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Abstract. Let f(z) be an analytic or meromorphic function in the closed unit disk sampled at
the nth roots of unity. Based on these data, how can we approximately evaluate f(z) or f(m)(z) at
a point z in the disk? How can we calculate the zeros or poles of f in the disk? These questions
exhibit in the purest form certain algorithmic issues that arise across computational science in areas
including integral equations, partial differential equations, and large-scale linear algebra. We analyze
some of the possibilities and emphasize the distinction between algorithms based on polynomial or
rational interpolation and those based on trapezoidal rule approximations of Cauchy integrals. We
then show how these developments apply to the problem of computing the eigenvalues in the disk of a
matrix of large dimension. Finally we highlight the power of rational in comparison with polynomial
approximations for some of these problems.
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1. Introduction and the unit disk filter function. The title of this paper
suggests a narrow topic, but in fact, our aim is a broad one: to present a set of ideas
underlying certain numerical algorithms used across computational science. In each
application, each geometry, it is easy to get lost in details particular to the problem
at hand. But the common threads are remarkable, and concentrating our attention
on analytic functions at roots of unity on the unit disk will help us to see them.
Figure 1 summarizes the problems and algorithms we shall discuss. From analytic
functions on the unit disk one can reach out to generalizations including harmonic
functions [16], matrix-valued functions [70], noncircular geometries [24], irregular sam-
ple points [41], nonsmooth functions [20], periodic functions with discontinuities [25],
dimensions greater than 2 [78], Helmholtz problems [52], integral equations [37], radial
basis functions (RBFs) [26], nonlinear partial differential equations [51], and linear
operators [36]. (The references just given are a mix of mathematical classics and nu-
merical state of the art.) We offer this list with the thought in mind that researchers
may find it fruitful, in investigating some of these variants, to use the present paper
as a template.

Throughout this paper, n is a positive integer and {zk}, 0 ≤ k ≤ n − 1, are the
nth roots of unity, zk = exp(2πik/n). We let S denote the unit circle, D the open
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Polynomial Discrete Linearized rational

interpolation Cauchy integral interpolation

Méray 1884 Lyness-Delves 1967 Jacobi 1846

Runge 1904 Gutknecht 1986 Eg̃eciog̃lu-Koç 1989

Function Fejér 1918 Helsing-Ojala 2008 Fornberg-Wright 2004

values Walsh 1935 Gonnet-Pachón-Tref. 2011

Henrici 1982 Pachón-Gonnet-V. Deun 2012

Gutknecht 1986

Boyd 2013

[P],[P*] [C] [ratdisk]

Schneider-Werner 1986 Lyness-Moler 1967 Schneider-Werner 1986

Ioakimidis-Pap.-Perd. 1991 Lyness-Sande 1971

Derivatives or Henrici 1979

Taylor Fornberg 1981
coefficients Bornemann 2011

Ioakimidis-Pap.-Perd. 1991

[P'],[P'*] [C'] [ratdisk]

Fortune 2001 Jackson 1917 Gonnet-Pachón-Tref. 2011

Corless 2004 McCune 1966

Amiraslani 2006 Delves-Lyness 1967

Zeros Townsend 2012 Burniston-Siewert 1973

and Henrici 1979

poles Ioakimidis 1985

Anastasselou 1986

Kravanja-Sak.-V. Barel 1999

Kravanja-Van Barel 1999

Kravanja-Van Barel 2000

Luck-Stevens 2002

[Pz],[Pz*] [Cz1],[Cz2],[Cp] [ratdisk_K],[ratdisk]

Goedecker 1999

Sakurai-Sugiura 2003

Matrix Sakurai-Tadano 2007

eigenvalues Polizzi 2009

Ikegami-Sakurai 2010

Asakura et al. 2009

Beyn 2012

[det] [res],[ratdisk]

Fig. 1. An outline of some of the problems and algorithms considered in this article, showing a
selection of key publications followed by MATLAB names of algorithms in typewriter font. (Some of
the classifications are arguable, and some of the entries do not discuss roots of unity or discretiza-
tions of Cauchy integrals explicitly.) One of the observations of this paper is the mathematical
equivalence of algorithm [Cz2], based on discretized Cauchy integrals defining certain moments, and
the more stable algorithm [ratdisk K], based on linearized rational interpolation.

unit disk, and DR the open disk {z ∈ C : |z| < R}. The function f is assumed
to be analytic in DR but not DR for some R > 1, and {fk} are its sampled values
fk = f(zk). The symbol Pn−1 denotes the set of polynomials of degree at most
n− 1.
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Fig. 2. Absolute value of the unit disk filter function b(z) of (1.1) for n = 32. As n → ∞, the
function converges to 1 for |z| < 1 and 0 for |z| > 1, but there is always a ring of poles along the
unit circle.

A certain simple function will have special importance in our discussion, which
one might call the unit disk filter function:1

b(z) =
1

1− zn
=

n−1∏
k=0

zk
zk − z

.(1.1)

This is a rational function with n poles and no zeros, apart from a zero of multiplicity
n at z = ∞. Figure 2 illustrates the shape of b(z) in the complex plane, with values
b(z) ≈ 1 inside D and b(z) ≈ 0 outside. The separation between the two regions is
effected by a cage of poles along the unit circle. The pole at zk has residue

Resk = −zk
n
,(1.2)

and thus each individual pole gets weaker as n → ∞. In the limit, pointwise for each
z with |z| �= 1, we have

lim
n→∞ b(z) =

{
1, |z| < 1,

0, |z| > 1.
(1.3)

2. Evaluating a function and its derivatives in the unit disk.

2.1. Two algorithms for evaluating a function. We begin with the most
basic of all computational problems. Suppose z ∈ D is given and we wish to evaluate
f(z) approximately based on the values {fk}. Here are two good algorithms, whose
interplay will resonate throughout this paper. A third approach, based on rational
rather than polynomial interpolation, will be introduced in sections 4 and 5 and
considered more squarely in section 6.

Algorithm P. Polynomial interpolation. Approximate f(z) by p(z), where
p ∈ Pn−1 is the unique polynomial interpolant to f in the points {zk}.

1The function b is related to the Butterworth filter of electrical engineering. The Butterworth
filter takes the product over just half of the roots of unity, those in one half-plane, and approximates
constant modulus 1 over a diameter of D rather than constant value 1 over all of D. See Figure 1.9
of [88].
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Algorithm C. Discrete Cauchy integral. Approximate f(z) by the trape-
zoidal rule discretization in the points {zk} of the integral (2πi)−1

∫
S(ζ − z)−1f(ζ)dζ.

