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The Maths Server: Types / Protocols

I The session type of the server’s channel endpoint:

S = &〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉

I The session type of the client’s channel endpoint:

C = ⊕〈 add :![int].![int].?[int].end,
eq :![int].![int].?[bool].end 〉

I Duality: S = C
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Upgrading the Maths Server

I newserver adds a new service and extends an existing service:

S ′ = &〈 add :?[int].?[int].![int].end,
mul :?[int].?[int].![int].end,
eq :?[float].?[float].![bool].end 〉

I Interaction with a client of type C = S (6= S ′) is semantically
safe, assuming that int is a subtype of float:

C = ⊕〈 add :![int].![int].?[int].end,
eq :![int].![int].?[bool].end 〉

I A theory of subtyping needs to allow this interaction to be
typechecked.
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Two Definitions of Subtyping
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Justifying Subtyping: Safe Substitutability

I Liskov and Wing (1994): T is a subtype of U if an expression
of type T can be used wherever an expression of type U is
expected, without violating the runtime safety property
guaranteed by the type system.

I For session types, runtime safety means that all messages are
understood.

I We have to understand which expressions we are interested in.

I Gay and Hole: safe substitutability of channels.

I Honda et al.: safe substitutability of processes.

I This has become folklore in the session types community.
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Channel-Oriented Subtyping (Gay and Hole)

I Substitution of a channel (endpoint) can be achieved by
passing it as a function parameter or by sending it as a
message on another channel.

I newserver has been implemented on the assumption that it
will use a channel of type S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉.

I newserver implements the add, mul and eq services.

I If newserver is given a channel of type
S = &〈add : . . . , eq : . . .〉 then execution is safe: the mul
service is never used, because a client of type S can’t send
mul.

I S 6 S ′ (covariant in the set of labels)

I In Gay and Hole’s pi-calculus session type system, this is how
an old client can safely connect to a new server.
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Other Derivations of Channel-Oriented Subtyping

I Castagna et al. (2009): semantic subtyping for session types.

I Dardha et al. (2012): translate session types into linear pi
types + variants, and derive subtyping.

I Gay (2016): derive the definition of subtyping from the
structure of the type safety proof.
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Process-Oriented Subtyping (Honda et al.)

I View the session environment as the type of a process:
server(x+) ` x+ : S S = &〈add : . . . , eq : . . .〉

I server(x+) can execute in an environment in which x− allows
choices within the set of labels of S , i.e. add and eq.

I We have newserver(x+) ` x+ : S ′

S ′ = &〈add : . . . ,mul : . . . , eq : . . .〉
I But also newserver can execute in an environment in which

server can execute.

I So safe substitutability of processes means that S ′ v S
(contravariant in the set of labels).

I This approach is natural if processes can be sent on channels
(higher-order pi) or when combining pi and lambda.
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Unifying Channel-Oriented and Process-Oriented Subtyping

I Typing judgements à la Gay and Hole: Γ ` P : proc

I x : S ` server(s) : proc

I Mostrous and Yoshida (2007): λx .server(x) : S → proc

I λx .newserver(x) : S ′ → proc

I Typing judgements à la Honda et al.: P ` proc(Γ)

I Identify proc(x : S) with S → proc

I An abstracted process is a self-contained entity that can be
sent and then substituted into a context.

I Taking S 6 S ′ (channel-oriented) and using subtyping for
function types gives proc(x : S ′) 6 proc(x : S), corresponding
to the process-oriented definition S ′ v S .

I The difference between channel-oriented and process-oriented
subtyping is explained by contravariance of the function type
constructor.
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I Typing judgements à la Honda et al.: P ` proc(Γ)

I Identify proc(x : S) with S → proc

I An abstracted process is a self-contained entity that can be
sent and then substituted into a context.

I Taking S 6 S ′ (channel-oriented) and using subtyping for
function types gives proc(x : S ′) 6 proc(x : S), corresponding
to the process-oriented definition S ′ v S .

I The difference between channel-oriented and process-oriented
subtyping is explained by contravariance of the function type
constructor.



Unifying Channel-Oriented and Process-Oriented Subtyping
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Unifying Channel-Oriented and Process-Oriented Subtyping

I Typing judgements à la Gay and Hole: Γ ` P : proc

I x : S ` server(s) : proc

I Mostrous and Yoshida (2007): λx .server(x) : S → proc

I λx .newserver(x) : S ′ → proc

I Typing judgements à la Honda et al.: P ` proc(Γ)

I Identify proc(x : S) with S → proc

I An abstracted process is a self-contained entity that can be
sent and then substituted into a context.

I Taking S 6 S ′ (channel-oriented) and using subtyping for
function types gives proc(x : S ′) 6 proc(x : S), corresponding
to the process-oriented definition S ′ v S .

I The difference between channel-oriented and process-oriented
subtyping is explained by contravariance of the function type
constructor.
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