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Abstract. We present a numerical algorithm for the solution of a large number of shifted
linear systems for which the system pencil is symmetric and definite and the shifts lie inside a
given real interval. Extending an earlier method due to Meerbergen and Bai [SIAM J. Matrix.
Anal. Appl. 31 (2010), pp. 1642–1662], the algorithm uses a rational filter with poles at Chebyshev
points to compute and deflate the components of the solution in the direction of eigenvectors of the
system pencil corresponding to eigenvalues within the interval. It then solves the deflated systems
for the remaining components using a Krylov subspace method with a preconditioner constructed
by interpolating the factorizations at the filter poles. The algorithm parallelizes naturally. We
demonstrate its effectiveness using matrix pencils from both model and real-world problems and
discuss applications to frequency response analysis.
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1. Introduction. We consider the problem of solving a sequence of shifted linear
systems,

(1.1) (A− ωjM)xj = fj , j = 1, . . . ,m,

where the n × n matrices A and M are real symmetric, M is positive definite, and
the shifts ω1, . . . , ωm belong to a given interval [a, b] in R. This problem arises in
the frequency response analysis of linear dynamical systems, in which A and M are,
respectively, the stiffness and mass matrices of a finite element model of such a system,
and the ωj are the squares of the frequencies at which the response is sought.

In principle, solving (1.1) is straightforward: factor A − ωjM in an LU decom-
position for each j and then recover xj via a pair of triangular solves. This becomes
expensive when n and m are large. One standard approach to reducing the cost is
to approximate xj by projecting (1.1) onto the subspace spanned by the eigenvectors
of the pencil (A,M) corresponding to the eigenvalues of (A,M) that lie inside some
interval [c, d] that contains [a, b]. This is known as modal superposition [7, Chapter
12], and for it to be effective, all the xj must lie nearly in the computed eigenspace.
Rarely is it clear how to select the bounds c and d to ensure this; moreover, even if a
suitable choice can be found, the number of needed eigenvectors can be very large.

In [29], Meerbergen and Bai address these difficulties by combining modal su-
perposition with a Krylov subspace method. They approximate the eigenvectors of
(A,M) corresponding to eigenvalues inside [a, b] using what amounts to a version of
the shift-and-invert Lanczos method. They then project (1.1) onto these approxi-
mate eigenvectors and solve for the corresponding components of xj . To pick up the
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remaining components, they deflate the approximate eigendirections from (1.1) and
apply Lanczos to the deflated system, using (A − σM)−1 for some shift σ ∈ [a, b]
as a preconditioner. By using the same shift for both the preconditioner and shift-
and-invert Lanczos, Meerbergen and Bai are able to solve (1.1) using only a single
factorization: that of A− σM .

The key to the success of the Meerbergen and Bai algorithm is that it limits the
interval over which the eigenvalue problem for (A,M) must be solved to [a, b] itself
instead of to a wider interval that contains it. This is effective; however, the algo-
rithm’s single-shift approach encounters difficulties when [a, b] is deep in the interior
of the spectrum of (A,M) and contains many eigenvalues. It is difficult to approxi-
mate eigenvectors corresponding to a large number of interior eigenvalues with only
a single shift.

To remedy this, we propose a multi-shift extension of the Meerbergen and Bai
algorithm that uses rational filtering to solve the eigenvalue problem for (A,M) over
[a, b]. Rational filtering can be viewed as a version of the shift-and-invert technique (or
inverse iteration) that uses multiple shifts, but in contrast to other multi-shift meth-
ods [12, 26, 49], the shifts are selected up front as the poles of a rational function—the
filter—instead of on the fly. Because the shifted systems at each pole can be factored
and solved independently, the resulting algorithms are embarrassingly parallel. Ac-
cordingly, rational filtering methods have proven popular as large-scale, parallel eigen-
solvers and have been implemented in several high-performance eigensolver software
packages [11, 15, 19, 24, 25, 35]. These methods are particularly useful for interior
eigenvalue problems and have been studied extensively in the recent literature; for
further details, see [2, 13, 21, 22, 34, 40, 41, 45, 47] and the references therein.

We employ the reciprocal Chebyshev polynomial filter from [2, 30], the poles of
which are Chebyshev points. As we discuss below, there are several reasons this filter
is a good choice, but the most important is that it enables reuse of the factorizations
incurred when computing the eigenvectors to precondition the solves of the deflated
systems. Viewing the poles of the filter as interpolation points, we construct a polyno-
mial interpolant through the factorizations and use this as a preconditioner. Results
from Chebyshev interpolation theory guarantee the efficacy of this approach as the
number of poles increases [46]; we use this theory to bound the M -norm condition
numbers of the preconditioned systems. As our experiments show, one can obtain
good results even with relatively few filter poles. Moreover, through the use of a La-
grange representation for the interpolant, the preconditioner retains the embarrassing
parallelism of the filter. The result is a method for solving (1.1) that, given sufficient
parallel resources, has an up-front cost in time of a single factorization—just like the
Meerbergen and Bai algorithm—while still performing many fewer factorizations than
would be required to solve (1.1) the straightforward way.

2. Splitting via modal superposition. We begin the description of our algo-
rithm with a discussion of the splitting of (1.1) via modal superposition, which will
also serve to fix some notation that we will use throughout the article. To reduce
clutter, we suppress the subscript j and describe our method for a single equation

(2.1) (A− ωM)x = f

with ω ∈ [a, b].
Solving the generalized eigenvalue problem for (A,M) leads to a decomposition

(2.2) AV = MV Λ,
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Fig. 2.1. Schematic illustration of the splitting of the eigenvalues of (A,M) (crosses) according
to whether they lie in [a, b]. Eigenvalues within [a, b] appear on the diagonal of Λ1; those outside
[a, b], on the diagonal of Λ2.

where the columns of V are the eigenvectors of (A,M) and Λ is a diagonal matrix with
the corresponding eigenvalues. Since A and M are real symmetric with M positive
definite, the eigenvalues are real, and the eigenvectors are M -orthonormal:

(2.3) V TMV = I,

where I denotes the identity matrix. We order the eigenvalues so that those lying in
[a, b] appear first on the diagonal of Λ and partition V and Λ as

V =
[
V1 V2

]
, Λ =

[
Λ1

Λ2

]
,

where the pairs (V1,Λ1) and (V2,Λ2) correspond to eigenvalues inside and outside
[a, b], respectively. Figure 2.1 provides an illustration of the partitioning of Λ.

Since the eigenvectors form a basis for Rn, we can split the solution x to (2.1)
into its components along the directions in V1 and V2 as

(2.4) x = V1x1 + V2x2.

The relations (2.2) and (2.3) decouple (2.1) into separate equations for x1 and x2:

(2.5) V T
1 (A− ωM)V1x1 = V T

1 f, V T
2 (A− ωM)V2x2 = V T

2 f.

Our aim is to solve these equations and then reconstitute x via (2.4).

