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Abstract. Over the past years, Artificial Neural Networks (ANNs) have
achieved remarkable results for a variety of applications in Machine
Learning (ML) models, including Recommender Systems (RS). The se-
lection of the activation function, weight initialization method and train-
ing epochs number in ANNs has a major effect on the training phase
and the task performance, while directly affecting the convergence of a
network. Thereafter, in this work, we carry out the hyper-parameters
tuning of a ML RS which utilizes an ANN, called CATA++. We have
performed tuning of the activation function, weight initialization and
training epochs of CATA++ in order to improve both training and per-
formance. During the experiments, a variety of state-of-the-art activation
functions have been tested: ReLU, LeakyReLU, ELU, SineReLU, GELU,
Mish, Swish and Flatten-T Swish. Additionally, various weight initializ-
ers have been tested, such as: XavierGlorot, Orthogonal, He, Lecun, etc.
Moreover, we ran experiments with different epochs number from 10 to
150. We have used data from CiteULike and AMiner Citation Network.
The recorded metrics (Recall, nDCG) indicate that hyper-parameters
tuning can reduce notably the necessary training time, while the recom-
mendation performance is significantly improved (up to +44.2% Recall).

Keywords: Hyper-parameters tuning· Artificial neural networks· Ac-
tivation function· Weight initialization· Training epochs· Recommender
systems

1 Introduction

Recently, hyper-parameters (HP) tuning of Deep Neural Networks (DNN) has
emerged as an important topic. DNN performance, however, is known to be
highly sensitive to the HP setting; deep learning researchers often spend long
hours trying to tune HP.
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The activation function is an important component of neural networks be-
cause they turn an otherwise linear classifier into a non-linear one, which has
proven key to the high performances witnessed across a wide range of tasks in
recent years. While different activation functions seem equivalent on a theoreti-
cal level, they often show very diverse behavior in practice. Moreover, they are
characterized by a variety of properties, such as ones relating to their derivatives,
monotonicity, and whether their range is finite or not [17].

A proper initialization of the weights in an ANN is critical to its conver-
gence [18]. The weights of a network are initialized and then adjusted repeatedly
while training the network, till the loss converges to a minimum value and an
ideal weight matrix is obtained. Thus, weight initialization directly drives the
convergence of a network; the training is accelerated and performance is im-
proved [20].

The training epochs is a form of HP which plays an integral part in the
training process of a model [21]. The weights initialized in the beginning will be
subject to change when the next cycle of the same dataset simulation (epoch)
takes place. The epoch optimization mainly consists of two problems, namely
under-fitting and over-fitting.

In this work we aim to optimize the above-mentioned HP of the neural net-
work utilized in a RS called CATA++: A Collaborative Dual Attentive Auto-
encoder Method for Recommending Scientific Articles [1]. A variety of state-of-
the-art activation functions have been tested: ReLU, LeakyReLU, ELU, GELU,
SineReLU, Mish, Swish and Flatten-T Swish (FTS). Additionally, various weight
initializers have been tested, such as: XavierGlorot Normal and XavierGlorot
Uniform, Orthogonal, HeNormal and HeUniform, Lecun Normal and Lecun Uni-
form, VarianceScaling, RandomNormal, RandomUniform, Identity, Ones and
Zeros. Moreover, we have run experiments with different numbers of training
epochs in the range [10,150].

The remainder of this paper is organized in the following order. Firstly, all
related work is presented in Section 2. Secondly, the essential preliminaries and
theoretical background are explained in Section 3. Next, our experimental results
are demonstrated thoroughly in Section 4. In Section 5, we discuss about the
experimental results and the discovered good practices for HP tuning. Lastly, in
Section 6 we conclude this work and discuss related future work directions.

2 Related work

There are numerous scientific publications and ongoing research in the subject of
HP tuning in order to improve ANNs performance. The aim of HP optimization
is to choose the HP values that return the best results in the validation phase.

To begin with, Alfarhood and Cheng [1] introduce a Collaborative Dual At-
tentive Autoencoder (CATA++) RS method that utilizes an item’s content and
learns its latent space via two parallel autoencoders. They employ the attention
mechanism in the middle of the autoencoders to capture the most significant seg-
ments of contextual information, which leads to a better representation of the
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items in the latent space. They have utilized Matrix Factorization and Collab-
orative Filtering in order to improve the recommendation performance. In this
work we use extensively the CATA++ RS for our experiments. We have chosen
to use CATA++ because it outperformed other RS, as described in [1] and in
experiments we have run (due to space limitation can’t include them here).

