
Comprehending Ringads

Jeremy Gibbons

WadlerFest, April 2016

Comprehending Ringads 2

1. Comprehensions

• ZF axiom schema of specification:

fx2 j x 2 Nat ^ x < 10 ^ x is eveng

• SETL set-formers:

fx � x : x in f0 : :9g j x mod 2 � 0g

• Eindhoven Quantifier Notation:

�x : 0 6 x < 10 ^ x is even : x2�

• Haskell (NPL, Python, . . .) list comprehensions:

�x ^ 2 j x �0 : :9�; even x�

Comprehending Ringads 3

2. Comprehending monads (Wadler, 1992)

Structure is that of a monad with zero �T; return;mult;;�:

mult :: T �T a�! T a mult �mult xss� �mult �fmap mult xss�
return :: a ! T a mult �return x� � x

mzero :: T a mult �fmap return x� � x

mult ; �;

Comprehensions can then be used for any monad-with-zero:

D �e j � � return e

D �e j p e0;Q � � e0 >>� �p !D �e j Q �
D �e j e0;Q � � guard e0 >>� ���!D �e j Q �
D �e j let d;Q � � let d inD �e j Q �

(where x >>� k �mult �fmap k x� and guard b � if b then return �� else;).

Hence monad comprehensions for sets, bags, (sub-)distributions, exceptions. . .

Comprehending Ringads 4

3. Collection monads

Finite collection types are monads. But the operations of a
monad-with-zero cannot introduce multiplicity; need also

�]� :: T a ! T a ! T a

such that

mult �xs] ys� � �mult xs�] �mult ys�
x]; � x

;] y � y

Sets, bags, sub-distributions are collection monads; but exceptions are not.

Eg the Boom Hierarchy: trees

lists] is associative

bags . . . and commutative

sets . . . and idempotent

Comprehending Ringads 5

4. Aggregations

Well-behaved operations h over collections: count, sum, some, . . .

h �return a� � a

h �mult xs� � h �fmap h xs�

—the algebras for the monad T.

Define � and " by

a� b � h �return a] return b�
" � h;

Then

h �x] y� � h x � h y

Moreover, � and " satisfy whatever laws] and ; do:
" is the unit of �; � is associative if] is; etc (at least on the range of h).

Comprehending Ringads 6

5. Comprehending queries

Wadler & Trinder (1991) argued for comprehensions as a query notation:
Given input tables

customers :: Bag �CID;Name;Address�
invoices :: Bag �IID;CID;Amount;Date�

then

overdueInvoices � � �c:name; c:address; i:amount�
j c customers;

i invoices; i:due< today;
c:cid �� i:customer �

Works similarly in any collection monad, not just bags.

An influential observation in the DBPL community: basis of languages
such as Buneman’s Kleisli, Microsoft LINQ, Wadler’s Links, as well as
querying for objects (OQL) and XML (XQuery).

Comprehending Ringads 7

6. The problem with joins

The comprehension yields a terrible query plan!
Constructs entire cartesian product, then discards most of it:

fmap ���c; i�! �c:name; c:address; i:amount� �
filter ���c; i�! c:cid �� i:customer� �

filter ���c; i�! i:due< today� �
cp customers invoices���

Better to group by customer identifier, then handle groups separately:

fmap �fmap ��c ! �c:name; c:address��� fmap ��i ! i:amount�� �
fmap �id � filter ��i ! i:due< today�� �

merge �indexBy cid customers; indexBy customer invoices���

(where indexBy partitions, and merge pairs on common index).
But this doesn’t correspond to anything expressible in comprehensions.

Comprehending Ringads 8

7. Comprehensive comprehensions

Parallel (‘zip’) comprehensions (Clean 1.0, 1995):

��x;y� j x �1;2;3� j y �4;5;6�� � ��1;4�; �2;5�; �3;6��

‘Order by’ and ‘group by’ (Wadler & Peyton Jones, 2007):

� �the dept; sum salary�
j �name;dept; salary� employees
; then group by dept using groupWith
; then sortWith by sum salary �

(NB group by rebinds the variables salary etc bound earlier!)
Initially just for lists, but also generalizable (Giorgidze et al., 2011):

mzipT :: T a ! T b ! T �a;b�
mgroupWithT;U;F :: Eq b) �a ! b�! T a ! U �F a�

(Note heterogeneous type: T;U should be monads, F a functor.)

