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Abstract
Human interaction with machines can be made easy, comfortable, and accessible by introducing user-friendly 
interfaces. In the case of wearable devices, their sensors and other interfacing elements are very well within the 
proximity of users. Since biopotential signals can be accessed from the surface of the human skin, users can have 
seamless interaction with wearable human-computer interactive devices. Rigid interfaces can hinder the user 
experience, and therefore, the need for soft biopotential interfaces is important. Imperceptible and unobtrusive soft 
biopotential interfaces will drastically enhance many aspects of human-computer interaction. This paper reviews 
the use of soft, flexible, and stretchable biopotential interfaces in wearable human-machine interactive devices. 
Additionally, attention is brought to the scope of other possible applications of soft biopotential interfaces in 
wearable devices.

Keywords: Biopotential, soft interface, wearable, interface, human-machine interface (HMI), human-computer 
interaction (HCI)

INTRODUCTION
Human-machine interface (HMI), in layman’s terms, is an interactive system designed to allow 
communication between humans and machines[1]. Since the dawn of human-computer interaction (HCI) 
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technologies, it was evident that HMI technology would have to adapt and evolve to improve its usability[2]. 
Eventually, wearable devices with HCI capabilities were introduced to the world, and considering human 
aspects such as physical, cognitive, and emotional characteristics of these devices is essential during their 
development[3]. Refining designs, configurations, and ergonomics of rigid wearable devices for HCI 
technologies would not be enough to enhance the user experience. Therefore, using soft and advanced 
engineering materials is crucial for making HMIs more competent and up to par to pass as a mode of 
communication in wearable HCI devices[4].

With the constant progress in health and lifestyle technologies, there has been an uprising in wearable 
devices and the features they can offer[5-9]. Wearable devices are essential tools for HCI technologies that can 
record individual biological and neural activities through close contact with human skin[10]. All kinds of 
physical and mental activities in the human body generate electrical potentials, called biopotentials, that 
provide colossal amounts of information, which can be used for various applications, such as health 
monitoring and controlling electronic devices[11-16]. For instance, neural activities in the brain can be 
recorded, analyzed, and used for various purposes. Motor actions that are intention-based, such as walking 
or moving arms, can be monitored in the form of neural activities in the brain. Similarly, when sensory 
inputs are perceived in the brain, such as touch or taste, the associated neural activities can be observed in 
the brain. The most common technique for non-invasive brain recording is electroencephalography 
(EEG)[17]. Although EEG allows the recording of neuronal activity non-invasively, it is difficult to isolate and 
record specific areas of the brain[18]. Neural signals from the brain travel in the human body and branch out 
to different areas through the nervous system. Similarly, the sensory inputs from the body are sent to the 
brain via these nervous systems. Apart from EEG, electromyogram (EMG), electrocardiograph (ECG), and 
electrooculogram (EOG) signals are the major biopotential signals that can be acquired using non-invasive 
interfaces[19]. Other than acquiring data from these signals, non-invasive interfaces can also perform 
stimulation-based applications for specific rehabilitation purposes[20-22].

Wearable devices can utilize biopotential signals, such as EMG (from muscular activity) and EOG (from eye 
movement), for delivering intention-based output signals to allow applications such as gesture control, end-
effector manipulation, and prosthesis. Unintentional or autonomous biopotential signals, such as ECG 
(from heartbeats), can allow for health monitoring applications. In HCI, such information is valuable in 
various industries, including medical healthcare, assistive robotics, lifestyle, and more. Figure 1 illustrates 
the possible HCI applications that can be controlled via wearable soft biopotential interfaces. Figure 2 
illustrates the advantages of using biopotential signals for wearable devices.

The most widely accepted and used interfaces for recording biopotentials are silver/silver-chloride (Ag/
AgCl) electrodes[23]. These electrodes are the gold standard for conducting tests and research in the medical 
and bioinstrumentation industry[24]. Their performance has been constantly under study, and their 
parameters are well-defined, displaying remarkable consistency[25]. However, Ag/AgCl electrodes, due to 
their use of electrolyte gel, cannot be used for the long term, which is an important consideration for 
producing convenient wearable devices. Moreover, the materials used have a short life cycle. Other issues, 
such as inelasticity, obtrusiveness, and non-reusability, make them unfit for integration with wearable HCI 
devices[26-28]. Figure 3 shows the basic Ag/AgCl biopotential electrode and its electrical circuit model while 
interfacing with the skin. A usable biopotential signal is generally acquired by amplifying the surface 
recording by an electrode interface. Figure 4 shows a schematic for surface EMG (sEMG) biopotential signal 
acquisition.
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Figure 1. A graphical representation of the possible wearable HCI applications controlled via wearable soft biopotential interfaces. HCI: 
Human-computer interaction.

Integrating interfaces and sensors into wearable HCI devices requires embedding soft and advanced 
materials. Soft materials can improve the physical attributes of these electrode interfaces, such as 
conformability, safety, size, attachment, adaptability, efficiency, accuracy, and ergonomics, among others, 
while advanced engineering materials can improve conductivity, reliability, stability, and more. These 
attributes address some of the limitations of current technology[29-31]. Recent progress in areas such as soft 
material designs[32], nanomaterials[33], stretchable electronics[34-37], energy harvesting[38,39], and wireless 
communication[40,41] has shown promising results in improving the wearability and portability of wearable 
HCI devices.

Kwon et al. developed a fully equipped soft biopotential EMG wearable device that consists of a stretchable 
serpentine-designed interface and embedded bioelectronics[42]. Their work displayed excellent EMG 
recording capabilities by using machine learning algorithms and also demonstrated real-time wireless 
control of other devices. 3D printing technologies have opened up a new realm of possibilities by allowing 
rapid prototyping of soft interface structures and enabling supplication-specific designing[43-45]. Zhu et al. 
have successfully demonstrated the direct printing of biomedical devices on live human organs by using an 
adaptive 3D printing approach[46]. If such innovative methodologies are applied to the development of soft 
biopotential interfaces, the HCI capabilities of wearable devices can reach possibilities that are currently 
beyond our comprehension.