Both algorithms make use of exactly the same data {fk}, and both, as we shall see
in section 2.4, deliver results that converge geometrically to f(z) as n → ∞. Indeed,
one’s first thought might be, are these two different descriptions of the same method?
But they are not the same. We shall see that Algorithm C approximates f(z) not by
a polynomial but by the rational function

r(z) =
p(z)

1− zn
= b(z)p(z).(2.1)

Thus the result of Algorithm C is the same as that of Algorithm P, but multiplied by
the filter function (1.1), which introduces poles at all the roots of unity (except if a
sample value fk happens to be zero). In this paper we shall consider the significance
of this relationship from several angles.

In the special case z = 0, b(z) takes the value 1, and the results of Algorithms
P and C are identical. This is the case that has gotten the most attention in the
literature, beginning with work in the 1960s by Lyness and his coauthors, which may
partly explain why, amid many publications that discuss algorithms of type C, it is
hard to find many that discuss algorithms of type P (see, however, [12, Chapter 5]).
Yet for z �= 0, not only are P and C different, but P is much more accurate for |z| ≈ 1
(Theorem 2.1). At the data points {zk} themselves, P returns exactly correct results,
whereas C makes errors of infinite magnitude.

A practical situation where evaluation of a function f from samples on a circle
is useful is in problems where accurate direct computation of f(z) in floating-point
arithmetic is impossible because of rounding errors. For an elementary example,
consider the evaluation of a “phi function” like (ez − 1− z)/z2, a problem of practical
importance not only for scalars z but also for matrices [51, 76].

2.2. Barycentric formulas for the two algorithms. To derive formulas for
the polynomial interpolant p of algorithm P, one may first define the node polynomial

�(z) =
n−1∏
k=0

(z − zk) = zn − 1(2.2)

and the barycentric weights

λk =
1

�′(zk)
=

zk
n
.(2.3)

These give the degree n− 1 cardinal polynomial

�k(z) = �(z)
λk

z − zk
=

1

n
�(z)

zk
z − zk

(2.4)

for any k, taking the values 1 at z = zk and 0 at the other roots of unity. From (2.4)
it follows that the interpolant p can be written in Lagrange form as

p(z) =
1

n
�(z)

n−1∑
k=0

zkfk
z − zk

,(2.5)

and this is the barycentric formula of the first kind. Here it is to be understood that
if z = zk for some k, then the use of the formula is replaced by the exact value fk.
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A similar qualification applies to (2.4) and other formulas in this paper involving
divisions by z − zk. The resulting polynomial evaluation algorithms are known to be
numerically stable [40].

In particular, if f ≡ 1, then its polynomial interpolant is the constant function
p ≡ 1, which we can write in the form (2.5) as

1 =
1

n
�(z)

n−1∑
k=0

zk
z − zk

.(2.6)

If (2.5) is divided by (2.6), the factors n−1�(z) in the numerator and denominator
cancel, giving the elegant identity

(P) p(z) =

n−1∑
k=0

zkfk
z − zk

/
n−1∑
k=0

zk
z − zk

,

the barycentric formula of the second kind, or in MATLAB,

[P] pz = mean(zk.*fk./(z-zk))/mean(zk./(z-zk)).

The work involved is O(n) operations. Here and in all the MATLAB formulas of this
article, zk is a column vector containing the nth roots of unity, zk = exp(2πik/n),
0 ≤ k ≤ n− 1, and fk is the corresponding column vector of values fk.

The use of the barycentric formula falls in the category of a calculation “by val-
ues.” It is equally possible to evaluate p(z) “by coefficients.” The Taylor coefficients
can be computed by the fast Fourier transform (FFT), and the algorithm for evalu-
ating p(z) becomes

[P*] c = fft(fk)/n, pz = polyval(flipud(c),z),

requiring O(n logn) operations, with O(n) additional operations for each point z after
the first one. The formulas behind [P*] appear in the next section.

We now turn to Algorithm C. The trapezoidal rule formula is [63]

(C) r(z) = − 1

n

n−1∑
k=0

zkfk
z − zk

,

or in MATLAB,

[C] rz = -mean(zk.*fk./(z-zk)),

again with O(n) operations. Comparing (C) with (2.5), we see that the discrete
Cauchy integral approximation to f(z) is

r(z) = −p(z)

�(z)
,(2.7)

and since −1/�(z) = b(z), this confirms (2.1). Note that r is a rational function of
type (n− 1, n), meaning that it has at most n− 1 finite zeros (unless it is identically
zero) and at most n finite poles, counted with multiplicity, with a zero of order at
least 1 at z = ∞.
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2.3. Taylor projections and polynomial interpolants. Suppose f is ana-
lytic in DR for some R > 1. Then it has a Taylor series

f(z) =

∞∑
k=0

akz
k(2.8)

with coefficients given by the Cauchy integrals

ak =
1

2πi

∫
S

ζ−k−1f(ζ)dζ.(2.9)

Since f is bounded in Dρ for any ρ < R, Cauchy’s estimate gives

|ak| = O(ρ−k), k → ∞.(2.10)

If we truncate the series to the degree n− 1 Taylor section

fn−1(z) =

n−1∑
k=0

akz
k,(2.11)

it follows that for any z ∈ DR and ρ with |z| < ρ < R we have

|fn−1(z)− f(z)| = O((|z|/ρ)n), n → ∞,(2.12)

uniformly for all z in each closed disk of radius <ρ about the origin.
In this paper our interest is not Taylor sections fn−1 but polynomial interpolants

pn−1. (We use the labels p and pn−1 interchangeably.) If we write pn−1 in the form

pn−1(z) =

n−1∑
k=0

ckz
k,(2.13)

then the coefficients {ak} and {ck} are related by the aliasing identity

ck = ak + ak+n + ak+2n + · · · , 0 ≤ k ≤ n− 1.(2.14)

In words, pn−1 is obtained from f by replacing each term akz
k in the series (2.8) by

its alias akz
k(mod n). By (2.10) this implies

|pn−1(z)− f(z)| = O(ρ−n), |z| ≤ 1,(2.15)

as n → ∞ for any ρ < R, since the leading term of the error is the first of the aliases,
anz

0, and an = O(ρ−n). For 1 < |z| < R, the leading term of the error becomes
−anz

n, of order O(|z|nρ−n), so we get

|pn−1(z)− f(z)| = O(|z|nρ−n), 1 ≤ |z| < ρ,(2.16)

for any ρ < R. Again these bounds hold uniformly for all z in each closed disk of
radius <ρ about the origin.

