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Introduction
This document is organized as follows. We first develop the sto-
chastic variational inference (SVI) algorithm (1) for the mixed-
membership stochastic block model (MMSB) (2) described in the
article. Each iteration of the algorithm subsamples the network
and updates its estimate of the community structure. We extend
the algorithm to allow for nonuniform sampling from the network,
and study a number of sampling strategies. We then develop SVI
with link sampling, an algorithm whose per-iteration complexity
scales linearly in the number of links. Finally, we present supporting
material for the empirical study on real and synthetic networks.

SVI
The article describes a subclass of the MMSB (2, 3) that is ap-
propriate for community detection in assortative undirected
networks. In this section, we present SVI for the MMSB (3).
In variational inference, we define a family of distributions over

the hidden variables qðβ; θ; zÞ and find the member of that family
that is closest to the true posterior. Closeness is measured with
Kullback–Leibler (KL) divergence (4). We use the mean-field
family, under which each variable is endowed with its own dis-
tribution and its own variational parameter. This allows us to
tractably optimize the parameters to find a local minimum of the
KL divergence. The mean-field variational family for the
MMSB, with N nodes and K communities and with Beta priors
placed over the community strengths β, is as follows:

qðβ; θ; zÞ= ∏
K

k= 1
qðβkjλkÞ ∏

N

n= 1
qðθnjγnÞ

∏
i< j

q
�
zi→jjϕi→j

�
q
�
zi←jjϕi←j

�
:

[S1]

Here, the variational distributions are qðzi→j = kÞ=ϕi→j;k, qðθnÞ=
Dirichletðθn; γnÞ, and qðβkÞ=Betaðβk; λkÞ. The posterior over z is
parameterized by the interaction parametersϕ, the posterior over θ
is parameterized by the community memberships γ, and the pos-
terior over β is parameterized by the community strengths λ.
Minimizing the KL divergence between q and the true pos-

terior is equivalent to optimizing an “evidence lower bound”
(ELBO) L, a bound on the log likelihood of the observations (5,
6). The ELBO is as follows:

L=
P
k

Eq
�
log  pðβkjηÞ

�
−
P
k

Eq
�
log  qðβkjλkÞ

�

+
P
n

Eq
�
log  pðθnjαÞ

�
−
P
n

Eq
�
log  qðθnjγnÞ

�

+
P
a;b

Eq
�
log  pðza→bjθaÞ

�
+Eq

�
log  pðza←bjθbÞ

�

−
P
a;b

Eq
�
log  qðza→bjϕa→bÞ

�
−Eq

�
log  qðza←bjϕa←bÞ

�

+
P
a;b

Eq
�
log  pðyabjza→b; za←b; βÞ

�
:

[S2]

The expectations in Eq. S2 are taken with respect to the varia-
tional distribution q. Notice the first two lines in Eq. S2 contain
summations over communities and nodes; we call these “global

terms.” They relate to the “global variables,” which are the com-
munity strengths and community memberships. The remaining
lines contain summations over all node pairs, which we call “lo-
cal terms.” They depend on both the global and “local variables,”
the latter being the interaction memberships.
SVI optimizes the ELBO using stochastic gradient ascent.

Stochastic gradient algorithms follow noisy estimates of the gra-
dient with a decreasing step size. These algorithms are guaranteed
to converge to a local optimum if the expectation of the noisy
gradient is equal to the gradient and if the step-size decreases
according to a certain schedule (7). In SVI, we form noisy gra-
dients by subsampling the network. This leads to a scalable algo-
rithm because it avoids the expensive all-pairs sums in the ELBO.
Existing SVI methods require the data be sampled uniformly to

form noisy gradients (1). We now develop an SVI algorithm that
allows for nonuniform samples of links and nonlinks at each it-
eration. We then present SVI with link sampling, an algorithm
that samples only the links of a network.

SVI with Nonuniform Sampling. SVI iteratively updates the local
and global parameters. At each iteration, it first subsamples the
network. It then computes the optimal local parameters of the
subset—the ðϕi→j;ϕi←jÞ for each sampled node pair ði; jÞ—given
the current settings of the global parameters γ and λ. Finally,
it updates the global parameters using a noisy natural gradient
(8) computed from the subsampled data and the optimized local
parameters. The first phase is the local step; the second phase is
the global step (1).
The pseudocode of SVI for the MMSB is as follows:

1. Initialize global parameters γ= ðγnÞNn=1, λ= ðλkÞKk=1.
2. Subsample a set S of node pairs.
3. Local step. For each pair ði; jÞ∈S, compute the optimal in-

teraction parameters ϕi→j and ϕi←j as a function of the global
parameters.

4. Global step.

� For each node a, compute the community membership
natural gradients ∂γta and update γa.

� For each community k, compute the community strength
natural gradients ∂λtk and update λk.

5. Repeat.

The subsampling of the network in each iteration provides a
way to plug in a variety of network sampling algorithms into the
estimation procedure. However, to maintain a correct stochastic
optimization algorithm of the variational objective, the sub-
sampling method must be valid. That is, the noisy gradients
estimated from the subsample must be unbiased estimates of the
true gradients.