The paper reviews some recent works in soft biopotential electrode interfaces and discussion of their 
abilities with regard to wearability and possible HCI applications. For this study, we separate the four 
primary biopotential signal interfaces (EMG, EEG, ECG, and EOG) into their main sections and survey 
different types of soft electrode/interface technologies developed in the sub-sections. Each biopotential 
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Figure 2. Advantages of biopotential signals for wearable devices.

interface technique will be briefly explained in terms of its working methodology, its use, and the limitations 
of current technology. Finally, each sub-section will discuss recent works and their possible applications.

Soft electromyography interfaces
Electromyography (EMG) signals are biological signals generated from the electrical activities in the 
muscles. EMG recording is used as a technique that provides indirect information on muscle activity and 
even muscle condition[47-49]. sEMG is one of the most utilized muscle interface methods since it is non-
invasive. Due to the reliability of this method to acquire bio-signals while being completely non-invasive, it 
has been extensively studied for decades[50].

Ag/AgCl electrodes are the norm for analyzing biopotential signals non-invasively. However, while these 
Ag/AgCl electrodes have been used in several professional industries, such as medicine and bio-
instrumentation, they hold an unimpressive share in the wearable device sector. To pass as a viable 
biopotential interface in wearable devices, using soft materials along with unique designs show great 
potential in shaping some of the newer sEMG interfaces. On the other hand, using soft materials can affect 
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Figure 3. Conventional disposable Ag/AgCl biopotential electrode interface and its circuit equivalent model. Ehc: Half-cell potential of 
electrode. Cd: capacitance of double layer in the electrode/electrolyte interface. Rd: resistance of double layer in the 
electrode/electrolyte interface. Rg: resistance in the electrolyte. Ese: potential drop from the ionic concentration difference between 
stratum corneum and electrolyte. Ce and Re: capacitance and resistance of the epidermis impedance, respectively. Ru: resistance 
representing dermis layers.

Figure 4. Biopotential signal measurement schematic representation. Zin is the input impedance of an amplifier. Vin is the voltage 
difference.

the conductivity of the sEMG interface, which inherently determines the quality of the output signal. 
Although recent advances in stretchable and flexible materials satisfy the mechanical requirements that are 
needed in wearable devices for HCI, it is equally important for these soft interfaces to exhibit competitive 
electrical performance. Figure 5 showcases different types of soft sEMG interfaces. Using soft materials 
along with unique designs has proved to be of great potential in shaping some of the newer sEMG interfaces 
to become more user-friendly and comply with the requirements needed in wearable devices for HMI.
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Figure 5. EMG (A) Gel-free flexible HDsEMG electrode array. Reproduced with permission from Murphy et al.[52]. Copyright 2020 
WILEY�VCH Verlag GmbH & Co. KGaA, Weinheim (B) Stretchable and flexible hydrographic-printing-based EMG electrode[57]. (C) 
Textile-based stretchable and flexible wearable EMG electrode interface. Reprinted (adapted) with permission from Huang et al.[59]. 
Copyright 2021 American Chemical Society. (D) Flexible Microneedle biopotential electrode array[60].

Flexible EMG interface
One of the critical features required for an sEMG interface to operate as a sensor on a wearable device is 
flexibility. Besides that, durability, biocompatibility, and size are some factors that are necessary as well.

The SLIP (Sub-Liner Interface for Prosthetics) electrode developed by Yeon et al. is a prime example of a 
flexible sEMG interface with HMI capabilities[51]. This sEMG was fabricated using polyimide film as the base 
substrate, with gold as the electrode material. The thickness of this electrode is around 80-100 μm. Since this 
electrode is developed using flexible PCB manufacturing techniques, it has good reproducibility. The group 
successfully demonstrated the human-machine interaction of the SLIP electrode by performing clinical 
trials on humans with lower-extremity amputation. While demonstrating walking using a prosthetic limb, it 
was found that the flexibility and sleek design of the electrode played a vital part in comfortable signal 
acquisition.

Another example of a flexible sEMG interface is the high-density sEMG (HDsEMG) electrode developed by 
Murphy et al.[52]. This sEMG interface is particularly interesting, showcasing a high-density and gel-free 
flexible electrode, a fitting candidate for wearable devices. It was fabricated using titanium carbide 
(Ti3c2Tx) Mxene encapsulated in Parylene-C. This electrode has demonstrated some desired characteristics 
such as decent skin conformability, hydrophilic surface terminations, excellent conductivity, low interfacial 
impedance, flexibility, and being around 8 μm thick with 16 recording channels. Since it is gel-free, unlike 
the Ag/AgCl electrodes, it has the potential to perform as a sensor in wearable devices. This array-based 
sEMG electrode can eventually support multiple wearable applications, as already demonstrated by the 
group. In Driscoll et al., with slight changes to the fabrication process, a similar MXene-based bioelectronic 
interface was developed[53]. Here, they not only performed high-fidelity biopotential signal recording but 
also demonstrated the stimulation capability through in-vivo experiments.
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Soft-stretchable EMG interface
Human skin has a low modulus, making it stretchable and flexible[54]. Skin can also be dry and uneven, 
which adds some non-contact points between the electrode and the skin, resulting in insufficient coverage 
over the sensing area, lower resolution, and loss of reliable data[55]. Although flexible sEMG electrodes can 
bend, their inability to stretch and precisely conform to the surface of the skin can affect their performance. 
Therefore, it is important for the interfacing electrode to adapt to the constant stretching movement it is 
subjected to when attached to the surface of the skin.

