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In this article we propose a novel, yet practical, scheme which attempts to optimally balance the
load on the servers of a clustered Web farm. The goal in solving this performance problem is to
achieve minimal average response time for customer requests, and thus ultimately achieve maxi-
mal customer throughput. The article decouples the overall problem into two related but distinct
mathematical subproblems, one static and one dynamic. We believe this natural decoupling is
one of the major contributions of our article. The static component algorithm determines good as-
signments of sites to potentially overlapping servers. These cluster assignments, which, due to
overhead, cannot be changed too frequently, have a major effect on achievable response time. Ad-
ditionally, these assignments must be palatable to the sites themselves. The dynamic component
algorithm is designed to handle real-time load balancing by routing customer requests from the
network dispatcher to the servers. This algorithm must react to fluctuating customer request load
while respecting the assignments of sites to servers determined by the static component. The static
and dynamic components both employ in various contexts the same so-called goal setting algorithm.
This algorithm determines the theoretically optimal load on each server, given hypothetical clus-
ter assignments and site activity. We demonstrate the effectiveness of the overall load-balancing
scheme via a number of simulation experiments.

Categories and Subject Descriptors: H.3.4 [Information Systems]: Systems and Software—World
Wide Web (WWW )

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Clustered Web farms, combinatorial optimization, load balanc-
ing, resource allocation problems

1. INTRODUCTION

Clustered Web farms are now becoming very popular. A key concept behind
the Web farm is the notion that a number of different Web sites share pooled
resources. They typically share a common front-end dispatcher to perform load
control and distribute customer requests. They share the multiple Web servers
themselves. And they also share back-end bandwidth to return request results
to the customers. The hardware and software is typically owned, operated, and
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maintained by a single service provider, or content host. Examples of companies
currently providing, or planning to provide, this service include AT&T, Exodus,
Intel, IBM, Qwest, Verio and Worldcom.

A major challenge for clustered Web farms is to balance the load on the
servers effectively, so as to to minimize the average response time on the sys-
tem. Overutilization of servers can cause excessive delays of customer requests.
On the other hand, underutilization of servers is wasteful. Minimizing average
response time will have the dual effect of maximizing the throughput the clus-
tered Web farm can achieve. This means that the load-control algorithm in the
front-end dispatcher can be made more permissive, rejecting fewer requests.

One of the main motivations for clustered Web farms is the efficiencies that
arise because of the pooled resources. In this article we concentrate on efficiently
pooling the server resources and on devising intelligent algorithms for the front-
end dispatcher, so as to balance the load on those servers. Specifically, we do this
based on the general assumption that each site is assigned to a cluster of one
or more servers, and furthermore that these clusters may overlap. This means
that a given server may handle customer requests from possibly multiple sites.
(The alternative is partitioning the servers among the various sites, so that
each server handles requests from precisely one site. Our algorithms will work
for this degenerate special case as well, though less effectively.)

The rationale behind creating clusters containing multiple servers is feasibil-
ity: the distribution of customer requests among the various sites will typically
be highly nonuniform. Some sites will likely be vastly more popular than others,
and the popularity of a hot site will generally be great enough that assigning it
to a single server would overload that server. Thus, in order to achieve accept-
able performance, it will be necessary to assign some sites to multiple servers.

The rationale behind overlapping the Web site clusters is flexibility: Clus-
tered Web farms must be able to handle customers requests from many different
sites simultaneously, and this customer demand is typically bursty; see, for ex-
ample, Iyengar et al. [1999] for an analysis of real Web access patterns and
a corresponding analytical workload model. This burstiness can be seen on a
weekly, daily, and hourly basis, due to changing site popularity and customer
mix. The evidence suggests that it occurs on much smaller atomic time units
as well, such as minutes and even seconds. The point here is that the average
Web site access rates do not sufficiently capture the volatile nature of customer
behavior. Traffic for one Web site may ebb and flow dramatically, and one site
may be busy when another is less so. The hope is that a server handling several
sites can be made to vary the workload balance among these sites to react to
these dynamic traffic changes. Note that a partitioned cluster design does not
allow this reactive capability.

See Figure 1 for an example of a hypothetical clustered Web farm. There are
3 sites and 9 servers. The network dispatcher routes customer requests for the
3 sites to the appropriate servers. The cluster for site 1 consists of servers 1–2.
This overlaps with the cluster for site 2, which consists of servers 2–6. And that
overlaps with the cluster for site 3, consisting of servers 6–9. The results of the
customer requests are then piped back to the customer, who may then make a
new request.
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Fig. 1. Clustered Web farm.

The obvious argument for overlapping clusters in the case of Web farms is
not devoid of problems, however. Although it is reasonable from a technical
perspective that a suitably sophisticated server accommodate a modest num-
ber of Web sites, it may not be quite as reasonable from a political perspective.
For example, an e-commerce merchant might object to sharing servers handling
transaction requests with other merchants, even if the server happens to be log-
ically partitioned among the sites [Schmunek et al. 1999]. (The objection of the
merchant due to privacy grounds does not itself have to be logical.) Fortunately,
such a merchant would nearly always be less sensitive to sharing servers for
browse requests. For a load-balancing algorithm to be practical, and therefore
implementable, we must deal effectively with this issue. And, indeed, we do so
in this article by partitioning the workload of each site into two categories if
necessary, one of which is not sharable and the other one which is. So we as-
sume that the public requests (motivated by browsers) can share a server with
sharable requests from other sites. They can also share a server with private
requests (motivated by transactions) from the same site. This crucial refine-
ment gives our algorithm the required flexibility to perform well in spite of the
politically volatile issue of overlapping clusters.

Note that although the public and private categories in this article are moti-
vated by browse and transaction requests, respectively, these terms are actually
defined by the ability or inability to share. For e-commerce sites that accept the
logical partitioning concept, for example, transaction requests will be counted
as part of the public traffic. And, consequently, there will be no private traffic
at all. At the other extreme, e-commerce sites that refuse to allow any shar-
ing of servers, even for browsers, will have browse requests counted as part of
the private traffic, and there will be no public traffic at all. And, of course, there
may be noncommercial sites for which the browse and transaction terms have
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no literal meaning anyway. Traffic will nonetheless be classified into either the
public or private categories, depending on sharability.

In summary, we propose in this article to take advantage of the possibility of
overlapping site clusters to solve the Web farm load-balancing problem very ef-
fectively. The problem decouples naturally into two subproblems, one static and
one dynamic, and the solutions to each utilize the same fundamental optimiza-
tion algorithm to set appropriate goals. Thus, there are three major algorithmic
contributions. We outline them now.

—The key common algorithm might be called goal-setting. It uses an optimiza-
tion technique designed to minimize the average customer response time at
any given moment, given the cluster assignments of sites to servers and the
current customer request load. The algorithm is a slightly special case of one
used for solving the so-called discrete class constrained separable convex re-
source allocation problem, and was devised independently by Federgruen and
Groenvelt [1986] and by Tantawi et al. [1988]. So this algorithm will deter-
mine the optimal load-balancing goals. Specifically, the output is the optimal
number of customer requests in both the public and private categories for
each site to be handled by each server in the cluster, and thus by summation
the optimal number of all customer requests per server. This problem will
need to be resolved on a relatively frequent basis. Fortunately, the solution
technique is fast (and incremental in nature). It can handle heterogeneous
servers without problems, important because some old, slower servers will
inevitably be replaced by new, faster servers over time. An actually simpler
and faster version can handle the special case of partitioned clusters. The
goal-setting algorithm is an integral part of the static and dynamic two com-
ponents below.