The Global Step. The global step updates the global community
strengths λ and community memberships γ with a stochastic gra-
dient of the ELBO in Eq. S2. The ELBO contains summations
over all OðN2Þ node pairs. Consider drawing a node pair ða; bÞ at
random from a distribution gða; bÞ over the M=NðN − 1Þ=2 node
pairs. We can rewrite the ELBO as a random function of the
variational parameters that includes the global terms and the local
terms associated only with ða; bÞ. The expectation of this random
function is equal in objective to Eq. S2.
For example, the term in the fifth line in Eq. S2 is rewritten as

follows:
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Evaluating the rewritten Eq. S2 for a node pair sampled from g
gives a noisy but unbiased estimate of the ELBO. Following (1),
the stochastic natural gradients computed from a sample pair
ða; bÞ, at iteration t, are as follows:

∂γta;k = αk +
1

gða; bÞϕa→b;k − γt−1a;k ; [S4]

∂λtk;i = ηi +
1

gða; bÞϕa→b;k ·ϕa←b;k · yab;i − λt−1k;i ; [S5]

where yab;0 = yab, and yab;1 = 1− yab. In practice, we sample a “mini-
batch” S of pairs per update, to reduce noise.
The update in Eq. S4 can be interpreted as follows.When a single

pair ða; bÞ is sampled, we find a noisy natural gradient in Eq. S4 by
computing the community memberships γ that would be optimal
(given interaction parameters ϕ) if our entire network were a mul-
tigraph containing the interaction yab repeated 1=gða; bÞ times.
Once the noisy gradients are computed, the global step follows

it with an appropriate step size,

γ← γ+ ρt∂γt;  λ←λ+ ρt∂γt: [S6]

We require that
P

tρ
2
t <∞ and

P
tρt =∞ for convergence to

a local optimum (7). We set ρt≜ðτ0 + tÞ−κ , where κ∈ ð0:5; 1� is
the forgetting rate and the delay τ0 ≥ 0 downweights iterations (1).

Set-Based Sampling.Our algorithm has assumed that the subset of
node pairs S are sampled independently. We can relax this as-
sumption by defining a distribution over predefined sets of pairs.
These sets can be defined using information about the pairs, such
as network topology, which lets us take advantage of more so-
phisticated sampling strategies. For example, we can define a set
for each node that contains the node’s adjacent links and non-
links. At each iteration, we sample one of these sets at random.
We set two constraints to ensure that set-based sampling results

in unbiased gradients. First, the union of the sets s must be the
total set of all node pairs, U : U =∪isi. Second, every pair ða; bÞ
must occur in some constant number of sets c≥ 1. With these
conditions satisfied, we can again rewrite Eq. S2 as the sum over
its global terms and an expectation over the local terms. Let hðtÞ
be a distribution over the sets. For example, the term in the fifth
line in Eq. S2 can be written as follows:X

a;b
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[S7]

Under set-based sampling, the stochastic gradients of the ELBO
are as follows:

∂γta;k = αk +
1
c

1
hðtÞ

X
ða;bÞ∈st

ϕa→b;k − γt−1a;k ; [S8]

∂λtk;i = ηi +
1
c

1
hðtÞ

X
ða;bÞ∈st

ϕa→b;k ·ϕa←b;k ·yab;i − λt−1k;i ; [S9]

where yab;0 = yab, and yab;1 = 1− yab. The global steps are the same
as in Eq. S6.

The Local Step. The local step optimizes the interaction parameters
ϕ with respect to a subsample of the network. Recall that there is
an interaction membership parameter for each node pair—ϕa→b
and ϕa←b—representing the posterior approximation of which
communities are active in determining whether there is a link. We
optimize these parameters in parallel. (We will discuss an alter-
native local step optimization for the interaction parameters in
Link Sampling.) The update for ϕa→b given yab is as follows:

ϕt
a→b;kjyab = 0∝ exp

n
Eq

�
log  θa;k

�
+ϕt−1

a←b;kEq½logð1− βkÞ�

+
�
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a←b;k

�
logð1− eÞ

o
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+ϕt−1
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a←b;k

�
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o
:

[S10]

The updates for ϕa←b are symmetric. Thus, we iteratively update
ϕt
a→b;k using ϕt−1

a←b;k and ϕt
a←b;k using ϕt−1

a→b;k until convergence. In
Eq. S10, t counts the iterations within the local step. This is
natural gradient ascent with a step size of 1.