Stretchable sEMG interfaces are sometimes called “e-skin” due to their ability to stretch akin to skin. Yu et 
al. developed a stretchable sEMG electrode using inkjet-printing technology using multiple custom-
developed nanomaterial inks[56]. Although this sensor can sense multiple signals, we focus on its bio-signal 
acquisition and wearability performance. This stretchable interface uses PDMS as the base substrate and 
demonstrates high stretchability and good mechanical compliance. In addition, this inkjet-printed, four-
channel, three-electrode, and serpentine-structured sEMG array electrode has the capability to recognize 
certain hand gestures after applying various machine learning algorithms. It has a wide range of wearable 
HMI applications, such as gesture-controlled IoT devices or robotic limbs.

Another type of stretchable and flexible sEMG electrode developed by Zeng et al. uses a hydrographic 
printing technique[57]. This technique allows the electrode to be directly transferred onto the skin, 
resembling an artificial tattoo. Since the electrode is essentially printed on the skin, the skin acts as an 
efficient stretchable natural substrate. In terms of recording sEMG signals, this electrode matched the 
performance of an Ag/AgCl electrode. When it comes to wearability, this electrode shows high 
conformability and long-term usage. The electrode is gel-free, which gives it an upper hand compared to the 
commercial electrodes, and upon detachment, it does not leave any distinctive marks, such as redness or 
swelling.

Textile-based EMG interface
Integrating sensor technology with existing clothing can enhance the user-friendly aspect of wearable 
devices. Apart from the physical aspect, such as wearability and comfortability, it improves the 
psychological aspect of wearable devices[58]. Since wearing clothes is a daily activity, built-in textile-based 
sEMG sensors can go unnoticed by the user, hence reducing the consciousness of wearing sensors.

A stretchable and flexible nanofiber carbon film-sensing electrode is developed by Huang and Chiu, which 
can perform EMG and ECG monitoring[59]. We focus on the EMG part. This textile-based EMG interface 
uses carbon as its conductive material, giving it an upper edge compared to metal-based conductive fabrics. 
This particular EMG interface has some excellent wearable parameters that can seamlessly blend into 
clothing, such as chemical resistance, washability, good skin contact, and wear resistance. Their experiments 
demonstrated various EMG applications, such as recording signals of upper and lower limb movement and 
finger movements. Such wearable EMG technology can provide multiple functions and applications ranging 
from healthcare monitoring to HMI applications such as gesture-controlled devices. This textile-based 
electrode could be used for long-term usage compared to Ag/AgCl.

Soft microneedle EMG interface
Microneedle EMG interfaces are not entirely non-invasive but can still be implanted on the skin without 
surgical techniques. In addition, microneedle EMGs have benefits over sEMG electrodes in acquiring more 
accurate biosignals. This is due to the micro-needle-like structures penetrating the skin and effectively 
reducing the impedance.
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A polyimide-based microneedle array (MNA) developed by Li et al. is a soft EMG interface that can record 
high-quality biopotential signals[60]. Apart from excellent electrode-skin contact, using flexible material to 
fabricate this electrode allows it to have features such as long-term-wearability, bio-compatibility, and 
inexpensive manufacturing. The performance of this flexible MNA is noteworthy in terms of wearability 
aspects which were demonstrated through clinical studies. The electrode was used for long periods of time 
(8 hours/night for 44 nights) by multiple healthy subjects for the sleep-monitoring type of data 
accumulation. This successful study proved that these electrodes have the potential to substitute 
conventional clinical standard Ag/AgCl wet electrodes. Upon repeatedly penetrating the MNA electrode in 
the skin up to 100 times, no fractures were observed on the skin, and no inflammation or any other 
reactions were noticed. Some slight penetration marks are seen upon electrode detachment from the skin; 
however, they tend to fade within hours.

Since microneedle EMGs can provide better quality signals compared to sEMG, their use can be extended to 
a wide range of wearable applications where near-accurate EMG signals can be beneficial.

Soft electroencephalogram interfaces
Numerous neurons in the brain are responsible for generating, transmitting, and processing mysterious 
electrophysiological signals[61]. Electroencephalogram (EEG) indicates recorded neural activities on the scalp 
surface. Although the resolution limitation of EEG, this non-invasive method of recording brain activities 
enables various applications, such as monitoring mental conditions and controlling machines. To effectively 
identify the recorded weak biopotentials, most of the EEG interfaces follow an international standard for 
electrode placement known as the 10-20 system[62]. By acquiring EEG signals, the brain can interact directly 
with the outside world without the intervention of the peripheral nervous system[63-65].

Generally, BCIs are implemented for various applications, including acquiring and amplifying signals, 
extracting and classifying features, controlling signals, and providing feedback[66-68]. These types of interfaces 
are categorized into invasive and non-invasive branches based on signal acquisition methods or contact 
between the electrode on the scalp of the patient[69]

Among the non-invasive techniques such as magnetoencephalography (MEG), near-infrared spectroscopy 
(NIRS), magnetic resonance imaging (MRI), functional MRI (fMRI), and EEG, EEG is considered one of 
the most non-invasive, realistic, and practical BCIs[70].

Due to the advantages of the EEG technique compared to other signals, such as direct measuring the 
cerebral activity, high-resolution mobility (1 ms) for use in clinical settings, ease and portability to clinical 
use, long-term stability, and adapting to multiple experimental paradigms, it is commonly used for 
measuring signals of different brain activities[71,72].

