Causal commutative arrows revisited

Jeremy Yallop Hai Liu

WadlerFest
Edinburgh, April 2016

Links and web forms

Month:

Day:

let date =
formlet
<div>
Month: {input int = month}
Day: {input int = day}
</div>
yields {month, day}

Links: Web Programming Without Tiers*

Eza Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

University of Edinburgh

Abstract. Links is a programming language for web applications that generates
code for all three tiers of a web application from a single source, compiling into
JavaScript to run on the client and into SQL to run on the database. Links sup-
ports rich clients running in what has been dubbed “Ajax” style, and supports
concurrent processes with statically-typed message passing. Links is scalable in
the sense that session state is preserved in the client rather than the server, in
contrast o other approaches such as Java Servlets o PLT Scheme. Client-side
concurrency in JavaScript and transfer of computation between client and server
are both supported by translation into continuation- passing style

The Essence of Form Abstraction®

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

Abstract. Abstraction is the comerstone of high-level programy
HTML
web
ponents, leading to a lack of compasitionalit a

we show how to support compasitional form construction and
cnient syntax.

Monads vs arrows vs applicatives

return arr pure
>>= > ®
first

Monads Arrows Applicatives

Evaluators and the arrow calculus

The Arrow Calculus

San Lindley, Philip Wadler, and Jeremy Yallop

M x:AFQ!B
N=-Xx.Q: A~ B

Idioms are oblivious, arrows are meticulous,
monads are promiscuous

Sam Lindley, Philip Wadls

N-L:A~ B rAFM:A iy
R AFLeM!B :

and Jeremy Yallop

Normal forms in Haskell

class Applicative f where

pure :: o — f «
@ :: £ (a—>p)—>fa—>fp
pure (f v) = pure f ® pure v
u = pure id ® u
u® (v ® w) = pure (.) ® u ® v ® w

v ® pure x pure (AMf — f x) ® v

pure f ® c1 ® c2 ® ... ® c,

Normal forms in Haskell (continued)

data AppNF :: (x — *) — (* — *) where
Pure :: a — AppNF i «
(:®) :: AppNF i (a — B8) — i o — AppNF i f

instance Applicative (AppNF /) where

pure = Pure

Pure f ® Pure x = Pure (f x)

u ®v :®w = (Pure (.) ® u ® v) :® w

u ® Pure x = Pure (AMf — f x) ® u
promote :: Applicative i = i a — AppNF i «
promote i = Pure id :® i
observe :: Applicative i = AppNF i o — i «
observe (Pure v) = pure v

observe (f :® v) = observe f ® v

Normal forms in Haskell: example

pure f ® (pure g ® promote h)

Purg f ® (Pure g ® (Pure id :® h))
Purg f ® ((Pure (.) ® Pure g ® Pure id) :® h)
Purg f ® ((Pure ((.) g) ® Pure id) :® h)
Purg f ® (Pure (g . id) :® h)
(Puﬂe (.) ® Pure f ® Pure (g . id)) :® h

\

Pure (f . g . id) :® h

Arrows

class Arrow (~) where

pure :: (a — 8) — (a ~ pB)
(=) 1 (a~p) = (B~ = (a~7)
first :: (a~ B) = ((a,) ~ (B, 7))

f

f

f > (g >> h)

arr f >> arr g

first (arr f)

first £ >> first g

first f > second (arr g)
first £ >> arr fst

first (first f) > arr assoc

arr id > f

f > arr id

(f > g) >> h

arr (g . f)

arr (f ** id)

first (£ >> g)

second (arr g) >» first f
arr fst > f

arr assoc >>»> first f

where

second f = arr swap >> first f >> arr swap
f xx g = ANx,y) = (f x, g y)

assoc ((a, b), c) = (a, (b, c))

swap (a, b) = (b, a)

Arrow diagrams

arr
- f
=
>
f > g ——
first
first > f >

Arrow normal form

&

where

f &&&
dup a

g

(a

(Carr f1 >> c1) &&&
(Carr fo > co) &&&

>
(Carr £, >> c,) &&&
arr g

arr dup >> first f
, a)

arr
arr

arr

>=>>

—EOLH

U

id) >>
id) >

id) >

second g

Arrows: normalizing implementation

data ArrNF :: (x — * — %) — (*x — * — *) where
Arr :: (a —) — ArrNF (») a 8
Seq :: (a@—6) — (6~7) — ArrNF (») (v,a) B — ArrNF () a f

instance Arrow (ArrNF (~)) where

arr = Arr

Arr £ >> Arr g = Arr (g . f)

Arr £ >> Seq g c h = Seq (g . f) ¢

(Arr (id ** f) >> h)

Seq g c h > s = Seq g ¢ (h >> s)

first (Arr f) = Arr (f *x id)

first (Seq g c h) Seq (g . fst) c

(Arr assoc™! > first h)

(x,(y,2)) = ((x,y),2)

where assoc!

Causal Commutative Arrows and Their Optimization

Hai Liu EricCheng Paul Hudak

Department of Computer Science
Yale University
{hai.liu,eric.cheng, paul .hudak} @yale edu

Abstract

Arrows are a popular form of abstract computation. Being more
general than monads, they are more broadly applicable, and in par-
ticular are a good abstraction for signal processing and dataflow
computations. Most notably. arrows form the basis for a domain
specific language called Yampa. which has been used in a variety
of concrete applications, including animation, robotics, sound syn-
thesis, control systems, and graphical user interfaces.