3. Solving for x1: Rational filtering. Rational filtering is a technique for
computing the eigenvalues and corresponding eigenvectors of a (regular) matrix pen-
cil that lie within a given region of the complex plane. In our case, the pencil is
(A,M), and the region is the interval [a, b] in R. The key idea is to use a rational
transformation of (A,M) to access the spectral projector associated with the eigen-
values in [a, b]. This is then combined with a standard eigenvalue iteration to set up
a Rayleigh–Ritz projection for the target eigenpairs.

In more detail, we first select a rational function H, called the filter, of the form

(3.1) H(z) =

K−1∑
k=0

wk

z − ζk
,

which is large in magnitude on [a, b] and small elsewhere. Then, when the matrix

(3.2) H(M−1A) =

K−1∑
k=0

wk(A− ζkM)−1M
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Algorithm 3.1: Computation of V1, Λ1 via rational filtering

Input : Pencil (A,M), search interval [a, b]
Output: Matrices V1, Λ1 of eigenvectors, eigenvalues of (A,M) in [a, b]
/* Preliminary factorization of systems at filter poles. */

1 Factor A− ζkM = LkDkL
T
k for k = 0, . . . ,K − 1.

/* Randomized algorithm for finding the range of H(M−1A). */

2 Pick initial dimension d, threshold ε. Generate random Gaussian X ∈ Rn×d.
3 while not converged do

4 Compute Y = H(M−1A)X =
∑K−1

k=0 wkL
−T
k D−1

k L−1
k X.

5 Write Y = UΣV T in a reduced SVD with singular values σ1 ≥ · · · ≥ σn.
6 if σn/σ1 < ε then
7 Let r = min{j : σj/σ1 < ε}.
8 Set Y = U:,1:r (first r columns of U).
9 break

10 Select expansion dimension s and generate random Gaussian X̃ ∈ Rn×s.

11 Set X =
[
U X̃

]
.

/* Rayleigh--Ritz projection. */

12 Solve the r × r eigenvalue problem (Y TAY )w = θ(Y TMY )w. Let W be the
matrix of eigenvectors and Θ the corresponding matrix of eigenvalues.

13 Discard eigenpairs (w, θ) for which θ lies outside [a, b] or for which the
residual ∥AY w − θMY w∥2 is large, leaving reduced matrices W1 and Θ1.

14 Set V1 = YW1 and Λ1 = Θ1.

is applied to a vector, it will amplify (respectively, suppress) the components of that
vector in the directions of the eigenvectors in V1 (respectively, V2), since

(3.3) H(M−1A) = V H(Λ)V −1 =
[
V1 V2

] [H(Λ1)
H(Λ2)

] [
V1 V2

]−1
,

and H(Λ1) is much larger in magnitude than H(Λ2) by construction.
We can use H to build a subspace iteration, Arnoldi iteration, or other simi-

lar procedure for computing the eigenvalues in Λ1 together with their corresponding
eigenvectors. Algorithm 3.1 lists one option based on the randomized algorithm de-
scribed in [21]. The idea is that if H is well chosen, then H(M−1A) is approximately
low rank, since (3.3) and the relation V −1 = V TM imply

H(M−1A) = V1H(Λ1)V
T
1 M + V2H(Λ2)V

T
2 M ≈ V1H(Λ1)V

T
1 M

when H(Λ1) is much larger than H(Λ2). Hence, randomized methods [14, 27] should
be effective for finding a basis for Ran

(
H(M−1A)

)
≈ Ran(V1), the target eigenspace.

With this basis in hand, the target eigenpairs can be computed using a standard
Rayleigh–Ritz projection.

We emphasize that Algorithm 3.1 describes just one possibility of many. But
even if we confine ourselves to its framework, there are several parameters—the initial
subspace dimension d, the expansion dimension s, and the convergence tolerance ε—
that must be selected appropriately for the method to be effective. While these
details are important, treating them here would take us far afield from our objective
of describing a method for (1.1), and so we shall say little about them, referring the
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Fig. 3.1. Magnitude for z ∈ [−2, 2] of the filter (3.1) with ζk and wk defined by (3.4) and (3.5).
Left: K = 8. Right: K = 16. The sharp spikes indicate the locations of the poles.

reader to [21] and the wider rational filtering literature for more information. Instead,
we focus on the selection of the filter, as our choice forH will play an equally prominent
role in the computation of x2 in Section 4 as it does here in the computation of x1.

There are many methods for selecting H, including discretization of contour in-
tegrals [34, 40] and rational approximation of the indicator function for [a, b] [13, 47].
Here, we use the reciprocal Chebyshev polynomial filter described in [2, 30]. This
filter takes the poles ζk to be the K Chebyshev points of the first kind in [a, b],

(3.4) ζk =
a+ b

2
+

2

b− a
cos

(
(2k + 1)π

2K

)
, k = 0, . . . ,K − 1,

with the corresponding weights wk given by

(3.5) wk =
1

K
cos

(
(K − 1)

(2k + 1)π

2K

)
, k = 0, . . . ,K − 1.

Plots of |H(z)| with this choice of the ζk and wk for K = 8, 16 and [a, b] = [−1, 1]
are shown in Figure 3.1. Observe that |H(z)| decays rapidly as z gets further away
from [−1, 1], signaling that H is a good filter for this interval. For the remainder
of this article, when we refer to the filter H, we assume that the poles and weights
are given by (3.4) and (3.5), respectively. The principal advantage of this filter over
other commonly-used filters, especially those derived from contour integration, is that
because (A,M), the ζk, and the wk are all real, the resulting algorithm uses only real
arithmetic, roughly halving the computational and storage costs.

Each step of the main loop in Algorithm 3.1 requires the application of (3.2)
to one or more vectors, which in turn requires the solution of K linear systems,
generally with multiple right-hand sides. To solve these systems, we compute an
LDLT factorization of each of the matrices A − ζkM . These factorizations—as well
as the corresponding linear solves—can be carried out in parallel. The factorizations
need only be performed once at the start of the algorithm; once constructed, they can
be reused as many times as needed.

With V1 and Λ1 in hand, we can solve the first equation in (2.5) for x1. We
compute V T

1 (A− ωM)V1 = Λ1 − ωI, a diagonal matrix, and obtain

x1 = (Λ1 − ωI)−1V T
1 f.

This completes the first phase of our algorithm.
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4. Solving for x2: Deflated Krylov iteration. To compute the remaining
components of x, we must solve the second equation in (2.5) for x2. Because we do
not compute V2 or Λ2, we cannot do this by solving a diagonal system as we did
for x1. Instead, we use the fact that the eigenvectors of (A,M) resolve the identity
matrix into a sum of complementary M -orthogonal projectors,

I = V1V
T
1 M + V2V

T
2 M,

to write
V2 = (V2V

T
2 M)V2 = (I − V1V

T
1 M)V2.

Thus, the equation for x2 may be expressed in the form

(4.1) (I −MV1V
T
1 )(A− ωM)(I − V1V

T
1 M)V2x2 = (I −MV1V

T
1 )f.