—The static component of the algorithm creates a good, we hope nearly opti-
mal assignment of sites to servers, respecting the requirements for public
and private requests. And the better this is done, the better the average re-
sponse time in the goal-setting algorithm can be. The static component calls
the goal-setting algorithm iteratively as it proceeds. The algorithm can be
run either in initial or incremental mode. The initial mode is appropriate
when configuring a new clustered Web farm. The incremental mode allows
for constraints that limit the number of assignment changes, and is thus
practical for maintaining high quality site-to-server assignments. A neigh-
borhood escape heuristic [Garfinkel and Nemhauser 1972] is employed. The
incremental mode is meant to be run periodically, perhaps once per week or
so. Reconfiguring cluster assignments is obviously not a trivial task. The ex-
act frequency will depend on the volatility of the Web site demand forecasts
and the cost of doing the new assignments.

—The dynamic component of the algorithm performs the real-time Web server
routing in the network dispatcher, based on the output of the static compo-
nent and on fluctuating site customer demands. It solves a restricted sub-
problem based on the goal-setting algorithm to compute this idealized rout-
ing. (It does not transfer the assignment of previously dispatched requests,
which could improve performance further but would presumably incur
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prohibitively high overhead. We describe such an algorithm anyway because
it provides an idealized bound on the quality of the dynamic component per-
formance.) It turns out that our dynamic component scheme is a significant
generalization of the standard greedy load-balancing algorithm.

Although these three algorithms might initially be regarded as mathemat-
ically complex, they are not excessively computationally expensive. (We will
point out the computational complexity where it is appropriate. The speed of
some of the more heuristic algorithms is governed instead by the choice of stop-
ping condition parameters.) In fact, in all our actual experiments the running
time of the algorithms was inconsequential. Given their demonstrated advan-
tage (as we shall see) over simpler algorithms, we believe that they are worth
implementing. We also point out that they are sufficiently modular—if an im-
proved version of one of the components can be devised, the new algorithm can
replace the old one.

In this article we examine the performance of our proposed Web cluster farm
load-balancing scheme via simulation experiments. In particular, we show that
each variant of our scheme performs better than load-balancing algorithms,
which assume partitioned site to server clusters.

To our knowledge, there is no other literature on Web cluster farm load-
balancing with overlapping site to server assignments. (However, see Cardellini
et al. [1999] for a survey of work on load-balancing algorithms for the parti-
tioned case.) Perhaps the lack of prior literature is due to the mathematical
difficulties of the resulting optimization problems. Based on the results in this
article it seems that overlapping cluster assignments are a good idea.

The remainder of this article is organized as follows: In Section 2 we present
the goal-setting algorithm. In Section 3 we present the dynamic component
of our algorithm. In Section 4 we present the static component. We order the
sections in this way because the goal-setting algorithm is called by both the
dynamic and static components. For the sake of exposition, we make one sim-
plifying assumption in Sections 2–4, namely that requests are of uniform size.
This simplifies the mathematics somewhat, but is not essential. And we list
references that describe the appropriate generalizations required to handle
the general case. In Section 5 we present the results of some of our simula-
tion experiments. Section 6 contains conclusions, including some discussion of
a clustered Web farm configuration-planning problem, essentially dual to the
load-balancing problem which is our focus.

2. GOAL-SETTING ALGORITHM

2.1 Preliminaries

First we define some notation. (For the convenience of the reader, all key al-
gorithmic notation in this article is summarized in Table I.) Let M denote the
number of Web sites, which for convenience are always indexed by i. Let N de-
note the number of servers, indexed by j . Let the {0, 1} MxN matrix A = (ai, j )
signify the potential for assignment of public requests for site i to server j . In
other words, ai, j = 1 if sharable requests for site i can be handled by server j ,
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Table I. Notation Summary

Variable Description

M Number of Web sites
N Number of servers
A= (ai, j ) Assignment matrix for public requests
B= (bi, j ) Assignment matrix for private requests
R j Response time function, server j
L j Maximum acceptable load, server j
ci, j Number of public requests, site i and server j
ci Number of public requests, site i
C Total number of public requests
di, j Number of private requests, site i and server j
di Number of private requests, site i
C Total number of private requests
D Total number of private requests
xi, j Decision variable for optimal number of public requests, site i and server j
yi, j Decision variable for optimal number of private requests, site i and server j
X j Optimal total public load on server j
Y j Optimal total private load on server j
K Neighborhood escape distance limit
T Limit on number of assignment changes in incremental static run

and ai, j = 0 otherwise. Analogously, let the {0, 1} MxN matrix B= (bi, j ) signify
the potential for assignment of private requests for site i to server j . In other
words, bi, j = 1 if nonsharable requests for site i can be handled by server j ,
and bi, j = 0 otherwise. We assume in practice that a server j handling private
requests for site i can also handle public requests for that site. Thus, ai, j = 1
if bi, j = 1. By describing the most generic case, with both public and private
requests, the reader can quickly understand the algorithms in the special cases
where one of the categories of requests is missing.

Associated with each server j is a function R j measuring expected response
time as a function of the customer arrival rate. This function will depend on
the service time distribution, which in turn will depend on the speed of the
processor. The function R j will be increasing and convex under certain very
modest conditions [Dowdy et al. 1984]. (Certainly both of these statements are
intuitively plausible. Convexity, for example, simply corresponds to the law of
diminishing returns.) Classic queueing algorithms exist for calculating or esti-
mating R j under certain simplifying assumptions about the arrival rate pattern
and service time distributions [Lavenberg 1983], but in general the function
may need to be evaluated via simulation experiments or monitoring. The exact
formulation of this function is orthogonal to our present article. Based on this
function, we can assume that there will be a maximum acceptable load L j on
server j , in the sense that exceeding this threshold will cause the value of R j
to be too large. If we set L j =∞, this maximum load constraint will, of course,
be lax. Assume at a given moment that there are ci public requests and di pri-
vate requests in progress for site i. We break these down further into ci, j public
requests and di, j private requests for site i on server j . Thus, ci =

∑N
j=1 ci, j , and

ci, j = 0 whenever ai, j = 0. (One cannot handle a public request for a site from
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a server to which it is not assigned.) And similarly, di, j = 0 whenever bi, j = 0.
We let C= ∑M

i=1 ci denote the total number of public requests in progress, and
similarly D= ∑M

i=1 di denote the total number of private requests in progress.
The server loads can be regarded as optimally balanced, given the current

load and site-to-server assignments when the objective function,
N∑

j=1

R j

(
M∑

i=1

(xi, j + yi, j )

)
, (1)

is minimized subject to the constraints
M∑

i=1

(xi, j + yi, j ) ∈ {0, . . . , L j }, (2)

N∑
j=1

xi, j = ci, (3)

xi, j = 0 if ai, j = 0, (4)

N∑
j=1

yi, j = di, (5)

and

yi, j = 0 if bi, j = 0. (6)

Here, xi, j is a decision variable representing the hypothetical number of public
requests for site i which might be handled by server j . Similarly, yi, j is a deci-
sion variable representing the hypothetical number of private requests for site
i which might be handled by server j . The objective function measures the sum
of the expected response times at the various servers, which differs by a multi-
plicative constant from the average response time. (This constant is irrelevant
from the perspective of the optimization problem.) Constraint (2) limits the ac-
ceptable load on server i. Constraint (3) ensures that the total number of site
i public requests equals the actual number of such requests in progress. Con-
straint (4) ensures that the site-to-server assignments are respected for public
requests. Constraints (5)–(6) are the corresponding requirements for private re-
quests. If X j =

∑M
i=1 xi, j and Y j =

∑M
i=1 yi, j in the optimal solution, note that

X j +Y j represents the desired load on server j . Our ultimate goal will be to
ensure that the optimal load X j +Y j and the actual load

∑M
i=1 (ci, j +di, j ) are

always close to each other for each server j .

