callee can then generate code for the snippets that moves the
arguments passed by the caller to those final places.

The garbage collector must not reclaim snippets that are
currently in use, and “in use” can mean that a callee has an
activation record on the call stack, so that the snippet can
not be reclaimed until the activation record is removed from
the stack. As a result, a modification to the garbage collector
is required, and code for garbage collectors is notoriously
hard to get right.

The technique involves the creation of two unconditional
jump instructions; one from the core code of the caller to
the snippet and another one from the snippet back to the
core code of the caller. These additional instructions must be
executed, which may use up processor cycles. However, on
most modern processors, unconditional jumps are very fast
[6].

Finally, there may be some slightly increased probability
of contention in the instruction cache, due to the fact that
snippets are allocated wherever the global memory manager
can fit them.

7 CONCLUSIONS AND FUTURE
WORK

We have presented a very general technique for call-site
optimization. Our technique subsumes (entirely or partially)
several other techniques such as inlining, compiler macros,
sealing.

Our technique is very general, and promises several ad-
vantages to function-call performance that can not easily be
obtained with other techniques. The flip side is that our tech-
nique is fairly complicated and requires significant support
from both the compiler and the memory manager.

Furthermore, we have not implemented the suggested tech-
nique, and the state of the SICL system is not yet such that
it can be done soon. The most urgent future work, then, is
to create a native SICL executable. We are probably several
months away before this work can be accomplished.

8 ACKNOWLEDGMENTS

We would like to thank Frode Fjeld and David Murray for
providing valuable feedback on early drafts of this paper. We
would also like to thank Duane Rettig for his remarks, and for
valuable information about several optimization techniques
used in Allegro Common Lisp.

REFERENCES
[1] Bootstrapping Common Lisp using Common Lisp, April 2019.

Zenodo. doi: 10.5281/zenodo.2634314. URL https://doi.org/10.
5281/zenodo.2634314.

[2] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation
of the smalltalk-80 system. In POPL ’84: Proceedings of the 11th
ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages, pages 297–302. ACM, 1984. ISBN 0-89791-125-3.
doi: 10.1145/800017.800542.

[3] Damien Doligez and Xavier Leroy. A concurrent, generational
garbage collector for a multithreaded implementation of ML. In
Proceedings of the 20th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 113–123, March
1993. URL http://www.acm.org:80/pubs/citations/proceedings/
plan/158511/p113-doligez/.

[4] David Gudeman. Representing Type Information in Dynamically
Typed Languages. Technical Report TR 93 27, Department of
Computer Science, The University of Arizona, October 1993.

[5] Marco Heisig. Sealable Metaobjects for Common Lisp. In Proceed-
ings of the 13th European Lisp Symposium, ELS ’20, pages 26 –
32, April 2020. URL http://www.european-lisp-symposium.org/
static/proceedings/2020.pdf.

[6] John L. Hennessy and David A. Patterson. Computer Architecture,
Sixth Edition: A Quantitative Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 6th edition, 2017. ISBN
0128119055.

[7] Robert Strandh. First-class global environments in common lisp. In
Proceedings of the 8th European Lisp Symposium, ELS ’15, pages
79 – 86, April 2015. URL http://www.european-lisp-symposium.
org/editions/2015/ELS2015.pdf.

78 ELS 2021

ELS 2021 79

80 ELS 2021

	Preface
	Message from the Program Chair
	Message from the Local Chairs

	Organization
	Programme Chair
	Local Chair
	Programme Committee
	Sponsors

	Invited Contributions
	Staged Relational Interpreters: Running Backwards, Faster – Nada Amin
	Symbolic expressions for cyber-physical programming – Andrew Sorensen
	Producing News Analytics and Turning them into Actionable Insights – Andrew Lawson and Inna Grinis

	Program overview
	Monday, May 3 2021
	A Tangram Puzzle Solver in Common Lisp Michael Wessel
	A Portable, Simple, Embeddable Type System Jim Newton and Adrien Pommellet
	Common Lisp Project Manager Eric Timmons
	A Corpus Processing and Analysis Pipeline for Quickref Antoine Hacquard and Didier Verna
	Lisp in the middle: using Lisp to manage a Linux system Mikhail Raskin

	Tuesday, May 4 2021
	A replicated object system Hayley Patton
	aether: Distributed system emulation in Common Lisp Eric Peterson and Peter Karalekas
	A Scheme Foreign Function Interface to JavaScript Based on an Infix Extension Marc-André Bélanger and Marc Feeley
	Call-site optimization for Common Lisp Robert Strandh