We view (4.1) an equation not for x2 but for V2x2, which is what we are really after. It
is singular but consistent: it is just the system (2.1) with the V1 components deflated.

We solve (4.1) using a deflated Krylov subspace method. Much is known about
the behavior of Krylov subspace iterations in the presence of deflation; see, e.g.,
[4, 5, 8, 20, 32, 38, 42, 43] for details. All we require is an effective preconditioner to
ensure the iteration converges quickly.

Consider the ideal preconditioner

P∗(ω) = (I − V1V
T
1 M)(A− ωM)−1(I −MV1V

T
1 ).

We call P∗(ω) “ideal” because it exactly inverts A− ωM over the invariant subspace
spanned by the eigenvectors in V2:

P∗(ω)(I −MV1V
T
1 )(A− ωM)(I − V1V

T
1 M)V2 = V2.

If we could apply P∗(ω) to a vector, we could solve (4.1) directly, but doing this
requires us to factor A − ωM , which we want to avoid.1 Instead, we proceed as
follows. When solving for x1, we factored A− ζkM for each k. Thus, we have access
to samples P∗(ζk) of P∗ at the Chebyshev points (3.4). We use these samples to build
a polynomial interpolant

P (ω) =

K−1∑
k=0

ℓk(ω)(I − V1V
T
1 M)(A− ζkM)−1(I −MV1V

T
1 )

to P∗(ω), where

(4.2) ℓk(z) =

K−1∏
j=0
j ̸=k

z − ζj
ζk − ζj

is the kth Lagrange basis polynomial for interpolation in the ζk.
We do not construct P (ω) explicitly: we require only the ability to apply P (ω)

to a vector, and this can be done by applying each term of the sum to the vector
individually and adding the results. Nor do we explicitly construct the terms, which
can be applied using multiplications with M , V1, and V T

1 and solves with A − ζkM ,

1Were we willing to factor A− ωM , we would not need P∗(ω), as we could solve (2.1) directly.



RATIONAL FILTERING FOR SHIFTED LINEAR SYSTEMS 7

10 -2 10 -1 10 0 10 1 10 2
10 0

10 1

10 2

10 3

10 -2 10 -1 10 0 10 1 10 2
10 -15

10 -10

10 -5

10 0

K = 4
K = 8
K = 12
K = 16
K = 20

Fig. 4.1. Illustration of the bound of Theorem 4.1. Left: plot of the convergence rate ρ as a
function of γ. Right: plot of the eigenvalue bound Cρ−K as a function of γ for several values of K.

the factors of which are already on hand. Since the terms are independent of one
another, they can be applied in parallel.

If K is large enough, P (ω) will be a good approximation to P∗(ω) and hence a
good preconditioner for (4.1). This is assured by the following theorem, which asserts
that the eigenvalues of the preconditioned matrix corresponding to eigenvectors in V2

cluster in a disc centered at 1 with a radius that shrinks exponentially in K. In the
statement of the theorem, Λ2(A,M) refers to the set of eigenvalues of (A,M) that do
not belong to [a, b], and

dist(λ, [a, b]) = min(|λ− a|, |λ− b|)

gives the distance from an eigenvalue λ ∈ Λ2(A,M) to [a, b].

Theorem 4.1. The eigenvalues µ of the preconditioned matrix

T (ω) = P (ω)(I −MV1V
T
1 )(A− ωM)(I − V1V

T
1 M)

corresponding to eigenvectors in V2 are real and satisfy

|µ− 1| ≤ Cρ−K

uniformly for ω ∈ [a, b], where

ρ = (1 + 2γ) +
√
(1 + 2γ)2 − 1, C =

16ρ3

(ρ2 − 1)(ρ− 1)
,

and

γ = min
λ∈Λ2(A,M)

dist(λ, [a, b])

b− a
.

The proof of Theorem 4.1 is a routine application of Chebyshev approximation
theory. The projections (I−V1V

T
1 M) and (I−MV1V

T
1 ) that appear in the definition

of P∗(ω) remove the poles of (A − ωM)−1 at eigenvalues in [a, b]. Consequently,
P∗(ω) is an analytic function of ω on [a, b] [6, Chapter 2], [23, Chapter 2], and hence
its Chebyshev interpolants on [a, b] converge to it uniformly at an exponential rate
[46, Chapter 8]. For further details, see Appendix A.

Theorem 4.1 shows that the efficacy of the preconditioner is governed by the
number K of Chebyshev points and the relative separation of the eigenvalues in Λ2
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Fig. 4.2. Illustration of the condition-number bound κ∗ = (1 + ε)/(1 − ε) of Corollary 4.2
(left) and the accompanying bound on the CG convergence rate (right) as functions of γ for several
values of K. In the left pane, we plot κ∗ − 1 instead of κ∗ to show the detailed behavior of κ∗ as it
approaches 1.

from [a, b], given by γ. Figure 4.1 plots the convergence rate ρ and the bound Cρ−K

as functions of γ. As K and γ increase, the bound shrinks, and the eigenvalues of
T (ω) cluster more tightly around 1. Only when γ is very small—that is, when there
are eigenvalues in Λ2 that are very close to [a, b]—does one need a large value of K
for the preconditioner to be effective. In this case, it may be better to compute these
eigenvalues and their corresponding eigenvectors directly and incorporate them into
Λ1 and V1. Such computations are common in rational filtering [17, 18, 39] and can
be done during the first phase of our algorithm.

Note that the preconditioned matrix T (ω) is not symmetric unless M = I and
that the preconditioner P (ω), while symmetric, is not generally positive definite.
Together, these facts would seem to necessitate the use of a non-symmetric Krylov
iteration, such as GMRES [37] instead of the symmetric MINRES [31] or conjugate
gradient (CG) [16] methods. As our experiments in Section 6, which employ GMRES,
will show, P (ω) is usually such an effective preconditioner that this is not a signif-
icant issue. Nevertheless, if one prefers to use a symmetric iteration, there are two
methods for doing so. First, one can symmetrize the preconditioned system at the
cost of computing a Cholesky factorization of M ; details of this approach are given
in Appendix B. Alternatively, one can observe that

T (ω)TMV2 = MT (ω)V2.

Hence, T (ω) is self-adjoint in the M -inner product2 over the subspace spanned by the
eigenvectors in V2, and so one can use a symmetric iteration provided that one runs
the iteration in this inner product.

The convergence rates of the symmetric iterations (either approach) can be esti-
mated with the aid of the following corollary to Theorem 4.1:

Corollary 4.2. For large enough K, the M -norm condition number κ of the
preconditioned matrix T (ω) satisfies

κ ≤ 1 + ε

1− ε
,

where ε = Cρ−K with C and ρ as in Theorem 4.1.

