Cleaning Semi-Structured Errors in Open Data
Using Large Language Models

Manuel Mondal
Université de Fribourg, Switzerland
manuel.mondal @unifr.ch

Gérdme Bovet
armasuisse W+T, Switzerland
gerome.bovet@armasuisse.ch

Abstract—Many datasets suffer from errors, rendering data
cleaning, the process of rectifying these issues, very time-
consuming. The most commonly studied errors encompass in-
accuracies in data values or labels (data errors) and issues with
data formatting that hinder parsing (structured errors). We focus
on a distinct category of errors known as Semi-Structured Errors
(SSEs), which occur when both the data values and the structure
are correct, but the values are misplaced within the structure,
requiring time-demanding and complex parsing rules (including
their exceptions) to account for them. In this work, we explore
the capabilities of Large Language Models to clean SSEs and
show promising experimental results on a public dataset of Swiss
federal law.

Index Terms—Large Language Models, In-context Learning,
Data Cleaning, Semi-Structured Errors, Open Data, Legal Data

I. INTRODUCTION

With the rise of Open Data, an increasing number of datasets
are published every day. This fast growth in available data has
led to great progress in the field of applied machine learning,
by allowing the use of increasingly complex models, such
as Large Language Models (LLMs). However, most datasets
contain multiple errors that impact a substantial subset of
the available data. The process of removing these errors, or
data cleaning, is often considered the most time-consuming
part of the data mining pipeline (see [16] and references
therein). These errors include data errors, where the values of
some elements of the dataset or their label are incorrect and
structured errors, where issues in the data formatting prevent
its parsing (for instance, missing closing tags in an XML tree).

In this work, we take particular interest in a third category
of error, named Semi-Structured Errors (SSEs). This type of
error lies between structured errors and data errors and occurs
when the structure of the data is valid, but their values, while
correct, are often misplaced in the structure (e.g., the incorrect
choice of an XML tag). SSEs are quite frequent among public
datasets, in particular in structured data, such as collections
of XML documents published by large organizations. Indeed,
these collections tend to exhibit SSEs, often as a result of
the dataset being aggregated over long periods of time, with
formatting standards evolving for new documents without

Julien Audiffren
Université de Fribourg, Switzerland
julien.audiffren @unifr.ch

Ljiljana Dolamic
armasuisse W+T, Switzerland
ljiljana.dolamic @armasuisse.ch

Philippe Cudré-Mauroux
Université de Fribourg, Switzerland
philippe.cudre-mauroux @unifr.ch

affecting prior ones and past mistakes being prohibitively dif-
ficult to correct. In consequence, querying structured content
from a dataset contaminated with SSEs is an exceedingly time-
consuming task, as each SSE may induce errors further down
the data processing pipeline, and may require a posteriori
changes to the parser, leading to many exceptions and special
cases. Moreover, this process may have to be repeated for each
new dataset or version of the same dataset, resulting in a very
high cost in human labor.

In this paper, we study the task of using automated, LLM-
based methods to address the task of cleaning SSEs, a
task named hereafter Semi-Structured Data Cleaning (SSDC).
Machine Learning algorithms, and LLMs in particular, have
shown promising results when applied to data cleaning tasks
(see [5] and references therein). For example, [3] have recently
shown that LLMs can be used to remove noise (defined
by the authors as “spelling and grammatical errors, emojis,
internet slang, and profanities”) from the data. Previous work
has also successfully applied LLMs to clean XML data: for
instance, [2] used LLMs to clean structured errors from an
XML dataset, while [10] evaluated LLMs on five data cleaning
and integration tasks, centered around data error detection.
However, to the best of our knowledge, the task of SSDC
has not been specifically addressed before, as previous work
focuses on data with structured errors.

