
Experiences with QuickCheck:
Testing the Hard Stuff and Staying

Sane

John Hughes

Why is testing hard?

n
features O(n) test cases

3—4 tests per
featurepairs of features

O(n2) test cases

triples of features

O(n3) test cases

race conditions

Don’t write tests!

Generate them

QuickCheck

1999—invented by Koen Claessen and myself, for
Haskell

2006—Quviq founded marketing Erlang version

Many extensions

Finding deep bugs for Ericsson, Volvo Cars, Basho,
etc…

The commonest usage

API
under
test

A minimal failing
example

Example: a Circular Buffer

State Machine Models

API
Calls

API
Calls

API
Calls

API
Calls

Model
state

Model
state

Model
state

Model
state

postconditions

Erlang

Erlang

Erlang

Example

put
2 get put

3 getput
1

[1] [1,2] [2] [2,3][]

1 2

Code Fragments: specifying get

get_pre(S) ->
S#state.ptr /= undefined andalso

S#state.contents /= [].

get_next(S,_Value,_Args) ->
S#state{contents=tl(S#state.contents)}.

get_post(S,_Args,Res) ->
eq(Res,hd(S#state.contents)).

Precondition

State
transition

Postcondition

Time for some tests!

Lessons

• The same property can find many different
bugs

• Minimal failing tests make diagnosis easy

Doing it
for real…

Theory

Car manufacturers should be
able to buy code from different
providers and have them work

seamlessly together

Practice

VOLVO's experience has been
that this is often not the case

A Bug in a vendor’s CAN stack

© 18

send priority 1

send priority 2

send priority 3

tx_confirm

sending 1

sending 31 sent

queued

The Problem

CAN bus identifiers determine bus priority

A Bug in a vendor’s CAN stack

© 20

send priority 1

send priority 2

send priority 3

tx_confirm

sending 1

sending 31 sent

queued

Failed to mask off the top bit before
comparing priorities

3,000 pages of specifications

20,000 lines of QuickCheck

1,000,000 LOC, 6 suppliers

200 problems

100 problems in the standard

9x shorter test code

"We know there is a lurking bug somewhere
in the dets code. We have got 'bad object'
and 'premature eof' every other month the
last year. We have not been able to track the
bug down since the dets files is repaired
automatically next time it is opened.“

Tobbe Törnqvist, Klarna, 2007

What is it?

Application

Mnesia

Dets

File system

Invoicing services for web shops

Distributed database:
transactions, distribution,
replication

Tuple storage

Race
conditions?

Imagine Testing This…

dispenser:take_ticket()

dispenser:reset()

ok =
1 =
2 =
3 =
ok =
1 =

A Unit Test in Erlang

test_dispenser() ->

Expected
results

reset(),
take_ticket(),
take_ticket(),
take_ticket(),
reset(),
take_ticket().

Modelling the dispenser

reset take take take

0 0 1 2

ok 1 2 3

A Parallel Unit Test

• Three possible correct
outcomes!

reset

take_ticket

take_ticket

take_ticket

1

2

3

1

3

2

1

2

1

ok

Another Parallel Test

• 30 possible correct outcomes!

reset

take_ticket

take_ticket

take_ticket

take_ticket

reset

Deciding a Parallel Test

reset
ok

take
1

take
3

take
2

0 0 1 2

Let’s run some tests

Prefix:

Parallel:
1. dispenser:take_ticket() --> 1

2. dispenser:take_ticket() --> 1

Result: no_possible_interleaving

take_ticket() ->
N = read(),
write(N+1),
N+1.

dets

• Tuple store:
{Key, Value1, Value2…}

• Operations:
– insert(Table,ListOfTuples)
– delete(Table,Key)
– insert_new(Table,ListOfTuples)
– …

• Model:
– List of tuples (almost)

QuickCheck Specification

... …

... …
<100 LOC

> 6,000
LOC

Bug #1

Prefix:
open_file(dets_table,[{type,bag}]) -->

dets_table

Parallel:
1. insert(dets_table,[]) --> ok

2. insert_new(dets_table,[]) --> ok

Result: no_possible_interleaving

insert_new(Name, Objects) -> Bool

Types:
Name = name()
Objects = object() | [object()]
Bool = bool()

Bug #2

Prefix:
open_file(dets_table,[{type,set}]) --> dets_table

Parallel:
1. insert(dets_table,{0,0}) --> ok

2. insert_new(dets_table,{0,0}) --> …time out…

=ERROR REPORT==== 4-Oct-2010::17:08:21 ===
** dets: Bug was found when accessing table dets_table

Bug #3

Prefix:
open_file(dets_table,[{type,set}]) --> dets_table

Parallel:
1. open_file(dets_table,[{type,set}]) --> dets_table

2. insert(dets_table,{0,0}) --> ok
get_contents(dets_table) --> []

Result: no_possible_interleaving !

Is the file corrupt?

Bug #4
Prefix:

open_file(dets_table,[{type,bag}]) --> dets_table
close(dets_table) --> ok
open_file(dets_table,[{type,bag}]) --> dets_table

Parallel:
1. lookup(dets_table,0) --> []

2. insert(dets_table,{0,0}) --> ok

3. insert(dets_table,{0,0}) --> ok

Result: ok
premature eof

Bug #5

Prefix:
open_file(dets_table,[{type,set}]) --> dets_table
insert(dets_table,[{1,0}]) --> ok

Parallel:
1. lookup(dets_table,0) --> []

delete(dets_table,1) --> ok

2. open_file(dets_table,[{type,set}]) --> dets_table

Result: ok
false

bad object

"We know there is a lurking bug somewhere
in the dets code. We have got 'bad object'
and 'premature eof' every other month the
last year.”

Tobbe Törnqvist, Klarna, 2007

Each bug fixed the day after
reporting the failing case

Before

• Files over 1GB?
• Rehashing?
• > 6 weeks of effort!

After

• Database with one
record!

• 5—6 calls to
reproduce

• < 1 day to fix

An Experiment

Unit
tests

Properties

How good were the tests at find
bugs—in other students’ code?

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

Hunit
QuickCheck

Better

0 1 2 3 4 5 6 7 8 9 10 11

Unit tests

Property Based Testing

…finds more bugs with less effort!

Don’t write tests…

Generate them!

Where to find out more…

• Haskell QuickCheck
– The original… ICFP 2000

• Quviq QuickCheck
– Commercial tool & services www.quviq.com

• Many, many tools inspired by QuickCheck
– test.check, ScalaCheck, FsCheck (F#)…

http://www.quviq.com/

	Experiences with QuickCheck: Testing the Hard Stuff and Staying Sane
	Why is testing hard?
	Don’t write tests!
	QuickCheck
	The commonest usage
	Example: a Circular Buffer
	State Machine Models
	Example
	Code Fragments: specifying get
	Time for some tests!
	Lessons
	Bildnummer 14
	Doing it for real…
	Theory
	Practice
	A Bug in a vendor’s CAN stack
	The Problem
	A Bug in a vendor’s CAN stack
	Bildnummer 23
	Bildnummer 24
	What is it?
	Imagine Testing This…
	A Unit Test in Erlang
	Modelling the dispenser
	A Parallel Unit Test
	Another Parallel Test
	Deciding a Parallel Test
	Let’s run some tests
	Bildnummer 33
	dets
	QuickCheck Specification
	Bug #1
	Bug #2
	Bug #3
	Is the file corrupt?
	Bug #4
	Bug #5
	Bildnummer 42
	Before
	An Experiment
	How good were the tests at find bugs—in other students’ code?
	Property Based Testing
	Don’t write tests…��Generate them!
	Where to find out more…