2The M -inner product on Rn is defined by ⟨x, y⟩M = yTMx.
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Algorithm 5.1: Solution of multiple shifted linear systems

Input : Pencil (A,M), interval [a, b], shifts ω1, . . . , ωm in [a, b], right-hand
sides f1, . . . , fm

Output: Solutions xj to (A− ωjM)xj = fj for j = 1, . . . ,m
1 Factor A− ζkM = LkDkL

T
k for k = 0, . . . ,K − 1.

2 Use the factorizations to compute V1, Λ1 via Algorithm 3.1 or other rational
filtering method using the filter defined by (3.1), (3.4), and (3.5).

3 for j = 1, . . . ,m do
4 Compute V1xj,1 = V1(Λ1 − ωjI)

−1V T
1 fj .

5 Compute V2xj,2 by solving

P (ωj)(I−MV1V
T
1 )(A−ωjM)(I−V1V

T
1 M)V2xj,2 = P (ωj)(I−MV1V

T
1 )fj

using a Krylov subspace iteration. Use the factorizations computed in
step 1 to apply P (ωj) at each step of the iteration.

6 Set xj = V1xj,1 + V2xj,2.

Proof. Since T (ω) is self-adjoint in the M -inner product, its M -norm condition
number is the ratio of the magnitude of its largest eigenvalue to that of its smallest.
The result follows by taking K large enough to ensure Cρ−K < 1 so that by Theorem
4.1, the eigenvalues µ of T (ω) obey 0 < 1− ε ≤ µ ≤ 1 + ε.

For instance, if K is large enough, then T (ω) is positive definite in the M -inner
product. Thus, we can use CG in the M -inner product to solve the preconditioned
system. The standard convergence analysis for CG [36, Section 6.11.3] asserts that
this iteration will converge at a rate governed by the ratio (

√
κ− 1)/(

√
κ+ 1), where

κ is the M -norm condition number of T (ω). By providing a bound on κ, Corollary
4.2 provides a bound on this rate. Figure 4.2 plots these bounds as a function of γ
for several values of K.

5. Summary of algorithm. The procedure we have just described for solving
(1.1) is summarized in Algorithm 5.1. We emphasize that this algorithm exposes
natural K-way parallelism during the most expensive operations: the factorizations
in step 1 can all be carried out in parallel, as can the solves with these factorizations
required at each step of the iterations in steps 2 and 5. One can also consider par-
allelizing the loop in step 3, treating the systems independently, or batching them,
solving several simultaneously, but we do not pursue these possibilities here.

A crude complexity analysis suggests that when the number m of systems to be
solved is very large, Algorithm 5.1 will outperform the naive approach of factoring
and solving each system individually when

(5.1) Tfact ≳ (sKK − 1)Tsubst,

where Tfact is the amount of time required to factor one of the shifted systems, Tsubst

is the amount of time required to perform triangular substitutions with the factors,
and sK is the average number of Krylov subspace iterations required to solve each
system in step 5 of Algorithm 5.1. This estimate applies whether one is working in
serial or K-way in parallel; details are given in Appendix C.

In general, we expect sK to decrease with increasing K, as a larger value of K
yields a more effective preconditioner; however, as it is sKK that matters, not sK
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Fig. 5.1. Plots of sKK versus γ for several values of K with sK estimated using the CG
convergence rates from the right pane of Figure 4.2 for CG convergence tolerances of 10−6 (left)
and 10−12 (right). The stair-step nature of the curves is due to the fact that sK and K are integers.

alone, there is a trade-off. This trade-off is illustrated in the graphs of Figure 5.1,
which plot sKK versus γ for several values of K using the estimated CG convergence
rates from the right pane of Figure 4.2 for two different CG convergence tolerances.
For instance, the plot in the left pane shows that with γ = 10−1 and a CG convergence
tolerance of 10−6, Tfact must be about 50 times larger than Tsubst for Algorithm 5.1
to beat the naive approach with K = 16, while for K = 20, the factor shrinks to
approximately 40. These figures are based on upper bounds and imprecise estimates;
we encourage the reader not to read into them too deeply.

Finally, we note that one can reduce sK without increasing K via continuation,
using solutions found at earlier values of j as initial guesses for the Krylov methods at
later values. We use this technique in our numerical experiments but do not explore
it in greater depth here.

6. Numerical results. We now provide several numerical examples that illus-
trate the effectiveness of the proposed method. As mentioned in the introduction, the
principal application requiring the solution of (1.1) is frequency response analysis,
and all test problems we consider come from this application. All computations were
carried out using MATLAB R2022b on a GNU/Linux workstation with dual 24-core
AMD EPYC 7402 processors clocked at 2.8 GHz and 1 TB of main memory.

For the rational filtering computations, we use a variant of Algorithm 3.1. We
set the initial subspace dimension d in step 2 to 125% of the number of eigenvalues in
[a, b], which we compute by factoring the system pencil at a and b and using Sylvester’s
law of inertia [33, Theorem 3.3.1].3 We set the expansion dimension s in step 10 to
10% of the current subspace size and the convergence tolerance ε in step 6 to 10−12;
the latter can be relaxed to larger values at the expense of accuracy. The criterion
for the residual check in step 13 is

(6.1) ∥AY w − θMY w∥2 ≤ ε|λmax(A,M)|∥Y w∥2,

where |λmax(A,M)| is the largest-magnitude eigenvalue of (A,M). We estimate
λmax(A,M) crudely using the Krylov–Schur method implemented in the MATLAB

3Note that as neither a nor b is a pole for our filter, these factorizations are “wasted” in the
sense that they are not reused for any purpose following the inertia count. This is easily remedied
by switching to a filter with poles at the Chebyshev points of the second kind on [a, b], which include
the interval’s endpoints [46].
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Table 6.1
Parameters for the test problems generated by finite element discretizations of the Laplacian on

rectangular (2D) and cuboid (3D) domains. The interval [a, b] contains the algebraically smallest
185 eigenvalues of (A,M).

Problem Dimension a b

fem2D-50K 49,769 −1.00× 10−1 1.80× 103

fem2D-100K 99,998 −1.00× 10−1 1.80× 103

fem2D-200K 199,935 −1.00× 10−1 1.80× 103

fem2D-500K 499,583 −1.00× 10−1 1.80× 103

fem3D-50K 49,739 −1.00× 10−1 2.93× 102

fem3D-100K 100,293 −1.00× 10−1 2.93× 102

fem3D-200K 199,588 −1.00× 10−1 2.93× 102

fem3D-500K 501,322 −1.00× 10−1 2.93× 102

eigs function [44] with the tolerance set to 10−2. Approximate eigenpairs (Y w, θ)
that do not satisfy (6.1) are deemed not to have converged. If the total number of
converged eigenpairs corresponding to eigenvalues within [a, b] does not match the
inertia count, we deem Algorithm 3.1 not to have converged and continue iterating.

For the deflated Krylov solves, we use unrestarted GMRES via the MATLAB
gmres function with the convergence tolerance set to 10−8. The preconditioner is
as described in Section 4. To further reduce the iteration counts, we employ the
continuation strategy described at the end of Section 5.

