
Subtyping Supports Safe Session Substitution

Simon Gay
School of Computing Science, University of Glasgow

EPSRC EP/K034413 & EP/L00058X
COST Action IC1201



Meeting Phil



Session Types

I Describe a communication protocol as a type, and use type
checking to guarantee correctness of communication.

I The original papers:

Honda, “Types for Dyadic Interaction”, CONCUR 1993.

Takeuchi, Honda & Kubo, “An Interaction-Based Language
and its Typing System”, PARLE 1994.

Honda, Vasconcelos & Kubo, “Language Primitives and Type
Discipline for Structured Communication-Based
Programming”, ESOP 1998.



Session Types

I Describe a communication protocol as a type, and use type
checking to guarantee correctness of communication.

I The original papers:

Honda, “Types for Dyadic Interaction”, CONCUR 1993.

Takeuchi, Honda & Kubo, “An Interaction-Based Language
and its Typing System”, PARLE 1994.

Honda, Vasconcelos & Kubo, “Language Primitives and Type
Discipline for Structured Communication-Based
Programming”, ESOP 1998.



Session Types

I During the last 20 years, session types have developed into a
significant theme in programming languages.

I Computing has moved from the era of data processing to the
era of communication.

I Data types codify the structure of data and make it available
to programming tools.

I Session types codify the structure of communication and
make it available to programming tools.

I EPSRC Programme Grant “From Data Types to Session
Types: A Basis for Concurrency and Distribution” (SG, Phil
Wadler and Nobuko Yoshida).



Session Types

I During the last 20 years, session types have developed into a
significant theme in programming languages.

I Computing has moved from the era of data processing to the
era of communication.

I Data types codify the structure of data and make it available
to programming tools.

I Session types codify the structure of communication and
make it available to programming tools.

I EPSRC Programme Grant “From Data Types to Session
Types: A Basis for Concurrency and Distribution” (SG, Phil
Wadler and Nobuko Yoshida).



Session Types

I During the last 20 years, session types have developed into a
significant theme in programming languages.

I Computing has moved from the era of data processing to the
era of communication.

I Data types codify the structure of data and make it available
to programming tools.

I Session types codify the structure of communication and
make it available to programming tools.

I EPSRC Programme Grant “From Data Types to Session
Types: A Basis for Concurrency and Distribution” (SG, Phil
Wadler and Nobuko Yoshida).



Session Types

I During the last 20 years, session types have developed into a
significant theme in programming languages.

I Computing has moved from the era of data processing to the
era of communication.

I Data types codify the structure of data and make it available
to programming tools.

I Session types codify the structure of communication and
make it available to programming tools.

I EPSRC Programme Grant “From Data Types to Session
Types: A Basis for Concurrency and Distribution” (SG, Phil
Wadler and Nobuko Yoshida).



Session Types

I During the last 20 years, session types have developed into a
significant theme in programming languages.

I Computing has moved from the era of data processing to the
era of communication.

I Data types codify the structure of data and make it available
to programming tools.

I Session types codify the structure of communication and
make it available to programming tools.

I EPSRC Programme Grant “From Data Types to Session
Types: A Basis for Concurrency and Distribution” (SG, Phil
Wadler and Nobuko Yoshida).



The Maths Server: Types / Protocols

I The session type of the server’s channel endpoint:

S = &〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉

I The session type of the client’s channel endpoint:

C = ⊕〈 add :![int].![int].?[int].end,
eq :![int].![int].?[bool].end 〉

I Duality: S = C



The Maths Server: Types / Protocols

I The session type of the server’s channel endpoint:

S = &〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉

I The session type of the client’s channel endpoint:

C = ⊕〈 add :![int].![int].?[int].end,
eq :![int].![int].?[bool].end 〉

I Duality: S = C



The Maths Server: Types / Protocols

I The session type of the server’s channel endpoint:

S = &〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉

I The session type of the client’s channel endpoint:

C = ⊕〈 add :![int].![int].?[int].end,
eq :![int].![int].?[bool].end 〉

I Duality: S = C



Upgrading the Maths Server

I newserver adds a new service and extends an existing service:

S ′ = &〈 add :?[int].?[int].![int].end,
mul :?[int].?[int].![int].end,
eq :?[float].?[float].![bool].end 〉

I Interaction with a client of type C = S (6= S ′) is semantically
safe, assuming that int is a subtype of float:

C = ⊕〈 add :![int].![int].?[int].end,
eq :![int].![int].?[bool].end 〉

I A theory of subtyping needs to allow this interaction to be
typechecked.