Comprehending Ringads 9

8. Solving the problem with (equi-)joins

Maps-to-bags form a monad-with-zero—roughly:

type Map k v � k ! v

type Table k v � Map k �Bag v�

Now define

merge :: �Table k v;Table k w�! Table k �v;w�
merge �f ;g� � �k ! cp �f k� �g k�

indexBy :: Eq k) �v ! k�! Bag v ! Table k v

indexBy f xs k � filter ��v ! f v �� k� xs

and use merge for zipping, indexBy for grouping.

With care, indexBy can be evaluated in linear time.

Comprehending Ringads 10

Now represent query as:

overdueInvoices :: Map Int �Name;Address;Bag Amount�
overdueInvoices � � �the name; the addr;amount�

j �cid;name;addr� customers

; then group by cid using indexBy

j �iid; customer;amount;due� invoices

; due< today

; then group by customer using indexBy �

Avoids expanding the whole cartesian product.

Comprehending Ringads 11

9. Finite maps

A catch:

• need monads, for comprehensions

• need Maps, for indexing

• need finite collections, for aggregation

• but finite maps don’t form a monad (no return)

Solution?

Comprehending Ringads 12

10. Graded monads (Katsumata et al, 2016)

Monad �T; return;mult� has endofunctor T : C! C, polymorphic functions

return :: a ! T a

mult :: T �T a�! T a

satisfying certain laws.

M-graded monad �T; return;mult� for monoid �M ; "; �� has
(non-endo-)functor T : M ! �C;C� and

return :: a ! T " a

mult :: T m �T n a�! T �m�n� a

with same laws. (Eg for collecting effects; think also of vectors.)

We use T � Table, with monoid �K; h i;��� of finite type sequences.
Not an endofunctor, but there is still a story involving adjunctions.

Comprehending Ringads 13

11. Ringads (Wadler, 1990)

Wadler called collection
monads ringads.

Ringads are (roughly)
right near-semirings in the
right near-semiringy category
of endofunctors under
composition and product.

Wadler’s note cited in
numerous papers from the
1990s (with varying degrees
of accuracy), but long
thought lost. . .

Notes on monads and ringads

Philip Wadler
University of Glasgow⇤

17 September 1990

These notes are in four parts. Section 1 summarises the usual definition of monads,
as found, for instance, in Mac Lane’s text. Section 2 summarises a second, equivalent
definition of monads, due to Kleisli. Section 3 extends Kleisli’s definition of monad to
include a zero. Section 4 further extends this definition to include an associative operator
which has the zero of Section 3 as a unit: this is a ringad.

1 Monads a la Mac Lane

According to Mac Lane, a monad is a triple (M, ⌘, µ), where M is a functor and ⌘x : x!
M x and µx : M2 x!M x are natural transformations satisfying:

µx · ⌘M x = idM x,(1-1)

µx · M ⌘x = idM x,(1-2)

µx · µM x = µx · M µx.(1-3)

Roughly speaking, the first two equations correspond to left and right identity laws, while
the third corresponds to associativity.

In addition to the three explicit laws, we can also extract four “hidden” equations.
Since M is a functor:

M idx = idM x,(1-4)

M g · M f = M(g · f),(1-5)

where f : x! y and g : y ! z. And, since ⌘ and µ are natural transformations:

M f · ⌘x = ⌘y · M f,(1-6)

M f · µx = µy · M2 f,(1-7)

where f : x! y.
In the context of the lambda calculus, comprehensions can be viewed as a syntactic

sugar for monads. Let x range over variables, t, u range over terms, and p, q, r range over

⇤Author’s address: Department of Computing Science, University of Glasgow, G12 8QQ, Scotland.
Electronic mail: wadler@cs.glasgow.ac.uk.

1

Comprehending Ringads 14

12. Conclusions: Comprehending Wadler

• list comprehensions

• monads for functional programming

• monad comprehensions and do notation

• comprehensions for queries

• comprehensive comprehensions

• graded monads for the marriage with effects

• thank you, Phil!