6.1. Laplacian test problems. In our first set of tests, we apply our method
to solve (1.1) for some pencils (A,M) generated by finite element discretizations of
the Laplacian on a rectangle of dimensions 1× 21/4 in 2D and a cuboid of dimensions
1 × 21/4 × 31/4 in 3D4 with natural (Neumann) boundary conditions. We generated
the meshes and matrices using the MATLAB Partial Differential Equations Toolbox,
which uses P1 Lagrange elements. For each pencil, we first select an interval [a, b]
containing its 185 algebraically smallest eigenvalues and then select a set of m = 100
equally-spaced shifts ωj in [a, b]. For the right-hand sides, we select a vector f of
the appropriate dimension with entries drawn at random from a standard normal
distribution, scale f to have unit norm, and then set fj = f for all j. In terms of the
application to frequency response analysis, these are low-frequency response problems
for either a vibrating rectangular membrane (in 2D) or cuboidal acoustic cavity (in
3D). Table 6.1 summarizes these test problems.

The results of applying our method to these problems with several values of K
are displayed in Table 6.2. The table reports the number of iterations required for
the rational filtering phase of the algorithm to converge, the dimension ndefl of the
deflation space, and the value of γ as defined in Theorem 4.1.5 Here, ndefl = 185
because we use only the eigenvectors corresponding to eigenvalues within [a, b] to
form the deflation space. The table also reports the minimum, maximum, and average
number of GMRES iterations required to solve the deflated systems, and the minimum
and maximum 2-norm residuals ∥f − (A− ωjM)xj∥2 over all j.

4These dimensions were selected to yield problems for which all eigenvalues are simple. This was
done solely to facilitate comparison between the 2D and 3D cases, as it simplifies the task of finding
intervals [a, b] containing a given number of eigenvalues. Problems with eigenvalues of non-unit
multiplicity generally present no issues for our method; indeed, this is one of its strengths.

5We compute γ by applying Algorithm 3.1 on an interval containing but slightly larger than [a, b]
to find the eigenvalue of (A,M) nearest to [a, b] whose eigenvector is not used in the deflation space.
We do this only to facilitate the discussion in this article; it is not necessary in practice.
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Table 6.2
Results of applying the proposed method to the finite element test problems of Table 6.1 using

only the eigenpairs within [a, b] for deflation.

Problem K
Filt.

ndefl γ
GMRES iters. Residual

iters. Min. Max. Avg. Min. Max.

fem2D-50K
8 9 185 4.2× 10−03 1 15 10.0 7× 10−10 6× 10−08

16 2 185 4.2× 10−03 1 8 6.1 3× 10−11 5× 10−08

24 1 185 4.2× 10−03 1 6 4.5 4× 10−11 1× 10−08

fem2D-100K
8 9 185 4.2× 10−03 1 15 9.9 3× 10−10 3× 10−08

16 2 185 4.2× 10−03 1 8 6.0 2× 10−11 7× 10−08

24 1 185 4.2× 10−03 1 5 4.4 5× 10−11 2× 10−08

fem2D-200K
8 8 185 4.2× 10−03 1 15 9.8 6× 10−10 8× 10−08

16 2 185 4.2× 10−03 1 8 6.0 3× 10−11 1× 10−09

24 1 185 4.2× 10−03 1 6 4.5 7× 10−11 9× 10−09

fem2D-500K
8 8 185 4.2× 10−03 1 15 9.9 2× 10−10 2× 10−08

16 2 185 4.2× 10−03 1 8 6.0 2× 10−11 7× 10−09

24 1 185 4.2× 10−03 1 5 4.4 5× 10−11 2× 10−08

fem3D-50K
8 19 185 3.7× 10−03 1 18 11.6 7× 10−11 4× 10−08

16 4 185 3.7× 10−03 1 11 7.1 5× 10−11 3× 10−08

24 2 185 3.7× 10−03 1 7 5.1 4× 10−12 2× 10−09

fem3D-100K
8 18 185 2.8× 10−03 1 17 11.9 1× 10−10 8× 10−09

16 3 185 2.8× 10−03 1 10 7.5 3× 10−10 7× 10−08

24 2 185 2.8× 10−03 1 7 5.6 8× 10−12 8× 10−10

fem3D-200K
8 18 185 2.4× 10−03 1 17 12.0 6× 10−11 1× 10−08

16 3 185 2.4× 10−03 1 10 7.6 2× 10−10 2× 10−08

24 2 185 2.4× 10−03 1 9 5.8 1× 10−11 1× 10−09

fem3D-500K
8 17 185 2.2× 10−03 1 17 11.9 4× 10−11 8× 10−09

16 3 185 2.2× 10−03 1 10 7.5 6× 10−11 6× 10−09

24 2 185 2.2× 10−03 1 8 5.8 6× 10−12 8× 10−10

Our method solves the systems successfully, attaining residuals on the order of
10−6 or less in all cases; this is more than sufficient accuracy for most frequency
response applications. On the other hand, the values of γ are small: the eigenvalues
of these pencils are densely packed at the low end of the spectrum, and as a result,
each pencil has at least one eigenvalue outside but very near to [a, b]. This diminishes
the effectiveness of the preconditioner: on average, the deflated systems require 4–
10 iterations for the 2D problems and 6–12 for the 3D problems, depending on K.
Increasing K does reduce the number of iterations required to reach convergence (for
both phases of the computation), but this comes at a price. For the 2D problems,
the product sKK ranges from about 80 to 110; for the 3D problems, the range is
approximately 90 to 150. We conclude that for our method to be competitive with
the naive approach, the time required to factor the systems must be around 100 times
greater than the time required to solve with the factors. This is certainly not the case
in 2D and is a tall order even in 3D for the sizes of the problems considered.

Fortunately, there is a way to improve things. During the rational filtering phase,
it is common for some of the eigenvalues outside [a, b] to converge in addition to those
inside. In the experiments of Table 6.2, we discarded these and used only the eigen-
vectors corresponding to eigenvalues within [a, b] to form the deflation space. If we
deflate against the eigenvectors corresponding to these “extra” eigenvalues as well, we
obtain the results shown in Table 6.3. Compared with the results of Table 6.2, the
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Table 6.3
Results of applying the proposed method to the finite element test problems of Table 6.1 using

all converged eigenpairs for deflation. The GMRES iteration counts have decreased significantly
relative to the values reported in Table 6.2 at the expense of an increase in the residual norms.