Sampling Strategies.Our algorithm is flexible about how the subset
of pairs is sampled, as long as the expectation of the stochastic
gradient is equal to the true gradient. We can choose the dis-
tribution over pairs to sample from independently or choose the
distribution over sets. There are several options.
Random pair sampling.The simplest method is to sample node pairs
uniformly at random. This method is an instance of independent
pair sampling, with gða; bÞ (used in Eq. S3) equal to 1

NðN − 1Þ=2.
Random node sampling. This method focuses on local neighbor-
hoods of the network. A set consists of all of the pairs that involve
one of the N nodes. At each iteration, we sample a set uniformly
at random from the N sets, so hðtÞ= 1=N. Because each pair
involves two nodes, each link or nonlink appears in two sets and
so c= 2. Following Eq. S8 and Eq. S9, we compute the stochastic
gradients from a sampled node a as follows:

∂γta;k = αk +
N
2

X
ða;bÞ

ϕa→b;k − γt−1a;k ; [S11]

∂λtk;i = ηi +
N
2

X
ða;bÞ

ϕa→b;k ·ϕa←b;k ·yab;i − λt−1k;i ; [S12]

where yab;0 = yab, and yab;1 = 1− yab. In practice, we sample a “mini-
batch” of nodes per update, to reduce noise.
Informative set sampling. The idea behind this method is to sample
a set of pairs around each node with a bias toward pairs that help
estimation. This is a type of set-based sampling.
For each node a, we define an “informative set” consisting of

all of its links and a small number of nonlinks. In our experi-
ments, we chose nonlinks to nodes that are at most h hops from
the node a. (We set h = 2.) Such nodes may be more relevant to
estimating the communities of node a (9). For each node, we
also define m “noninformative sets” that partition its remaining
nonlinks. Because the number of nonlinks associated with each
node is large, dividing them into many sets allows the compu-
tation in each iteration to be fast. At each iteration, we select
a node uniformly at random from the N nodes and choose the
informative set with high probability by flipping a biased coin.
Otherwise, with low probability, we select one of the m non-
informative sets of the selected node. To compute Eq. S7, we note
that c= 2 and the distribution over sets is
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1

Nm
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[S13]

Note that we set ξ � 1. We describe additional sampling meth-
ods in ref 3.

Link Sampling. The above subsampling methods include the net-
work nonlinks. Many real networks are sparse and only a small
fraction of their node pairs are links (Table S2). As the number of
nodes increases, subsampling nonlinks becomes increasingly in-
efficient. Here, we consider “link-based variational inference”
and “link sampling,” a subsampling approach that involves only
the links in the network. We develop this algorithm by assuming
that a node’s nonlinks are explained by the same communities
that a node exhibits while generating links.
We specify the variational family in a particular way to focus on

the links. It differs from the family in Eq. S1 in the variational
interaction parameters for the links. The new family specifies an
interaction parameter for the joint distribution over the pair of
node community indicators of each link. The interaction pa-
rameters for the nonlinks remain the same as in Eq. S1. We then
constrain the nonlink interaction parameters of each node to
equal the mean of the link interaction parameters of that node.
In the following discussion, links(a) is the set of links of node a in
the training set, and links are the set of all links in the training
set. We define the sets for nonlinks similarly.
In particular, we use the following family in link-based varia-

tional inference,

qðθ; z; βÞ= ∏
N

n= 1
qðθnjγnÞ ∏

ði;jÞ∈links
q
�
zi→j; zi←jjϕij

�

∏
ði;jÞ∈nonlinks

q
�
zi→jjϕi→j

�
q
�
zi←jjϕi←j

�

∏
K

k= 1
qðβkjλkÞ:

[S14]

We constrain the interaction parameters of each nonlink ði;mÞ of
a node i,

ϕi→m;k =

P
ði;jÞ∈linksðiÞ

PK
l= 1ϕ

kl
ij

di
=

P
ði; jÞ∈linksðiÞϕ

kk
ij

di
=ϕi;k; [S15]

where di is the degree of node i in the training set.
The simplification in Eq. S15 arises because

P
k≠lϕ

kl
ij = 0. When

k≠ l, the community strength parameters are the nondiagonal
entries of the block model, each set to e. Because e→ 0 by our
modeling assumption of assortativity, when k ≠ l, ϕkl

ij ∝ expf−∞g.
Notice that because

PK
k=1ϕ

kk
ij = 1, ϕi is normalized.

The ELBO in the link-based variational inference is a function
of the variational parameters ðϕlinks;ϕ; γ; λÞ. The ϕlinks are the
M × K matrix of interaction parameters defined over the links,
where M is the number of links in the training set. The ϕ are the
N × K matrix of the mean interaction parameters. We can
compute the optimal ϕab, given a link yab = 1, while fixing the
other parameters:

ϕkk
ab ∝ exp

�
Eq   log  θak +Eq   log  θbk +Eq   log  βk

	
: [S16]

The natural gradient of the ELBO with respect to the node’s
community memberships is as follows:

∂γta;k = αk +
P

ða;bÞ∈linksðaÞ
ϕkk
ab +

P
ða;bÞ∈nonlinksðaÞ

ϕa→b;k − γt−1a;k

= αk +
P

ða;bÞ∈linksðaÞ
ϕkk
ab + caϕa;k − γt−1a;k ;

[S17]

where ca is the number of nonlinks of node a in the training set.
The natural gradient of the ELBO with respect to the commu-
nity strengths is as follows:

∂λtk;0 = η0 +
P

ða;bÞ∈links
ϕkk
ab − λt−1k;0

∂λtk;1 = η1 +
P

ða;bÞ∈nonlinks
ϕa→b;kϕa←b;k − λt−1k;1 :

[S18]

We can rewrite Eq. S18 as a function of only the link interaction
parameters using the following:P

ða;bÞ∈nonlinks
ϕa→b;kϕa←b;k =

P
ða;bÞ∈nonlinks

ϕa;kϕb;k

¼

P

n
ϕn;k

P
n

ϕn;k −
P
n



ϕn;k

�2�.
2

−
P

a;b∈links
ϕa;kϕb;k:

[S19]

We have expressed the natural gradients of the community mem-
berships and community strengths as a function of ϕlinks and ϕ.
We now describe a SVI algorithm that iterates only over the links.
Our link subsampling method extends random node sampling.

The structure of the algorithm is similar to the general SVI al-
gorithm, with a subsampling step, local steps, and global steps. At
each iteration, we sample a node uniformly at random and ob-
serve all of its training links. In practice, we sample a minibatch of
nodes. In the local step, we iterate over the links and compute the
optimal link interaction parameters using Eq. S16. We then
compute the mean interaction parameters of the sampled nodes
using Eq. S15.
As with the previous sampling methods, we consider the sto-

chastic optimization of the global community strengths λ and the
global community memberships γ. Previously, we obtained com-
munity membership gradients with respect to the entire vector γ of
dimension N × K.
In link sampling, we optimize the community memberships of

each node separately, using distinct learning rates. Furthermore,
whenwe sample anode,weobserve all links of a samplednode in the
training set. We can therefore update the community memberships
of the samplednodeusing the complete natural gradients inEq.S17.
Because many networks are sparse, including the real datasets

and the synthetic networks analyzed in the article, the link sampling
algorithm scales to such networks even when the minibatch in each
iteration is the set of all links in the training set. In this case, the
natural gradients in Eq. S17 and Eq. S18 are used in the global step.
In our study on synthetic networks, we set the minibatch to the

entire set of links and used a learning rate of 1. This leads to good
convergence of the variational objective (Fig. S1). Furthermore,
we rescaled γ during an initial phase as follows:

γa;k = γa;k p

P
ði;jÞ∈links 1P

ði;jÞ∈links ϕ
kk
ij

: [S20]

The rescaling of γ in Eq. S20 ensures that each community makes
an equal contribution to the observations. This avoids small
communities with high community strengths and unused com-
munities during the early iterations. The initial phase is run until
the expected log likelihood on a held-out set of node pairs no
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longer improves. At this point, the inference continues without
the scaling in Eq. S20 until the algorithm converges. (This can be
interpreted as a form of annealing, a technique that is sometimes
used in variational inference.)
As we demonstrate in the empirical study on synthetic net-

works, the SVI algorithm with link sampling recovers true com-
munities with high accuracy, and scales to networks with millions
of nodes.
Further subsampling can be applied to improve the efficiency of

the SVI algorithm with link sampling. For instance, we can apply
informative set sampling to the links. We maintain two dynamic
sets of links: links whose corresponding interaction parameters
have “converged” and links that have not converged. Each it-
eration, we sample links with a bias toward links that have not
converged. (See Eq. S13.)

Setting the Number of Communities and Initializing Parameters. SVI
requires initial settings of the global variational parameters.
There are many ways to initialize these parameters. We set the
community strength parameters λ from “false observations” by
dividing the links and nodes equally among the communities and
adding a small random offset drawn from a Gamma distribution
with mean 1. We initialize the community memberships γ randomly
in our empirical study on real and synthetic networks. Alternatively,
we can initialize the γ using an “initialization algorithm” that we
describe below.
The initialization algorithm provides a decomposition of the

network into overlapping communities that can be used to ini-
tialize the community memberships γ and set the number of com-
munities in the SVI algorithm. These communities are a good
start, but it significantly improves as we run the SVI algorithm.
The pseudocode of our fast, scalable initialization algorithm for

estimating the number of communities K is enumerated below.

1. Initialize variational parameters of MMSB model M.

� M has N nodes and N communities.
� Initialize γ= ðγnÞNn=1 randomly.
� Assign each node n to its own community n by adding a
small positive weight to γn;n.

� Keep only the top r communities of each node.

2. For each link ða; bÞ in the training set,

� Let ta and tb be the top communities of nodes a and b.
� Set γa;tb← γa;tb + 1; γb;ta← γb;ta + 1.

3. Recompute the top r communities of each node.
4. Repeat steps 2, 3 for log N iterations.
5. For each link ða; bÞ in the training set,

� Assign nodes a and b to community k if the approximate
posterior probability pðza→b = za←b = kjy;MÞ> 0:5.