If the Taylor coefficients {ak}, 0 ≤ k ≤ n− 1, are approximated by applying the
trapezoidal rule to (2.9), the same aliasing occurs, and so the resulting coefficients
are {ck}. It is this property that led to the FFT-based algorithm [P*], which utilizes
the fact that the FFT computes all n trapezoidal rule approximations at once.
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Fig. 3. Error plot for approximations with n = 32 to f(z) = log(1.2− z) by Algorithms P (left)
and C (right), with the unit circle marked by a black curve and the branch point at z = 1.2 marked
by a dot. The color bars represent base 10 logarithms. As established in Theorem 2.1, Algorithm P
converges throughout D1.2 as n → ∞, whereas Algorithm C converges only in D. Faint white dots
reflect exact interpolation at the n = 32 roots of unity on the left, and on the right, at n + 1 = 33
points close to a smaller circle (see section 2.9). At the roots of unity on the right, the errors are
infinite because of the poles introduced by the trapezoidal rule.

2.4. Accuracy of the two algorithms. The observations of the foregoing
pages are summarized in the following theorem. For a general discussion of the geo-
metric convergence of the trapezoidal rule for periodic analytic integrands, see [85].

Theorem 2.1. Let f be analytic in DR for some R > 1. Then as n → ∞, for
any ρ with 1 < ρ < R, the approximation of algorithm P has accuracy

|p(z)− f(z)| =
{
O(ρ−n), |z| ≤ 1,

O(|z|nρ−n), 1 ≤ |z| < ρ,
(2.17)

whereas algorithm C gives

|r(z)− f(z)| =
{
O(ρ−n), |z| ≤ R−1,

O(|z|n), R−1 ≤ |z| < 1.
(2.18)

These bounds hold uniformly for all z in each closed disk of radius <ρ about the
origin.

Proof. Equation (2.17) was already given as (2.15) and (2.16). Equation (2.18)
follows from this together with (2.1), since 1 − (1 − zn)−1 = O(|z|n) as n → ∞ for
each z with |z| < 1.

Let us look at these conclusions in a numerical example. In Figure 3, the function
f(z) = log(1.2− z) has been approximated by Algorithms P and C with n = 32. The
figure plots the error |f(z)−p(z)| or |f(z)−r(z)| in each approximation, revealing that
P is accurate in a region considerably larger than the unit disk. This phenomenon,
which is predicted by (2.17), is known as overconvergence. Method C, on the other
hand, only converges in the unit disk, and near the unit circle it loses accuracy, as
predicted in (2.18). To be precise, the estimates indicate that P is more accurate than
C for |z| > R−1.

Figure 4 displays the approximations p(z) and r(z) themselves, rather than the
associated errors. These images are phase portraits, depicting the phase but not the
amplitude of each function: red for positive real, green for positive imaginary, cyan
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Fig. 4. Phase portraits (see [88]) for the same two approximations as in Figure 3. The image
on the left shows n − 2 zeros of p converging as n → ∞ to |z| = R = 1.2, the circle of analyticity
for this function, in keeping with Jentzsch’s theorem and its generalization by Walsh ( section 2.5).
(The (n− 1)st zero converges to the zero of f at z = 0.2.) The image on the right shows exactly the
same zeros and in addition the n poles at the nth roots of unity of the approximation r(z) = b(z)p(z).

for negative real, and violet for negative imaginary [88]. Within the unit disk, it
is apparent that both algorithms approximate the same function f , whose zero at
z = 0.2 shows up as a point where all the colors meet. The differences between the
two figures near and outside the unit circle, on the other hand, are pronounced.

The theorems and figures of this section highlight an effect that was foreshadowed
in Figure 2: a Cauchy integral over a contour Γ does not just approximate a function
in the region enclosed by Γ; it acts to separate that region from the exterior. If such
a separation is not part of one’s computational purpose, then the discrete Cauchy
integral may not be the best algorithm.

2.5. Zeros, poles, and the Jentzsch and Walsh theorems. A striking fea-
ture of Figure 4 is the ring of colorful stripes in each image outside the unit disk. In
both cases, these stripes end at n − 2 = 30 zeros lying approximately on the circle
|z| = 1.3, which will shrink to |z| = 1.2 as n → ∞. For the polynomial approximant
p(z) on the left, the stripes extend outward to z = ∞, where they meet at the pole
of multiplicity n− 1 = 31. For the rational approximant r(z) on the right, they point
inward and terminate at the n = 32 poles on the unit circle.

The appearance of a ring of zeros near the circle of convergence of a Taylor series
is a well-known phenomenon. According to Jentzsch’s theorem [49], if f is analytic in
DR but not DR, the zeros of Taylor sections fn−1 cluster at every point on the circle
|z| = R as n → ∞. (This is a generalization of the phenomenon that the zeros of the
partial sum 1 + z + · · · + zn−1 of the Taylor series of (1 − z)−1 are the nth roots of
unity except z = 1.) In the present case Jentzsch’s theorem is inapplicable, because
the polynomials pn−1 are interpolants in roots of unity rather than Taylor sections.
However, a generalization due to Walsh asserts the same conclusion for any sequence of

polynomials that is maximally convergent onD, meaning lim supn→∞ ‖pn−1−f‖1/nD =
R−1, where ‖ · ‖D is the supremum norm on D [86]. By Theorem 2.1, polynomial
interpolants in roots of unity are maximally convergent, and thus Walsh’s theorem
applies to Figure 4. As n → ∞, zeros will cluster near every z with |z| = 1.2.
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2.6. Cauchy integrals of the second kind. The developments of section 2.2
suggest a curious observation. In analogy to our progression from (2.5) to (P), we
could consider the “Cauchy integral of the second kind”

f(z) =

∫
S

f(ζ)

z − ζ
dζ

/∫
S

1

z − ζ
dζ ,(2.19)

obtained by dividing the usual Cauchy integral formula for f by the same formula for
the case f ≡ 1. Discretizing both the numerator and the denominator of this quotient
by the trapezoidal rule then suggests a “discrete Cauchy integral of the second kind,”

r̃(z) =

n−1∑
k=0

zkfk
z − zk

/
n−1∑
k=0

zk
z − zk

.(2.20)

But this is exactly (P)! Thus the discrete Cauchy integral and the polynomial interpo-
lation ideas give the same result after all, if one realizes the former by a nonstandard
“second kind” discretization. As Helsing and Ojala put it in the context of an analo-
gous formula for integral equations [37], “One could say that the denominator in this
formula compensates for the error in the numerator.” This kind of compensation is
familiar to devotees of barycentric formulas, which look numerically unstable at first
sight because of their poles but are in fact stable [40].