Hence, in this work, we take particular interest in the use
of LLMs to correct SSEs, by rewriting the SSDC problem
as a text generation task. Our contributions are as follows:
we first collect a public dataset of Swiss federal law and
analyze it to highlight the numerous SSEs it contains. Then,
we explore the potential use of LLMs on SSDC and provide
a new framework to evaluate them on this task. Our chosen
approach leverages a one-shot learning prompt and thus does
not require any fine-tuning of the LLMs [4]. Finally, our
experiments show that LLMs exhibit promising performance
for the SSDC task on our dataset, but that further fine-tuning
of the process is required to fully exploit their potential.
The code for our analyses and experiments is released at
github.com/eXascaleInfolab/LLMFixer.

https://github.com/eXascaleInfolab/LLMFixer

II. SEMI-STRUCTURED DATA CLEANING
A. Problem statement

We address the task of semi-structured data cleaning
(SSDC) focusing on XML documents, but our definition can
easily be extended to further structured (or semi-structured)
data. In our setting, the dataset is made of structured docu-
ments (for instance XML trees), for which there exists an ideal
template structure. We assume that data errors and structured
errors are absent or have already been cleaned, that is to say
for each document:

1) the content is correct, i.e., the text (and values) contained
in the document, except for the structural elements, is
correct;

2) the structure is correct, in the sense that e.g., the
document is a valid XML document;

3) Semi-Structured Errors may be present. In other words,
there may be a deviation in the structure of the docu-
ments compared to the template. For instance, XML tags
may be different, or part of the content may be contained
in the wrong tags (see Section II-C for examples of such
problems we encountered in practice).

The objective of SSDC is then to fix the documents of the
dataset that are amiss compared to the template. We believe
that the SSDC is pervasive in many real-world datasets, as
data pieces are often merged from multiple sources, leading
to slight inconsistencies, or when data is manually edited.
Furthermore, the SSEs may be difficult to detect, as they
do not impair the parsing of the document. Thus, finding an
automated method to address these errors may help with the
building of pipelines to collect and process data.

Here, we choose to address the SSDC problem by refor-
mulating it as a text generation task, specifically, a sequence
to sequence problem [11]. By casting the task in this manner,
we can leverage recent advances from the field of Natural
Language Processing, and in particular Large language mod-
els, which have been shown to exhibit strong performance in
sequence to sequence tasks [14].

B. Dataset

To illustrate the SSDC problem and explore potential so-
lutions to it, we use a real-world dataset of legal texts of
Swiss federal law. The dataset is a collection of all federal acts
currently in effect in Switzerland. Each federal act consists
of one or more articles, each composed of one or more
paragraphs, which are the basic unit of legal reasoning [9].
In the legal context, the structure of an act is considered an
essential component of its content, as paragraphs refer to each
other by their number and their structure is taken into account
during systematic interpretations [15].

Our dataset was collected by downloading the XML version
of each federal act from the API of the Federal Chancellery
of Switzerland'. The (simplified) ideal structure of a federal
act is shown in Figure 1. Note that additional elements were

'SPARQL endpoint: fedlex.data.admin.ch. Queried in Nov. 2023.

<article>(1..n-times)
<paragraph> (1..m-times)
<num>{Paragraph number}</num>
<content>{Paragraph content}</content>
</paragraph>
</article>

Fig. 1. The template of a well-structured article in the Federal Law Dataset.

omitted for simplicity, such as <section>, <chapter>,
and <title> tags for grouping articles, <heading> tags
for article titles, <blockList> elements for enumerations
inside a paragraph, as well as <authorialNotes> used
for footnotes. While the extraction of the articles can be
handled by a static XML parser, the automated extraction
of individual paragraphs is only possible when the template
shown above is met. However, the collected dataset contains
multiple inconsistencies and SSEs? (see below), which may
prevent the automatic processing of articles and paragraphs,
thereby constituting an SSDC problem.

C. Semi-Structured Errors

To assess the presence of SSEs in the dataset, we performed
a repeated screening test with inspection error [6] in batches
of 20 articles. As a result, we identified the following two
categories of SSE:

a) Numbering Issues: When an article of law contains
multiple paragraphs, each of them must be numbered (e.g., us-
ing numbers, letters, Roman numerals). A properly formatted
article thus contains pairs of <num><content> elements,
the former containing a paragraph’s numbering and the latter
its textual content. Examples of numbering SSEs include
numbering schemes incompatible with this template, or the
misuse of a paragraph’s <num> element to contain other text
elements (e.g., footnotes, superscripts).

b) Text Misplacement Issues: SSEs of this family occur,
for instance, when the paragraph numbering is not separated
into a distinct structural element. Instead, it may be placed
inside the paragraph’s <content> element, a table, or a
list. Other examples include the substitution of the paragraph
structure by a blocklist or table structure.