6. Return the overlapping communities and their cardinality.

The initialization algorithm approximates a batch variational
inference algorithm for a subclass of the MMSB where the com-
munity strengths β are set to 1. This algorithm is fast: It completes
in minutes on networks with millions of nodes and thousands of
communities. In simulations, the algorithm frequently finds the
number of communities reasonably close to the ground truth
number. (See the empirical study on synthetic networks.)
The algorithm begins by assigning each node to its own

community. It then computes the community memberships γ for
all nodes while maintaining only the top r communities with each
node. (We set r= 5 in all our experiments.)
Under the restricted model, with community strengths set to 1

and nodes initialized to their own community, the local step for
a link in Eq. S10 dictates that the optimal community indicator
for node a is the dominant community of node b, and vice versa.

This amounts to an exchange of the dominant community
memberships of the nodes and is computed in Oð1Þ time by
maintaining the peak communities of nodes. Such exchanges
bear similarities to the label propagation steps in ref 10.
The algorithm terminates after exactly log N iterations, where N

is the number of nodes. This stopping criteria is reasonable under
the assumption of “small-world” behavior, where the average path
length in the network grows proportional to log N (11).
When the initialization algorithm terminates, it writes a list of

communities. Each community consists of a list of nodes, and
nodes can appear in multiple communities. A node is added to
community k if it is adjacent to at least one link whose approxi-
mate posterior probability of belonging to community k is greater
than a high threshold. We can use the list of communities to
initialize the γ for the SVI algorithm. For example, we can ini-
tialize the memberships of a node randomly but with a greater
weight on the community assignments from the initialization al-
gorithm. The number of communities, i.e., the number of ways in
which links are colored, gives us the input K for the SVI algorithm.
We note again that the initialization algorithm provides us with

an optional starting point for the SVI algorithm and an estimate
of the number of communities in the observed data.

Computational Complexity.The local step of the SVI algorithm can
be computed in OðSKÞ operations, where S is the number of
node pairs sampled in each iteration and K is the number of
communities. Due to the assortativity assumptions in our model,
the local step is not quadratic in K as is typical for the MMSB (2,
3). The time for the global step of the SVI algorithm is OðNKÞ
operations per iteration, where N is the number of nodes. To avoid
updating all nodes in the network, we can maintain a distinct
learning rate for each node. In a given iteration, we skip updating
the community membership parameters and learning rates of no-
des not in the minibatch. The sequence of positive step sizes used
in updating a node’s membership parameter continue to satisfy
the Robbins–Monro conditions (7). This improves the time for
the global step to O(nK) operations per iteration, where n is the
number of nodes in the minibatch.
In the SVI algorithm with link sampling, with the minibatch set

to all links, the computational complexity is OðMK+NKÞ op-
erations per iteration, where M is the number of links. The SVI
algorithm with link sampling does not require subsampling
nonlinks and converges much faster than other subsampling
methods.

Open-Source Software. We implemented the SVI algorithm and
the various subsampling variants in C++. (Our software is
available at https://github.com/premgopalan/svinet.) The soft-
ware takes as input a text file of undirected links, the number
of nodes, the type of subsampling method, and optionally, the
hyperparameter values and the number of communities. The
software generates as output the list of discovered overlapping
communities, the fitted model, the computed log likelihood on
various held-out sets, and Graph Modeling Language (GML)
format files for visualizing the communities.

Empirical Study on Real-World Networks
In this section, we describe the details of the empirical study on
real-world networks. We ran the SVI algorithm with informative
set sampling on the real networks in Table S2, The input to the
SVI algorithm is a list of links and the number of communities.
We preprocessed the networks to associate each node with
“informative” and “noninformative” sets of node pairs.

Assessing Convergence on the Training Set. We measure conver-
gence of the SVI algorithm by computing the link prediction
accuracy on a held-out set of node pairs. In our experiments on
real networks, we set aside two validation sets and a test set, each
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having h% of the network links and an equal number of non-
links. In the experiments on real networks, we set h= 5%. The
links and nonlinks are chosen from the network uniformly at
random. We use the validation sets to assess convergence,
choose learning parameters, and study the sensitivity to the
number of communities.
A “50%-links” validation set poorly represents the severe class

imbalance between links and nonlinks in real-world networks.
For example, links form only 0.0039% of the node pairs in the
arXiv network (12) listed in Table S2. On the other hand,
a validation set matching the network sparsity would have too
few links. We address the class imbalance by computing the
“validation log likelihood at network sparsity”. This quantity is
computed by reweighting the average link and nonlink log like-
lihood (estimated from the 50% links validation set) by their
respective proportions in the network.
We stop training when the average change in expected vali-

dation log likelihood at network sparsity is less than 0.001% or if
the expected validation log likelihood at network sparsity no
longer increases.
Under the MMSB, we approximate the predictive distribution

using point estimates of the posterior community memberships of
nodes θ̂ and the posterior community strengths β̂; these point
estimates are computed as the mean of the variational posterior
parameters γ and λ, respectively. The estimated predictive dis-
tribution of a held-out node pair yab is as follows:

p
�
yabjyobserved

�
≈
P
za→ b

P
za←b

p


yabjza→b; za←b; β̂

�
p


za→bjθ̂a

�
p


za←bjθ̂b

�
:

[S21]