These types of non-invasive BCIs have been divided into wet, dry, and semi-dry electrodes according to the 
issue of whether the conductive gel is required for the electrode or not. However, it is important to note that 
most dry electrodes have unacceptably high contact impedances, while wet electrodes require lengthy setups 
and conductive pastes or gels to be used. Hence, semi-dry electrodes have been invented as a 3rd type of 
electrode to moderate the disadvantages of the two previous groups. Figure 6 shows a variety of flexible, 
semi-dry, and soft EEG interfaces. In the following, each type of electrode with its pros and cons will be 
addressed.
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Figure 6. Flexible dry and semi-dry electrodes: (A) Silver-coated polymer conductive bristles dry electrode instead. Reproduced with 
permission[81]. Copyright 2011, the Authors. Published by IOP Publishing. (B) Schematic diagram of assembled screen-printed flexible 
Ag/AgCl electrode array. Reproduced with permission[83]. Copyright 2020, the Authors. Published by IOP Publishing. (C) Photo and 
schematic diagram of a single semi-dry electrode including porous ceramic pillars (a), a built-in reservoir (b), 3.5% saline solution (c), 
and sintered Ag/AgCl electrode (d). Reproduced with permission[86]. Copyright 2016, Elsevier. (D) Hollow cylinder electrode consisting 
of a PVC shell, infiltrated normal saline, and an AgPMS contact and assembled EEG electrode. Reproduced under the terms of an ACS 
AuthorChoice License[78]. Copyright 2019, Copyright American Chemical Society. (E) Diagram illustrating a semi-dry electrode that 
expels the hydrating agent. Manufactured polyurethane electrodes. Reproduced with permission[77]. Copyright 2013, Elsevier. EEG: 
electroencephalography;

Wet flexible EEG interface
In literature, this kind of electrode requires electrolytic substances to improve the conductivity of the scalp-
electrode. In the commercial stage, these electrodes are composed of Ag/ AgCl disk and an infiltration 
substance, i.e., conductive gel, which contains electrochemical potential stability and infiltration ability. Due 
to the advantages mentioned above, wet electrodes are currently prevalently used.

However, a list of drawbacks exists that should be considered and solved. One of the common problems is 
the time-consuming procedure of cleaning up and controlling the amount of conductive gel for each 
electrode point. Another critical issue is reducing the moisturizing level of gel during the experiment, which 
results in poor EEG signal quality as an increasing impedance[73].

To mitigate these problems, dry and semi-dry electrodes were suggested.

Dry flexible EEG interface
Dry flexible electrodes are leveraged to overcome the inconvenience and unstable recording conditions of 
wet electrodes, as mentioned before. Indeed, dry electrodes make dry connections with skin that do not 
require conductive gel or any skin preparation and are desirable for portable and wearable electronic 
devices[74-76]. However, in addition to these benefits, dry electrodes have several drawbacks, including the fact 
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that they are bulkier, more costly, and more prone to movement aberrations because there is no liquid 
contact[77].

Due to the lack of humid and electrolyte media in dry electrodes, an array of structural designs is 
implemented for improving the contact area, including the spongy[78], nanowire[79,80], microtip, and variable 
structural designs, or achieving highly flexible and stretchable structures and deformable conductors.

A wide range of brain-computer interactions can be performed using flexible dry EEG electrodes, as 
described by Grozea et al.[81], including recording alpha rhythms in the occipital region, testing event-related 
potentials using an oddball auditory paradigm, and implementing sensory-motor rhythms-based event-
related desynchronization paradigms. The electrode was made by coating thin polymer bristles with silver-
based conductive ink. Its bristles almost flex as easily as those in toothbrushes, and it is hard enough to pass 
through hair and reach the surface.

Compared to gel-based electrodes, the bristle sensors produced almost the same signal in the recorded 
frequency range between 7 to 44 Hz. Furthermore, it maintained mechanical and electrical contact, which is 
recommended for long-term usability. Compared to both gel-based electrodes and arrays of pin electrodes, 
this electrode demonstrated excellent comfortability.

To overcome the drawbacks of wet electrodes, a novel flexible dry electrode was proposed by Wang et al., 
which did not need any conductive gel and skin preparation[82]. This PDMS-based flexible electrode with 
pins structure indicated superior contact impedance compared to a standard wet electrode without skin 
preparation, while it was higher than that with a skin preparation. This flexible dry electrode is safer and 
more comfortable and can meet the requirement of high-quality EEG measurement.

Furthermore, Li et al. fabricated a unique flexible Ag/AgCl dry electrode array with a sweat-absorbable 
sponge for frontal EEG monitoring[83]. This coating exhibited exceptional non-polarizability and adhesion 
performance. Sweat absorption can be substantially aided by the sponge. Furthermore, it uses sweat as the 
electrolyte, effectively eliminating the risk of cross-interference or short circuits while lowering the contact 
impedance. All of the findings supported the viability of forehead EEG recording. Forehead EEG recording 
techniques make wearability more accessible. Golparvar et al. developed a graphene-based e-textile interface 
that can record brain waves[84]. This graphene-based textile EEG interface is made with a Dip-Dry-Reduce 
method. The main materials used are hydrophilic nylon textile and graphene oxide solution. The reliability 
of this wearable device was demonstrated by comparing it with commercial dry electrodes in EEG recording 
experiments. Another wearable e-textile EEG recording device developed by Carneiro et al. contains 11 
electrodes for interfacing with the forehead site and an electronic circuit for signal processing[85]. Their 
design and fabrication process allows this soft latex-based interface to have two open sites, one to contact 
the epidermis and the other to allow connection with the electronics. The inclusion of the electronics system 
along with Lithium-Polymer batteries allows 24 hours of operation time, which is favorable for wearable 
device applications. For a variety of EEG recording and monitoring applications, flexible dry electrodes 
provide quick setup, user-friendliness, self-application, and wearer comfort. In general, the flexible dry 
electrodes presented rapid setup, user-friendliness, self-application, and wearer comfort for various 
applications of EEG recording and monitoring.