2.2 Resource Allocation Problem

Now the optimization problem described above is a special case of the so-called
discrete class constrained separable convex resource allocation problem. (The
classes here correspond to the public and private requests for the various sites.
The problem is discrete due to constraint (2); a resource allocation problem
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due to constraints (3) and (5); and class constrained due to constraints (4)
and (6). The separability term refers to the nature of the objective function,
and the convexity term is obvious.) As shown independently in Federgruen and
Groenvelt [1986] and Tantawi et al. [1988], discrete class-constrained resource
allocation problems can be solved exactly and efficiently using a graph-theoretic
optimization algorithm.

We now present an overview of the algorithm in Tantawi et al. [1988] as it
applies to the special case above. There is a good expositional reason to do so:
The graph technique of the original algorithm motivates and unifies both the
dynamic and static schemes of our article.

So assuming a feasible solution exists, the algorithm proceeds in C+ D
steps. A directed graph is created and maintained throughout the course of
the algorithm. The nodes of the graph are servers 1, . . . , N , plus a dummy
node, which we label node 0. Set ai,0= 1 and bi,0= 1 for each i, and L0= 0. We
create and modify a partial feasible solution {xi, j |i = 1, . . .M , j = 0, . . . , N } ∪
{ yi, j |i = 1, . . .M , j = 0, . . . , N }. Initially, this partial feasible solution is set
for each i to have xi,0 = ci, yi,0 = di, and xi, j = yi, j = 0 for all j = 1, . . . , N . Thus
all resources reside at the dummy node. The directed graph at any step has a
directed arc from a node j1 ∈ {0, . . . , N } to a node j2 ∈ {1, . . . , N } if there is at
least one site i1 satisfying

ai1, j1 = ai1, j2 = 1, (7)

xi1, j1 > 0, (8)
M∑

i=1

(xi, j + yi, j ) < L j2 , (9)

or, alternatively, at least one site i1 satisfying

bi1, j1 = bi1, j2 = 1, (10)

yi1, j1 > 0, (11)

and condition (9). Condition (7) indicates that nodes j1 and j2 can handle public
requests for site i1. Condition (8) indicates that a public request for site i1 has
been allocated to node j1. Condition (9) indicates that this request could be
transferred to node j2 without exceeding the load limit on that node. Conditions
(10), (11), and (9) are the corresponding requirements for private requests. Note
that there may be directed arcs from node 0, but there are no directed arcs to
node 0. So the receiving node will always be a real server, not the dummy node.

The general step of the algorithm finds, among all nodes j ∈ {1, . . . , N } for
which there is a directed path from 0 to j , the winning node for which the first
difference

R j

(
M∑

i=1

(xi, j + yi, j + 1)

)
− R j

(
M∑

i=1

(xi, j + yi, j )

)
(12)

is minimal. (This so-called first difference is the discrete analog of the derivative
for continuous functions, a fact which is not accidental. Also notice that the first
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Fig. 2. Path in class constrained RAP directed graph.

differences are nondecreasing in j for each i by virtue of the convexity of R j .)
If no such node exists, the algorithm terminates with an infeasible solution.
Otherwise, a shortest directed path is chosen from 0 to the winning node. For
each directed arc ( j1, j2) in this path, the value of xi1, j1 + yi1, j1 is decremented
by 1 and the value of xi1, j2 + yi1, j2 is incremented by 1 for an appropriate site i1
(by virtue of either a decrease and increase for a public request or a decrease
and increase for a private request). Performing this step over all directed arcs
has the effect of removing one unit of load from the dummy node, and adding
one unit of load to the winning node. There is clearly no net effect on the load
of the intermediate nodes. Thus the dummy node serves as a staging area
for the resources, one of which is released in each step into the server nodes.
Bookkeeping is then performed on the directed graph, which may modify some
directed arcs and potentially disconnect certain nodes, and the step is repeated.
After (C+ D) steps, the algorithm terminates with an optimal solution to the
original discrete class-constrained resource allocation problem. Feasibility is
guaranteed because of the conditions on the arcs in the directed graph. The
complexity of this algorithm is O(N ((C+ D)N +N2+ (C+ D)M )); see Tantawi
et al. [1988] for further details.

Figure 2 illustrates a path in the directed graph of the class-constrained
resource allocation algorithm. Note that not all the nodes and directed arcs of
the graph are shown here. Load is being transferred from the dummy node to
the winning (server) node, the node connected to node 0 whose first difference is
minimal. The directed path shown is intended to be the shortest such one. The
directed arcs are numbered 1 through 5 for convenience. In the figure, one new
(public or private) request for some site is allocated via directed arc 1, though
the (server) node to which it is allocated does not change its level of activity.
None of the first four server nodes have different levels of activity. The fifth
winning server node experiences a gain of one unit of activity, at the expense
of the dummy node.
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We should observe there exist natural incremental variants of the described
solution technique, so that when resolving the goal-setting optimization for a
substantially similar problem instance, the running times of the algorithm can
be kept quite modest. We do not go into details here.

In the special case of nonoverlapping clusters, the directed graph described
above can be seen to degenerate: There will not be any directed arcs between
nodes from distinct pairs of clusters, and we can assume accordingly that there
are no public requests. Thus the optimization problem partitions itself into one
simpler (classless) problem for each cluster. The resulting separable convex re-
source allocation problem for site i can be described as minimizing the objective
function

N∑
j=1

R j ( yi, j ), (13)

subject to the constraints
M∑

i=1

yi, j ∈ {0, . . . , L j }, (14)

N∑
j=1

yi, j = di, (15)

and

yi, j = 0 if bi, j = 0. (16)

Note that we are making the implicit assumption that all requests are private,
so that the ci and xi, j are all zero and the A matrix is irrelevant.

This simpler optimization problem is solvable by a fast algorithm [Fox 1966]
with computational complexity O(Ni + dilogNi), where Ni = |{ j | bi, j = 1}|.
Due to its incremental nature, this algorithm computes the optimal solution for
all values between 1 and di as it proceeds. Thus, these values can be stored and
simply looked up as needed, rather than being computed each time. (There exist
even faster algorithms [Galil and Megiddo 1981; Frederickson and Johnson
1982] for this resource allocation problem, but they are not incremental in
nature; see also Ibaraki and Kotoh [1988] for further details.)

As mentioned, the goal-setting algorithm can also be applied in the case
of heterogeneous rather than homogeneous workloads. Details about this algo-
rithm, which is considerably messier and less motivating than the one described
above, can be found in Ibaraki and Kotoh [1988]. We omit the details here for
the reasons above.