Moreover, lots of research on selection and comparison of activation functions
has been conducted in [19], [22], [23] and [24] since it has been proved as one
of the most valuable HP in ANNs. Afaq and Rao [21] state that the number of
epochs is a form of HP which plays an integral part in the training process of a
model and prove the significance of epochs on ANN training. Neary [25] tried to
implement an automatic algorithm for HP tuning in Deep Convolutional Neu-
ral Networks. Li et al [26] presented parallel ways of tuning more than one HP
simultaneously, by introducing a simple and robust HP optimization algorithm
called ASHA (Asynchronous Successive Halving Algorithm), which exploits par-
allelism and aggressive early-stopping. For HP optimization of general machine
learning problems, numerous automated solutions have been developed; some of
the most popular solutions are based on Bayesian Optimization [27], [28].

Motivated by the ideas in the above-mentioned related work and the lack of
optimization for some HP in CATA++, here we aim to tune them and optimize
its recommendation performance.

3 Background

Major gains have been recently made in RS due to advances in deep neural
networks. However, choosing the proper network architecture for a given problem
is still a struggle in deep learning. In the rest of Section 3 we analyze the different
choices for each HP we wish to tune in the CATA++ model.

3.1 Activation Functions

Activation functions play a key role in neural networks; therefore it becomes fun-
damental to understand their advantages and disadvantages in order to achieve
reduced training time and better recommendation performance.

Rectifier Linear Unit (ReLU) It is the standard activation function, widely
used since it was introduced by Nair and Hinton in 2010 [4], due to its positive
impact on different ML tasks. The ReLU activation function has the form:

relu(x) = max(0, x) (1)

Pedamonti in [5] states that ReLU comes with the aim to solve the vanishing
gradient and exploding gradient problems: while using Sigmoid and working on
shallower layers doesn’t give any problem, some issues arise when the architec-
ture becomes deeper because the derivative terms that are less than 1 will be
multiplied by each other many times that the values will become smaller and
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smaller until the gradient tends towards zero (vanishing). On the other hand,
if the values are bigger than 1 then the opposite happens, with numbers being
multiplied becoming bigger and bigger until they tend to infinity and explode
the gradient. A good solution would be to keep the values to 1, so even when
they are multiplied, they don’t change. This is exactly what ReLU does: it has
gradient 1 for positive inputs and 0 for negative ones. The fact that the gra-
dient is zero might be seen as an issue at first, but it actually helps to make
the network sparse, keeping the useful links. Sparsity helps to keep the network
less dense and decreases the computation, however once the gradient is zero the
corresponding nodes don’t have any influence on the network anymore, so they
can’t contribute to the improvement of the learning. In short, ReLU treats all
negative values as unimportant representation. Consequently, Deep Neural Net-
works have not been benefited from the negative representations. This is called
the "dying ReLU problem" and gave origin to many variants of the ReLU, which
are trying to solve this issue.

Leaky-ReLU (LReLU) was introduced by Maas et al. [6] and it is an improved
version of the ReLU function, where for negative values of x, instead of defining
the ReLU value as zero, it is defined as extremely small linear component of x.
It can be expressed mathematically as:

lrelu(x) = ax, if x < 0 and lrelu(x) = x, if x ≥ 0 (2)

To overcome the "dying ReLU problem", an alpha parameter (usually α ∈
[0.01, 0.1]) has been added which is indeed the "leak", so the gradient will be
small but not zero. This parameter makes the gradient more robust for opti-
mization since now the weight will be adjusted for those nodes that were not
active with ReLU. After some performance tests, we selected α = 0.1 for our
tuning experiments.

Exponential Linear Unit (ELU) [7] is another variant of ReLU which is
given as:

elu(x) = a · (exp(x)− 1), if x ≤ 0 and elu(x) = x, if x > 0 (3)

The ELU HP α controls the value to which an ELU saturates for negative
net inputs. The vanishing gradient problem is alleviated because the positive
part of these functions is the identity, therefore their derivative is one.