Semi-dry soft EEG interface
Several non-invasive electrode types, such as spring-like, porous, or sponge-like structures, and materials 
consisting of elastomers and hydrogels are known as semi-dry or quasi-dry electrodes[86-88].
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The self-storage and gradual release of electrolytes make this type of electrode stand out from wet and dry 
electrodes[89]. Indeed, Semi-dry electrodes release electrolytes at a slower pace than wet electrode types, 
depending on the particular structural design or substance. Therefore, this value will have an impact on 
preserving low contact impedance and preventing short-circuit interference between electrodes. Despite 
these advantages, large-scale manufacture is limited due to specific structural designs or particular materials.

Furthermore, regarding the usage of soft materials, the mechanical mismatch between electrodes and the 
human scalp is low[90]. As a result, semi-dry electrodes are advised for prolonged therapeutic usage, 
including sleep monitoring and rehabilitative treatment[91].

In 2019, Lin et al. reported a type of Gel-Free EEG Electrode with a high conductivity of 917 S/m due to the 
surface metallization by the silver nanowires (AgNWs). Compared to the conventional electrodes that 
contained conductive gel, the new electrode showed almost the same steady-state visual evoked potential 
(SSVEP) as that of the conventional one. In conclusion, the cost-effectiveness, simplicity of manufacture, 
flexibility, robustness, relatively low electrode-skin impedance, and mechanical stability of this electrode 
were its main strengths.

In addition, Li et al. proposed innovative passive semi-dry electrodes for recording EEG data from the hairy 
scalp. This ceramic-based electrode was able to attain a low and stable impedance and an SSVEP paradigm. 
Due to the capillary force through porous ceramic pillars, a regulated amount of saline solution could be 
released, which eliminates skin preparation and gel application. EEG signals were consistent, and electrode 
polarization voltage demonstrated a steady state that was similar to commercial gel-based Ag/AgCl 
electrodes. Semi-dry electrodes were applied to real-world practical EEG applications, such as brain-
computer interfaces and wearable technology.

A quasi-dry electrode for EEG is fabricated by Mota et al.[77]. This polymer-based electrode was able to 
discharge 30 μl of a hydrating agent, which decreased the volume of gel needed to simply cover the contact 
sites of electrodes. The obtained legitimate EEG signals were comparable to those of commercial Ag/AgCl 
reference electrodes, demonstrating the suitability of electrodes for BCI applications.

Soft ECG interfaces
ECG is a non-invasive technique used for obtaining data on the electrical activity of a heart through small 
electrical changes caused by the continuous depolarization-repolarization cycle of the cardiac muscle[92]. In 
layman’s terms, an ECG signal is the recording of the electrical activity of the heart. This technique provides 
information on the autonomic nervous system responsible for the electrical activity of the heart[93,94]. An 
ECG signal has multiple waves that represent the specific state of the heart during a heartbeat cycle. This 
signal or wave is called the PQRST wave, where P indicates atrial contractions, QRS indicates ventricle 
contraction, and T indicates ventricle expansion[95]. Abnormalities in PQRST intervals can indicate heart-
related problems. ECG recordings have been extensively used in the medical field to record or monitor the 
electrical activity of the heart in patients[96]. Abnormalities in ECG readings have proven to be essential for 
medical experts to determine the health condition of the patient[97].

Since ECG is mostly used for health monitoring, factors such as long-term usage, high stability, and stable 
attachment to the epidermal layer are of great importance and should be considered when developing 
wearable devices. Ag/AgCl electrodes are the industry standard for recording ECG signals, but they lack the 
wearability aspects mentioned in the previous section.
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ECG monitoring can play a vital role as a wearable device. With the increased awareness of physical health 
and lifestyle maintenance, keeping track of the everyday performance of the body has become a necessity[98]. 
Many wearable technologies, such as smartwatches and fitness bands, already include heart-rate monitoring 
systems; however, most of these technologies have a different method for detecting these biopotential 
compared to the traditional ECG technique[99,100]. These devices generally use photoplethysmography (PPG) 
optical sensors that detect the change in blood volume during a cardiac cycle. These wearable devices have 
effectively shown impressive results as wearable heart-rate monitoring technology[101]. However, the PQRST 
wave cannot be precisely determined by this method, and a lot of vital data can go unmonitored. To record 
such delicate information, the ECG interfacing device should be placed on the skin. The inclusion of soft 
ECG interfaces can provide critical information in applications where detailed and accurate heart activity 
readings are needed to detect cardiac abnormalities in a subject under intensive care[102].

Flexible and Stretchable ECG interfaces
Inspired by the adhesion mechanism of the gecko’s feet and the advanced nanomaterials, these ECG 
electrodes developed by Kim et al. drastically improve the adhesion force on the skin while eliminating the 
need for an electrolyte gel[103]. The electrode is manufactured using materials such as PDMS and carbon-
based nanofillers and is patterned in a carefully fabricated mold. This mushroom-shaped micropillar array 
electrode also exhibits flexibility and stretchability ( > 100%) while satisfying the electrical parameters. To 
add to its advantages, this bioinspired ECG electrode has a superhydrophobic surface that allows it to work 
when immersed underwater and also makes it prone to turning into a dusty surface. This property allows 
the electrode to be cleaned by simply washing it, allowing reusability up to a limit. Various experiments 
were carried out to demonstrate the unique properties of this electrode, such as adhesivity and 
superhydrophobicity.

Figure 7A shows the gecko-inspired ECG interface. Such bioinspired ECG electrode interfaces have benefits 
over traditional ECG electrodes. The ability to adequately perform while being immersed in water and not 
lose conformal contact while doing so is impressive. Moreover, when the user is in motion, the ECG 
readings can still facilitate meaningful data in real time, thus displaying great stability.

Wearable textile-based ECG interfaces
Since health-monitoring wearable devices are meant to deal with extended periods of usage, apart from 
being imperceptive, it is also necessary to record and deliver data accurately in case of different motions it 
may be subjected to. Isolating motion artifacts can help provide reliable data, enhancing the reliability of 
wearable ECG devices. Wearable textile-based dry electrodes are favorable for such long-term applications. 
However, other factors, such as washability and retainment of signal quality, are necessary for such a type of 
soft electrode.

A poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) textile-based ECG electrode 
developed by Ankhili et al. is a wearable type of interface that can be washed and re-used[104]. The textile 
material used in this electrode is a polyamide textile fabric that absorbs a modified version of the 
PEDOT:PSS solution during its fabrication. This electrode was able to deliver ECG signals even after 
multiple washing cycles. However, it was found out in an experiment that after 50 washes, even though the 
ECG signals can be clearly monitored, a significant drop in can be seen in the signal-to-noise-ratio (SNR) 
values. The loss of SNR was inculpated by the fact that after washing the electrode, PEDOT:PSS was lost. 
Two samples of these interfaces were developed with two PEDOT:PSS solutions that had different 
viscosities (termed S1 and S2). Figure 7B shows the textile-based electrode interface and the effect on the 
textile-based ECG electrodes produced with solutions S1 and S2 after multiple washes.
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Figure 7. Soft ECG Electrode Interfaces: (A) Highly stretchable and conductive gecko-inspired dry ECG electrode. Reprinted (adapted) 
with permission from Taehoon Kim et al.[103]. Copyright 2016 American Chemical Society. (B) Washable textile-based ECG electrode 
interface (top) and SEM images of the washable PEDOT:PSS electrodes coated by S1 and S2 solutions (bottom) (a) S1 sample before 
washing; (b) S1 sample after 50 washes; (c) S2 sample before washing; (d) S2 sample after 50 washes[104].

Integrating soft sensors in clothing is a promising method for long-term monitoring applications. With 
significant efforts put into textile-based ECG interfaces, a stable and reliable wearable garment-type device 
can be developed to assist with athlete performance in real-time or patient health monitoring in real-time 
without discomfort.

Soft electrooculography interfaces
Electrooculography (EOG) is a technique used for recording the corneal-retinal potential difference[105-107]. 
EOG interfaces can allow effective communication for people with severe motor disabilities[108,109]. EOG has 
also seen its use in some of the newer HCI virtual reality systems wherein the user can navigate through a 
virtual environment using eye movements[110,111]. Using soft technology to develop EOG electrodes can 
improve their wearability. Since these types of electrodes are attached to the face of the user, being thin and 
transparent can enhance the user experience.

Flexible and Stretchable EOG interfaces
This EOG electrode developed by Won et al. is fabricated using a plant-based bioplastic - polylactic acid 
(PLA) and PEDOT:PSS[112]. The conductive element, PEDOT:PSS is sandwiched between two substrate PLA 
layers. These materials make the interface soft, transparent, conductive, and biocompatible. Using 
fabrication techniques such as spin coating and laser cutting, thin Y-shaped kirigami patterned voids are 
created, which allow not only multidirectional stretchability and high areal coverage but also breathability. 
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The fabrication process also allows rapid and scalable fabrication since it eliminates the use of time-
consuming chemical-dependent patterning and etching processes generally used in microfabrication. Since 
there are no sacrificial layers, this soft device can be easily peeled off from the substrate. To accommodate 
external electrical contact, gold was deposited and used as a contact pad on PEDOT:PSS. The group also 
demonstrates the human-machine interaction capability of the interface by integrating it with a signal 
processing unit and switching various electric devices on and off by eye movements of the user wearing the 
soft electrode interface. Figure 8A shows images of the soft EOG interface showcasing the Kirigami 
structure and all its soft properties.

Since EOG interfacing is performed on the facial area of the body, transparency or imperceptibility becomes 
an important consideration when designing soft EOG interfaces. Ameri et al. developed a non-invasive 
graphene electronic tattoo (GET) type of EOG interface[113]. This imperceptible interface has highly desirable 
features such as breathability and transparency while being ultrasoft, as seen in Figure 8B. Additionally, the 
thickness of this GET EOG interface is 350 nanometers - making it ultrathin and allowing 85% optical 
transparency. This graphene-based interface is also capable of maintaining conformal contact with the skin 
without any adhesive. Lastly, the group demonstrates its functionality by controlling a quadcopter with eye 
movements.

There is evident scope for wearable applications using such soft EOG interface technology. Apart from 
controlling tangible devices in the real world, this type of interface has shown its practicality in controlling 
graphical user interfaces (GUI) in virtual reality environments[114]. Allowing the user to operate and navigate 
through a virtual environment using just eye movements can heighten the user experience. On the other 
hand, there might be certain limitations since eye movements can cause fatigue to the user.

Some soft EOG interfaces have also been used in sleep monitoring by integrating them into a sleeping 
mask[115,116]. However, users may feel discomfort wearing such masks during sleep and might prefer 
alternative methods of sleep tracking if needed. However, in some use cases, such technology can benefit 
patients who require sleep-tracking data that can provide useful insights to a medical expert to provide 
correct medical advice.

Innovative strategies for improved wearable soft interfaces
Soft biopotential interfaces in wearable devices can benefit from technologies such as soft electronics and 
optimized energy systems. Since wearable devices require a portable energy source to operate, most systems 
use battery systems. These battery systems face limitations when scaled down in size and can make the 
system bulky. Innovative strategies, such as energy harvesting systems and self-powered systems, have been 
integrated into these soft biopotential interface technologies to enhance wearability.