3. DYNAMIC COMPONENT

3.1 Preliminaries

In this section we describe the dynamic component of our load-balancing
scheme. The algorithm assumes the (static component) assignments of sites to
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servers as a given. This amounts to the determination of the matrices A and B.
It then monitors exact or approximate loads at the servers, as well as the ar-
rival of new customer requests at the network dispatcher. The job of the dy-
namic component is to make routing decisions in the network dispatcher for
these queued requests, assigning them to appropriate servers. In doing so, it
tries to achieve to the extent possible the optimal average response time and
server load levels dictated by the goal-setting algorithm. Indeed, it calls the
goal-setting algorithm on the traffic queued in the network dispatcher to make
its decisions. The routing decisions could be implemented via an exact or a prob-
abilistic policy, with the former obviously slightly more precise than the latter.
We focus in this section on describing a practical variant of the dynamic compo-
nent, one of which obeys the following natural restriction: Once the requests are
assigned by the dynamic component to servers, they must be satisfied at those
servers. In other words, the decision of the network dispatcher must be regarded
as final, and requests at the servers themselves cannot be redirected based
on load.

If one relaxes this restriction, one can naturally do better, at least in theory.
So we also consider an idealized variant employing the goal-setting algorithm
on the total dispatcher and server traffic. But to implement such decisions,
the clustered Web farm must be able to efficiently revise previous dispatcher
decisions, transferring in-progress requests from server to server appropriately.
Performing such transfers with sufficiently small overhead is almost certainly
too difficult a task, probably making this alternative entirely academic. Still,
the idealized algorithm is useful both from an expository perspective and as a
performance bound to the practical alternative.

We now describe both of these dynamic component variants, and then give
an illustrative clustered Web farm example.

3.2 Practical Alternative

Let us first define some metanotation. (For the convenience of the reader, all
key metanotation in this article is summarized in Table II.) At any given time,
some load will be queued in the network dispatcher and some will have already
been dispatched to the servers. We wish to differentiate these two types of load,
as well as the overall load. So we always use a single dot when referring to
variables that pertain to load in the dispatcher, and a double dot when referring
to variables that pertain to load in the servers. If no dots are employed, the
variables refer to the combined dispatcher and server loads.

In this practical implementation alternative, the algorithm monitors the cur-
rent number of dispatched public requests c̈i, j and the number of dispatched
private requests d̈ i, j for site i on server j . The dynamic component does not
react directly to completions of requests on the servers, but it does decrement
the values of c̈i, j and d̈ i, j appropriately. If this data is not readily available, it
may be estimated. In the meantime, new requests arrive and queue up in the
network dispatcher. Let ċi denote the number of new public requests for site i
since the last execution of the dynamic component. Similarly, let ḋ i denote the
number of new private requests for site i since the last execution of the dynamic
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Table II. Metanotation Summary

Notation Description

. Dispatcher load, dynamic problem

.. Server load, dynamic problem
∼ Static problem

component. Aggregating, we let Ċ= ∑M
i=1 ċi and Ḋ= ∑M

i=1 ḋ i denote the total
number of queued public and private requests, respectively, in the dispatcher.

The dynamic component may be designed to wake up and execute after a
fixed time interval, after the number of items Ċ+ Ḋ in the queue reaches some
fixed batch size threshold, or perhaps some combination of both criteria. The
precise details are not critical to our presentation.

We intend to apply the goal-setting algorithm to the requests queued in the
network dispatcher, while leaving the previously dispatched requests alone. To
do this, we require a little bookkeeping. Specifically, we define for each server
j a new convex, increasing function Ṙ j (z) by setting

Ṙ j (z) = R j

(
z +

M∑
i=1

(c̈i, j + d̈ i, j )

)
. (17)

This function simply shifts the original function to account for the amount of
unperturbable load in the server. For the same reason, we also define for each
server j a revised acceptable load limit L̇ j by setting

L̇ j = L j −
M∑

i=1

(c̈i, j + d̈ i, j ). (18)

With these formalities, the optimal way to dispatch the Ċ+ Ḋ queued re-
quests is determined by solving the following restricted goal-setting component
problem: Minimize

N∑
j=1

Ṙ j

(
M∑

i=1

(ẋi, j + ẏi, j )

)
, (19)

subject to the constraints
M∑

i=1

(ẋi, j + ẏi, j ) ∈ {0, . . . , L̇ j }, (20)

N∑
j=1

ẋi, j = ċi, (21)

ẋi, j = 0 if ai, j = 0, (22)

N∑
j=1

ẏi, j = ḋ i, (23)
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and

ẏi, j = 0 if bi, j = 0. (24)

Clearly, even in the optimal solution, the total load
∑M

i=1 (ẋi, j + ẏi, j + c̈i, j + d̈ i, j )
on server j is suboptimal overall. It is, however, optimal subject to the additional
constraint that no previously assigned load can be transferred among servers.

Furthermore, note that in the special case where the algorithm wakes up
whenever a new request arrives to the network dispatcher, so that either ċi1, j = 1
or ḋ i1, j = 1 for some site i1, the algorithm is simply greedy. In other words, if
ċi1, j = 1, so that a new public request for site i1 is to be assigned, the server j
satisfying ai1, j = 1 and

∑M
i=1 (c̈i, j + d̈ i, j )< L j whose first difference

R j

(
M∑

i=1

c̈i, j + d̈ i, j + 1

)
− R j

(
M∑

i=1

c̈i, j + d̈ i, j

)
(25)

is minimal is chosen. If ḋ i1, j = 1, so that a new private request for site i1 is to
be added, the server j satisfying bi1, j = 1 and the load-limit constraint whose
first difference given by expression (25) is minimal is chosen.

The complexity of this practical dynamic component algorithm is low, since
the batch size Ċ + Ḋ is modest. Of course, the complexity of the special case
greedy alternative is trivial. It does not even explicitly require the use of the
goal-setting algorithm. So our dynamic component algorithm neatly incorpo-
rates the much more traditional and simple greedy algorithm as a special case.
We compare the performance of the general dynamic component algorithm with
that of the special case greedy algorithm in Section 5.

3.3 Idealized Alternative

In this idealized alternative we use the goal setting algorithm to optimally
assign all current load, both in the dispatcher and already at the servers, ig-
noring at first the possible transfers of previously dispatched load that this
may entail. So we take the current number of dispatched public requests c̈i, j

for site i on server j . Aggregating across the servers, we obtain c̈i =
∑M

i=1 c̈i, j
dispatched public requests for site i. There are also ċi public requests queued
in the dispatcher, for a total of ci = ċi + c̈i public requests in all. Similarly, we
take the current number of dispatched private requests d̈ i, j for site i on server
j and aggregate to d̈ i =

∑M
i=1 d̈ i, j dispatched private requests for site i. Given

ḋ i private requests queued in the dispatcher, there are a total of di = ḋ i + d̈ i
private requests in all. We can thus solve the goal-setting algorithm with objec-
tive function (1) and constraints (2) through (6) to obtain the optimal loading
goals xi, j and yi, j . If it happens that

xi, j ≥ c̈i, j (26)

and

yi, j ≥ d̈ i, j (27)

for each site i and server j , we are in good shape: For each site i, we can simply
apportion the ċi public requests and ḋ i private requests at the dispatcher in
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Fig. 3. Web site symbol glossary.

a straightforward manner to attain the optimal goals at the servers. To be
precise, for site i we apportion xi, j − c̈i, j of the public traffic ċi and yi, j − d̈ i, j

of the private traffic ḋ i to server j . But given the likely relative cardinalities
of the queued and dispatched requests, it will more likely be the case that
at least one of the conditions (26) or (27) fails. Then transfers of previously
dispatched load will need to be performed. Perhaps the most elegant way to
envision this process is as follows: if xi, j < c̈i, j for site i and server j , return a
portion c̈i, j − xi, j of c̈i, j to the network dispatcher. With this revised server load,
condition (26) will be satisfied (as an equality). Similarly, if yi, j < d̈ i, j , return
a portion d̈ i, j − yi, j of d̈ i, j to the network dispatcher, so that condition (27) will
be satisfied. Now simply repeat the network dispatcher apportionment process
described above, pushing load to the servers again. In effect, the transfers of
previously dispatched load will occur during this back and forth process.