It is straightforward to show that Eq. S21 is a valid approxima-
tion. We then evaluate the log probability of the node pairs in
the held-out set under this distribution. Fig. S2 shows the con-
vergence of the “perplexity” at network sparsity on a validation
set. Results are shown for the arXiv network (12) and the Goo-
gle network (13). Perplexity is defined using the average predic-
tive log likelihood of a held-out set of node pairs H,

perplexityðHÞ= exp
�
−
P

a;b∈H log  pðyabjyobservedÞ
jHj



: [S22]

Perplexity is a measure of model fitness (lower numbers are bet-
ter). Fig. S2 shows that the SVI algorithm with informative set
sampling can approximate the posterior distribution on large
networks in several hours. Notice that the perplexity values
are small in magnitude. This is because we compute the valida-
tion log likelihood at network sparsity. The model can predict
a large fraction of the nonlinks with high accuracy, and is not
“surprised” by them.

Model Selection.As with many probabilistic models of community
detection, the MMSB requires setting the number of commu-
nities. In our empirical study, we addressed this model selection
problem in two ways. One was by evaluating the predictive
performance of the model for varying numbers of communities.
We held out a set of node pairs and computed the average
predictive log likelihood, as described above. A better model will
assign a higher probability to the held-out set. This reflects
a predictive approach to model selection, and has good statistical
properties (14). (We note that nonprobabilistic methods for
detecting overlapping communities usually cannot provide a mech-
anism for predicting unseen pieces of the network.) Fig. S3 shows
the sensitivity of the MMSB to the number of communities on
the arXiv network (12) and the Google network (13). A second
way was to set the number of communities to the estimate from

our initialization algorithm. We used this second approach in our
empirical study on synthetic networks.

Comparison with the Stochastic Blockmodel. We compared the
model fitness of the MMSB to the stochastic blockmodel (15)
on real-world networks. The stochastic block model attaches
a single community to each node. We consider the following
constrained stochastic blockmodel, with K communities, in a full
Bayesian setting (16, 17). The modeling assumptions are cap-
tured in the following generative process:

1. For each community k,
(a) Draw intracommunity strengths βk ∼BetaðηÞ.

2. Draw the intercommunity strength β′∼Betaðη′Þ
3. Draw the node memberships θ∼DirichletðαÞ
4. For each node i:
(a) Draw a community indicator zi ∼ θ

5. For each pair of nodes i and j, where i< j:
(a) Draw the connection between them from

p


yij = 1jzi; zj; β

�
=
�
βzij if zi = zj
β′ if zi ≠ zj

: [S23]

Unlike the MMSB of ref. 3, the single-membership model of Eq.
S23 cannot explain all links as arising from shared memberships;
hence, it must learn the intercommunity strength β′ from the
data. Our model is a generalization of ref 16.
We derived a scalable SVI algorithm for the model in Eq. S23

by treating all hidden variables, including the community in-
dicators, as global. This is necessary because the community
indicators associated with each node are not local to an obser-
vation. Therefore, the variational parameters, including those for
the community indicators, were updated using noisy natural
gradients in the global step. We note that the subsampling
methods discussed earlier, with the exception of link sampling,
apply to the single-membership model.
In Fig. S3, we compared the predictive performance of the

MMSB to the stochastic blockmodel on the arXiv network and
the Google network. We fit both models using the SVI algorithm
with informative set sampling. Fig. S3 shows that the mixed-
membership model demonstrates better predictive performance
than the analogous single-membership model of Eq. S23 over
a range of the number of communities.

Hyperparameters and Learning Parameters. SVI requires setting
hyperparameters of themodel and learning rates of the algorithm.
We set the node membership forgetting rate (κ) to 0.5 and the
community strength forgetting rate to 0.9. We set the delay
τ0 = 1024. We set Dirichlet hyperparameters α = 1

K, where K is the
number of communities. On real networks, the prior on the
community strengths was set using a uniform assignment of links
and nodes to communities. We set the probability of a link when
nodes assume different communities, e to a low value of 10−30.
This reflects our assortativity assumption that links arise from
similarity in communities between a pair of nodes.

Empirical Study on Synthetic Networks
The goal of the study on synthetic networks is to assess the accuracy
of the SVI algorithm and compare with other scalable methods in
the research literature. We want the synthetic networks to match
the properties of real networks—skewed community and node
degree distributions (18), significant community overlap (19, 20),
and a large fraction of nodes with multiple memberships (20).
We ran experiments to evaluate the performance of the

algorithms on benchmark networks with and without “noisy”
links. Notice that our significant community overlap requirement
naturally avoids well-separated clusters. The inclusion of noisy
links tests the algorithm’s ability to identify overlapping com-
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munities even when a significant fraction of a node’s links are to
nodes sharing no communities.
For the experiments on networks without noise, we generated