This multiplicative derivation of (P) may appear rather magical, but a third and
more straightforward additive realization of the Cauchy integral idea leads to the same
formula. Note that unlike f(s)/(z− s), the quotient (f(z)− f(s))/(z− s) has no pole
at s = z, so it is an analytic function of s ∈ DR, whose Cauchy integral must be equal
to zero. A trapezoidal rule discretization of that Cauchy integral accordingly gives

− 1

n

n−1∑
k=0

zk(f(z)− f(zk))

z − zk
≈ 0,(2.21)

and now the summands do not diverge as z → zk, so one can expect the trapezoidal
rule to be more accurate than in (C). Solving for f(z) in (2.21) gives (2.20) again. This
argument has been employed by various authors to derive improved discretizations of
integrals near contours [37, 45]. Ioakimidis calls it “the use of the Cauchy theorem
instead of the Cauchy formula” [44, 45].

2.7. Derivatives of f or Taylor coefficients. The ideas we have considered
for the evaluation of f(z) extend readily to the evaluation of derivatives f (m)(z) for
any m ≥ 0 or, equivalently, the computation of Taylor coefficients. Algorithms P and
C have the following analogues.

Algorithm P(m)
. Approximate f (m)(z) by p(m)(z), where p ∈ Pn−1 is the poly-

nomial interpolant to f in {zk}.
Algorithm C(m)

. Approximate f (m)(z) by the trapezoidal rule discretization in
{zk} of the integral m!(2πi)−1

∫
S(ζ − z)−m−1f(ζ)dζ.

The same convergence bounds hold as in Theorem 2.1, with P(m) more accurate
than C(m) and converging in a larger disk.

MATLAB generalizations of [P], [P*], and [C] can be written as follows for
the case m = 1, the first derivative. Formula [P'] evaluates the derivative by a
barycentric formula, a technique that originates with [77].

[P']
pz = mean(zk.*fk./(z-zk))/mean(zk./(z-zk))

ppz = mean(zk.*(pz-fk)./(z-zk).^2)/mean(zk./(z-zk)),
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[P'*]
c = fft(fk)/n, cp = (1:n-1)'.*c(2:end)

ppz = polyval(flipud(cp),z),

[C'] rpz = mean(zk.*fk./(z-zk).^2).

We shall not discuss these methods at any length, since the mathematics is so close to
the case m = 0. However, it is worth noting that it is in the context of derivatives, not
function values, that numerical methods based on complex samples are best known,
since they eliminate the instabilities that afflict real finite differences. In the words of
Lyness and Moler [64], “Once complex arguments are allowed, the principal difficulties
encountered in numerical differentiation simply disappear.”

2.8. Scaling of the radius. In this paper we work always with the unit disk
and unit circle, but in practice, it is often desirable to vary the radius. According
to (2.17), Algorithm P converges approximately at the rate O(R−n). It follows that
if z is rescaled by a factor τ < 1, so that f is sampled on the circle |z| = τ , the
convergence rate will improve to O((τ/R)n). On the other hand, as τ gets smaller,
problems appear of ill-conditioning and rounding errors in floating-point arithmetic.
The computation is particularly problematic when one wants to obtain higher Taylor
coefficients of f and do so with high relative as opposed to just absolute accuracy.
These effects have been noted in this subject from the start, and in the 1980s Fornberg
developed an algorithm for determining a good radius adaptively [27]. More recently
Bornemann has published a theory showing that an optimal choice of τ can often
eliminate ill-conditioning completely even for very high order derivatives [11].

An interesting extreme case in the matter of choice of radius arises in the method
of “complex step differentiation” for computing the first derivative of a real func-
tion [80]. Here the grid size is n = 2, using the midpoint rather than the trapezoidal
rule, i.e., an imaginary rather than a real finite difference, and the radius τ is taken
smaller than machine epsilon, which is possible since the real and imaginary parts
of z and f(z) are independent floating-point numbers that need not have the same
scales.

2.9. The method of fundamental solutions. Let us look again at the faint
white spots in Figure 3, showing points of interpolation. On the left, f is approximated
by a polynomial p ∈ Pn−1, which we can think of as a rational function with n−1 poles
at z = ∞. The particular approximation in this class is determined by the condition
of interpolation of f at the nth roots of unity. On the right, f is a approximated by a
rational function with n poles at the roots of unity, and the white spots show that it
interpolates f in a ring of n+ 1 points lying approximately on a circle of radius 0.8.

These considerations suggest a unifying view of Algorithms P and C: choose a set
of basis functions {(z − ζk)

−1} defined by a fixed set of poles {ζk}, and approximate
f by a linear combination of these basis functions determined by interpolation. To fit
the framework of this paper, the interpolation points must be the roots of unity. The
two algorithms now begin to look like extremes of a continuum, with poles at ∞ or on
the unit circle. In-between choices could also be considered, such as poles distributed
along a circle such as |z| = 1.1. This is the method of fundamental solutions, also
known as the charge simulation method [6] (and related to the Trefftz method). If
one generalizes the idea to the Helmholtz equation, for example, then the appropriate
fundamental solutions become Hankel functions rather than rational functions defined
by simple poles.
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The reason it may be advantageous to place poles near S rather than at z = ∞
has to do with ill-conditioning. If one places poles on the circle |z| = τ for some τ , the
interpolation problem becomes exponentially ill-conditioned as τ increases, making
large finite values of τ unworkable. It happens that τ = ∞ is well-behaved, because
we can represent polynomials by means other than as linear combinations of simple
poles, but such well-behaved representations are not always available in more general
situations, such as problems on noncircular domains. And so the idea of placing
singularities near the boundary of the problem domain is a powerful one. There is
always a trade-off between wanting singularities well separated from the boundary,
for accuracy, and close to the boundary, for conditioning.

Related issues of ill-conditioning arise in the use of RBFs for approximating func-
tions f or solving differential equations [26]. RBFs differ from fundamental solutions
in that they do not exactly satisfy the differential equation under consideration; on
the other hand they need not have singular points, and interpolation points can be
distributed inside the problem domain as well as outside it. In analogy to the radius τ
for the method of fundamental solutions, there is now a smoothness parameter ε, and
the limit ε → 0 is associated with the better approximations but worse conditioning.

3. Zerofinding in the unit disk.

3.1. Two algorithms for zerofinding. We now turn to the second fundamen-
tal problem of this paper, the calculation of the zeros of f within D. This is an inverse
of the former problem: instead of determining the value of f at a given point, now we
want to find points where f takes a given value. For clarity we will use the letter w to
denote a zero. Once again, we begin with two basic ideas, polynomial interpolation
and discretized Cauchy integrals. We shall see that this time, the Cauchy integral has
an advantage when n is large.

The first idea can be stated immediately. Curiously, there seems to be very little
literature on the following simple algorithm; we know only of [12, Chapter 5].

Algorithm PZ
. Polynomial interpolation. Approximate f by the polyno-

mial interpolant p(z) in {zk} and compute the zeros of p that lie in D.
The zeros of p can be calculated by computing its coefficients with the discrete

Fourier transform, then finding its zeros by solving a companion matrix eigenvalue
problem. In MATLAB, the eigenvalue computation is invoked by the roots command:

[Pz*] c = fft(fk)/n, w = roots(flipud(c)), w = w(abs(w)<1).