SineReLU [8] is probably the newest variant of ReLU, which is also trying
to solve the "dying ReLU problem" that appears when x < 0. SineReLU is
described mathematically as:

sinerelu(x) = ε·(sin(x)−cos(x)), if x ≤ 0 and sinerelu(x) = x, if x > 0 (4)

Since SineReLU is a sinusoidal wave when x ≤ 0, it is a differentiable func-
tion for all input values of x. Also, ε works as a HP, used to control the wave
amplitude; there are some default values to be used, usually ε ∈ [0.002, 0.025].
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Gaussian Error Linear Unit (GELU) is another variant of ReLU proposed
by Hendrycks and Gimpel [9], where they state that GELU is x·Φ(x), where Φ(x)
is the standard Gaussian cumulative distribution function. It can be expressed
as:

gelu(x) = x · 1
2

[
1 + erf

(
x√
2

)]
(5)

Mish [10] is a novel, smooth and non-monotonic neural activation function,
which can be defined as:

mish(x) = x · tanh(softplus(x)), where: softplus(x) = ln(1 + ex) (6)

Misra [10] states that the properties of Mish, like being unbounded above,
bounded below, smooth and non-monotonic, all play a significant role in the
improvement of the performance.

Swish is a relatively new activation function introduced by Ramachandran et
al. [11] which can be expressed mathematically as:

swish(x) = x · sigmoid(x), where: sigmoid(x) = (1 + exp(−x))−1 (7)

Flatten-T Swish (FTS) [12] Despite the fact that ReLU has been popular,
its hard zero property has been heavily hindering the negative values from prop-
agating through the network. Chieng et al. [12] proposed FTS that leverages
the benefit of the negative values. To construct the FTS activation function,
multiply the linear identity part of the original ReLU function (when x ≥ 0)
with the Sigmoid activation function. So, the idea can be expressed by FTS(x)
= ReLU(x) * Sigmoid(x) + T, or:

fts(x) = x/(1 + e−x) + T, if x ≥ 0 and fts(x) = T, if x < 0 (8)

The default value of T = 0, but usually is set to be less than zero (T < 0) in
order to benefit the network with the representations in the negative form.

3.2 Weight Initialization

This section covers various weight initialization techniques that determine the
algorithm by which weights are initially selected for a neural network. We have
used various state-of-the-art weight initialization algorithms, that are available
online, in the official Keras library3.

Glorot and Bengio [13] have examined the effect of different HP on training
and have also studied the propagation of gradients. The authors commented that
3 https://keras.io/api/layers/initializers/
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the variance of the gradients decreases during backpropagation. An initialization
strategy was proposed where the network is initialized with weights from uni-
form random distribution in a specified range and are later scaled by a scaling
factor, which depends on the number of neurons in the previous layer. In our
experiments we test both versions: Glorot-Normal (Gaussian distribution) and
Glorot-Uniform (Uniform distribution). In the remainder of this article these
initializations are referred as GloN and GloU, respectively.

He et al. [14] have modified the scaling factor for weights given by Glorot
and Bengio [13] to consider the rectifier non-linearities. This proposed method
worked well for the ReLU activation function. Also, a comparison with the weight
initialization technique proposed by Glorot and Bengio [13] for a 22-layer model
was described. The results have shown that this method performed well, even
as the network layers were increased. In this work we test both versions: He-
Normal (Gaussian distribution) and He-Uniform (Uniform distribution). These
initializations are referred as HeN and HeU, respectively.

Orthogonal weight initialization [15] is a new class of random orthogonal in-
itial conditions on weights that, like unsupervised pre-training, enjoys depth in-
dependent learning times. Also, these initial conditions lead to faithful propaga-
tion of gradients even in deep nonlinear networks. Moreover, Lecun Normal and
Lecun Uniform [16] (referred as LecN and LecU respectively) have been used
during our experiments.

Finally, we have experimented with some of the weight initialization classes
implemented in the Keras library: Random-Normal, Random-Uniform, Identity,
Zeros, Ones. However, these classes are not included in this work because of their
significantly poor overall performance.