Li et al. developed a poly(vinylidene fluoride) (PVDF)-based self-powered wireless flexible wearable device 
that helps in overcoming the limitations of the battery system in wearable devices[117]. Apart from displaying 
high stretchability (1,500% of its original length), this PVDF-ionogel device has the ability to convert 
external pressure into electricity, which enables it to power itself. The electricity generated by this 
piezoelectric property is enough to charge a 4.7 μF 50 V capacitor to 0.7 V within 225 seconds. Although 
this device was used to measure different body movements, the inclusion of self-powered technology 
enhances its wearability aspect. The inclusion of such technology in soft biopotential interfaces can improve 
long-term usage in health monitoring.
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Figure 8. (A) Soft EOG interface with Y-shaped Kirigami motifs showcasing properties such as flexibility, stretchability, and 
transparency. Reprinted (adapted) with permission from Won et al.[112] Copyright 2021 American Chemical Society. (B) Imperceptible 
electrooculography graphene electronic tattoo. Reprinted (adapted) with permission from Ameri et al.[113]. Copyright 2018 Springer 
Nature. EOG: electrooculogram.

Since biopotential interfaces are vastly used in healthcare and health monitoring areas, a slight imprecision 
in the electronic reading can result in an inaccurate diagnosis of the health of users. Stretchable devices 
containing electronics often have limited strain capabilities so as to not compromise the electronic 
performance. Wang et al., along with Bao. Z., developed a strain-insensitive intrinsically stretchable 
transistor array[118]. The stretchable device was fabricated using an all-elastomer process for applying local 
stiffness using styrene-ethylene-butylene-styrene (SEBS) as the main material. The device achieved stable 
electrical performance even under large strains. This property allows stretchable devices to have mechanical 
flexibility without compromising electrical stability. In soft biopotential interfaces, introducing such 
technology can make signal recording more precise and accurate. Figure 9A shows PVDF-ionogel self-
powered soft and wearable device, and Figure 9B shows the strain-insensitive intrinsically stretchable 
transistor array under strain.

Utilizing biopotential signals for an application sometimes requires massive computational post-processing 
and techniques such as machine learning. Fatayerji et al. investigate the performance of two supervised 
machine learning algorithms - the k-Nearest Neighbor (KNN) technique and the Support Vector Machine 
(SVM) technique, for hand gesture detection with sEMG signals[119]. Before these techniques are applied, the 
sEMG signal is first acquired and processed, followed by feature extraction. The required characteristics are 
highlighted by the feature extraction for recognizing the hand gesture from the obtained sEMG data. The 
experiments consisted of five participants performing six hand gestures, which were repeated 30 times for 
six seconds each. The six hand gestures and the SVM graph are shown in Figure 9C. These extracted 
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Figure 9. (A) Schematic of the PVDF-ionogel self-powered wearable device and the output voltages due to bending (above). Reprinted 
(adapted) with permission from Li et al.[117]. Copyright 2023 American Chemical Society. (B) Images of transistor array under the 
original and stretched states (above). Optical microscopic images of one transistor in the array under 0% and 100% global strain 
(below). Reprinted (adapted) with permission from Wang et al.[118]. Copyright 2021 Springer Nature. (C) The six hand gestures 
performed by the participants (above) and the support vector machine graph (below). Reprinted (adapted) with permission from 
Fatayerji et al.[119]. Copyright 2023 Springer Nature Switzerland AG. (D) AgNWs-D-sorbitol-WPU (ADW) sEMG enabled lip-reading 
system and the machine learning-assisted sEMG signal processing along with its application (below). Reprinted (adapted) with 
permission from Dong et al.[120]. Copyright 2023 Wiley-VCH GmbH. PVDF: poly(vinylidene fluoride).
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features from 180 sEMG signals from every subject undergo KNN and SVM techniques. After applying 
these two techniques to the mined feature set, it was concluded that SVM showed a better overall accuracy 
score of 97.3%, while KNN was 91.6%. This suggests that applications requiring hand gesture recognition 
can utilize SVM classifiers as they have significant results in comparison to KNN.

Innovation is not only limited to the development of the interface but also its application. Dong et al. 
developed a self-adhesive, semi-transparent dry electrode that is specifically used for lip-reading by utilizing 
sEMG biopotential signals from the facial muscle movement[120]. Machine learning algorithms are applied in 
the processing, enabling the EMG signals to be converted into audible words, as shown in Figure 9D. Such 
applications can be extremely useful in the medical and healthcare industry as it enhances patient-medic 
communication. Moreover, the use of facial EMG can allow immersive interaction in a virtual world as well.

When direct comparisons are made to the standard Ag/AgCl electrode interface, the performance of these 
soft biopotential sensors has shown comparable or even better results. For instance, low skin-electrode 
contact impedance is an important factor for biopotential interfaces attached to the epidermal layer of the 
skin for recording signals. The flexible sEMG electrode by Zeng et al. was fabricated using hydrographic 
printing and showed an impedance value of around 10 KΩ at 500 Hz, whereas the traditional electrode 
interface had a value of around 14 KΩ at 500 Hz. Moreover, at lower frequencies, the flexible interface 
showed significantly lower impedance. Additionally, the SNR values Li et al. reported were comparable 
between their semi-dry EEG interface and conventional ‘wet’ EEG electrodes. Both devices showed SNR 
values of around 7 dB in the eyes open/close paradigm experiment. In other SSVEP paradigms, the semi-dry 
electrode interface performed slightly better. The Gecko-inspired dry ECG electrode displayed its adhesion 
capability by achieving over 30 cycles of adhesion to the skin. Moreover, the adhesion force was comparable 
to those of wet adhesive, -1.3 N/cm2. Qualitative analysis is made between traditional and soft biopotential 
interfaces concerning their wearability aspect, as shown in Table 1.

Neuromuscular stimulation with wearable non-invasive soft interfaces
Recording biopotential signals using skin-contact surface interfaces has a vast range of applications. Apart 
from recording biopotential signals, there are applications where the stimulation of nerves is required for 
rehabilitation purposes[121,122]. Non-invasive functional electrical stimulation (FES) can provide a pathway for 
non-surgical solutions for brain and nerve stimulation. Moreover, such wearable electroceuticals can allow 
for therapeutic electrostimulations without the limitations of invasive techniques.