Upgrading the Maths Server

I newserver adds a new service and extends an existing service:

S ′ = &〈 add :?[int].?[int].![int].end,
mul :?[int].?[int].![int].end,
eq :?[float].?[float].![bool].end 〉

I Interaction with a client of type C = S (6= S ′) is semantically
safe, assuming that int is a subtype of float:

C = ⊕〈 add :![int].![int].?[int].end,
eq :![int].![int].?[bool].end 〉

I A theory of subtyping needs to allow this interaction to be
typechecked.



Upgrading the Maths Server

I newserver adds a new service and extends an existing service:

S ′ = &〈 add :?[int].?[int].![int].end,
mul :?[int].?[int].![int].end,
eq :?[float].?[float].![bool].end 〉

I Interaction with a client of type C = S (6= S ′) is semantically
safe, assuming that int is a subtype of float:

C = ⊕〈 add :![int].![int].?[int].end,
eq :![int].![int].?[bool].end 〉

I A theory of subtyping needs to allow this interaction to be
typechecked.



Two Definitions of Subtyping

I Gay and Hole (1999, 2005) define

&〈 add :?[int].?[int].![int].end, &〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉 6 mul :?[int].?[int].![int].end,

eq :?[float].?[float].![bool].end 〉

I Honda et al. (2007 onwards) define

&〈 add :?[int].?[int].![int].end, &〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉 w mul :?[int].?[int].![int].end,

eq :?[float].?[float].![bool].end 〉

I How can both definitions be correct?



Two Definitions of Subtyping

I Gay and Hole (1999, 2005) define

&〈 add :?[int].?[int].![int].end, &〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉 6 mul :?[int].?[int].![int].end,

eq :?[float].?[float].![bool].end 〉

I Honda et al. (2007 onwards) define

&〈 add :?[int].?[int].![int].end, &〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉 w mul :?[int].?[int].![int].end,

eq :?[float].?[float].![bool].end 〉

I How can both definitions be correct?



Two Definitions of Subtyping

I Gay and Hole (1999, 2005) define

&〈 add :?[int].?[int].![int].end, &〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉 6 mul :?[int].?[int].![int].end,

eq :?[float].?[float].![bool].end 〉

I Honda et al. (2007 onwards) define

&〈 add :?[int].?[int].![int].end, &〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉 w mul :?[int].?[int].![int].end,

eq :?[float].?[float].![bool].end 〉

I How can both definitions be correct?



Justifying Subtyping: Safe Substitutability

I Liskov and Wing (1994): T is a subtype of U if an expression
of type T can be used wherever an expression of type U is
expected, without violating the runtime safety property
guaranteed by the type system.

I For session types, runtime safety means that all messages are
understood.

I We have to understand which expressions we are interested in.

I Gay and Hole: safe substitutability of channels.

I Honda et al.: safe substitutability of processes.

I This has become folklore in the session types community.



Justifying Subtyping: Safe Substitutability

I Liskov and Wing (1994): T is a subtype of U if an expression
of type T can be used wherever an expression of type U is
expected, without violating the runtime safety property
guaranteed by the type system.

I For session types, runtime safety means that all messages are
understood.

I We have to understand which expressions we are interested in.

I Gay and Hole: safe substitutability of channels.

I Honda et al.: safe substitutability of processes.

I This has become folklore in the session types community.



Justifying Subtyping: Safe Substitutability

I Liskov and Wing (1994): T is a subtype of U if an expression
of type T can be used wherever an expression of type U is
expected, without violating the runtime safety property
guaranteed by the type system.

I For session types, runtime safety means that all messages are
understood.