4 Experiments

In this section, we will try to optimize a neural network by performing HP tuning
in order to obtain a high-performing model of CATA++4. In the experiments
we use different CATA++ versions by changing: activation function, weight ini-
tialization and epochs number. We compare the results of the tuned-CATA++
against the default CATA++ (the paper’s original version: ReLU-150 epochs).
We have used PyCharm Professional IDE, Tensorflow and Keras libraries to run
our experiments, and Matplotlib, which is a graph plotting library in python,
that serves as a data visualization utility.

4.1 Datasets

In this work, two scientific article datasets are used for experiments. The first
dataset, called citeulike-a, was gathered from the CiteULike website which is
currently unavailable. CiteULike was a web service that let users create their
own library of academic publications. Thus, the user-article interaction data

4 Code available at https://www.github.com/jianlin-cheng/CATA
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came from users that bookmarked the articles they liked. Tags are single-word
keywords generated by users when they add an article to their library.

Secondly, experiments were conducted using the DBLP-Citation-network-
V13 (2021-05-14)5 from AMiner [2] available at the time of authoring this work,
consisting of 5,354,309 papers and 48,227,950 citation relationships. Using this
enormous dataset and executing the algorithms for data preprocessing described
in [3], we created three datasets and the necessary input files for CATA++.

In reality, data sparsity is one of the real problems facing RS. Data sparsity
for the datasets is calculated based on the user-item interaction. The datasets
we used with their characteristics are described in Table 1.

Table 1. Datasets

dataset #users #items #tags #sparsity Recommendation type (item)
citeulike-a 5,551 16,980 7,386 99.78% Scientific publications
dblp13_collection1 6,959 27,025 6,137 99.95% Scientific publications
dblp13_venues 14,687 2,389 7,187 99.92% Publication venues
dblp13_people 16,213 21,630 8,144 99.99% People (collaboration)

4.2 Evaluation Metrics

The evaluation of our experiments is accomplished using two metrics: Recall
& normalized Discounted Cumulative Gain (nDCG). Recall (Sensitivity or True
Positive Rate) is the number of relevant documents retrieved by a search divided
by the total number of existing relevant documents and can be computed as:

recall@K =
|Test Articles ∩ K Recommended Articles|

|Test Articles|
(9)

However, Recall does not measure the ranking quality within the top-K list.
Therefore, nDCG is used to show the ability of a model to recommend articles
at the upper part of the recommendation list. nDCG is computed as:

nDCG@K =
1

|U |

|U |∑
u=1

DCG@K

IDCG@K
(10)

where:

DCG@K =

K∑
i=1

α(i)

log2(i+ 1)
(11)

IDCG@K =

min(R,K)∑
i=1

1

log2(i+ 1)
(12)

5 https://www.aminer.cn/citation
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Where U refers to the users number, i is the article rank, R is the number
of relevant articles and α(i) is a variable that takes the value of 1 if the article
is relevant, and 0 otherwise.

4.3 CiteULike experiments in recommendation of scientific
publications

Firstly, using the citeulike-a dataset we ran experiments with the default param-
eters of CATA++, followed by experiments where different weight initialization
techniques where used. During this first experimental phase no other HP was
modified. The observed Recall results are recorded in Table 2, where we can
compare the performance of the different weight initializers used in the tuned
CATA++, to the Default CATA++ performance. We present the Recall values
for a different number of recommendations, from K=10 to K=300. The best
performance for each column (number K) is highlighted. As someone can realize
from Table 2, the best performance is recorded when we are using CATA++
with Glorot-Uniform or He-Normal weight initializations; for the case of K=300,
the achieved Recall performance for CATA++ with He-Normal is more than 2%
improved.

Table 2. Recall performance @K= 10, 50, 100, 150, 200, 250, 300 recommendations

Weight Init 10 50 100 150 200 250 300
GlorotN 0.0399 0.1245 0.1848 0.2275 0.2606 0.2876 0.3111
GlorotU 0.0415 0.1277 0.1905 0.2339 0.2675 0.2945 0.318
Orthogonal 0.041 0.1265 0.188 0.2309 0.2638 0.2902 0.3129
HeNormal 0.0408 0.1284 0.1917 0.2351 0.2696 0.2963 0.3198
HeUniform 0.0403 0.1264 0.1873 0.2302 0.2637 0.2905 0.3137
LecunN 0.0402 0.1265 0.1886 0.2321 0.2655 0.2922 0.3153
LecunU 0.0399 0.1257 0.1875 0.2309 0.2645 0.2918 0.3153
VarianceScaling 0.0379 0.1221 0.1834 0.2272 0.2603 0.2879 0.311
Default CATA++ 0.0409 0.1274 0.1892 0.2318 0.2655 0.2936 0.3134