The real point is that the Web farm will not be able to accomplish such
transfers without high overheads, making this idealized dynamic component
alternative impractical. Its chief value here is as a bound in Section 5 to the
quality of the practical alternative.

3.4 Example

The example shown in the next two figures helps illustrate the dynamic com-
ponent algorithm. We consider a 15-server configuration hosting 8 sites. There
are 5 servers assigned to handle public site traffic. We call these cluster servers,
because each such server has the capability of handling traffic from multiple
sites. There are also 10 servers assigned to handle private site traffic. We there-
fore call these partition servers. Each such server can handle both public and
private traffic, but only from a single site. Consider Figure 3, which is a Web
site symbol glossary for this example. Each symbol has a shape unique to the
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Fig. 4. The directed graph H.

site. For example, circularlogic.com is represented by a circle. The gray sym-
bols indicate public traffic and the black symbols indicate private traffic. The
relevant cluster and partition server cardinalities are also indicated. These are
the row sums

∑N
j=1 Ai, j and

∑N
j=1 Bi, j of the assignment matrices A and B,

respectively. For example, circularlogic.com is assigned 3 cluster servers and 2
partition servers.

All this is seen in more detail in Figure 4. The inner loop contains the
5 cluster servers, and the outer loop contains the 10 partition servers. Note,
for instance, that circularlogic.com is assigned to cluster servers C1, C2, and
C5. On server C1, the public traffic for this site must share the server with the
public traffic for hexnut.com and eggcentric.com. Similarly, circularlogic.com is
assigned to partition servers P1 and P2. Each of these two servers handle both
public and private traffic, but only for this site.

Actually, Figure 4 conveys more information. It shows a slightly modified
directed graph of the sort used by the goal-setting algorithm. Recall Figure 2,
which illustrated a shortest path from the dummy node to a server node at
a particular instant of time in the solution of the class-constrained resource
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allocation problem. By contrast, Figure 4 shows a directed graph H showing
with one exception all the directed arcs and nodes at such an instant. (The ex-
ception is that the dummy node and the directed arcs coming from it have been
eliminated.) So H is defined as follows: The nodes correspond to the servers.
For each pair j1 and j2 of distinct server nodes, there is a directed arc from j1
to j2, provided there exists at least one site i1 satisfying conditions (7) through
(9) or conditions (10), (11), and (9).

Not all directed arcs appear in both directions in Figure 4, since they may fail
to meet all the relevant constraints. For example, there is no directed arc from
P3 to P4, apparently because there is no load on P3, either public (condition
8) or private (condition 11). There is no directed arc from C3 to P7, apparently
because P7 is operating at full capacity (condition 9). There is no arc in either
direction between C1 and P3, apparently because there is no public load on P3
(condition 8), and because C1 is operating at full capacity. There is no arc in
either direction between P1 and C4, clearly because neither condition (7) nor
condition (10) is satisfied.

As before, the existence of a directed arc signifies the potential for reducing
the load on the server, increasing the load on another without exceeding the
load capacity, and leaving the loads on other servers unaffected. A directed path
from the dummy node to one of the server nodes allows the transfer one unit of
load from the staging node to that server node, leaving all other server nodes
unaffected. After this transfer, the graph H may be modified via a bookkeeping
algorithm to respect the current status of constraints (8), (9), and (11). (The
status of constraints (7) and (10) remain intact.)

One can see in Figure 4 three different types of directed arcs. One type,
indicating potential transfers of either public or private load from one partition
server to another, can be seen between P1 and P2. A second type, indicating
potential transfers between public load from a partition server to a cluster
server or vice versa, can be seen between P1 and C1. A third type, indicating
potential transfers between public load from one cluster server to another, can
be seen between C1 and C2.

It should be clear that the tighter the graph H is, in terms of having as many
directed arcs as possible, the more likely it is that the goal-setting algorithm
can achieve good results—yielding lower response times. This is the goal of the
static component described in the next section.

4. STATIC COMPONENT

4.1 Preliminaries

In this section we describe the static component, which assigns sites to servers.
The goal is to optimize the achievable performance of the goal-setting algorithm
in Section 2, and therefore of the dynamic component in Section 3. The key
input to the static component is forecasts of the average demand for public and
private requests for each site, as well as any constraints on the allowable site-
to-server assignments. The output of the static component is simply the two
{0, 1} assignment matrices A = (ai, j ) and B = (bi, j ).
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Note that the issue of providing good quality forecasts is orthogonal to the
main thrust of this article. So we assume these forecasts as given. It is not
always possible, of course, to forecast with great accuracy. Fortunately, our
static algorithm is somewhat insensitive to the exact forecasts, and the dynamic
algorithm by its nature compensates for such inaccuracies.

We also assume the constraints on site to server assignments as given. These
constraints might pertain to the physical capacities of the servers themselves,
to the goal of achieving acceptably high cache hit rates, to the operating sys-
tems on the servers, to fixed server assignments that certain sites might have
negotiated, and so on. Such constraints might be quite complicated or quite el-
ementary. For example, a cache constraint might be relatively complex, based
perhaps on an analytic hit-rate model, the locality of the site data and the cache
size. It would have the effect of ensuring that a relatively small number of sites
be assigned to each server. Such a cache model appears, for example, in Stone
et al. [1992]. On the other hand, an operating system constraint might simply
be a list of sites inappropriate for certain servers. The point is that the static
component is heuristic in nature and can deal with the constraints by simply
checking them before considering any changes in assignments.

The static component has two possible modes. The initial mode is used to con-
figure a new system from scratch, one for which no sites have yet been assigned
to servers. The incremental mode is then used on a periodic basis to adjust
existing site-to-server assignments based on revised site demand forecasts. In
order to ensure that the implementation of those adjustments is practical, we
allow for a constraint that limits the allowable number of site-to-server assign-
ment changes allowed. Both modes employ essentially the same methodology.
In the initial mode, one might have to employ analytic models for the response
time functions, while in the incremental mode one could use more accurate
measured response times instead. These presumably would better capture the
effects of caching and other real-world phenomena.

The incremental static component should not be executed too frequently,
since there is an obvious cost in making the assignment changes. Once or so
per week is probably reasonable. The exact frequency will depend on the relative
tradeoff of this cost compared with the potential for performance improvement
given updated Web site forecasts. A run of the static algorithm could presumably
be triggered by the detection of some sort of load imbalance condition.

The primary goal in both modes is to achieve high connectivity of the undi-
rected graph G, defined as follows: The nodes correspond to the servers. For
each pair j1 and j2 of distinct nodes, there is an arc between j1 and j2 provided
there exists at least one site i1 for which ai1, j1 = ai1, j2 = 1, or at least one site i1
for which bi1, j1 = bi1, j2 = 1. These conditions mimic conditions (7) and (10) in the
definition of the directed graph H in Section 3. Since conditions (8), (9), and
(11) are generally satisfied in any well-balanced clustered Web farm, the notion
is that G serves as an effective surrogate for H. Note also that conditions (7)
and (10) are essentially static, while conditions (8), (9), and (11) are inherently
dynamic. This is why G is more appropriate for the static component.