Figure 2 shows two examples of articles with an SSE. In
both cases, the SSEs render the automatic extraction of legal
paragraphs difficult, and our repeated screening tests revealed
that 21% of the 127k articles in the dataset exhibit such errors,
which amounts to 73% of the 4593 federal acts containing at
least one article with an SSE*. While it is technically possible
to adapt a parser to account for these issues, such a parser
would need to be modified to account for each individual
possible past and future SSE in the dataset. This, in turn,

Federal law having been digitized over decades and spanning various
scopes (e.g., international treaties, federal acts, cantonal constitutions) results
in inconsistent paragraph structures.

3Note that this dataset, including its structuring issues, is used to generate
the content of the Swiss Federation’s official publication platform, as can
be visually confirmed by e.g., comparing the formatting of Art. 64 MStG
with Art. 66 MStGorsee Art. 8 Abs. 1 ALBAG

https://fedlex.data.admin.ch/en-CH/home/intro
https://www.fedlex.admin.ch/eli/cc/43/359_375_369/de#art_64
https://www.fedlex.admin.ch/eli/cc/43/359_375_369/de#art_66
https://www.fedlex.admin.ch/eli/cc/2017/645/de#art_8

<article elId="art_64">

<num>Art. 64</num>

<paragraph elId="art_64/para">
<content>
<p>1. Wenn mehrere sich {...}</p>
<p>In leichten F&llen erfolgt {...}</p>
<p>2. In Kriegszeiten kann auf {...}</p>
</content>

</paragraph>

</article>

<article eId="art_8">
<num>Art. 8</num>
<heading> Einreichungspflicht {...}</heading>
<paragraph>
<content>
<blockList>
<item>
<num>¹Die ESTV kann {...}:</num>
</item>
<item><num>a.</num><p>{...}</p></item>
<item><num>b.</num><p>{...}</p></item>
</blockList>
</content>
</paragraph>
{..00}

</article>

Fig. 2. Examples of articles with semi-structured errors (Art. 64 MStG, Art. 8
ALBAG). In the top article, the paragraphs are at the same level of separation
as a line break and their numbering is not in its own XML element, while in
the bottom article, the numbering and beginning of paragraph 1 are intertwined
with the subsequent enumeration.

may require a significant amount of human labor, both for the
detection and the correction of each error, hence motivating
the present exploration for an automated solution.

III. EXPERIMENTS

We investigate here the capabilities of LLMs to perform
SSDC on the previously built dataset of XML documents.

Models: We evaluated the performance of a total of
five models, four of which have publicly available weights.
Three small 7 billion parameter models, Llama-2-7b-chat-
hf (Llama-2-7B) [13], DeciLM-7B-instruct (DeciLM-7B) [12]
and Mistral-7B-Instruct-v0.2 (Mistral-7B) [7] were run on a lo-
cal cluster of V100-equipped machines. The mid-sized 47 bil-
lion parameter model Mixtral-8x7B-Instruct-v0.1 (Mixtral-
8x7B) [8] was queried from a hosted inference API*. Finally,
the model gpt-4-1106-preview (GPT-4 Turbo) [1] of unknown
parameter size was queried from the vendor’s API.

Prompt: We started by comparing multiple prompts on a
small validation set and selected the overall best-performing
phrasing to carry out the subsequent experiments. The fi-
nal versions of each model’s prompt can be found in the
linked repository. The prompt contains general instructions,
a problematic example with multiple SSEs, its fixed version
matching the ideal template of Figure 1, and finally, the XML
data to clean. The problematic example was built by selecting

4Hugginface Inference API: huggingface.co/docs/api-inference.
50penAl APL platform.openai.com/docs.

an article, manually verifying its validity, and introducing
one occurrence of each of the previously discussed SSE. The
resulting prompt was finally adapted to the specifications of
each model (e.g., special tokens), following the guidelines of
the respective papers or platforms.

