Causal commutative arrows revisited

WadlerFest Edinburgh, April 2016

Jeremy Yallop Hai Liu

Links and web forms

Month:	
Day:	

Links: Web Programming Without Tiers*

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

University of Edinburgh

Abstract. Links is a programming language for web applications that generates one for all three forces of a web application from a single source, coughling into JavoScript to run on the client and into SQL to run on the database. Links supports rich clients running in what has been dubbed '[Jaz' 1946, and supports concurrent processes with statistically-typed message passing. Links is scalable in the enseme fast seasons state is preserved in the client rather than the server, in contrast to other approaches and in Jazo Scribts or FT. Scheme. Client-side may be a support of the contrast to other approaches and in Jazo Scribts or FT. Scheme. Client-side may be a be a support of the contrast to other approaches and in Jazo Scribts or FT. Scheme. Client-side may be a be a support of the contrast to other approaches and in Jazo Scribts or FT. Scheme. Client-side or part of the contrast to other approaches and in Jazo Scribts or FT. Scheme. Client-side or passing the contrast of the contrast to the contrast of th

The Essence of Form Abstraction*

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

School of Informatics, University of Edinburgh

Abstract. Abstraction is the cornerstone of high-level programming. ITML forms are the principal medium of web interaction. However, most web programming environments do not support abstraction of form components, leading to a lack of compositionality. Using a semanties based on idlons, we show how to support compositional form construction and give a convenient syntax.

Monads vs arrows vs applicatives

Evaluators and the arrow calculus

$$\frac{\Gamma; \ \mathbf{x} : A \vdash Q \mid B}{\Gamma \vdash \lambda^{\bullet} \mathbf{x}. Q : A \leadsto B}$$

$$\frac{\Gamma \vdash L : A \leadsto B \qquad \Gamma, \ \Delta \vdash M : A}{\Gamma; \ \Delta \vdash L \bullet M ! B}$$

The Arrow Calculus

Sam Lindley, Philip Wadler, and Jeremy Yallop

Abstract

We introduce the arrow calculus, a metalanguage for manipalating Rughes's arrows with close relations both to Meggis metalanguage for monais and to Peterson's arrow notation. Arrows are classically defined by extending lambde calculus with three constructs arrows are classically defined by extending lambde, and calculus with three construcctions are constructed and the second of the construction of

Idioms are oblivious, arrows are meticulous, monads are promiscuous

Sam Lindley, Philip Wadler and Jeremy Yallop

Laboratory for Foundations of Computer Science

And University of Edinburgh

Reference

Abstract

We precisit the connection between three actions of computation: Moggi's reveals, Hughan's arrows and Michiels and Patreson's sinces (also called applicative fundary). We show that informs are equivalent to arrows that satisfy the type isomorphism $A \sim B : \neg A \subset A = B$ and that means are equivalent to arrows that satisfy the type isomorphism $A \sim B \cong A = (1 \sim B)$. Further, islicons embed into arrows and arrows embed title means that $A \subset B \subset A \subset A \subset A$.

Keywords: applicative functors, idioms, arrows, mounds

Normal forms in Haskell

```
class Applicative f where
       pure :: \alpha \rightarrow \mathbf{f} \ \alpha
       (*) :: f (\alpha \rightarrow \beta) \rightarrow f \alpha \rightarrow f \beta
      pure (f v) \equiv pure f \otimes pure v
                           u \equiv pure id \circledast u
    u \circledast (v \circledast w) \equiv pure (.) \circledast u \circledast v \circledast w
      {\tt v} \ \circledast \ {\tt pure} \ {\tt x} \ \equiv \ {\tt pure} \ (\lambda {\tt f} \ 	o \ {\tt f} \ {\tt x}) \ \circledast \ {\tt v}
       pure f \circledast c<sub>1</sub> \circledast c<sub>2</sub> \circledast ... \circledast c<sub>n</sub>
```