Ohm et al. developed a soft hydrogel-based interface and performed neuromuscular electrical 
stimulation[123]. The group stimulated the tibialis anterior muscle of the leg and observed angular movement 
at the ankle. The Ag-hydrogel interface performed better than the ionic hydrogel, as seen in Figure 10A. 
Additionally, the performance of the Ag-hydrogel electrode interface was comparable to the commercial 
electrodes. Similar experiments were repeated on the forearm muscles. With characteristics such as 
stretchability, biocompatibility, and high electrical conductivity, such a soft muscle-stimulating interface has 
the potential to replace conventional interfaces in the future.

Peripheral nerve stimulation (PNS) by using non-invasive methods has also been studied[124]. By using high-
frequency sine-wave carriers, Botzanowski et al.. showed that it is possible to temporally interfere at deep 
peripheral nerve targets. Temporal interference nerve stimulation (TINS) delivers effective outputs at a 
lower current than standard transcutaneous electrical stimulation. As seen in Figure 10B, this flexible 
PEDOT:PSS interface can non-invasively evoke a PNS response. Invasive methods are generally used to 
achieve better selectivity, and therefore, implantable electrodes are favored for PNS. However, this non-
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Table 1. Qualitative performance comparison of traditional vs. soft biopotential interfaces w.r.t. wearable devices requirement

Interface type Type Conformability Stretchability or 
flexibility

Period of 
usage

Electrolyte 
Gel Bulkiness Signal 

quality

Ag/AgCl Electrode 
Interface

Low Absent Short Present Medium High

Soft Interface EMG High Present Long Absent Low High

EEG Average Present Long Semi Average Average

ECG High Present Long Absent Low High

EOG High Present Long Absent Low High

invasive interface uses high-frequency signals to perform efficient stimulation and is comparable to invasive 
methods.

Wang et al. developed a self-powered multichannel epimysial electrode interface to directly stimulate the 
muscle[125]. The self-powered system is based on triboelectric nanogenerator (TENG) technology, as seen in 
Figure 10C. With in-vivo experiments, the stimulation efficiency and stability are investigated for this 
TENG-based stimulator. This work shows the potential for wearable stimulators that eliminate the need for 
equipment such as waveform generators and power supplies.

CONCLUSION AND OUTLOOK
Non-invasive biopotential recording techniques, such as EMG, EEG, ECG, and EOG, play a crucial part in 
establishing valuable communication between users and machines. Since most of these biopotential signals 
are recorded non-invasively and require skin contact, several possibilities for wearable device applications 
emerge. Some of the aforementioned soft biopotential interface technologies have already successfully 
demonstrated human-machine interaction by controlling certain mechatronic devices. To achieve the full 
potential of a soft biopotential interface, extensive study is required in the sector of advanced materials, 
energy technology, and signal processing. Several limitations and challenges are still present in the current 
soft biopotential interface technologies that prohibit their immediate adoption in consumer devices. Even 
though soft interfaces allow miniaturization and improve conformability, their integration with 
conventional solid-structured electronics that are required for signal processing act as a barrier to achieving 
complete softness and flexibility of the device. With various soft materials and structural designs, another 
challenge that soft interfaces face is standardizing to the industry-ready parameters often leads to ineffective 
large-scale production. Another major issue to be considered is that human skin is constantly subjected to 
tiny wear and tear, leaving almost scars and cuts on the surface of the skin that might be invisible to the 
naked eye. This phenomenon can cause several issues, such as irritation, infection due to material type, loss 
of adhesion, and inefficiency in healing.

Further development of soft biopotential interfaces to accommodate practical wearable HMI applications is 
required. Along with soft interfaces, efforts should be made towards minimizing the footprint of signal 
processing units and energy storage units. Renewable energy and energy harvesting technologies can be 
involved in powering these untethered bio-interfaces. Wireless technology can help enable communication 
between the interface and its processing system and, in some cases, even provide power for operation. 
Besides health monitoring, signal recording, and data accumulation, more research should be carried out 
with soft non-invasive interfaces for FES, which can, in a way, provide bidirectional (recording and 
stimulation) applications in cases of physical rehabilitation.
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Figure 10. (A) Electrically conductive Ag-polyacrylamide-alginate hydrogel composite used for neuromuscular stimulation of lower and 
upper limbs. Reprinted (adapted) with permission from Ohm et al..[123] Copyright 2021 Springer Nature Limited. (B) Non-invasive 
stimulation of peripheral nerves of a mouse using temporally interfering electrical fields from a flexible PEDOT:PSS electrode interface. 
Reprinted (adapted) with permission from Botzanowski et al.[124]. Copyright 2022 Wiley�VCH GmbH. (C) Electrical muscle stimulation 
directly delivered by TENG for rehabilitation purposes. Reprinted (adapted) with permission from Wang et al.[125]. Copyright 2019 
WILEY�VCH Verlag GmbH & Co. KGaA, Weinheim. PEDOT:PSS: poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; TENG: 
triboelectric nanogenerator.
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Soft biopotential or neural implants have also been researched for many years. For such invasive technology 
to penetrate the wearable device market will require extraordinary endeavors towards the biocompatibility, 
biodegradability, and user-acceptance aspects. Discovering methods to implant soft electrodes and 
interfaces directly inside a user using minimum-to-no surgical techniques can lead to much more intricate, 
precise, and useful HCI applications.

Lastly, it is definite that the inclusion of soft biopotential electrode interfaces while developing HCI 
technologies can provide more options for wearable device applications that are sustainable, credible, and 
effective. To eliminate the need for Ag/AgCl electrodes completely, more efforts will focus on standardizing 
the characteristic parameters of soft biopotential interfaces and scaling their manufacturability to the 
industry level. The fast-paced and promising growth towards these soft biopotential interfaces does assure 
one thing - “getting used to” the rigid and bulky wearable devices is a phenomenon that our future 
generations will never have to experience.
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