SSDC Evaluation: We start by evaluating the perfor-
mance of the different models to address the SSEs we detected
during the analysis of the dataset (see Section II-C). Due
to the lack of an available ground truth for the different
articles, we built a synthetic evaluation dataset, in which all
error-prone samples are paired with an appropriate error-free
version. To create this dataset, we first designed automated
parsers, that filtered out all the articles having at least one of
the aforementioned SSEs (Section II-C). We then randomly
selected 200 articles that were considered without errors®.
Then, all articles were modified to exhibit one of the SSEs,
resulting in 1000 altered articles, as well as their error-free
counterpart. Each LLM was then tasked with cleaning these
articles, and their results were evaluated using four criteria:

1) ValidXML Whether the output contains a valid XML
tree, with an <article> as its root element’.
NoSSE Whether the resulting XML still contains any of
the known SSEs.

SameXML Whether the response and the ground truth
have the exact same XML tree (e.g. tag names).
SimilarText The normalized Levenshtein similarity be-
tween the text contents of the response XML tree and the
ground truth XML tree. This is computed by extracting
the textual content of each XML node in the two XML
trees and comparing the similarity of the resulting two
strings. Text similarity is particularly key in applications
on legal data, as even a mild modification (e.g., replacing
synonyms) may alter the entire meaning of a law and is
not an admissible effect of a data cleaning procedure.

To complete our analysis, we performed a manual assess-
ment of the response generated by each model on a small
test set of 10 articles for which no ground truth is available,
and which exhibit common issues and problems that may not
be captured by automated scoring functions. The objective is
to inspect the quality of the data cleaning result and identify
which issues remain after processing.

2)
3)

4)

Results

The results of our experiment, presented in Table I, show
a heterogeneity between the scores of the models among the
different metrics. On the one hand, it should be noted that
all models were able to produce valid XMLs trees in the vast
majority of cases, as shown by the high share of ValidXML.
The rare cases where this criterion is not met are generally
caused by the models either spending too many tokens of their
context on verbal comments and thus providing incomplete
answers, or not matching XML tags adequately.

%Note that only the previously detected errors are filtered out with this
method, thus additional, rarely occurring issues may have been missed.

7In case the answer contains multiple XML trees, we only consider the last
complete XML tree.

https://huggingface.co/docs/api-inference/index
https://platform.openai.com/docs/introduction

On the other hand, the behaviors of the different models
vary significantly according to the other metrics. Indeed, the
smaller models, i.e., Llama-2-7B, DeciLM-7B, and Mistral-
7B, are generally not able to repair the SSEs they are tasked
to handle, resulting in rather low NoSSE scores. Even the
larger Mixtral-8x7B model is able to clean all issues in less
than two-thirds of the samples. Conversely, the results returned
by GPT-4 Turbo appear to be SSE-free in over 93% of cases.
However, according to our manual analysis, SSE-free outputs
are not always perfect results. For instance, in some responses,
the model properly detects that paragraphs contained within
the text ought to be split into multiple elements, but creates
too many paragraphs. The resulting XML data thereby exhibits
a new type of SSE and does not match the ideal template.

Similarly, the proportion of exact matches in the tree
structure between the model’s responses and ground truth
(SameXML) is small, even for GPT-4 Turbo. By investigating
the responses, we observed two main causes for this discrep-
ancy: (i) models returning only the provided input without
modifications and (ii) the removal of elements that the models
considered secondary (e.g., footnotes, section headers, meta-
data). While the latter case can sometimes be an admissible
response (e.g., when italics are removed), it may also result
in the loss of essential legal information.

Finally, the comparison of the output and ground truth text
content strings (SimilarText) reveals that all models tend to
alter the sample’s content. As stated above, certain modifi-
cations, such as changes to the punctuation of the paragraph
numbers, are unproblematic. However, looking further into the
results, we discovered that smaller models often change terms,
translate phrases, and omit parts of sentences, which is not an
admissible output in our context. This behavior is significantly
less frequent in larger models.