Figure 5 shows the graph G for the example described in Section 3. Note
the similarities to the directed graph H shown in Figure 4. There is, however,
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Fig. 5. The graph G.

an arc in Figure 5 between servers C1 and P3, even though Figure 4 has no
comparable directed arc in either direction. And several other directed arcs in
Figure 4, such as the one from server P4 to P3, are not matched by directed
arcs in the opposite direction. Notice that in the figure we show arcs between
two cluster servers as solid lines, arcs between two partition servers as dotted
lines, and arcs between a cluster and a partition server as dashed lines.

We could attempt to increase connectivity by minimizing the diameter of
the graph G, which is the maximum distance between any pair of nodes. Or
we could attempt to increase connectivity by minimizing the average distance
between all pairs of nodes. But both of these problems are NP-hard, and the
literature on them appears to be nearly vacuous. In Wolf et al. [1997] a heuristic
was proposed in a different context for the diameter minimization problem, but
no guarantees were given for the solution. Indeed, we know of no approxima-
tion algorithm for either of these graph-theoretic problems. (An approximation
algorithm [Hochbaum 1997] is a polynomial time scheme in which the objective
function is guaranteed to be within a fixed multiplicative constant of optimal.)

We, therefore, adopt a slightly different approach. The objective function we
attempt to optimize is that of the goal-setting component itself, which we treat
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as a black box in our heuristic. The rationale here is that this measure, ef-
fectively the average response time, is clearly more directly appropriate than
either of the other two graph-theoretic surrogates (diameter or average dis-
tance), and not significantly more computationally expensive.

The metanotation is that a tilde (∼) refers to the static problem formulation.
We proceed by inventing a new matrix Ã, which describes the space of (in

some sense preferred) assignments of sites to servers, as follows: Ã = (ãi, j ) will
again be a {0, 1} matrix of size MxN . Under the typical conditions that there
exist both public and private traffic for each Web site, we make the translation
from Ã to AÃ and BÃ in the following fashion:

ai, j = ãi, j (28)

and

bi, j =
{

1 if ãi, j = 1 and ãi′, j = 0 for all i′ 6= i,

0 otherwise.
(29)

This makes the implicit assumption that any server j for which the row sum∑M
i=1 ãi, j = 1 is a partition server with both public and private traffic for one site,

and all other servers are cluster servers with multiple public-site traffic. Note
that not all possible pairs of assignment matrices A and B can be regarded
as translated from some matrix Ã. The ones that cannot are, however, less
preferable to us. The static component will not choose them.

We have to make minor adjustments to handle special cases. If only private
traffic exists for site i, we require that ãi′, j = 0 for i′ 6= i whenever ãi, j = 1. This
makes j a partition server for site i. We set ai, j = 0 and bi, j = 1. If only pub-
lic traffic exists for site i, any server j assigned to that site can be regarded
officially as public, even if

∑M
i=1 ãi, j = 1. So we set ai, j = ãi, j and bi, j = 0.

We also need to modify the response time function R j for each server j , in
order to handle the cases where the load on that server exceeds its load limit L j .
Such infeasibilities may well occur, at least in the early stages of our static com-
ponent algorithms, and we need to handle them by forcing feasibility at a large
objective function cost. So consider a very large number Q and let R̃ j (k)= R j (k)
for k≤ L j , but R̃ j (L j + 1)= R̃ j (L j )+ Q , R̃ j (L j + 2)= R̃ j (L j + 1)+ 2Q , and so
on. The general recursion defines

R̃ j (L j + k) = R̃ j (L j + k − 1)+ kQ (30)

for k> 0. Note that R̃ j remains convex and increasing. We also redefine the
maximum acceptable load to be L̃ j =∞.

Let c̃i and d̃ i refer to the forecasted public and private load, respectively,
for site i. We base our exposition on the case where both public and private
traffic exists for each site, but the reader can quickly determine the appropriate
modifications when this is not the case.

4.2 Initial Assignment Algorithm

Without loss of generality, assume that sites have been reindexed in terms of
increasing forecasted total load c̃i + d̃ i. We also assume that the servers have
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been reindexed in terms of increasing performance. This could, for example, be
determined by their original maximum acceptable loads L j .

The first step of the initial assignment algorithm is the matching of sites to
servers in sequence, to the extent possible. (There may be feasibility constraints
that restrict certain sites from certain servers, and we must respect these.) So
looping from site i= 1 to M in order, we set ãi, ji = 1, where j is the lowest
index of a feasible but currently unassigned server, and we set ãi, j to be 0 for
all other j . It is possible, but presumably highly unlikely, that there will not
be feasible assignments possible for all sites. This might happen because of
the constraints, and it might happen because M >N . In this case, the initial
assignment algorithm has failed. Otherwise, there are M partition servers at
this point, and the remaining N −M servers are idle. The intuition behind the
initial choice of assignments is that the lower performance servers are likely
to remain partition servers during the execution of the remainder of the static
component.

We evaluate the objective function for this initial solution, which happens to
be

M∑
i=1

R̃ ji ((c̃i + d̃ i)). (31)

The initial solution is now modified by the implementation of a so-called
neighborhood escape heuristic. This heuristic employs a metric 1 to measure
distances between two possible assignments of sites to servers, which we shall
describe shortly. Briefly, a neighborhood escape heuristic is an iterative im-
provement scheme that attempts to avoid being trapped in local minima while
achieving relatively low computational costs. Assuming, for the moment, the
predefined metric 1 on the search space of feasible solutions, plus an existing
initial feasible solution such as the one described above, the algorithm proceeds
in stages. At the beginning of each stage there is a so-called current solution,
which may be modified during the stage. At the beginning of the first stage
the current solution is the initial solution. Each stage successively searches
the neighborhoods of distance 1, 2, and so on, about the current solution. (A
neighborhood of distance k about the current solution is the set of all feasible
assignments whose distance from the current solution is less than or equal
to k. A ring of distance k about the current solution is the set of all feasible
assignments whose distance from the current solution is equal to k, which is
the neighborhood of distance k minus the neighborhood of distance k− 1.) If an
objective function improvement can be found in the neighborhood of distance 1
about the current solution, the heuristic chooses the best such improvement,
relabels it as the current solution, and iterates the process by starting the next
stage. If no improvement can be found within the neighborhood of distance 1,
the heuristic considers the ring of distance 2 instead. Again, there are two possi-
bilities: If there is an improvement here, the best such improvement is chosen as
the current solution, and the heuristic starts the next stage. If not, the heuristic
considers the ring of distance 3, and so on, up to a fixed distance limit, say K .
If no objective function improvements have been reached within the K th ring,
the process terminates with a final solution equal to the current solution.
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Fig. 6. The neighborhood escape heuristic.

Figure 6 illustrates this process. The current solution at the start of the initial
stage is at the center of the first set of neighborhoods. The heuristic searches
the first neighborhood and subsequent rings in sequence until an improvement
is found. In the figure, it is only in the K th ring that an improvement occurs.
Then, the heuristic resets the current solution to be the best improvement
found in that search, and commences the second stage. The figure shows the
neighborhoods about that solution. An improvement is now found in the 3rd
ring. The third stage now commences, though we do not show it in the figure.
Had the K th ring failed to yield an improvement in the first stage, the initial
solution would have been the final solution.