20 Lancichinetti–Fortunato–Radicchi (LFR) benchmark net-
works (21) varying in size from N = 1000 to N = 1,000,000 nodes.
One-half of the nodes in each network have memberships in
m= 4 communities. We set the average degree of nodes as 15 ×
m, similar to the experiments in ref. 22. The LFR benchmarks
give the node degrees and community sizes power laws; the
degree distribution and community size distribution exponents
were set to the default values of 2.0 and 1.0, respectively. Re-
search on scale-free networks (23) have assumed the maximum
degree to vary as kmax ∼N

1
α, where α is the power law exponent

for node degrees. We set kmax =
ffiffiffiffi
N

p
. We varied the minimum

and maximum community sizes as


20 N

1000; 50
N

1000

�
. However,

because community sizes are typically small (13), we set the
minimum and maximum community sizes when N = 1,000,000
nodes to (2000, 5000). These settings result in about ∼750
ground truth communities when N = 1,000,000 and ∼ 30 com-
munities when N = 1,000. Finally, we set the “mixing parameter”
μ (21) to 0 in our experiments on networks without noise. The
mixing parameter is the fraction of a node’s links that connect to
nodes sharing no communities.
On each network, we ran the following algorithms:

1. The COPRA label propagation algorithm (10).
2. The INFOMAP algorithm based on flow compression (24).
3. The MOSES seed expansion algorithm (22).
4. The Poisson expectation-maximization (EM) algorithm (the

Poisson community model, fit with EM) (25).
5. The OSLOM algorithm for finding statistically significant

communities (26).
6. The Clique percolation algorithm (19).
7. The Link clustering algorithm (20).

For the experiments on networks with noisy links, we varied μ
in steps of 0.2 from 0 to 0.8. We fixed the number of nodes at
10,000, and kept the other settings the same as the preceding
experiment. We generated 25 LFR benchmark networks and
included only the candidate algorithms that successfully scaled to
1,000,000 nodes in the preceding experiment.
We used the author’s source code for all algorithms. We ran

the SVI algorithm with the link sampling method. For each run,
we measured the normalized mutual information (NMI) (21)
between the inferred community structure and the true com-
munity structure. For the algorithms that find communities at
various resolutions—Clique percolation, Link clustering, and
COPRA—we varied the parameters as described below, and
kept the best NMI score.
For the SVI and the Poisson EM algorithm, we ran the

algorithms until convergence on networks with up to 100,000
nodes. We measured convergence of the SVI algorithm with link
sampling using the average change in average validation log
likelihood at network sparsity, as we did with the experiments on
real networks. However, since our goal is to assess the accuracy in
recovering ground truth communities, we set aside only a single
validation set of node pairs, having 1% of network links and an
equal number of nonlinks. We gave all algorithms, except the SVI
algorithm, the complete synthetic network as input.
On the million node networks, the SVI and the Poisson EM

algorithm can take a long time for convergence in likelihood,
whereas their NMI scores have typically “converged” quickly.
One reason for this is the large number of links (∼54 million
links) in these synthetic networks. We instrumented the author’s
source code for the Poisson EM algorithm and the SVI algo-
rithm to periodically report the accuracy scores when provided

with ground truth communities. We gave both algorithms a
computational budget of 24 h and recorded the NMI scores at-
tained by them. The Poisson EM algorithm’s NMI score had
typically “converged” at this point, even if the likelihood did not.
(We note that in other applications of EM, such as probabilistic
latent semantic indexing, “early stopping” is an effective form of
regularization.)
Table S3 shows the NMI results on the networks without noise.

Some algorithms could not scale to one million node networks.
The four that did were the Poisson EM, the SVI, the COPRA, and
the INFOMAP algorithms. The SVI algorithm performs better
than the COPRA and the INFOMAP algorithms and is as ac-
curate as the Poisson EM algorithm on the one million node
network. On smaller networks, the SVI algorithm performs as
well as the Poisson EM algorithm; it performs second to Clique
percolation on the one thousand node networks. However, the
Clique percolation algorithm does not scale beyond the 10,000
node networks.
Fig. S4 shows the NMI results on the networks with noisy

links. We find that the SVI algorithm performs better than two
of the three other scalable alternatives—the COPRA and the
INFOMAP algorithms—and is as accurate as the Poisson EM
algorithm.

Hyperparameters and Learning Parameters. We set the number of
communities K of the SVI algorithm with link sampling to the
value chosen by the initialization algorithm. We provided the
same K to the Poisson EM algorithm (25). We set the minibatch
for the link sampling method to set of all training links, and set
the learning rate to 1. Other hyperparameters of the SVI algo-
rithm were set to the same values as our experiments on real
networks.