In Fig. 1 we can see the Recall performance of Default CATA++ and the
best weight initialization variants: CATA++ with GlorotU and CATA++ with
HeNormal. The performance is similar due to the relatively small size and spar-
sity of the dataset, compared to the other datasets we used. The only difference
in performance comes up when we increase the number of recommendations over
250. Similar results are observed for the nDCG metric; all results are shown in
Table 3.

In the second experimental phase we tested the range [10,150] of training
epochs number for each activation function. The results are surprising, as most
of the newest activation functions perform really well with much fewer training
epochs than ReLU (default activation for CATA++) which needs 150 training
epochs. For example, as can be seen in Fig. 2, the Swish activation records the
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optimum Recall performance at 60 epochs only. We observe this fast learning
because Swish is one of the activations that permits the negative values to influ-
ence the network training, so they contribute to the improvement of the learning
phase (confronting the "dying ReLU problem").

Fig. 1. Top weight init. Fig. 2. Effect of training epochs

The full Recall results for all tested activations in CATA++ and for K=300
recommendations, are presented in Table 4. The best performance for each acti-
vation is highlighted. In Table 4, we can see that Swish, Mish, GELU, SineReLU,
ELU and LeakyReLU perform best for a number of epochs in the range [40,80],
as they all utilize the negative values to influence the network training. On the
contrary, FTS and ReLU need 150 epochs to achieve their best score (due to
the "dying ReLU problem"). The slow training of FTS (150 epochs) was ex-
pected, because we used the default value of T = 0; so the representations in
the negative form could not benefit the network’s training. Therefore, the top 3
recorded performances on Recall @K=300 are: FTS-150, ReLU-150, GELU-40
& SineReLU-60 (both at 3rd position).

After the above-mentioned experiments with citeulike-a, we have created
seven tuned versions of CATA++: one version for each activation, along with
the most suitable weight initialization and number of epochs. The HP of these
seven tuned-CATA++ models are presented in Table 5; xx is the epochs number
in the [40,80] range.

4.4 AMiner Citation Network experiments

In the present section we continue the experiments with the datasets created by
AMiner, in order to further tune the versions of CATA++ described in Table 5.

Recommendation of scientific publications Using the dblp13_collection1
and tuned-CATA++ as a RS for scientific publications we ran the tests of Ta-
ble 6. The best performance for each K (column in Table 6) is highlighted. We
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Table 3. nDCG performance @K= 10, 50, 100, 150, 200, 250, 300 recommendations

Weight Init 10 50 100 150 200 250 300
GlorotN 0.0905 0.111 0.1338 0.15 0.163 0.1734 0.1822
GlorotU 0.0948 0.1145 0.1381 0.1547 0.1678 0.1782 0.1871
Orthogonal 0.0932 0.1137 0.1368 0.1531 0.1659 0.1761 0.1846
HeNormal 0.0935 0.1146 0.1385 0.1549 0.168 0.1786 0.1874
HeUniform 0.0922 0.1129 0.1357 0.1519 0.1649 0.1752 0.1839
LecunN 0.0926 0.1131 0.1365 0.1531 0.1661 0.1764 0.1851
LecunU 0.0917 0.1123 0.1356 0.1522 0.1653 0.1758 0.1847
VarianceScaling 0.0884 0.1088 0.1322 0.1485 0.1616 0.1719 0.1808
Default CATA++ 0.0933 0.1139 0.1372 0.1537 0.1669 0.1773 0.186

ran many tests in order to select the training epoch number for each model ver-
sion. In Table 6, each version is recorded with the epochs number that provided
the best Recall. Therefore, the top 3 recorded performances on Recall@K=300
are: SReLU-heN-20, Mish-heN-20 and GELU-gloU-40. We can note here that
SineReLU and Mish have recorded their best performance at only 20 epochs
of training. We had similar results regarding nDCG for the different CATA++
versions, but due to space limitations we can’t include them here.