Alternatively, working from values rather than coefficients [29], one can compute
zeros by solving an (n+ 1)× (n+ 1) generalized eigenvalue problem with arrowhead
structure [2, 15]. (This approach produces two spurious eigenvalues at ∞ as well as
the n− 1 eigenvalues corresponding to zeros of p.) The following particularly elegant
symmetric form has been suggested by Townsend [82]:

[Pz]
A = [0 fk.'; fk diag(fk)], B = diag([0; fk./zk])

w = eig(A,B), w = w(abs(w)<1).

Both [Pz] and [Pz*] require O(n3) operations.

Like Algorithms P and P(m), Algorithm PZ converges geometrically, at least when
the zeros are simple.

Theorem 3.1. Let f be analytic in DR for some R > 1 with exactly K zeros in
D, all of them simple, and no zeros with |z| = 1. Then for all sufficiently large n,
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Algorithm PZ produces exactly K zeros in D, which converge to the zeros of f at the
rate O(ρ−n) as n → ∞ for any ρ < R.

Proof. This follows from (2.17) and the fact that simple zeros of analytic functions
vary smoothly with analytic perturbations.

Another approach to zerofinding is to use a discretized contour integral. Many
different integrals are suitable, and we begin with the one that has had the most at-
tention in the literature, involving the logarithmic derivative f ′/f . This approach has
roots in the work of Delves and Lyness and was developed more fully by Kravanja and
Van Barel, in collaboration with Sakurai [54], [56, section 1.2]. The next subsection
considers the alternative choice 1/f , a derivative-free variant developed by Kravanja
and Van Barel [55], [56, section 1.6].

To simplify the discussion, we begin by assuming that f has exactly one zero w
in D and no zeros with |w| = 1. In this case, w is given by the integral

w =
1

2πi

∫
S

ζf ′(ζ)
f(ζ)

dζ,(3.1)

as follows easily from the residue theorem. This formula goes back to the 19th century
and was proposed in the computer era by Delves and Lyness [18] and McCune [66].
In analogy to (C) we get

w ≈ 1

n

n−1∑
k=0

z2kf
′
k

fk
.(3.2)

For some problems, samples of f ′
k are available and this formula can be used as

written. Our convention in this paper, however, is that just {fk} are known, in which
case {f ′

k} can be approximated by differentiating the polynomial interpolant as in
[P'] or [P'*]. This gives the following algorithm:

[McCune]
c = fft(fk)/n, cp = (1:n-1)'.*c(2:end)

ppzk = n*ifft([cp;0]), w = mean(zk.^2.*ppzk./fk)

Algorithms [Pz]/[Pz*] and [McCune] both work excellently in certain circum-
stances and converge geometrically, with [Pz], as in sections 2.4 and 2.7, having the
better convergence constant. A new feature arises now, however, that gives [McCune]
an advantage. As mentioned above, [Pz] and [Pz*] require O(n3) operations when
implemented by general-purpose solvers, whereas the operation count for [McCune]

is just O(n logn). For modest values of n like 32 or 64, this difference may not be
very important, but when n is in the hundreds, it becomes significant. For example,
the function f(z) = log(1.1− z) has a zero w = 0.1. For 10-digit accuracy, algorithms
[Pz]/[Pz*] require n = 190 sample points and 0.5 sec on a 2012 desktop computer,
whereas [McCune] requires n = 240 points but less than 0.001 sec.

This difference between algorithms [Pz]/[Pz*] and [McCune] is rooted in the
distinction mentioned in the introduction, Cauchy integrals’ property of separating
the region inside the contour from the region outside. Algorithm [Pz] computes all
the zeros of a polynomial interpolant, whereas algorithm [McCune] first projects the
problem onto the unit disk and then computes only the zeros there. For a problem
that is complicated in the large but relatively simple in the disk, this may be much
more efficient.

It remains to generalize [McCune] to functions with more than one zero in D.
Following [56, section 1.2], we begin with a generalization of (3.1). Suppose f has K
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zeros w1, . . . , wK in D, which we assume to be simple, and no zeros on S.2 Then for
any integer m ≥ 0,

sm :=
1

2πi

∫
S

ζmf ′(ζ)
f(ζ)

dζ =
K∑
j=1

wm
j .(3.3)

Taking m = 2 gives the sum of the squares of the zeros, m = 3 gives the sum of the
cubes, and so on; also m = 0 recovers a familiar formula for counting the number
of zeros. (These “moment integrals” are the starting point of a theory of formal
orthogonal polynomials [19] with respect to the weight function f ′(ζ)/f(ζ) [54].) Now
consider the K ×K Hankel matrices

H =

⎛
⎜⎝

s0 . . . sK−1

...
...

sK−1 . . . s2K−2

⎞
⎟⎠ , H< =

⎛
⎜⎝

s1 . . . sK
...

...
sK . . . s2K−1

⎞
⎟⎠ .(3.4)

The roots w1, . . . , wK are precisely the eigenvalues λ of the generalized eigenvalue
problem

H<x = λHx.(3.5)

To show this, note that the Hankel matrices can be factored as

H = V V T , H< = V diag(w1, . . . , wK)V T ,(3.6)

where V is the Vandermonde matrix

V =

⎛
⎜⎜⎜⎝

1 . . . 1
w1 . . . wK
...

...

wK−1
1 . . . wK−1

K

⎞
⎟⎟⎟⎠ .(3.7)

It is readily verified that the jth column of V −T is an eigenvector x in (3.5) with
eigenvalue λ = wj . If the integrals are approximated by the trapezoidal rule in roots
of unity, with f ′

k approximated by polynomial interpolation as in [McCune], this
gives us an algorithm for approximating K distinct roots of f in D. The following
is a MATLAB realization. Because of the use of the FFT, this algorithm assumes
n ≥ 2K, which is not much of a restriction since we would normally expect to have
n � K when applying any of the algorithms of this article. The same condition arises
in the error analysis of this algorithm published in [73].

c = fft(fk)/n, cp = (1:n-1)'.*c(2:end)

ppzk = n*ifft([cp;0]), s = ifft(ppzk./fk)

[Cz1] H = hankel(s(2:K+1), s(K+1:2*K))

H2 = hankel(s(3:K+2), s(K+2:2*K+1))

w = eig(H2,H)

2In practice one would need to estimate K, e.g., via the identity K = (2πi)−1
∫
S
f ′(ζ)/f(ζ)dζ.

There is a literature on this problem going back at least to [79]. See [56, section 1.1.1] and [12,
Chapters 5 and 19].
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Apart from its use of approximations to f ′
k rather than exact values, this algorithm

is due to Kravanja and Van Barel in collaboration with Sakurai [54], based on earlier
work by Delves and Lyness [18].