Normal forms in Haskell (continued)

observe (Pure v) = pure v

observe (f : ⊛ v) = observe f ⊛ v

```
data AppNF :: (* \rightarrow *) \rightarrow (* \rightarrow *) where
   Pure :: \alpha \rightarrow AppNF i \alpha
   (:\circledast) :: AppNF i (\alpha \to \beta) \to i \alpha \to AppNF i \beta
instance Applicative (AppNF i) where
   pure = Pure
   Pure f \circledast Pure x = Pure (f x)
              \circledast v : \circledast w = (Pure (.) \circledast u \circledast v) : \circledast w
   11
             \circledast Pure x = Pure (\lambdaf 	o f x) \circledast u
   u
promote :: Applicative i \Rightarrow i \alpha \rightarrow AppNF i \alpha
promote i = Pure id :⊛ i
observe :: Applicative i \Rightarrow AppNF i \alpha \rightarrow i \alpha
```

Normal forms in Haskell: example

```
pure f * (pure g * promote h)
  1
Pure f ⊗ (Pure g ⊗ (Pure id :⊗ h))
  1
Pure f ⊗ ((Pure (.) ⊗ Pure g ⊗ Pure id) :⊗ h)
  11
Pure f ⊗ ((Pure ((.) g) ⊗ Pure id) :⊗ h)
  11
Pure f ⊗ (Pure (g . id) :⊗ h)
  1
(Pure (.) ⊗ Pure f ⊗ Pure (g . id)) :⊗ h
Pure (f . g . id) : ⊗ h
```

Arrows

```
class Arrow (→) where
   pure :: (\alpha \rightarrow \beta) \rightarrow (\alpha \rightsquigarrow \beta)
   (\gg) :: (\alpha \rightsquigarrow \beta) \rightarrow (\beta \rightsquigarrow \gamma) \rightarrow (\alpha \rightsquigarrow \gamma)
   first :: (\alpha \leadsto \beta) \rightarrow ((\alpha, \gamma) \leadsto (\beta, \gamma))
                     arr id \gg f \equiv f
                     f \gg arr id \equiv f
                (f \gg g) \gg h \equiv f \gg (g \gg h)
                      arr (g . f) \equiv arr f \gg arr g
                    arr (f ** id) \equiv first (arr f)
                first (f \gg g) \equiv first f \gg first g
second (arr g) \gg first f \equiv first f \gg second (arr g)
                    arr fst \gg f \equiv first f \gg arr fst
       arr assoc >>> first f = first (first f) >>> arr assoc
where
   second f = arr swap >>> first f >>> arr swap
   f ** g = \lambda(x,y) \rightarrow (f x, g y)
```

assoc ((a, b), c) = (a, (b, c))

swap(a, b) = (b, a)

Arrow diagrams

Arrow normal form

where

```
f &&& g = arr dup >>> first f >>> second g dup a = (a, a)
```

Arrows: normalizing implementation

```
data ArrNF :: (* \rightarrow * \rightarrow *) \rightarrow (* \rightarrow * \rightarrow *) where
 Arr :: (\alpha \rightarrow \beta) \rightarrow \text{ArrNF} (\leadsto) \alpha \beta
 Seq :: (\alpha \rightarrow \delta) \rightarrow (\delta \leadsto \gamma) \rightarrow ArrNF (\leadsto) (\gamma, \alpha) \beta \rightarrow ArrNF (\leadsto) \alpha \beta
instance Arrow (ArrNF (~→)) where
   arr
                                 = Arr
   Arr f \gg Arr g = Arr (g . f)
   Arr f \gg  Seq g c h = Seq (g . f) c
                                         (Arr (id ** f) >>> h)
   Seq g c h \gg s = Seq g c (h \gg s)
   first (Arr f) = Arr (f ** id)
   first (Seq g c h) = Seq (g . fst) c
                                         (Arr assoc^{-1} >  first h)
     where assoc<sup>-1</sup> (x,(y,z)) = ((x,y),z)
```