Recommendation of publishing venues The same experiments for the tuned
CATA++ versions and the default one, were executed with the dblp13_venues
dataset to recommend publishing venues. The Recall performance for all alter-
natives is presented in Table 7. The nDCG results are similar, so they are not
presented here due to article’s length limitation. Therefore, the top 3 recorded
performances on Recall @K=300 are: LReLU-heN-80, SReLU-heN-40 and Mish-
heN-20.

Recommendation of people (collaboration RS) Finally, the same exper-
iments for the tuned CATA++ versions and the default one, were executed
with the dblp13_people dataset to recommend researchers for collaboration.
The Recall performance for all the alternatives is presented in Table 8. The
nDCG results are similar, so they are not presented here due to article’s length
limitation. Therefore, the top 3 recorded performances on Recall @K=300 are:
FTS-heN-150, LReLU-heN-80, SReLU-heN-60 and ELU-gloU-60 (both at 3rd
position).

In Fig. 3 (paper RS), Fig. 4 (venue RS) and Fig. 5 (people RS) we present
the performance of the top-3 variants compared to default CATA++. As some-
one can see, there is a significant difference in Recall performance to default
CATA++, as HeN and GloU offer better results in these bigger datasets with in-
creased sparsity (compared to citeulike-a) and at the same time SReLU, LReLU,
Mish, GELU and ELU use the negative values in order to improve the network’s
training. Also, FTS benefits from HeN initialization and outperforms all other
activations in Fig. 5.
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Table 4. Recall performance for the tested activation @K=300 (citeulike-a dataset)

Activation vs Epochs 10 20 40 60 80 100 120 150
FTS 0.2898 0.2907 0.2926 0.3069 0.31 0.314 0.3144 0.3196
Swish 0.286 0.2871 0.2951 0.3001 0.2959 0.285 0.2846 0.2835
Mish 0.284 0.2907 0.2963 0.297 0.2984 0.293 0.2922 0.2913
GELU 0.2995 0.301 0.3019 0.3001 0.3014 0.2952 0.2941 0.2933
SineReLU 0.2892 0.2933 0.2975 0.3018 0.2994 0.2981 0.297 0.2952
ELU 0.2865 0.2901 0.2925 0.2916 0.2892 0.2873 0.286 0.2846
LeakyReLU 0.2918 0.293 0.2941 0.2953 0.3012 0.2946 0.2893 0.2887
ReLU (default) 0.2843 0.2898 0.3031 0.3049 0.3087 0.3098 0.3101 0.3134

Table 5. The hyper-tuned versions of CATA++

CATA++ Version activation weight init. training epochs
FTS-heN-150 Flatten-T Swish He-Normal 150
Swish-gloU-xx Swish Glorot-Uniform 40-80
Mish-heN-xx Mish He-Normal 40-80
GELU-gloU-xx GELU Glorot-Uniform 40-80
SReLU-heN-xx SineReLU He-Normal 40-80
ELU-gloU-xx ELU Glorot-Uniform 40-80
LReLU-heN-xx LeakyReLU He-Normal 40-80

Table 6. Recall performance for the different CATA++ versions (Paper RS)

CATA++ Version 10 50 100 150 200 250 300
FTS-heN-150 0.0582 0.1429 0.189 0.2203 0.2461 0.2664 0.2837
Swish-gloU-60 0.0719 0.1757 0.2301 0.2659 0.2921 0.3144 0.3325
Mish-heN-20 0.1135 0.2393 0.2995 0.3368 0.364 0.386 0.4045
GELU-gloU-40 0.0724 0.1767 0.2329 0.2707 0.2985 0.3223 0.3417
SReLU-heN-20 0.1144 0.2391 0.2995 0.3379 0.3656 0.3884 0.407
ELU-gloU-40 0.0582 0.1559 0.2107 0.2475 0.2758 0.2975 0.3163
LReLU-heN-80 0.0454 0.1303 0.1805 0.2134 0.2384 0.26 0.2783
Default CATA++ 0.0495 0.1338 0.1832 0.2166 0.2431 0.2643 0.2823

Table 7. Recall performance for the different CATA++ versions (Venue RS)

