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ABSTRACT
A t-ruling set of a graph G = (V, E) is a vertex-subset S ⊆ V

that is independent and satisfies the property that every vertex

v ∈ V is at a distance of at most t hops from some vertex in S.

A maximal independent set (MIS) is a 1-ruling set. Extending

results from Kothapalli et al. (FSTTCS 2012) this note presents

a randomized algorithm for computing, with high probability, a

t-ruling set in O(t · log
1

t−1 n) rounds for 2 ≤ t ≤
√

log log n and

in exp(O(
√

log log n)) rounds for t >
√

log log n.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Computa-
tions on Discrete Structures
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1. INTRODUCTION
Symmetry breaking is a fundamental theme in distributed

computing and a classic example of symmetry breaking arises
in the computation of a maximal independent set (MIS) of a
given graph. There is a well known 25-year old randomized
algorithm [6] that solves the MIS problem in O(log n) com-
munication rounds. Since then, all attempts to devise an
algorithm for MIS that runs in sub-logarithmic rounds (for
general graphs) have failed. However, there has been some
exciting recent progress on the problem. Barenboim et al. [1]
present MIS algorithms that run in O(log ∆

√
log n) rounds

on arbitrary graphs (with n vertices and maximum degree
∆) and in exp(O(

√
log log n)) rounds when ∆ = poly(log n).

A natural generalization of MIS is the problem of com-
puting t-ruling sets. For t ≥ 1, a t-ruling set of a graph
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G = (V, E) is an independent subset S of vertices with the
property that every vertex v ∈ V is at a distance of at most t
hops from some vertex in S. Thus an MIS is a 1-ruling set1.
The main result of this paper is a t-ruling set algorithm

that runs in O(t · log 1
t−1 n) rounds for 2 ≤ t ≤ √log log n

and in exp(O(
√

log log n)) rounds for t >
√

log log n. Our
algorithms are designed to run in LOCAL model, which is a
standard synchronous, message passing model of communi-
cation in which each node, in each round, can send a possi-
bly distinct message of unbounded size along each incident
edge. Our technique is randomized and involves an iterative,
rapid sparsification of the graph while ensuring that nodes
that are removed from further consideration are within one
hop of some remaining node. When we complete all itera-
tions of the algorithm, we can apply the MIS result due to
Barenboim et al. [1], mentioned earlier, taking advantage of
the low maximum degree of the graph that remains.

1.1 Related Work
In previous work [3], we showed how to compute a 2-ruling

set in O(log3/4 n) rounds, with high probability. Our current
work extends this result to t ≥ 3.

Our results should also be viewed in the context of re-
sults by Gfeller and Vicari [2]. These authors showed how
to compute, in O(log log n) rounds, a vertex-subset T of a
given n-vertex graph G = (V, E) such that (i) every vertex
is at most O(log log n) hops from some vertex in T , and (ii)
the subgraph induced by T has maximum degree O(log5 n).
One can use the MIS algorithm from Barenboim et al. [1]
on G[T ] and sparsify T into an O(log log n)-ruling set in an
additional exp(O(

√
log log n)) rounds. Thus, by combining

the Gfeller-Vicari algorithm with the Barenboim et al. algo-
rithm one can compute an O(log log n)-ruling set in general
graphs in exp(O(

√
log log n)) rounds. Our current work im-

proves on the Gfeller-Vicari result by allowing arbitrary t
and also by being able to compute an O(

√
log log n)-ruling

set in exp(
√

log log n) rounds.
Schneider et al. [7] consider the problem of computing an

(α, β)-ruling set, which they define as a vertex-subset S of
the input graph G such that (i) pairs of vertices in S are
at distance at least α away from each other and (ii) every
vertex in G is at distance at most β from some vertex in S.
Thus a t-ruling set as per our definition is a (2, t)-ruling set
as per their definition. These authors present an algorithm

1In the definition of Gfeller and Vicari [2], a t-ruling set need
not be independent, and what we call a t-ruling set, they call
an independent t-ruling set.



that can compute a (2, t)-ruling set in t ·d1/t rounds, given a
d-coloring of the input graph. Preprocessing the input with
a distributed graph coloring algorithm and then providing
the colored graph as input to the above algorithm yields a
(2, t)-ruling set algorithm. For example, using the classical
distributed algorithm of Linial [5] that computes an O(∆2)-
coloring in O(log∗ n) rounds, one can obtain a (2, t)-ruling

set algorithm that runs in O(t ·∆2/t + log∗ n) rounds. For
rather small ∆, i.e., ∆ <

√
log n, this algorithm has smaller

asymptotic running time relative to our algorithm, but not
otherwise.