Causal Commutative Arrows and Their Optimization

Hai Liu Eric Cheng Paul Hudak

Department of Computer Science
Yale University

{hai.liu,eric.cheng,paul.hudak}@yale.edu

Abstract

Arrows are a popular form of abstract computation. Being more general than monads, they are more broadly applicable, and in particular are a good abstraction for signal processing and dataflow computations. Most notably, arrows form the basis for a domain specific language cailled *Yampa*, which has been used in a variety of concrete applications, including animation, robotics, sound synthesis, control systems, and graphical user interfaces.

. Introduction

Consider the following recursive mathematical definition of the exponential function:

$$e(t) = 1 + \int_0^t e(t) dt$$

In Yampa [35, 21], a domain-specific language embedded in Haskell [36], we can write this using arrow syntax [32] as follows:

Programming with CCA

```
\begin{array}{lll} \texttt{exp} = \texttt{proc} \;\; () \to \texttt{do} \\ & \texttt{rec} \;\; \texttt{let} \;\; \texttt{e} = 1 \;\; + \;\; \texttt{i} \\ & \texttt{i} \;\; \leftarrow \texttt{integral} \longrightarrow \texttt{e} \\ & \texttt{returnA} \longrightarrow \texttt{e} \\ \\ & \texttt{exp} \;\; :: \;\; \texttt{ArrowInit} \;\; (\leadsto) \;\; \Rightarrow \;\; () \;\; \leadsto \;\; \texttt{Double} \\ & \texttt{exp} \;\; = \;\; \texttt{loop} \;\; (\texttt{second} \;\; (\texttt{integral} \;\; \ggg \;\; \texttt{arr} \;\; (+1)) \;\; \ggg \\ & \texttt{arr} \;\; \texttt{snd} \;\; \ggg \;\; \texttt{arr} \;\; \texttt{dup}) \end{array}
```

init $0 \gg arr dup$)

integral :: ArrowInit (\leadsto) \Rightarrow Double \leadsto Double integral = loop (arr (λ (v, i) \rightarrow i + dt * v) \ggg

CCA: new operators, new laws (loop)

```
class Arrow (\leadsto) \Rightarrow ArrowLoop (\leadsto) where loop :: ((a, c) \leadsto (b, c)) \rightarrow (a \leadsto b)
```


CCA: new operators, new laws (init)

```
class ArrowLoop (\leadsto) \Rightarrow ArrowInit (\leadsto) where init :: a \rightarrow (a \leadsto a)
```

init i

```
first f >\!\!> second g \equiv second g >\!\!> first f init i *** init j \equiv init (i,j)
```

CCA normal form


```
loop (arr f >\!\!> second (init i))
```

```
exp = loop (arr (\lambda(x, y) \rightarrow \text{let i = y + 1 in} (i, y + \text{dt * i})) >>>  second (init 0))
```

CCA Normal form

```
data CCNF :: * \rightarrow * \rightarrow * where
   ArrD :: (a \rightarrow b) \rightarrow CCNF a b
   LoopD :: e \rightarrow ((b,e) \rightarrow (c,e)) \rightarrow CCNF b c
instance Arrow CCNF where
   arr = ArrD
   ArrD f \gg ArrD g = ArrD (g . f)
   ArrD f >>> LoopD i g = LoopD i (g . first f)
   [...]
instance ArrowLoop CCNF where
   loop (ArrD f) = ArrD (trace f)
   loop (LoopD i f) = LoopD i (trace (juggle', f))
instance ArrowInit CCNF where init i = LoopD i swap
observe :: ArrowInit (\leadsto) \Rightarrow CCNF a b \rightarrow (a \leadsto b)
observe (ArrD f) = arr f
observe (LoopD i f) = loop (arr f >>> second (init i))
```


Normalization: performance improvements

from: Paul Liu

to: Jeremy Yallop

cc: Paul Hudak, Eric Cheng

date: 18 June 2009

I wonder if there is any way to optimize GHC's output based on your code since the CCNF is actually running slower.