We now define the distance metric 1. Let Ã1= (ã1
i, j ) and Ã2= (ã2

i, j ) be two
such assignments, and define

1(Ã1, Ã2) =
M∑

i=1

N∑
j=1

∣∣ã1
i, j − ã2

i, j

∣∣. (32)

The intent here is simple: If, for example, we modify an assignment Ã1 into a
new assignment Ã2 by adding or subtracting a single site to one of the servers,
we obtain 1(Ã1, Ã2)= 1. A move of a site from an old server to a new server
(which did not have that site assigned previously) has distance 2. Subtracting
a site from a server and a simultaneous adding a different site to that server
also has distance 2. A swap of different sites on different servers has distance
4, and so on.
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For a given solution Ã and its translated assignment matrices AÃ and BÃ,
the test for improvement involves solving the goal-setting component problem
of minimizing

N∑
j=1

R̃ j

(
M∑

i=1

(x̃i, j + ỹi, j )

)
, (33)

subject to the constraints
N∑

j=1

x̃i, j = c̃i, (34)

x̃i, j = 0 if ai, j = 0, (35)

N∑
j=1

ỹi, j = d̃ i, (36)

and

ỹi, j = 0 if bi, j = 0. (37)

The constraints involving L̃ j =∞ are vacuous, of course. But given the cost of
load, which exceeds the limit L j , we expect the solution to satisfy

M∑
i=1

(x̃i, j + ỹi, j ) ∈ {0, . . . , L j }, (38)

for each server j after very few stages in the neighborhood escape heuristic.
So assignments that are feasible from all perspectives should be achievable in
short order. Indeed, the first few stages of the heuristic typically assign high-
volume sites to the currently unused servers, and then the heuristic will start
to turn partition servers into cluster servers, typically changing the status of
the higher performance servers first.

There are certainly other general-purpose combinatorial optimization
heuristics that attempt to avoid the pitfall of falling into local optima. Among
the more modern examples are simulated annealing [Laarhoven and Aarts
1987] and tabu search [Glover and Laguna 1997]. We could certainly have
based our static component algorithms on one of these. We believe, however,
that neighborhood escape heuristics [Garfinkel and Nemhauser 1972] are often
less computationally expensive and yield solutions of comparable quality. They
are also currently underutilized. We chose to base our algorithm on a neigh-
borhood escape heuristic for these reasons; see, for example, a discussion of a
neighborhood escape heuristic in Wolf [1989]. Obviously, a real implementation
of our Web farm load-balancing algorithms could employ a competitive scheme
instead.

4.3 Incremental Assignment Algorithm

The incremental algorithm is run periodically, perhaps once a week, to retain
good site-to-server assignments in the presence of changing forecasts and such.
Fortunately, it uses virtually the same methodology.
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The initial solution is, of course, the current solution from the last static
component run, and we modify it via our neighborhood-escape algorithm. The
only twist is that we employ an additional stopping criterion, one which stops if
the distance between the initial and current solution exceeds some user-defined
threshold T . The reason is that the assignment changes are indeed expensive
to implement, and we don’t want to allow wildly different solutions between
successive instances of static component runs.

Note that the running times of both the initial and incremental versions of
the static component are governed primarily by the choices of parameters K
and T . We typically employ K = 4, which allows for all the moves described
above, and more. The value of T should depend instead on the volatility of
the forecasts (providing impetus to make assignment changes) and the true
costs of making them (providing impetus in the opposite direction). We do not
address such questions in this article. Each objective function test involves the
execution of the goal-setting component.

On the other hand, the running times for the static component are probably
not all that important. Whereas the dynamic component must be carried out
in the network dispatcher in real-time, the static component has the luxury of
being performed on any dedicated computer. It can optimize continuously from
the time the forecasts are provided to the time the assignment changes need
to be implemented. This might be on the order of a day or more, far more than
the amount of time required for the calculations.

5. EXPERIMENTAL RESULTS

5.1 Methodology

In this section we describe the results of simulation experiments designed to
test the performance of the dynamic and static load-balancing components. We
begin with a summary of the methodology.

First, we list some of the key parameters: We assumed a total of M = 20 Web
sites and N = 100 servers. We also assumed that the servers are homogeneous.
That is, they were all assumed to be identical in performance and capacity. In
most of our experiments, we assumed that each server had enough capacity to
handle 2 sites. The cluster servers therefore handled the public traffic from 2
distinct sites, while the partition servers handled the public and private traffic
from a single site. There were no other assignment constraints. In one exper-
iment we allowed each server to handle 3 sites. (The constraint of 2 or 3 sites
per server might be based on the physical capacities of the servers, on cache hit
rate criteria, or both.)

The algorithms in this article can certainly handle heterogeneous servers,
but we do not report on such experiments here. The reasons to focus on the
homogeneous case are plentiful and, we think, convincing. One advantage is
that it becomes easy to gauge the quality of the resulting load-balancing. Since
perfect load-balancing by the goal-setting algorithm cannot exceed that of per-
fectly uniform loads, that uniform load provides a bound on the quality of the
solution. (Recall that the optimal solution for the goal-setting algorithm may
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not yield entirely uniform load due to the site-to-server assignments and the
current workload.) If we use homogeneous servers, we can visually bound the
load-balancing solution quality at a glance, even though such such a view may
be falsely pessimistic. Better yet, if the performance happens to be close to
uniform, we know we are truly doing well. A second advantage of considering
identical, servers is that the response time objective functions become identical,
and hence irrelevant. Indeed, the goal-setting algorithm will always attempt
to ship load to the reachable server that is least loaded. This eliminates the
need to explicitly check the first difference formula in Eq. (12) for each server.
Finally, there is no reason not to choose homogeneous servers in our simula-
tion experiments. The goal-setting algorithm is, after all, exact. The optimal
solution will be found whether the servers are homogeneous or not. We should
therefore focus on simple cases.

We typically assumed that the arrival rates for Web sites requests were
distributed according to a Zipf-like distribution. Briefly, a Zipf-like distribu-
tion [Zipf 1949; Knuth 1973] takes two parameters, M and θ , the latter cor-
responding to the degree of skew. The distribution is given by pi =n/i1−θ for
each i ∈ {1, . . . , M }, where n= 1/[

∑M
i=1 1/i1−θ ] is a normalization constant. Set-

ting θ = 0 corresponds to a pure Zipf distribution, which is highly skewed. Set-
ting θ = 1 corresponds to a uniform distribution. Setting θ = .5 corresponds to
a medium degree of skew. We always chose M = 20, of course, since that is
the number of sites considered. And, in most experiments we chose θ = .5. In
one sensitivity experiment we chose the more heavily skewed θ = 0. In most
experiments we further partitioned the traffic into 90% public requests and
10% private requests. We believe such ratios are fairly typical. In one experi-
ment, we considered the good case where all traffic was public, a scenario
we might have if the Web sites fully accepted the logical partitioning con-
cept. In one other experiment, we considered the bad case where all traffic
was private, a scenario we might have if overlapping clusters were deemed
politically unacceptable. Remember also that previous load-balancing litera-
ture has, to our knowledge, dealt exclusively with the partitioned cluster case.
So such an experiment highlights the performance of our algorithms in that
environment.

We began each simulation experiment with a call to the static assignment al-
gorithm of Section 4. This determined good quality site-to-server assignments.
We then examined each of the three dynamic schemes described in Section 3.
That is, we considered the practical alternative, the greedy special case, and the
idealized alternative. This last alternative may be regarded as an indication of
the quality of the static component, since its real-time performance will be close
to the perfect load-balancing of the goal-setting algorithm.