I We have to understand which expressions we are interested in.

I Gay and Hole: safe substitutability of channels.

I Honda et al.: safe substitutability of processes.

I This has become folklore in the session types community.



Justifying Subtyping: Safe Substitutability

I Liskov and Wing (1994): T is a subtype of U if an expression
of type T can be used wherever an expression of type U is
expected, without violating the runtime safety property
guaranteed by the type system.

I For session types, runtime safety means that all messages are
understood.

I We have to understand which expressions we are interested in.

I Gay and Hole: safe substitutability of channels.

I Honda et al.: safe substitutability of processes.

I This has become folklore in the session types community.



Justifying Subtyping: Safe Substitutability

I Liskov and Wing (1994): T is a subtype of U if an expression
of type T can be used wherever an expression of type U is
expected, without violating the runtime safety property
guaranteed by the type system.

I For session types, runtime safety means that all messages are
understood.

I We have to understand which expressions we are interested in.

I Gay and Hole: safe substitutability of channels.

I Honda et al.: safe substitutability of processes.

I This has become folklore in the session types community.



Justifying Subtyping: Safe Substitutability

I Liskov and Wing (1994): T is a subtype of U if an expression
of type T can be used wherever an expression of type U is
expected, without violating the runtime safety property
guaranteed by the type system.

I For session types, runtime safety means that all messages are
understood.

I We have to understand which expressions we are interested in.

I Gay and Hole: safe substitutability of channels.

I Honda et al.: safe substitutability of processes.

I This has become folklore in the session types community.



Channel-Oriented Subtyping (Gay and Hole)

I Substitution of a channel (endpoint) can be achieved by
passing it as a function parameter or by sending it as a
message on another channel.

I newserver has been implemented on the assumption that it
will use a channel of type S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉.

I newserver implements the add, mul and eq services.

I If newserver is given a channel of type
S = &〈add : . . . , eq : . . .〉 then execution is safe: the mul
service is never used, because a client of type S can’t send
mul.

I S 6 S ′ (covariant in the set of labels)

I In Gay and Hole’s pi-calculus session type system, this is how
an old client can safely connect to a new server.



Channel-Oriented Subtyping (Gay and Hole)

I Substitution of a channel (endpoint) can be achieved by
passing it as a function parameter or by sending it as a
message on another channel.

I newserver has been implemented on the assumption that it
will use a channel of type S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉.

I newserver implements the add, mul and eq services.

I If newserver is given a channel of type
S = &〈add : . . . , eq : . . .〉 then execution is safe: the mul
service is never used, because a client of type S can’t send
mul.

I S 6 S ′ (covariant in the set of labels)

I In Gay and Hole’s pi-calculus session type system, this is how
an old client can safely connect to a new server.



Channel-Oriented Subtyping (Gay and Hole)

I Substitution of a channel (endpoint) can be achieved by
passing it as a function parameter or by sending it as a
message on another channel.

I newserver has been implemented on the assumption that it
will use a channel of type S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉.

I newserver implements the add, mul and eq services.

I If newserver is given a channel of type
S = &〈add : . . . , eq : . . .〉 then execution is safe: the mul
service is never used, because a client of type S can’t send
mul.

I S 6 S ′ (covariant in the set of labels)

I In Gay and Hole’s pi-calculus session type system, this is how
an old client can safely connect to a new server.



Channel-Oriented Subtyping (Gay and Hole)

I Substitution of a channel (endpoint) can be achieved by
passing it as a function parameter or by sending it as a
message on another channel.

I newserver has been implemented on the assumption that it
will use a channel of type S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉.

I newserver implements the add, mul and eq services.

I If newserver is given a channel of type
S = &〈add : . . . , eq : . . .〉 then execution is safe: the mul
service is never used, because a client of type S can’t send
mul.

I S 6 S ′ (covariant in the set of labels)

I In Gay and Hole’s pi-calculus session type system, this is how
an old client can safely connect to a new server.



Channel-Oriented Subtyping (Gay and Hole)

I Substitution of a channel (endpoint) can be achieved by
passing it as a function parameter or by sending it as a
message on another channel.