Although we have presented [Cz1] as a generalization of [McCune] to multiple
roots, in fact it is different in the case K = 1, and more accurate. This is because
its generalized eigenvalue problem gives it the “second kind” nature of a quotient
of two trapezoidal approximations, as in (2.20), rather than a single trapezoidal ap-
proximant, as in (2.5). For K = 1, the estimate of w delivered by [Cz1] is equal
to the estimate delivered by [McCune] divided by a constant close to 1, namely, the
trapezoidal approximation to s0 = 1, the number of zeros inside the unit disk.

As we shall see in the numerical experiments of section 4.2, the assumption of
distinct zeros used in deriving [Cz1] is an essential one. As explained in [56], nearly
equal zeros cause instability for this algorithm, and additional formulas must be used
to treat cases with confluent zeros.

3.2. Cauchy integrals involving 1/f instead of f ′/f . In the Cauchy inte-
gral method just described, values of the derivative f ′ were in principle required and
approximated in practice by polynomial interpolation. Other contour integrals can
be used for zerofinding, however, that do not involve f ′. For the case where f has
just one zero in D, an integral formulation analogous to (3.1) is

w =

∫
S

ζ

f(ζ)
dζ

/∫
S

1

f(ζ)
dζ ,(3.8)

proposed by Luck and Stevens [61]. The trapezoidal discretization takes this form:

[LuckStevens] w = mean(zk.^2./fk)/mean(zk./fk).

Note that unlike [McCune], [LuckStevens] contains a denominator sum, giving it
the flavor of a “second kind” discretization. As a consequence, the generalization to
the case of K zeros will reduce exactly to [LuckStevens] in the case K = 1.

That generalization is surprisingly easy: we just delete the f ′ terms from the
algorithm of section 3.1! Following [56, section 1.6], let us redefine the numbers sm
by replacing the integral (3.3) by

sm :=
1

2πi

∫
S

ζm

f(ζ)
dζ =

K∑
j=1

wm
j

f ′(wj)
,(3.9)

assuming the roots are simple. From here the developments proceed as before.
Again the zeros of f are the eigenvalues of the generalized eigenvalue problem (3.5);
the derivation is the same as before, except with the jth column of V divided by
(f ′(wj))

1/2. (Any choice of square roots will do. There is a much more general struc-
ture to these problems; see [7] and [56].) The trapezoidal rule in roots of unity gives
accurate approximations and can be realized as follows in MATLAB:

s = ifft(1./fk)

[Cz2] H = hankel(s(2:K+1), s(K+1:2*K))

H2 = hankel(s(3:K+2), s(K+2:2*K+1))

w = eig(H2,H)
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Unlike [Cz1], algorithm [Cz2] is able to calculate nearly equal or multiple zeros,
as we shall see in the numerical experiments of section 4.2. Both algorithms involve
Hankel matrices that may be ill-conditioned, however, so they are not stable in all
cases.

4. Polefinding in the unit disk. To find zeros of an analytic function f , al-
gorithms [Cz1] and [Cz2] applied Cauchy integrals to the functions f ′/f and 1/f ,
respectively. However, one might say that at bottom, any algorithm utilizing Cauchy
integrals is really a “polefinding” algorithm. Following this line of thinking, suppose
we are given a function g that is meromorphic in DR for some R > 1, having exactly
K poles there, which we assume are all in D. We could then consider the problem of
calculating these K poles from samples of g at roots of unity. Note that this problem
is not quite equivalent to the problem of the last section with g = 1/f , since g may
have both poles and zeros, whereas f was assumed to have no poles.

4.1. Two algorithms for polefinding. Again we shall distinguish two ap-
proaches: interpolation and Cauchy integrals. The new feature that appears is that
for polefinding, it is necessary to interpolate by rational functions rather than poly-
nomials.

Algorithm RP
. Linearized rational interpolation. Assuming g has K

poles in DR, approximate it by r(z) = p(z)/q(z), where p ∈ Pn−1−K , q ∈ PK is
monic, and the equation g(zk)q(zk) = p(zk) holds at each of the nth roots of unity;
then compute the zeros of q in D.

Generically, the linearized rational interpolant is a true rational interpolant, but
interpolation may fail in cases where q(zk) = 0. Algorithms for computing r and a
corresponding MATLAB code ratdisk are given in [33], based on a singular value
decomposition (SVD) of a K× (K+1) rectangular Toeplitz matrix of discrete Fourier
coefficients of g; we shall say more in section 6. Using these tools, polefinding by
linearized rational interpolation reduces to a single call to ratdisk:

[ratdisk_K] [r,a,b,mu,nu,w] = ratdisk(gk, n-1-K, K)

(The same effect is also available via ratinterp(gk,n-1-K,K,[],'unitroots') in
Chebfun.) Here gk represents a column vector of samples of g at the roots of
unity. If our aim is to find zeros of an analytic function f , we precede
[ratdisk_K] by gk = 1./fk.

Alternatively, we can compute poles by Cauchy integrals. The natural approach
here is to use algorithm [Cz2] with 1/f relabeled as g. For completeness we give this
formulation of the algorithm the new name [Cp]:

s = ifft(gk)

[Cp] H = hankel(s(2:K+1), s(K+1:2*K))

H2 = hankel(s(3:K+2), s(K+2:2*K+1))

w = eig(H2,H)

4.2. Numerical illustration of five algorithms for zerofinding. We have
presented five algorithms that can be used for zerofinding, with MATLAB names [Pz]
and [Pz*] (these two are equivalent), [Cz1], [Cz2] (or [Cp]), and [ratdisk_K]. To
illustrate the behavior of these algorithms, we apply them with n = 50 to the function
f(z) = sin(z − 0.3) log(1.2− z), which has two nearby zeros in D at 0.2 and 0.3. The
first four algorithms find zeros of f directly, and [ratdisk_K] finds poles of g = 1/f .
Here are the results:
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Arrowhead matrix, Algorithm [Pz]: 0.20002100, 0.29997794

Companion matrix, Algorithm [Pz*]: 0.20002100, 0.29997794

Cauchy integrals in f'/f, Algorithm [Cz1]: 0.20468368, 0.30432215

Cauchy integrals in 1/f, Algorithm [Cz2]: 0.20000116, 0.29999865

Rational interp. of 1/f, Algorithm [ratdisk_K]: 0.20000116, 0.29999865

These numbers reveal several interesting properties. First, [Pz] and [Pz*] give the
same results, since they are mathematically equivalent. Second, [Cz1] gives far worse
results. This is a consequence of the nearly equal zeros; this algorithm must be
modified in such cases, as explained in [56]. Third, [Cz2] and [ratdisk_K] also give
the same results. This is a new observation (although it can be found between the
lines in section 2.3 of [56]), which we explain in the next subsection. Fourth, this
last pair of algorithms do not suffer from the nearly equal zeros, and indeed their
results are slightly more accurate than those of [Pz]/[Pz*]. As a rule, we believe
that linearized rational interpolation is quite a good method for approximating zeros
of analytic functions; we shall say more in section 6.