ValidXML NoSSE SameXML SimilarText
Llama-2-7B [13] 0.999 0.392 0.206 0.692
DeciLM-7B [12] 0.947 0.189 0.229 0.784
Mistral-7B [7] 0.995 0.594 0.107 0.753
Mixtral-8x7B [8] 0.973 0.631 0.257 0.897
GPT-4 Turbo [1] 0.999 0.937 0.352 0.878
TABLE I

SCORES OF THE FIVE LLM MODELS ON THE SSDC TASK.

IV. CONCLUSION

While the results of our experiments are promising accord-
ing to multiple metrics, a close inspection of the results reveals
three types of incorrect answers: a result that did not fix any (or
not all) of the SSEs, an output XML tree where elements were
moved or omitted, and a response with significant changes in
the text. In particular, it should be noted that our NoSSE metric
only measures the presence of previously discussed SSEs
(Section II-C) and that the example provided in the prompt
only exhibits these SSEs, making it particularly challenging
for LLMs to handle previously unseen types of SSEs.

However, the net performances of LLMs on our task remain
promising, as for instance GPT-4 Turbo was able to fix most of
the provided SSEs. Given that none of the studied models has
been fine-tuned towards data cleaning, legal articles, or XML
in general, and that they were only provided with a one-shot
example of the task, our results highlight the potential of these
methods. It is therefore the authors’ belief that with further
training and adaptation, LLMs could be a viable tool to help
with the challenging SSDC task.

REFERENCES

[1] Josh Achiam et al. “GPT-4 Technical Report”. In: arXiv
preprint arXiv:2303.08774 (2023).

[2] Simran Arora et al. “Language Models Enable
Simple Systems for Generating Structured Views
of Heterogeneous Data Lakes”. In: arXiv preprint
arXiv:2304.09433 (2023).

[3] Quinten Bolding et al. “Ask Language Model to Clean
Your Noisy Translation Data”. In: Findings of the As-
sociation for Computational Linguistics: EMNLP 2023.

[4] Tom Brown et al. “Language models are few-shot learn-
ers”. In: Advances in neural information processing
systems 33 (2020).

[5] Pierre-Olivier Coté et al. “Data Cleaning and Machine
Learning: A Systematic Literature Review”. In: arXiv
preprint arXiv:2310.01765 (2023).

[6] Mauro Gasparini, Harald Nusser, and Jeffrey Eisele.
“Repeated screening with inspection error and no false
positive results with application to pharmaceutical pill
production”. In: Journal of the Royal Statistical Society
Series C: Applied Statistics 53.1 (2004).

[7] Albert Q Jiang et al. “Mistral 7B”. In: arXiv preprint
arXiv:2310.06825 (2023).

[8] Albert Q Jiang et al. “Mixtral of Experts”. In: arXiv
preprint arXiv:2401.04088 (2024).

[9] Ernst A Kramer. Juristische Methodenlehre. 1998.

Avanika Narayan et al. “Can Foundation Models Wran-

gle Your Data?” In: Proc. VLDB Endow. 16.4 (2022).

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Se-

quence to sequence learning with neural networks”. In:

Advances in neural information processing systems 27

(2014).

DeciAl Research Team. DeciLM-7B. 2023. URL: https:

/Mhuggingface.co/Deci/DeciLM-7B.

Hugo Touvron et al. “Llama 2: Open foundation

and fine-tuned chat models”. In: arXiv preprint

arXiv:2307.09288 (2023).

Ashish Vaswani et al. “Attention is all you need”. In:

Advances in neural information processing systems 30

(2017).

Rolf Wank. “Juristische Methodenlehre: eine Anleitung

fiir Wissenschaft und Praxis”. In: Academia Iuris

(2020).

Steven Euijong Whang et al. “Data collection and

quality challenges in deep learning: A data-centric ai

perspective”. In: The VLDB Journal 32.4 (2023).

https://huggingface.co/Deci/DeciLM-7B
https://huggingface.co/Deci/DeciLM-7B

	Introduction
	Semi-Structured Data Cleaning
	Problem statement
	Dataset
	Semi-Structured Errors

	Experiments
	Conclusion