I newserver has been implemented on the assumption that it
will use a channel of type S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉.

I newserver implements the add, mul and eq services.

I If newserver is given a channel of type
S = &〈add : . . . , eq : . . .〉 then execution is safe: the mul
service is never used, because a client of type S can’t send
mul.

I S 6 S ′ (covariant in the set of labels)

I In Gay and Hole’s pi-calculus session type system, this is how
an old client can safely connect to a new server.



Channel-Oriented Subtyping (Gay and Hole)

I Substitution of a channel (endpoint) can be achieved by
passing it as a function parameter or by sending it as a
message on another channel.

I newserver has been implemented on the assumption that it
will use a channel of type S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉.

I newserver implements the add, mul and eq services.

I If newserver is given a channel of type
S = &〈add : . . . , eq : . . .〉 then execution is safe: the mul
service is never used, because a client of type S can’t send
mul.

I S 6 S ′ (covariant in the set of labels)

I In Gay and Hole’s pi-calculus session type system, this is how
an old client can safely connect to a new server.



Other Derivations of Channel-Oriented Subtyping

I Castagna et al. (2009): semantic subtyping for session types.

I Dardha et al. (2012): translate session types into linear pi
types + variants, and derive subtyping.

I Gay (2016): derive the definition of subtyping from the
structure of the type safety proof.



Other Derivations of Channel-Oriented Subtyping

I Castagna et al. (2009): semantic subtyping for session types.

I Dardha et al. (2012): translate session types into linear pi
types + variants, and derive subtyping.

I Gay (2016): derive the definition of subtyping from the
structure of the type safety proof.



Other Derivations of Channel-Oriented Subtyping

I Castagna et al. (2009): semantic subtyping for session types.

I Dardha et al. (2012): translate session types into linear pi
types + variants, and derive subtyping.

I Gay (2016): derive the definition of subtyping from the
structure of the type safety proof.



Process-Oriented Subtyping (Honda et al.)

I View the session environment as the type of a process:
server(x+) ` x+ : S S = &〈add : . . . , eq : . . .〉

I server(x+) can execute in an environment in which x− allows
choices within the set of labels of S , i.e. add and eq.

I We have newserver(x+) ` x+ : S ′

S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉
I But also newserver can execute in an environment in which

server can execute.

I So safe substitutability of processes means that S ′ v S
(contravariant in the set of labels).

I This approach is natural if processes can be sent on channels
(higher-order pi) or when combining pi and lambda.



Process-Oriented Subtyping (Honda et al.)

I View the session environment as the type of a process:
server(x+) ` x+ : S S = &〈add : . . . , eq : . . .〉

I server(x+) can execute in an environment in which x− allows
choices within the set of labels of S , i.e. add and eq.

I We have newserver(x+) ` x+ : S ′

S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉
I But also newserver can execute in an environment in which

server can execute.

I So safe substitutability of processes means that S ′ v S
(contravariant in the set of labels).

I This approach is natural if processes can be sent on channels
(higher-order pi) or when combining pi and lambda.



Process-Oriented Subtyping (Honda et al.)

I View the session environment as the type of a process:
server(x+) ` x+ : S S = &〈add : . . . , eq : . . .〉

I server(x+) can execute in an environment in which x− allows
choices within the set of labels of S , i.e. add and eq.

I We have newserver(x+) ` x+ : S ′

S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉

I But also newserver can execute in an environment in which
server can execute.

I So safe substitutability of processes means that S ′ v S
(contravariant in the set of labels).

I This approach is natural if processes can be sent on channels
(higher-order pi) or when combining pi and lambda.



Process-Oriented Subtyping (Honda et al.)

I View the session environment as the type of a process:
server(x+) ` x+ : S S = &〈add : . . . , eq : . . .〉

I server(x+) can execute in an environment in which x− allows
choices within the set of labels of S , i.e. add and eq.

I We have newserver(x+) ` x+ : S ′

S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉
I But also newserver can execute in an environment in which

server can execute.

I So safe substitutability of processes means that S ′ v S
(contravariant in the set of labels).