Problem K
Filt.

ndefl γ
GMRES iters. Residual

iters. Min. Max. Avg. Min. Max.

fem2D-50K
8 9 287 5.7× 10−01 1 2 1.9 3× 10−07 7× 10−07

16 2 214 1.7× 10−01 1 2 1.7 6× 10−08 4× 10−07

24 1 199 8.2× 10−02 1 1 1.0 8× 10−08 1× 10−06

fem2D-100K
8 9 335 8.5× 10−01 1 2 1.0 1× 10−06 3× 10−06

16 2 219 2.1× 10−01 1 2 1.3 4× 10−07 3× 10−06

24 1 201 1.0× 10−01 1 1 1.0 2× 10−07 3× 10−06

fem2D-200K
8 8 332 8.0× 10−01 1 2 1.1 2× 10−06 5× 10−06

16 2 222 2.1× 10−01 1 1 1.0 2× 10−06 7× 10−06

24 1 203 1.1× 10−01 1 1 1.0 1× 10−06 1× 10−05

fem2D-500K
8 8 352 9.5× 10−01 1 2 1.0 7× 10−06 1× 10−05

16 2 230 2.5× 10−01 1 2 1.4 7× 10−06 3× 10−05

24 1 209 1.3× 10−01 1 1 1.0 6× 10−06 5× 10−05

fem3D-50K
8 19 357 6.2× 10−01 1 2 1.7 1× 10−07 3× 10−07

16 4 227 1.8× 10−01 1 2 1.4 7× 10−08 4× 10−07

24 2 217 1.4× 10−01 1 1 1.0 5× 10−08 6× 10−07

fem3D-100K
8 18 375 6.7× 10−01 1 2 1.6 2× 10−07 6× 10−07

16 4 239 2.1× 10−01 1 1 1.0 2× 10−07 1× 10−06

24 2 217 1.4× 10−01 1 1 1.0 6× 10−08 5× 10−07

fem3D-200K
8 18 455 9.2× 10−01 1 1 1.0 6× 10−07 1× 10−06

16 3 230 1.9× 10−01 1 2 1.1 3× 10−07 2× 10−06

24 2 217 1.3× 10−01 1 1 1.0 8× 10−08 7× 10−07

fem3D-500K
8 17 544 1.2× 10+00 1 1 1.0 2× 10−06 3× 10−06

16 3 235 2.1× 10−01 1 2 1.0 1× 10−06 7× 10−06

24 2 219 1.5× 10−01 1 1 1.0 4× 10−07 3× 10−06

dimensions of the deflation spaces have increased significantly—more than twofold for
some combinations of the parameters—but because we have computed more eigenval-
ues, the values of γ have increased greatly, and consequently, our preconditioner has
become more effective. Not one of the deflated systems requires more than 2 GMRES
iterations to solve, and in many cases, the number is much closer to 1. The product
sKK ranges roughly from 10 to 30. Our method is now competitive for the larger
2D problems and a clear winner for the larger 3D problems. The disadvantage to
doing this is that the systems are solved less accurately: the residuals in Table 6.3
are noticeably larger than those in Table 6.2. This happens because the eigenvectors
corresponding to eigenvalues outside [a, b] are not computed to the same accuracy as
those inside [a, b] by the rational filtering method. Nevertheless, the residuals in Table
6.3 are still small enough for most frequency response applications.

6.2. SuiteSparse test problems. Next, we consider several problems involving
pencils from real-world frequency response applications taken from the SuiteSparse
matrix collection [9]. In addition to low-frequency problems involving these pencils,
we consider mid-frequency problems as well in order to demonstrate the effectiveness
of our method at solving such problems. The pencils and intervals [a, b] are listed
in Table 6.4. Note that the windscreen pencil was used as a test problem in the
paper of Meerbergen and Bai, wherein the authors solve a low-frequency response
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Table 6.4
Parameters for the test problems from the SuiteSparse collection. The symbol neig refers to the

number of eigenvalues of the pencil in [a, b].

Type Problem Dimension a b neig

Low

Kuu/Muu 7,102 9.29× 10+00 1.67× 10+03 184
crystk03/crystm03 24,696 −1.00× 10−01 7.15× 10−01 190
qa8fk/qa8fm 66,127 −1.00× 10−01 3.29× 10+01 262
windscreen 22,692 −1.00× 10−01 9.13× 10+06 234
bs01 127,224 2.96× 10+03 5.23× 10+07 167

Mid

Kuu/Muu 7,102 7.50× 10+03 9.50× 10+03 184
crystk03/crystm03 24,696 1.00× 10+03 1.25× 10+03 190
qa8fk/qa8fm 66,127 1.00× 10+03 1.01× 10+03 262
windscreen 22,692 1.00× 10+07 5.00× 10+07 234
bs01 127,224 1.00× 10+07 6.00× 10+07 167

Table 6.5
Results for the low-frequency problems from the SuiteSparse collection.

Problem K
Filt.

ndefl γ
GMRES iters. Residual

iters. Min. Max. Avg. Min. Max.

Kuu/Muu
8 13 252 3.7× 10−01 1 2 2.0 2× 10−08 7× 10−08

16 2 196 7.3× 10−02 1 2 2.0 1× 10−08 1× 10−07

24 1 192 5.9× 10−02 1 2 1.9 1× 10−08 2× 10−07

crystk03/crystm03
8 9 280 5.9× 10−01 1 2 1.8 9× 10−07 2× 10−06

16 2 217 1.8× 10−01 1 2 1.3 5× 10−07 3× 10−06

24 1 207 1.2× 10−01 1 1 1.0 2× 10−07 2× 10−06

qa8fk/qa8fm
8 15 299 1.3× 10−01 1 3 2.7 2× 10−09 2× 10−06

16 3 279 7.5× 10−02 1 2 2.0 1× 10−09 2× 10−07

24 1 271 2.4× 10−02 1 2 2.0 7× 10−10 8× 10−07

windscreen
8 2 240 4.4× 10−02 1 5 4.1 8× 10−07 3× 10−04

16 2 260 2.4× 10−01 1 1 1.0 1× 10−07 8× 10−05

24 1 235 1.4× 10−02 1 3 2.8 1× 10−06 6× 10−04

bs01
8 8 315 8.5× 10−01 1 2 1.1 2× 10−05 4× 10−05

16 2 205 2.1× 10−01 1 2 1.4 9× 10−06 5× 10−05

24 1 189 1.3× 10−01 1 1 1.0 6× 10−06 6× 10−05

problem involving it with (in our notation) [a, b] = [0, 104], in which the pencil has
12 eigenvalues. Here, we consider an interval roughly 1000 times wider and which
contains nearly 20 times as many eigenvalues, a much more challenging problem.

The results of applying our method to these problems are summarized in Tables
6.5 (for the low-frequency problems) and 6.6 (mid-frequency problems). The residuals
attained are on par with those reported for the Laplacian discretizations in Table 6.3,
with the exception of the bs01 problem, for which they are a bit larger. Aside from
the low-frequency windscreen problem with K = 8, no deflated system required more
than 3 GMRES iterations to solve. The iteration counts for the rational filtering
phase of the algorithm are generally higher for the mid-frequency problems than for
the low-frequency ones, reflecting the greater challenge posed by an interior eigenvalue
problem. Nevertheless, the GMRES iteration counts and residuals for the two types of
problems are comparable. Because the cost of the rational filtering phase is amortized
over all the frequencies at which the response is sought, this means that solving a mid-
frequency problem with our method is asymptotically no more expensive than solving
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Table 6.6
Results for the mid-frequency problems from the SuiteSparse collection.