Optimizing observation

```
observe :: ArrowInit (\leadsto) \Rightarrow \text{CCNF} \ a \ b \to (a \leadsto b) observe (ArrD f) = arr f observe (LoopD i f) = loop (arr f >\!\!>\!\!> second (init i))
```

Optimization opportunities

specialize to an instance

fuse the arrow operators

Specializing observe

```
newtype SF a b = SF (a \rightarrow (b, SF a b))
instance Arrow SF where
  arr f = SF h
    where h x = (f x, SF h)
  f \gg g = SF (h f g)
    where h (SF f) (SF g) x = let(y, f') = f x
                                     (z, g') = g y
                                  in (z, SF (h f' g'))
  . . .
observeSF :: CCNF a b \rightarrow SF a b
observeSF (ArrD f) = arr f
observeSF (LoopD i f) = loop (arr f >>> second (init i))
```

Optimising the specialized observe

```
observeSF (LoopD i f) = loop (arr f >>> second (init i))
observeSF (LoopD i f) = loop_{comp2} i f
  where
    arr_{swap} = arr swap
    arr_{swapf} f = arr (swap . f)
    first_{init} i = first (init i)
    comp_1 i f = arr_{swapf} f \gg (first_{init} i)
    comp_2 i f = comp_1 i f >\!\!>\!\!> arr_{swap}
    loop_{comp2} i f = loop (comp_2 i f)
```

Optimising the specialized observe

```
observeSF (LoopD i f) = loopcomp2 i f
       where
         arr_{swap} = arr swap
         arr_{swapf} f = arr (swap . f)
         . . .
rewrites to
    observeSF (LoopD i f) = loopcomp2 i f
       where
         arr_{swap} = SF hswap
         hswap(x,y) = ((y,x), SF hswap)
         arr_{swapf} f = arr (swap . f)
         . . .
```

Optimising the specialized observe

```
rewrites to
rewrites to
    . . .
rewrites to
     observeSF (LoopD i f) = loopD f i
        where
           loopD f i = SF (\lambda x \rightarrow let (a,b) = f (x,i) in
                                         (a, loopD f b))
```

combining observe and runSF (to give runCCNF)

```
observeSF (LoopD i f) = loopD f i
      where
         loopD f i = SF (\lambda x \rightarrow let (a,b) = f (x,i) in
                                         (a, loopD f b))
combined with
  runSF :: SF a b \rightarrow [a] \rightarrow [b]
  runSF (SF f) (x:xs) = let (y, g) = f x
                               in y : runSF g xs
gives
  runCCNF :: e \rightarrow ((b,e) \rightarrow (c,e)) \rightarrow [b] \rightarrow [c]
  runCCNF i f = g i
     where g i (x:xs) = let (y, i') = f (x, i)
                               in y : g i' xs
```

combining runCCNF and nth

```
runCCNF :: e \rightarrow ((b,e) \rightarrow (c,e)) \rightarrow [b] \rightarrow [c]
  runCCNF i f = g i
     where g i (x:xs) = let (y, i') = f (x, i)
                               in y : g i' xs
combined with
  nth :: [a] \rightarrow Int \rightarrow a
  (x:_) 'nth' 0
  (\_:xs) 'nth' n = xs 'nth' (n-1)
gives
  \mathtt{nthCCNF} :: \mathtt{Int} \to \mathtt{CCNF} () \mathtt{a} \to \mathtt{a}
  nthCCNF n (ArrD f) = f ()
  nthCCNF n (LoopD i f) = aux n i
     where
       aux n i = x 'seq' if n == 0 then x else aux (n-1) j
         where (x, j) = f((), i)
```

Performance improvements