4.3. Equivalence of linearized rational interpolation and a discretized
contour integral algorithm. The two polefinding algorithms we have described,
[ratdisk_K] and [Cz2] (or [Cp]), are mathematically equivalent. We now outline
this connection.

Given n ≥ 1 and K < n, let g be a function defined at the nth roots of unity,
let q(z) =

∑K
k=0 bkz

k be a polynomial in PK , and let p(z) =
∑n−1

k=0 akz
k be the

polynomial in Pn−1 that interpolates g(z)q(z) at the roots of unity. We know that
p/q corresponds to a linearized rational interpolant to g if p belongs to Pn−1−K .

Since p ∈ Pn−1, its coefficients a0, . . . , an−1 can be calculated by interpolation in
the roots of unity: a discrete Fourier transform of the data g(zk)q(zk). The condition
for p/q to be a linearized rational interpolant to g is an−K = an−K+1 = · · · = an−1 =
0, that is, K equations in the K + 1 unknowns b0, . . . , bK . This rectangular linear
system of equations always has a nontrivial solution, and ratdisk finds such a solution
by computing an SVD.

Algorithm [Cp] is based on an alternative interpretation of the same conditions
an−K = an−K+1 = · · · = an−1 = 0. If p has degree < n − 1, its discrete contour
integral in the nth roots of unity must be zero:

n−1∑
k=0

zkp(zk) =

n−1∑
k=0

zk g(zk)q(zk) = 0.(4.1)

But for any j < K, zj p(z) still has degree < n− 1, so we actually have

n−1∑
k=0

zj+1
k g(zk)q(zk) = 0, 0 ≤ j ≤ K − 1.(4.2)

That is, q is orthogonal to 1, z, . . . , zK−1, with respect to a discrete symmetric bilinear
form supported at the roots of unity (not quite an inner product, since it lacks positive-
definiteness and conjugate-symmetry). We say that q is the degree K discrete formal
orthogonal polynomial defined by the weights zkg(zk) at the nth roots of unity. From
here, standard manipulations bring us to a generalized eigenvalue problem involving
Hankel matrices of discrete moments, as described in (3.4)–(3.7) above, with the
eigenvalues being the roots of q.

In a word, [ratdisk_K] determines q by its coefficients and [Cp] by its zeros.
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5. Computing the eigenvalues of a matrix in the unit disk. Let A be a
square matrix of dimension N . How can we find its eigenvalues in the unit disk? This
question is a natural extension of the topics addressed up to now in this paper, and
it points toward major challenges of computational science, where A will typically be
an approximation with N � 1 to a partial differential or other linear operator. For
simplicity we speak of the standard eigenvalue problem Ax = λx, though most of the
ideas carry over to the generalized eigenvalue problem Ax = λBx.

One idea with a zerofinding flavor would be to compute zeros of the determinant,
i.e., zeros of the function

f(z) = det(zI −A).(5.1)

To do this, we could evaluate f(z) at the nth roots of unity and then apply any of the
algorithms of section 3 or section 4 (with g = 1/f ). In MATLAB, one could write

[det] for k = 1:n, fk(k) = det(zk(k)*I-A), end

followed by, say, [Pz]. (The operation count could be improved from O(nN3) to
O(N3+nN2) by a preliminary factorization.) To illustrate, consider the 4× 4 matrix

A =

⎛
⎜⎜⎝

3.2 1.5 0.5 −0.5

−1.6 0.0 −0.4 0.6

−2.1 −2.2 0.2 −0.1

20.7 9.3 3.9 −3.4

⎞
⎟⎟⎠

with eigenvalues 0.2, 0.3, 1.5,−1.9; thus the eigenvalues in D are 0.2 and 0.3. Here
are the computed eigenvalue estimates with n = 30:

Polynomial interpolation, Algorithm [Pz]/[Pz*]: 0.20000000, 0.30000000

Cauchy integrals in f'/f, Algorithm [Cz1]: 0.19901287, 0.29895203

Cauchy integrals in 1/f, Alg. [Cz2]/[ratdisk_K]: 0.19994887, 0.30005345

In this case polynomial interpolation gives the exact result, since the determinant
is a polynomial of degree N ≤ n. For dimensions N � 1, of course, one would not be
prepared to compute enough determinants for this property to hold. The other two
algorithms give geometrically accurate results, with linearized rational interpolation
performing particularly well.

Although this small-scale experiment was successful, we are not sure whether
finding zeros of the determinant is likely to be an attractive option in many large-
scale computations. An algorithm of this nature has been proposed in [50].

The other approach for computing eigenvalues we will now consider is certainly
an important one: computing poles of the resolvent. Strengthening the foundations
of algorithms of this kind was a significant motivation for us to write this paper.

The eigenvalues of A are the poles of the resolvent function, (zI − A)−1. This
function is matrix-valued, but suppose u and v are fixed N -vectors. Then the rational
function

g(z) = u∗(zI −A)−1v(5.2)

is scalar-valued. If u and v are random vectors, then with probability 1, g will have
poles at all the eigenvalues of A (though some of the residues may be very small).
The same applies in the special case where u and v are taken to be equal.
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This immediately gives us a first idea for approximating eigenvalues by polefind-
ing: evaluate the scalarized resolvent function g at roots of unity, then use [Cp] or
equivalently [ratdisk_K] to estimate its poles. Each point evaluation of g requires
the solution of a linear system of equations involving a shift of A, which may be
carried out in parallel:

[res] for k = 1:n, gk(k) = u'*((zk(k)*I-A)\v), end

As an example, consider the same 4 × 4 matrix as before. Here are the computed
eigenvalue estimates with n = 30 and u = v = (1, 1, 1, 1)T :

Rational interpolation, Alg. [Cz2]/[ratdisk_K]: 0.20021799, 0.29990926

In the past decade, algorithms of this kind have begun to be widely used. There
are two main schools of research in this area: Sakurai and his collaborators in
Japan [5, 42, 43, 74, 75], and Polizzi and his collaborators [30, 53, 57, 58, 71, 81],
who have given their software package the name FEAST. The Sakurai school began
with a trapezoidal discretization of Cauchy integrals, effectively [Cp] applied to the
scalarized resolvent function g [74]. Polizzi chose instead a Gauss quadrature dis-
cretization over semicircles. Both groups have applied their algorithms to large-scale
problems in physics, particularly the calculation of electronic structure, where earlier
related algorithms were presented by Goedecker [32].