2. RAPID SPARSIFICATION
In this section we first describe Algorithm Sparsify-GG,

that rapidly sparsifies a given graph. This algorithm was
used in [3] as a step in computing a 2-ruling set and so
the material in this section has largely appeared in [3]. Let
f be some parameter that can be chosen later and i∗ be
the smallest positive integer such that f i∗+1 ≥ ∆. Thus
i∗ = ⌈logf ∆⌉−1. The run-time of the algorithm depends on
the parameter f . At the end of the algorithm, the following
properties are satisfied: (i) all the vertices of the graph are
labeled with one of {inactive, active} and every inactive

node has an active neighbor, and (ii) the degree of the
graph induced by the active vertices is bounded by O(f ·
log n).

The algorithm proceeds in stages and there are i∗ stages,
indexed by i = 1, 2, . . . , i∗. In Stage i every vertex inde-

pendently joins a set Mi with probability 6 log n·fi

∆
and is

marked active (Line 4). It is shown in [3] that any ver-
tex that is in V at the start of Stage i has degree at most
∆/f i−1, with high probability. Therefore, it is easy to see
that any vertex in the graph induced by Mi has expected
degree at most O(f · log n). In fact, this is true with high
probability and this fact can be shown by appealing to the
fact that vertices join Mi independently and using Chernoff
bounds. Following the identification of the set Mi, all neigh-
bors of Mi that are outside Mi are placed in a set Wi and
marked inactive (Line 7). Both sets Mi and Wi are then
deleted from the vertex set V . The sets Wi play a critical

role in our algorithm. Given the probability 6 log n·fi

∆
of join-

ing Mi, we can show that with high probability every vertex
with degree more than ∆/f i ends up either in Mi or in Wi.
This establishes the degree-bound needed for next iteration
of the algorithm. Also, the sets Wi act as “buffers” between
the Mi’s ensuring that there are no edges between Mi and
Mi′ for i 6= i′. As a result the graph induced by ∪iMi has
degree O(f · log n).

Algorithm Sparsify-GG(G = (V, E), f)
1. for i← 1, 2, . . . , i∗ do

2. Mi ← ∅; Wi ← ∅;
3. for each v ∈ V in parallel do

4. With probability 6 log n·fi

∆
add v to Mi

and mark v as active

5. for each v ∈ V in parallel do

6. if v ∈ Neighbors(Mi) \Mi then

7. Add v to Wi and mark v as inactive

8. V ← V \ (Mi ∪Wi)
9. end-for(i)
10. Mark the vertices remaining in V as active

11. S ← {v ∈ V | v is active}.

12. return S

The proof of the following theorem appears in [3].

Theorem 1. Let G be an arbitrary n-vertex graph with
maximum degree ∆. With high probability, Algorithm Sparsify-
GG with input G and f runs in O(logf ∆) rounds and pro-
duces a vertex-subset S ⊆ V (G) such that ∆(G[S]) ∈ O(f ·
log n), and every vertex in V is either in S or has a neighbor
in S.

3. COMPUTING RULING SETS
The main idea behind out t-ruling set algorithm consists of

iteratively sparsifying the given graph t−1 times using Algo-
rithm Sparsify-GG and then computing an MIS. Let G =
(V, E) be the given graph and let S0 = V . Let f0, f1, . . . be a
sequence of parameters, whose values will be specified later.
For i = 1, 2, . . . , t−1, we execute Sparsify-GG(G[Si−1], fi−1)
in order to compute Si. Finally, we compute MIS on G[St−1]
and return this as the t-ruling set of G. It turns out that set-

ting fi−1 to 2(log n)(t−1−i)/(t−1)

for i = 1, 2, . . . , t−2 and then
setting ft−2 to log n nicely balances the running time of all
of the sparsification steps so that each call to Sparsify-GG

takes (log n)1/(t−1) rounds. Pseudocode of this algorithm
appears below in Algorithm t-RulingSet-GG. Correctness
of the algorithm follows from the next lemma.