I This approach is natural if processes can be sent on channels
(higher-order pi) or when combining pi and lambda.



Process-Oriented Subtyping (Honda et al.)

I View the session environment as the type of a process:
server(x+) ` x+ : S S = &〈add : . . . , eq : . . .〉

I server(x+) can execute in an environment in which x− allows
choices within the set of labels of S , i.e. add and eq.

I We have newserver(x+) ` x+ : S ′

S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉
I But also newserver can execute in an environment in which

server can execute.

I So safe substitutability of processes means that S ′ v S
(contravariant in the set of labels).

I This approach is natural if processes can be sent on channels
(higher-order pi) or when combining pi and lambda.



Process-Oriented Subtyping (Honda et al.)

I View the session environment as the type of a process:
server(x+) ` x+ : S S = &〈add : . . . , eq : . . .〉

I server(x+) can execute in an environment in which x− allows
choices within the set of labels of S , i.e. add and eq.

I We have newserver(x+) ` x+ : S ′

S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉
I But also newserver can execute in an environment in which

server can execute.

I So safe substitutability of processes means that S ′ v S
(contravariant in the set of labels).

I This approach is natural if processes can be sent on channels
(higher-order pi) or when combining pi and lambda.



Unifying Channel-Oriented and Process-Oriented Subtyping

I Typing judgements à la Gay and Hole: Γ ` P : proc

I x : S ` server(s) : proc

I Mostrous and Yoshida (2007): λx .server(x) : S → proc

I λx .newserver(x) : S ′ → proc

I Typing judgements à la Honda et al.: P ` proc(Γ)

I Identify proc(x : S) with S → proc

I An abstracted process is a self-contained entity that can be
sent and then substituted into a context.

I Taking S 6 S ′ (channel-oriented) and using subtyping for
function types gives proc(x : S ′) 6 proc(x : S), corresponding
to the process-oriented definition S ′ v S .

I The difference between channel-oriented and process-oriented
subtyping is explained by contravariance of the function type
constructor.



Unifying Channel-Oriented and Process-Oriented Subtyping

I Typing judgements à la Gay and Hole: Γ ` P : proc

I x : S ` server(s) : proc

I Mostrous and Yoshida (2007): λx .server(x) : S → proc

I λx .newserver(x) : S ′ → proc

I Typing judgements à la Honda et al.: P ` proc(Γ)

I Identify proc(x : S) with S → proc

I An abstracted process is a self-contained entity that can be
sent and then substituted into a context.

I Taking S 6 S ′ (channel-oriented) and using subtyping for
function types gives proc(x : S ′) 6 proc(x : S), corresponding
to the process-oriented definition S ′ v S .

I The difference between channel-oriented and process-oriented
subtyping is explained by contravariance of the function type
constructor.



Unifying Channel-Oriented and Process-Oriented Subtyping

I Typing judgements à la Gay and Hole: Γ ` P : proc

I x : S ` server(s) : proc

I Mostrous and Yoshida (2007): λx .server(x) : S → proc

I λx .newserver(x) : S ′ → proc

I Typing judgements à la Honda et al.: P ` proc(Γ)

I Identify proc(x : S) with S → proc

I An abstracted process is a self-contained entity that can be
sent and then substituted into a context.

I Taking S 6 S ′ (channel-oriented) and using subtyping for
function types gives proc(x : S ′) 6 proc(x : S), corresponding
to the process-oriented definition S ′ v S .

I The difference between channel-oriented and process-oriented
subtyping is explained by contravariance of the function type
constructor.



Unifying Channel-Oriented and Process-Oriented Subtyping

I Typing judgements à la Gay and Hole: Γ ` P : proc

I x : S ` server(s) : proc

I Mostrous and Yoshida (2007): λx .server(x) : S → proc

I λx .newserver(x) : S ′ → proc

I Typing judgements à la Honda et al.: P ` proc(Γ)

I Identify proc(x : S) with S → proc

I An abstracted process is a self-contained entity that can be
sent and then substituted into a context.