1. Introduction

Consider the following recursive mathematical definition of the
exponential function:

t
e(t) =1 ’/ e(t)dt
0

In Yampa (35, 21]. a domain-specific | bedded in
Haskell [36]. we can write this using arrow syntax [32] as follows:

Programming with CCA

exp = proc () — do ¢
rec let e = 1 + i
=1
i < integral—< e e(t) T 0 e(t)dt
returndA —<e

exp :: ArrowInit (~) = () ~» Double
exp = loop (second (integral > arr (+1)) >>

arr snd > arr dup)

integral ArrowInit (~) = Double ~+ Double
integral = loop (arr (A(v, i) — i + dt * v) >>
init 0 >» arr dup)

CCA: new operators, new laws (loop)

class Arrow (~) = ArrowLoop (~») where

loop :: ((a, c) ~ (b,

loop

loop (arr f)

loop (first h > f)

loop (f >»> first h)

loop (f > arr (id ** k))
loop (loop £)

second (loop f)

»f

el

c)) — (a ~ b)

arr (trace f)
h >> loop £
loop £ > h
loop (arr (id ** k) >> f)

= loop (arr assoc™! . f . arr assoc)

loop (arr assoc . second f

. arr assoc”!)

CCA: new operators, new laws (init)

class ArrowLoop () = ArrowInit (~) where

init :: a — (a ~ a)

first £ > second g = second g >>> first f

init i **x init j = init (i,j)

CCA normal form

Y

EO,

loop (arr f >» second (init i))

exp =
loop (arr (A(x, y) =+ let i =y + 1 in
(i, y + dt * i)) >>
second (init 0))

CCA Normal form

data CCNF :: * — *x — * where
ArrD :: (a — b) — CCNF a b
LoopD :: e — ((b,e) — (c,e)) — CCNF b ¢

instance Arrow CCNF where
arr = ArrD
ArrD £ > ArrD g
ArrD £ >> LoopD i g
[...]

ArrD (g . £)
LoopD i (g . first f)

instance ArrowLoop CCNF where
loop (ArrD f) = ArrD (trace f)
loop (LoopD i f) = LoopD i (trace (juggle’ £f))

instance ArrowInit CCNF where init i = LoopD i swap
observe :: ArrowInit (~) = CCNF a b — (a ~ b)
observe (ArrD f) = arr f

observe (LoopD i f) = loop (arr f > second (init 1i))

Performance improvements

Normalization: performance improvements

from: Paul Liu
to: Jeremy Yallop
cc: Paul Hudak, Eric Cheng

date: 18 June 2009

I wonder if there is any way to optimize GHC’s
output based on your code since the CCNF is actually
running slower.

Optimizing observation

observe :: ArrowInit () = CCNF a b — (a ~ b)
observe (ArrD f) = arr f
observe (LoopD i f) = loop (arr f > second (init 1i))

Optimization opportunities

specialize to an instance fuse the arrow operators

Specializing observe

newtype SF a b = SF (a — (b, SF a b))

instance Arrow SF where
arr f = SF h
where h x = (f x, SF h)

f > g = S8F (h f g)
where h (SF f) (SF g) x = let (y, £’) = f x
(z, g’) =gy
in (z, SF (h £’ g’))
observeSF :: CCNF a b — SF a b

observeSF (ArrD f) = arr f
observeSF (LoopD i f) = loop (arr f > second (init i))

Optimising the specialized observe

observeSF (LoopD i f) = loop (arr f > second (init 1i))

observeSF (LoopD i f)

loopcomp2 1 £

where
arrgp = arr swap
Arrgyaps £ = arr (swap . f)
firstine 1 = first (init i)
compy i f = arrgups £ > (firstiye 1)
compp i £ = compi i f 3> arruem

loopcompz 1 £ = loop (compr i f)

Optimising the specialized observe

observeSF (LoopD i f) = loOpcompz i f

where
arrgyp = arr swap
AT Y syapf f = arr (SWap . f)

rewrites to

observeSF (LoopD i f) = 1loOpcompz 1 £
where
arrgap = SF hswap
hswap (x,y) = ((y,x), SF hswap)
arTrgwps £ = arr (swap . f)

Optimising the specialized observe

rewrites to
rewrites to

rewrites to

observeSF (LoopD i f) = loopD f i
where
loopD £ i = SF (Ax — let (a,b) = f (x,i) in
(a, loopD f b))

combining observe and runSF (to give runCCNF)

observeSF (LoopD i f) = loopD f i
where

loopD £ i = SF (Ax — let (a,b) = f (x,1i) in

(a, loopD f b))

combined with

runSF :: SF a b — [a]l — [b]
runSF (SF f) (x:xs) = let (y, g) = f x
in y : runSF g xs
gives
runCCNF :: e — ((b,e) — (c,e)) — [b] — [c]

runCCNF i £ = g i
where g i (x:xs) = let (y,

i’) = £ (x, 1)
in y : g i’

Xs

combining runCCNF and nth

runCCNF :: e — ((b,e) — (c,e)) — [b] — [c]
runCCNF i f = g i
where g i (x:xs) = let (y, i’) = f (x, i)

in y : g i’ xs
combined with
nth :: [a] — Int — a
(x:_) ‘nth‘ 0 = x
(_:xs) ‘mth‘ n = xs ‘nth‘ (n-1)
gives
nthCCNF :: Int — CCNF () a — a

nthCCNF n (ArrD £) = £ ()
nthCCNF n (LoopD i f) = aux n i
where
aux n i = x ‘seq‘ if n == 0 then x else aux (n-1) j
where (x, j) = £ (O, 1)

Performance improvements

nth elem exp nth n (observe exp) nthCCNF n exp

2500

2000

1500

Time (us)

1000

500 1000 1500 2000 2500

Conclusion