Algorithm Settings for the LFR Experiments. The Clique percolation
algorithm identifies communities from a series of adjacent k-
cliques (19). In our experiments, we varied k from 4 to 7, a typ-
ical range for LFR experiments (10, 22). The Link clustering
algorithm defines a similarity function over nodes sharing a link,
and uses hierarchical clustering to find hierarchical community
structures (20). Because the dendrogram can be partitioned in
multiple ways, the algorithm uses a measure of the quality of
a link partition, called the partition density D. We varied D from
0.1 to 0.4—the range we found to be best—in steps of 0.1. The
COPRA algorithm is a fast heuristic based on label propagation
and includes a overlap parameter that we varied from 2 to 10,
in steps of 2. This is a typical range (10). The OSLOM (26),
MOSES (22), and the INFOMAP (24) algorithms were run with
parameters set to default values.
The author’s software for most of the algorithms we compare

with generate “community assignments,” the discovered map-
ping between nodes and communities. The mapping is used to
compute the accuracy when given the ground truth communities.
We extended both the SVI and the Poisson EM algorithm to

generate the community assignment files. In both algorithms,
we assigned a link to a community if the approximate posterior
probability of link assignment to a community exceeded a
threshold t. We took the best NMI values obtained from
thresholds t= 0:5 and t= 0:9. For the experiments on networks
without noise, we assigned each node associated with a link to
the same community as the link. For the experiments with noisy
links, we required at least three links of a node to be assigned to
a community before assigning the node to that community. We
added this setting to both algorithms to control sensitivity to
noise. [Notice in Fig. S4 that both algorithms continue to show
a high accuracy on networks without noise ðμ= 0Þ with the
threshold set to three links.]
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Fig. S2. The convergence of the held-out perplexity at network sparsity on the arXiv network (1) (Left) and the Google network (2) (Right). The SVI algorithm
was run with informative set sampling. The number of communities K was set to 1,000.
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Table S1. Top 10 articles in the arXiv network (1) by estimated bridgeness (2)

Title
No.

citations
Estimated
bridgeness

Maps of dust infrared emission for use in estimation
of reddening and cosmic microwave background
radiation foregrounds (3)

5,946 2,893.7

First-year Wilkinson microwave anisotropy probe
(WMAP) observations: Determination of
cosmological parameters (4)

5,707 2,270.7

Three-year Wilkinson microwave anisotropy probe
(WMAP) observations: Implications for cosmology (5)

4,488 1,907.1

Big bang nucleosynthesis (6) 2,896 1,882.9
The cosmological parameters 2006 (7) 2,472 1,703.9
Five-year Wilkinson microwave anisotropy probe (WMAP)

observations: Cosmological interpretation (8)
2,804 1,485.9

A large mass hierarchy from a small extra dimension (9) 3,644 1,426.7
The large N limit of superconformal field theories and supergravity (10) 3,914 1,378.4
An alternative to compactification (11) 2,803 1,275.8

Notice that some articles have higher bridgeness but a smaller citation count than others.
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Table S2. Real-world networks analyzed in the article and
SI Text

Dataset No. of nodes No. of links % links Type Source

arXiv 576,000 6,640,000 0.0039% Citation Ref. 1
Google 875,000 4,320,000 0.0011% Hyperlink Ref. 2
US patents 3,700,000 16,500,000 0.00023% Citation Ref. 3

Table S3. Accuracy results on 20 LFR benchmark networks (1) measured using normalized mutual information (1)

Nodes Replication SVI COPRA (2) INFOMAP (3) MOSES (4) POISSON (5) OSLOM (6) CLIQUE (7) LC (8)

1,000 1 0.58 0.55 0.38 0.47 0.62 0.44 0.93 0.15
1,000 2 0.77 0.45 0.36 0.49 0.77 0.41 0.85 0.16
1,000 3 0.66 0.46 0.36 0.53 0.66 0.49 0.96 0.17
1,000 4 0.63 0.17 0.38 0.52 0.62 0.46 0.78 0.15
1,000 5 0.76 0.39 0.35 0.55 0.75 0.48 0.85 0.20
10,000 1 0.90 0.28 0.35 0.56 0.85 0.18 0.22 0.01
10,000 2 0.90 0.28 0.32 0.55 0.88 0.16 0.13 0.01
10,000 3 0.82 0.07 0.36 0.54 0.78 0.19 0.23 0.01
10,000 4 0.86 0.61 0.44 0.54 0.82 0.17 — 0.02
10,000 5 0.89 0.62 0.40 0.56 0.86 0.17 — 0.00
100,000 1 0.82 0.57 0.34 0.35 0.85 — — —

100,000 2 0.83 0.44 0.33 0.33 0.81 — — —

100,000 3 0.81 0.50 0.35 0.34 0.81 — — —

100,000 4 0.82 0.43 0.33 0.35 0.84 — — —

100,000 5 0.83 0.58 0.33 0.35 0.84 — — —

1,000,000 1 0.76 0.52 0.22 — 0.76 — — —

1,000,000 2 0.77 0.50 0.16 — 0.76 — — —

1,000,000 3 0.78 0.53 0.17 — 0.77 — — —

1,000,000 4 0.76 0.49 0.23 — 0.79 — — —

1,000,000 5 0.77 0.51 0.14 — 0.77 — — —

The networks were generated with mixing parameter set to 0. The four algorithms that scale to a million nodes are the SVI
algorithm, the Poisson EM algorithm (5), INFOMAP (3), and COPRA (2). The SVI algorithm performs better than INFOMAP and COPRA
and is as accurate as the Poisson EM algorithm.
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