In order to accurately model the bursty behavior of Web traffic we followed
Iyengar et al. [1999]. We actually simulated two types of customer request
patterns, namely, the log normal and AR(1) interarrival processes. These two
stochastic processes were seen to be appropriate in another Web-related appli-
cation domain. We briefly describe both. Let Zn denote the interrequest time
for the nth (generic) request having mean λ−1 and standard deviation σ . The
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log normal case is given by

Zn = eµ+ςεn , n = 1, 2, . . . , (39)

where µ= log λ−1− ς2/2, ς =
√

log(λσ 2+ 1), and εn denotes the standard nor-
mal random variable with zero mean and unit variance. (In our experiments σ
was chosen to be 4.0.) The AR(1) case is given by

Zn = λ−1 + Yn (40)

Yn = φYn−1 + εn, n = 1, 2, . . . , (41)

where φ is the autoregressive parameter of the process. (In our experiments, φ
is 0.88.)

We report here on the log normal experiments only; but we comment that the
performance of the algorithms in the AR(1) experiments is similar. Both of these
arrival patterns are quite bursty, a challenging scenario for a load-balancing
algorithm.

We also followed Iyengar et al. [1999] in modeling service demands via a
multistage coxian distribution. We employed a 2-stage coxian with coefficient
of variation equal to 2. Each site was assumed to have the same service time dis-
tribution. Again, variants of our algorithms handle the heterogeneous service
time case.

In each case, the simulation experiments involved a minimum of 100,000
request arrivals and were run at the 95% confidence interval via the method of
independent replications [Trivedi 1982]. The batching interval in the dynamic
component was based on time, and designed to be equal to 1% of the average
service time of a request.

5.2 Results

Figure 7 illustrates a typical set of simulation results. The figure shows the
performance of the practical, greedy, and idealized dynamic component algo-
rithms for the case of medium site skew, a capacity of 2 sites per server, with
90% public and 10% private requests.

Each curve in the figure shows the distribution of the load-balancing perfor-
mance of one of the algorithms, in unit granularity. This can be interpreted as
follows: For the value k on the x-axis, the y-axis of a given curve corresponds to
the total percentage of times a server was within k% and (k+ 1)% of uniformly-
balanced load, above or below, after each execution of the dynamic component.
The sum of the heights of all the y-axis values (more or less the area under the
curve) is therefore 100%, and a curve heavily weighted towards the left-hand
side of the figure corresponds to goodness. Again, this provides a simple but
pessimistic bound on the quality of each of the dynamic component algorithms.
The actual algorithms may be performing better than indicated here. We use the
measure of load imbalance as the purest indication of the performance of the
various algorithms. Obviously, we should be interested in response times and
throughput as well; but these are secondary: The smaller the load imbalance,
the better the response times and throughput will be. From the curves, it is
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Fig. 7. Public/private traffic, 2 sites per server, medium site skew.

obvious that the greedy algorithm here does relatively less well, and that the
practical algorithm has performance nearly, but not quite, equal to that of the
idealized algorithm. This relative performance is observed consistently in each
of our experiments.

Note how well the practical algorithm does, considering it has control of only
about 1% of the requests at any given time. The idealized algorithm does better
because it controls all of the requests. The greedy algorithm is clearly not that
adept at load-balancing.

Since there are nearly 80 cluster servers and 2 sites per cluster server, there
are roughly 160 site replications in total. Given 20 distinct sites, the average
number of site replications is close to 8. Naturally, the actual numbers are
skewed by the Zipf-like distribution.

We regard the results in Figure 7 as a base case, and consider the sensitivity
experiments below.

Figure 8 shows the same scenario, except that all requests are now assumed
to be public. Thus there are 100 cluster servers, and the average number of
replications is 10. This experiment models the good case in which the Web sites
accept the logical-partitioning concept. Performance is uniformly better than
that of Figure 7, but the differences are not dramatic. This shows that the
public/private concept is a useful one, achieving most of the benefits possible.

Figure 9 shows the same scenario again, except that all requests are now
private. There are thus 100 partition servers, and load-balancing can only take
place within the site partitions. The performance clearly suffers. This experi-
ment models the bad case in which the Web sites refuse to allow overlapping
clusters. Still, the practical algorithm does significantly better than the greedy
one.
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Fig. 8. Public traffic, 2 sites per server, medium site skew.

Fig. 9. Private traffic, 2 sites per server, medium site skew.
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Fig. 10. Public/private traffic, 3 sites per server, medium site skew.

Figure 10 shows the case of medium site skew, a capacity of 3 sites per server,
with 90% public and 10% private requests. So the difference from Figure 7 is the
additional site per server. Here we attain truly excellent performance because
the static component scheme is able to introduce more connectivity. Again, a
little arithmetic shows that the average number of site replications is now close
to 12.

In Figure 11, we consider the case of high site skew and a capacity of 2 sites
per server, with 90% public and 10% private requests. So the difference from
Figure 7 is the additional skew. The difference in performance is modest, though
definitely visible. The degradation in performance apparently occurs because
some of the partition servers for lower activity sites turn out to be underloaded.

To provide sensitivity analysis on the quality of the forecasts, we consider one
experiment in which we employ the static assignment algorithm with medium
skew, but employ the dynamic algorithm with high skew. This might occur, for
example, if the forecasts turned out to be less skewed than the actuals. Re-
sults are shown in Figure 12. The performance is worse than either Figure 7
or Figure 11, as we would expect, but the differences are certainly not
overwhelming.

We have reported here on only a small fraction of the total number of simu-
lation experiments. It is important to reiterate that our other results are uni-
formly consistent with these. Naturally, the idealized algorithm always did
better than the practical algorithm, but the performances of the two are not
dramatically different. More importantly, the practical algorithm always per-
formed much better than the greedy algorithm. We believe therefore that our
load-balancing is quite robust, and a considerable improvement over existing
algorithms.
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Fig. 11. Public/private traffic, 2 sites per server, high site skew.

Fig. 12. Public/private traffic, 2 sites per server, imperfect forecasts.
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6. CONCLUSIONS

In this article we have devised a real-time load-balancing scheme for clustered
Web farms. The algorithm consists of a goal-setting scheme and a dynamic and
static component. The goal-setting scheme determines the optimal load, given
the assignments of sites to servers and the current load. It is graph-theoretic,
and based primarily on the solution to an elaborate resource allocation prob-
lem. The dynamic component performs the actual real-time load-balancing by
routing traffic in the network dispatcher to the most appropriate servers. Our
scheme is a significant generalization of the more standard greedy algorithm.
The static component runs on a periodic basis using forecasted loads in or-
der to maintain good quality assignments of sites to servers. Good solutions to
the static component make the dynamic component more effective. Both the
dynamic and static components iteratively employ the goal-setting algorithm.
The algorithms are practical in the sense that they can naturally incorporate a
variety of real-world constraints, including respect for which types of site traf-
fic can share or not share a server with other sites. The execution times of the
various components are also practical.

Based on our simulation results, it seems clear that our notion of allowing
overlapping clusters in Web farms is a good idea. The new notion of distin-
guishing public and private requests makes these overlapping clusters more
palatable. Nevertheless, our load-balancing scheme works well, even when the
clusters are required to be partitioned.

The problem of configuration planning is in a sense dual to the load-balancing
problem, which has been our focus. In the latter, we wish to maximize the
load we can handle in a fixed hardware configuration. In the former, we wish
to minimize the cost of the configuration while handling a given site forecast
demand. Thus, in principle, we can use our algorithms to solve clustered Web
farm configuration-planning problems as well. Given a suite of simulation tests,
we can explore the server search space to find a hardware configuration that
passes the tests and has minimal cost.

Future work involves implementing our load-balancing algorithms on a pro-
totype clustered Web farm. We will report on our experiences with this prototype
in a subsequent article.
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