I Taking S 6 S ′ (channel-oriented) and using subtyping for
function types gives proc(x : S ′) 6 proc(x : S), corresponding
to the process-oriented definition S ′ v S .

I The difference between channel-oriented and process-oriented
subtyping is explained by contravariance of the function type
constructor.



Unifying Channel-Oriented and Process-Oriented Subtyping

I Typing judgements à la Gay and Hole: Γ ` P : proc

I x : S ` server(s) : proc

I Mostrous and Yoshida (2007): λx .server(x) : S → proc

I λx .newserver(x) : S ′ → proc

I Typing judgements à la Honda et al.: P ` proc(Γ)

I Identify proc(x : S) with S → proc

I An abstracted process is a self-contained entity that can be
sent and then substituted into a context.

I Taking S 6 S ′ (channel-oriented) and using subtyping for
function types gives proc(x : S ′) 6 proc(x : S), corresponding
to the process-oriented definition S ′ v S .

I The difference between channel-oriented and process-oriented
subtyping is explained by contravariance of the function type
constructor.



Unifying Channel-Oriented and Process-Oriented Subtyping

I Typing judgements à la Gay and Hole: Γ ` P : proc

I x : S ` server(s) : proc

I Mostrous and Yoshida (2007): λx .server(x) : S → proc

I λx .newserver(x) : S ′ → proc

I Typing judgements à la Honda et al.: P ` proc(Γ)

I Identify proc(x : S) with S → proc

I An abstracted process is a self-contained entity that can be
sent and then substituted into a context.

I Taking S 6 S ′ (channel-oriented) and using subtyping for
function types gives proc(x : S ′) 6 proc(x : S), corresponding
to the process-oriented definition S ′ v S .

I The difference between channel-oriented and process-oriented
subtyping is explained by contravariance of the function type
constructor.



Unifying Channel-Oriented and Process-Oriented Subtyping

I Typing judgements à la Gay and Hole: Γ ` P : proc

I x : S ` server(s) : proc

I Mostrous and Yoshida (2007): λx .server(x) : S → proc

I λx .newserver(x) : S ′ → proc

I Typing judgements à la Honda et al.: P ` proc(Γ)

I Identify proc(x : S) with S → proc

I An abstracted process is a self-contained entity that can be
sent and then substituted into a context.

I Taking S 6 S ′ (channel-oriented) and using subtyping for
function types gives proc(x : S ′) 6 proc(x : S), corresponding
to the process-oriented definition S ′ v S .

I The difference between channel-oriented and process-oriented
subtyping is explained by contravariance of the function type
constructor.



Unifying Channel-Oriented and Process-Oriented Subtyping

I Typing judgements à la Gay and Hole: Γ ` P : proc

I x : S ` server(s) : proc

I Mostrous and Yoshida (2007): λx .server(x) : S → proc

I λx .newserver(x) : S ′ → proc

I Typing judgements à la Honda et al.: P ` proc(Γ)

I Identify proc(x : S) with S → proc

I An abstracted process is a self-contained entity that can be
sent and then substituted into a context.

I Taking S 6 S ′ (channel-oriented) and using subtyping for
function types gives proc(x : S ′) 6 proc(x : S), corresponding
to the process-oriented definition S ′ v S .

I The difference between channel-oriented and process-oriented
subtyping is explained by contravariance of the function type
constructor.



Unifying Channel-Oriented and Process-Oriented Subtyping

I Typing judgements à la Gay and Hole: Γ ` P : proc

I x : S ` server(s) : proc

I Mostrous and Yoshida (2007): λx .server(x) : S → proc

I λx .newserver(x) : S ′ → proc

I Typing judgements à la Honda et al.: P ` proc(Γ)

I Identify proc(x : S) with S → proc

I An abstracted process is a self-contained entity that can be
sent and then substituted into a context.

I Taking S 6 S ′ (channel-oriented) and using subtyping for
function types gives proc(x : S ′) 6 proc(x : S), corresponding
to the process-oriented definition S ′ v S .

I The difference between channel-oriented and process-oriented
subtyping is explained by contravariance of the function type
constructor.



end