Problem K
Filt.

ndefl γ
GMRES iters. Residual

iters. Min. Max. Avg. Min. Max.

Kuu/Muu
8 20 249 1.3× 10−01 1 3 2.7 2× 10−08 1× 10−06

16 5 200 3.9× 10−02 1 3 2.5 3× 10−08 5× 10−06

24 2 196 4.4× 10−02 1 2 2.0 3× 10−08 2× 10−06

crystk03/crystm03
8 33 340 9.8× 10−02 1 3 2.5 9× 10−08 3× 10−07

16 6 232 2.6× 10−02 1 3 2.0 1× 10−07 6× 10−07

24 2 208 4.8× 10−02 1 2 1.9 3× 10−08 5× 10−06

qa8fk/qa8fm
8 19 359 1.2× 10−01 1 3 2.8 4× 10−08 7× 10−06

16 5 301 6.1× 10−02 1 2 2.0 2× 10−08 8× 10−06

24 2 288 4.1× 10−02 1 2 2.0 1× 10−08 3× 10−07

windscreen
8 11 539 4.0× 10−01 1 2 2.0 7× 10−08 2× 10−07

16 8 310 1.1× 10−01 1 2 2.0 6× 10−08 3× 10−07

24 3 261 2.3× 10−02 1 3 2.2 7× 10−08 5× 10−07

bs01
8 11 411 1.3× 10+00 1 2 1.0 3× 10−05 5× 10−05

16 4 246 3.1× 10−01 1 1 1.0 2× 10−05 8× 10−05

24 2 206 1.1× 10−01 1 2 1.1 3× 10−05 2× 10−04

a low-frequency problem as the number of frequencies becomes large.

6.3. Execution time. We conclude this section with an example discussing the
performance of our method in terms of time to solution. We consider the same fem3D-
500K problem described above, taking K = 16, but we increase the number of shifts
at which we solve (1.1) from m = 100 to m = 1000. We run both our method and the
naive approach, where the latter is implemented using mldivide (i.e., “backslash”)
in MATLAB, which uses MA57 [10] for these problems. We run all computations in
serial using a single thread6 and record the execution times for each method.

The results are displayed in Table 6.7, which also breaks down the cost of our
method by computational phase.7 While computing the factors at each of the poles
and applying the rational filter is not cheap, it enables us to solve each system in
about 2.5x less time than is required to solve the system the naive way; moreover,
with enough systems to solve, the up-front cost of the rational filtering phase can
be amortized away. In this case, with m = 1000, the result is a roughly 1.75x im-
provement in the time to solution of the overall problem compared with the naive
approach.

7. Conclusion. We have presented an algorithm for solving a sequence of shifted
linear systems for which the system pencil is symmetric and definite and the shifts
are drawn from a given real interval. The algorithm, which can be viewed as a multi-

6While both the naive method and our method are generally too expensive to consider running
this way, doing this allows us to avoid the challenges of comparing parallel implementations, which
can be difficult to develop in MATLAB. We do not believe this is an issue, as both methods are
embarrassingly parallel through the same mechanism—the independence of linear systems at different
shifts—and so we expect the ratios of their execution times in serial and in parallel to be comparable.

7The reader may notice that it takes a little over 4x the amount of time to factor a shifted system
at one of the filter poles as it does to solve a shifted system using mldivide. The reason this occurs
is that MATLAB stores the LDLT factors in compressed-sparse-column (CSC) format, and there is
a cost associated with converting the factors to this format from the internal format of the MA57
algorithm used to compute them. The mldivide function solves the systems using the MA57 format
directly and does not incur this cost.
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Table 6.7
Execution times for our method vs. those for the naive approach for the fem3D-500K problem

with m = 1000. All times are in seconds.

Method Phase
Time (s)

Average Total

Alg. 5.1

Count eigenvalues in [a, b] — 6.80× 102

Compute factors at poles 7.00× 102 (per pole) 1.16× 104

Rational filtering (Alg. 3.1) 4.67× 103 (per iteration) 1.40× 104

Solve systems 6.88× 101 (per system) 6.88× 104

TOTAL — 9.50× 104

Naive
Solve systems 1.68× 102 (per system) 1.68× 105

TOTAL — 1.68× 105

shift version of an algorithm of Meerbergen and Bai, parallelizes naturally and, as
our experiments show, can be significantly more effective than the naive approach of
factoring and solving each system independently.

We expect our algorithm to be most useful for problems of this sort for which
the interval containing the shifts lies deep in the interior of the spectrum of the sys-
tem pencil and also contains many of the pencil’s eigenvalues. An example would be
computing the frequency response of a system over a mid-frequency range in which
the system has a large number of natural frequencies. Problems of this type are diffi-
cult to handle with traditional methods based on modal superposition or automated
multilevel substructuring [3].

One limitation of our algorithm as presented here is that it relies heavily on
the fact that the system pencil has all real eigenvalues. In the context of frequency
response analysis, this corresponds to an undamped system. It should be possible to
extend our method to handle damped systems with complex eigenvalues by using a
filter with poles at equispaced points on a circle in the complex plane [1, 40] instead
of the reciprocal Chebyshev polynomial filter used here. We plan to investigate this
possibility in future work.

Appendix A. Proof of Theorem 4.1.
The crux of the proof is the development of a bound on the error in the approxi-

mation of 1/(λ−ω) for ω ∈ [a, b] by its polynomial interpolant (in ω) in the Chebyshev
points (3.4) for each eigenvalue λ of (A,M) outside of [a, b]. We begin by expanding
1/(λ−ω) on [a, b] in a series of Chebyshev polynomials of the first kind ; these are the
polynomials Tk defined by T0(x) = 1, T1(x) = x, and for k ≥ 1 by the recurrence

Tk+1(x) = 2xTk(x)− Tk−1(x).

The Tk are most useful for developing approximations to functions defined on [−1, 1].
Since our function is defined on [a, b], we apply a linear change of variable and work
instead with the polynomials

T̂k(x) = Tk

(
2

b− a
x− b+ a

b− a

)
.

The required expansion is given by the following proposition:

Proposition A.1. For λ /∈ [a, b],

1

λ− ω
=

4t

(b− a)(1− t2)

(
1 + 2

∞∑
k=1

tkT̂k(ω)

)
,
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the series converging uniformly for ω ∈ [a, b], where

t = λ̂− sign
(
λ̂
)√

λ̂2 − 1, λ̂ =
2

b− a
λ− b+ a

b− a
.

Proof. See [46, Exercise 3.14] for the case where [a, b] = [−1, 1]. The result follows
from this basic case by changing variables as described above.

Next, we need the following standard result, which bounds the error in a Cheby-
shev interpolant to a function in terms of the sizes of the coefficients of the function’s
Chebyshev expansion:

Proposition A.2. Let f : [a, b] → R be continuous, and let pK be the polynomial
interpolant to f in the points (3.4). If f admits the Chebyshev expansion

f(ω) =

∞∑
k=0

ckT̂k(ω)

on [a, b], then

∥f − pK∥∞ ≤ 2

∞∑
k=K

|ck|,

where ∥ · ∥∞ denotes the supremum norm on [a, b].