CATA++ Version 10 50 100 150 200 250 300
FTS-heN-150 0.2375 0.45 0.5389 0.585 0.6159 0.6393 0.6578
Swish-gloU-40 0.2247 0.4497 0.54 0.5916 0.6237 0.6485 0.6689
Mish-heN-20 0.2153 0.4481 0.5458 0.5947 0.6273 0.6528 0.6736
GELU-gloU-40 0.2234 0.4481 0.5387 0.5872 0.6173 0.64 0.6605
SReLU-heN-40 0.2304 0.4686 0.5675 0.6174 0.6506 0.6779 0.6976
ELU-gloU-40 0.197 0.4414 0.5407 0.5897 0.6243 0.65 0.6707
LReLU-heN-80 0.2361 0.4645 0.5671 0.6197 0.6543 0.6787 0.6991
Default CATA++ 0.2397 0.4635 0.5555 0.5977 0.6292 0.6515 0.6709
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Table 8. Recall performance for the different CATA++ versions (People RS)

CATA++ Version 10 50 100 150 200 250 300
FTS-heN-150 0.627 0.6982 0.7259 0.7434 0.7558 0.7636 0.7708
Swish-gloU-60 0.5499 0.6606 0.6978 0.7178 0.7323 0.7431 0.7528
Mish-heN-60 0.5406 0.6639 0.6974 0.7183 0.7322 0.7427 0.7513
GELU-gloU-60 0.521 0.6567 0.697 0.7175 0.7312 0.7421 0.7518
SReLU-heN-60 0.5371 0.6621 0.701 0.7231 0.743 0.7516 0.761
ELU-gloU-60 0.5913 0.6794 0.711 0.7286 0.7421 0.7511 0.76
LReLU-heN-80 0.581 0.6747 0.7101 0.7307 0.745 0.7557 0.7647
Default CATA++ 0.5814 0.6622 0.6931 0.712 0.7249 0.7368 0.7459

Fig. 3. Top-3 paper RS Fig. 4. Top-3 venue RS Fig. 5. Top-3 people RS

5 Discussion of the experimental results

Our findings suggest that the weight initializations that provide the best per-
formance are He-Normal and Glorot-Uniform, offering an improvement of more
than 2% in the citeulike-a dataset experiments.

In Table 9, the CATA++ versions with the top-3 Recall performances for
each experiment are shown, along with the improvement compared to the default
CATA++.

One of our major findings is that SineReLU is a really stable activation per-
forming really well in different datasets (always in the top-3 performances in
Table 9). A very important new activation is FTS which gave the top perfor-
mance in two out of four datasets-experiments. While ReLU remains compet-
itive, we have found other activations that usually outperform it; SineReLU,
FTS, Leaky-ReLU and Mish are definitely in this category.

Finally, we found that except for ReLU and FTS, the other activation func-
tions produce their highest performance in fewer training epochs, namely in the
range [20,80]; the exact number depends on the dataset’s and model’s charac-
teristics. If FTS is used with T < 0, it will probably need fewer epochs too.

6 Conclusion and Future work

We have conducted a large-scale comparison of activation functions and weight
initializations using CATA++, a ML RS, and different datasets. Activation func-
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Table 9. Top-3 Recall performances for the different experiments (datasets)

dataset-experiment CATA++ version (Top-3) Improvement
FTS-150 2%

citeulike-a Default CATA++ 0
(Table 4) GELU-40 & SReLU-60 0

SReLU-heN-20 44.2%
dblp13_collection1 Mish-heN-20 43.3%
(Table 6) GELU-gloU-40 21%

LReLU-heN-80 4.2%
dblp13_venues SReLU-heN-40 4%
(Table 7) Mish-heN-20 0.4%

FTS-heN-150 3.3%
dblp13_people LReLU-heN-80 2.5%
(Table 8) SReLU-heN-60 & ELU-gloU-60 2%

tion, weight initialization and training epochs are among the most important and
determinant factors. An activation function turns an otherwise linear classifier
into a non-linear one and affects its training, a proper weight initializer is criti-
cal for the convergence of the ANN, while the proper number of training epochs
helps avoid under-fitting and over-fitting. We showed that the training time
(epochs number) can be reduced, while at the same time the recommendation
performance can increase up to 44.2%. Regarding future work, our experiments
could be expanded to cover other HP, like hidden layers number or latent factors
dimension, or other neural networks RS.
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