Lemma 1. For each i, 0 ≤ i ≤ t, with high probability
every vertex in V is at most i hops from some vertex in Si.
Thus, with high probability, St is a t-ruling set.

Proof. Every vertex in V is 0 hops away from some ver-
tex in S0 = V . Suppose that every vertex in V is i hops
away from Si, for some 0 ≤ i < t. From Theorem 1 we
know that every vertex in Si is at most one hop away from
some vertex in Si+1. The result follows by induction.

Algorithm t-RulingSet-GG(G = (V, E)) (for t ≥ 2)
1. S0 ← V
2. for i← 1 to t− 2 do

3. fi−1 ← 2(log n)(t−1−i)/(t−1)

4. Si ← Sparsify-GG(G[Si−1], fi−1)
5. ft−2 ← log n
6. St−1 ← Sparsify-GG(G[St−2], ft−2)
7. St ← MIS(G[St−1])
8. return St

Theorem 2. With high probability, Algorithm t-RulingSet-

GG runs in time O(t · (log n)1/(t−1)) + exp(O(
√

log log n)).

Proof. For i, 0 ≤ i ≤ t, let ∆i be the maximum degree
of a vertex in G[Si]. Now consider i, 0 ≤ i ≤ t− 2. Since Si

is computed by calling Sparsify-GG(G[Si−1], fi−1) and the

value of fi−1 is 2(log n)(t−1−i)/(t−1)

, it follows from Theorem
1 that ∆i is bounded above by

O
“

log n · 2(log n)(t−1−i)/(t−1)
”

.

Also from Theorem 1 it follows that the call to subroutine
Sparsify-GG(G[Si−1], fi−1) takes O(logfi−1

∆i−1) rounds.

We obtain an upper bound on logfi−1
∆i−1 as follows:

logfi−1
∆i−1 ≤ (log n)(t−1−(i−1))/(t−1) + log log n

(log n)(t−1−i)/(t−1)

≤ (log n)1/(t−1) + log log n.



Thus the call to Sparsify-GG(G[Si−1], fi−1) takes

O((log n)1/(t−1) + log log n)

rounds. Also note that ∆t−2 = O(log n · 2(log n)1/(t−1)

) and
thus the call (in Line 6) to Sparsify-GG(G[St−2], ft−2)
takes an additional

O(logft−2
∆t−2) = O((log n)1/(t−1) + log log n)

rounds. Thus all t− 1 calls to the Sparsify-GG subroutine
take a total of O(t((log n)1/(t−1) + log log n)) rounds. Now
note that ∆t−1 is bounded by O(ft−2 ·log n) = O(log2 n) and
therefore using the MIS algorithm (version 2) of Barenboim
et al. (Theorem 4.3, [1]) we compute St in an additional
exp(O(

√
log log n)) rounds. The result follows.

Corollary 1. For t ≤ √log log n, we can compute a t-
ruling set in O(t·(log n)1/(t−1)) rounds and if t >

√
log log n,

we can compute a t-ruling set in exp(O(
√

log log n)).

4. CONCLUSIONS
Kuhn et al. [4] claim a Ω(

√
log n) lower bound on the

computation of an MIS of an n-vertex input graph in the
LOCAL model. Our results show that even for small con-
stant t, one can compute a t-ruling set faster than it is pos-
sible to compute an MIS.

There are no known lower bounds for the t-ruling set prob-
lem in the LOCAL model and so it is possible that our re-
sults can be improved. In light of our results, it is interesting

to explore whether the lower bound technique of Kuhn et
al. [4] can be extended to derive a lower bound for t-rulings
set
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