Proof. This is a consequence of the aliasing property of the T̂k over the points
(3.4), the triangle inequality, and the fact that ∥T̂k∥∞ = 1. See [28, Section 6.3.1],
[46, Chapter 4], and [48] for details.

Combining Propositions A.1 and A.2 yields the required bound on the error in
the interpolant to 1/(λ− ω):

Proposition A.3. For λ /∈ [a, b],∣∣∣∣∣
K−1∑
k=0

ℓk(ω)
1

λ− ζk
− 1

λ− ω

∣∣∣∣∣ ≤ 16ρ2

(b− a)(ρ2 − 1)(ρ− 1)
ρ−K

for all ω ∈ [a, b], where ζk and ℓk are as in (3.4) and (4.2), respectively, and

ρ = (1 + 2γ) +
√
(1 + 2γ)2 − 1, γ =

dist(λ, [a, b])

b− a
.

Proof. For k ≥ 1, the coefficient ck of T̂k in the expansion of Proposition A.1 is

ck =
8t

(b− a)(1− t2)
tk.

Noting that |t| < 1 and applying Proposition A.2, we obtain∣∣∣∣∣
K−1∑
k=0

ℓk(ω)
1

λ− ζk
− 1

λ− ω

∣∣∣∣∣ ≤ 8|t|
(b− a)(1− t2)

|t|K

1− |t|
.

Finally, from∣∣λ̂∣∣ = 2

b− a

∣∣∣∣λ− a+ b

2

∣∣∣∣ = 2

b− a

[
dist(λ, [a, b]) +

b− a

2

]
= 1 + 2γ,

it follows that |t| = 1/ρ, which yields the result.
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We can now prove Theorem 4.1.

Proof of Theorem 4.1. Let λ1, . . . , λs denote the eigenvalues in Λ2(A,M). For
each j, let ρj and γj be the values of ρ and γ from Proposition A.3 for λ = λj . Note
that ρj is an increasing function of γj .

A straightforward calculation shows that

T (ω)V2 = V2

K−1∑
k=0

ℓk(ω)(Λ2 − ζkI)
−1(Λ2 − ωI).

Thus, the eigenvalues of T (ω) corresponding to the eigenvectors in V2 are precisely
the real numbers

µj =

K−1∑
k=0

ℓk(ω)
λj − ω

λj − ζk
, j = 1, . . . , s.

By Proposition A.3,

|µj − 1| ≤
16ρ2j |λj − ω|

(b− a)(ρ2j − 1)(ρj − 1)
ρ−K
j ,

and since

|λj − ω| ≤ dist(λj , [a, b]) + (b− a) = (1 + γj)(b− a) ≤ ρj(b− a),

we have

|µj − 1| ≤
16ρ3j

(ρ2j − 1)(ρj − 1)
ρ−K
j .

The theorem now follows by maximizing the right-hand side of this inequality over j,
observing that it is a decreasing function of ρj and, hence, of γj .

Appendix B. Symmetrization of the preconditioned system for x2.
In this appendix, we provide details of the symmetrization approach to solving the

deflated system for x2 mentioned briefly in Section 4. The idea is to factor M = LLT

in a Cholesky decomposition, multiply both sides of (2.1) by L−1 on the left, and
change variables according to y = LTx, yielding

(B.1) (L−1AL−T − ωI)y = L−1f.

One can apply our method to this equivalent system and then recover x from y via a
triangular solve with LT . Since the “mass matrix” for (B.1) is the identity matrix, the
projections that arise in the formation of the deflated system and our preconditioner
will be orthogonal, leading to a symmetric preconditioned system.

In more detail, recall that L−1AL−T and (A,M) have the same eigenvalues and
that the matrix Q of eigenvectors of the former is related to that of the latter by
Q = LTV . Defining Q1 = LTV1 and Q2 = LTV2, the deflated system for x2 is

(B.2) (I −Q1Q
T
1 )(L

−1AL−T − ωI)(I −Q1Q
T
1 )Q2x2 = (I −Q1Q

T
1 )L

−1f,

and our preconditioner is

(B.3) P (ω) =

K−1∑
k=0

ℓk(ω)(I −Q1Q
T
1 )(L

−1AL−T − ζkI)
−1(I −Q1Q

T
1 ).
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One checks readily that the preconditioned matrix

T (ω) = P (ω)(I −Q1Q
T
1 )(L

−1AL−T − ωI)(I −Q1Q
T
1 )

satisfies
T (ω)TQ2 = T (ω)Q2

and hence is symmetric over the subspace spanned by the eigenvectors in Q2.
The only remaining issue to address is how to work with (B.2) and (B.3) without

explicitly forming L−1AL−T , which may be expensive. We require only the ability
to apply L−1AL−T and (L−1AL−T − ζkI)

−1 to vectors. The former can be done by
multiplying by L−T , A, and L−1 in succession, where the multiplications by L−T and
L−1 are accomplished via triangular solves. As for the latter, we have

(L−1AL−T − ζkI)
−1 = L(A− ζkM)−1LT ,

and so applying (L−1AL−T − ζkI)
−1 to a vector can be done by multiplying by LT ,

then (A− ζkM)−1, and finally L, where the multiplication by (A− ζkM)−1 is carried
out using the factors of A− ζkM computed during the first phase of our algorithm.

Appendix C. Complexity analysis.
Here, we give the details of the complexity analysis leading to the condition (5.1)

discussed in Section 5. We make the following assumptions:
• The time Tfact required to factor A− σM does not depend on σ.
• The time Tsubst required to perform a solve with the factors of A − σM (a
pair of triangular substitutions) also does not depend on σ.

• The cost of the factorizations and solves dominates that of all other operations
in the algorithm so that the latter can be ignored.

Under the naive approach to (1.1), each system must be factored and solved
individually at a cost of Tfact + Tsubst per system. As there are m systems, the total
cost is m(Tfact + Tsubst) if the systems are solved serially or m(Tfact + Tsubst)/K if
they are solved K-way in parallel.

For Algorithm 5.1, we pay KTfact in serial for the factorizations at the filter
poles, plus cKKTsubst for the rational filtering computation, where cK is the number
of applications of the filter required for the rational filtering algorithm to converge.
We then pay sKKTsubst to solve each deflated system, giving a total cost of KTfact +
cKKTsubst+msKKTsubst in serial. For K-way parallel operation, we divide the serial
cost by K to obtain Tfact + cKTsubst +msKTsubst.

Whether the costs used are those for execution in serial or execution in parallel,
we find that the cost of the naive approach will exceed that of Algorithm 5.1 when

Tfact

Tsubst
>

KcK +msKK −m

m−K
.

In the large-m limit, the expression on the right-hand side of this inequality tends to
sKK − 1, yielding (5.1).
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