For these eigenvalue computations to be fully effective, one must move beyond
scalar functions g(z). To explain this we note that although algorithm [ratdisk_K]

will find multiple poles, not every multiple eigenvalue of a matrix A produces a mul-
tiple pole of the function g; this will happen only if the eigenvalues correspond to
just a single Jordan block (i.e., the algebraic multiplicity is >1 but the geometric
multiplicity is 1). The Hermitian matrices that often arise in physics are very far
from this situation. To get around this problem, rather than using a single pair of
vectors u and v, one can use a set of such vectors, so that g effectively becomes a
matrix function of dimension greater than 1 but much less than N . Polizzi utilized
this device from the start [71], and Sakurai (the “block Sakurai–Sugiura method”)
from 2010 [42, 43]. A further important practical modification is that the sampling
at roots of unity may be embedded in an outer loop, so that in the language of our
introduction, the unit disk filter function is applied not just once but several times to
improve the projection onto the unit disk, damping eigenvector components outside
the disk relative to those inside. Many other practical variations have been consid-
ered, including use of regions other than a disk, and this is a rapidly moving area of
research. Generalizations to nonlinear eigenvalue problems have been published by
Asakura et al. [5] and Beyn [10].

6. Rational approximations. Up to now, rational approximations have fea-
tured in this paper in two ways. First, there were rational approximations constructed
implicitly by discretization of contour integrals, with poles fixed at the roots of unity.
Second, there were rational interpolants with K free poles, of type (n − 1 − K,K),
constructed in sections 4 and 5 for the purpose of locating K poles in the unit disk.
A rational function is of type (J,K) if it can be written as a quotient p(z)/q(z) for
some polynomials p and q of degrees no greater than J and K, respectively.

Here, we want to highlight the power of rational approximations with more free
poles, for example, of type (n − 1 − K,K) with K ≈ n/2. (We are grateful to an
anonymous referee for urging us to include these comments.) For another publication
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Fig. 5. Repetition of Figures 3 and 4 but for the type (J,K) linearized rational interpolant r
with K = n/2 as computed robustly with ratdisk. The approximation is now far more accurate. In
fact, it remains more accurate even if N is reduced from 32 to 10.

that showcases the power of rational approximations as compared with polynomials,
see [20].

Suppose that samples fk = f(xk) of a function f are available at the nth roots of
unity and we wish to construct a rational approximation r to f of type (J,K) for some
prescribed J and K. The most basic method for constructing such approximants is
linearized interpolation, as utilized in the last two sections. Here we fix K ≤ n − 1
and J = n − 1 − K. The linearized equations f(zk)q(zk) = p(zk), 0 ≤ k ≤ n − 1,
can always be satisfied, and generically, such solutions will correspond to solutions of
the nonlinear equations f(zk) = p(zk)/q(zk) too, so long as q(zk) �= 0. We use the
ratdisk algorithm and code of [33] to compute these interpolants, and we shall say
more about the significance of this choice in a moment.

Let us look again at some examples already considered in this paper, but now
addressing them by linearized rational interpolation with K = n/2. First, following
section 2.4, suppose f(z) = log(1.2− z)/ log(1.2− 0.8) and we wish to evaluate f(0.8)
based on samples at n = 32 roots of unity; the exact value is 1. Here are the results
for polynomial interpolation as in section 2.2, discretized Cauchy integrals also as in
section 2.2, and linearized rational interpolation with K = n/2:

[P] or [P*] 1.00028

[C] 1.0011

[ratdisk] 1.000000000030

We see a dramatic improvement from 3 or 4 correct digits for the earlier methods to
10 correct digits for rational interpolation with K = n/2. Figure 5 further reinforces
this remarkable result, repeating the images of Figures 3 and 4 but now for the new
rational approximation r. We see immediately that this is strikingly more accurate
than the previous approximations and not confined in the same way to the unit disk.

These happy results are not as straightforward as they may seem. If rational
interpolants are computed by the obvious methods of numerical linear algebra, then
unless K is sufficiently small, there is a tendency for spurious pole-zero pairs to
arise, known as Froissart doublets, in which a pole and a zero are present that are
separated by only the order of machine epsilon. Equivalently, these are spurious poles
with residues of order machine epsilon. Such difficulties have an august history in the
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field of rational approximation, both theoretical and numerical, and if the example
just displayed is run as suggested with n = 32, one such Froissart doublet appears.
However, regularization based on an SVD of a Hankel matrix of Laurent coefficients
can be used to largely eliminate such effects. Such a regularization algorithm is
presented in [33], and the code ratdisk includes this procedure in its default mode of
operation. In practice, we believe that this regularization is crucial for the reliability
of numerical methods based on rational approximation. For more discussion, see the
final chapters of [84].

For the next example, following section 4.2, suppose f(z) = sin(z−0.3) log(1.2−z)
and we seek the zeros of f in the unit disk based on samples at n = 50 roots of unity;
the exact zeros are 0.2 and 0.3. Here are the results for polynomial zerofinding as
in section 3.1, a discretized contour integral as in section 3.2 (which is the same as
ratdisk with K = 2 as in section 4.1), and ratdisk with K = n/2. In the last case
we simply interpolate the data by rational function, then compute the zeros of this
interpolant.

[Pz] or [Pz*] 0.200021 0.299978

[Cz2] or [ratdisk_K] 0.2000012 0.2999986

[ratdisk] 0.200000000000061 0.299999999999884

The accuracy has improved from 4 or 5 digits to 13. (Without regularization, this
example would have five Froissart doublets and hence five spurious zeros.)

Now, consider the 4× 4 matrix eigenvalue example of section 5, with eigenvalues
0.2 and 0.3 and n = 30 roots of unity. We obtain the following results:

[Cp] or [ratdisk_K] 0.20022 0.299909

[ratdisk] 0.200000000000032, 0.299999999999986

Once more there is a great increase in accuracy. (And once more, without regulariza-
tion, there would be five Froissart doublets—spurious eigenvalues.)

These examples illustrate that over a range of problems, rational approximations
with a significant number of free poles have the potential to achieve high accuracy.
The results are not always as good as those shown, especially for functions f with
complicated behavior outside the unit disk, and they are more fragile than with purely
polynomial methods. But it is safe to say that rational approximations are worthy
of serious attention in many applications. In the business of FEAST-related algo-
rithms for computing eigenvalues, such approximations are well-established, though
not ordinarily presented in these terms. Sakurai and Polizzi speak of choosing larger
than necessary parameters to enlarge the search subspace to accelerate convergence.
In our language, this amounts to increasing the denominator degree K in a rational
approximation.

What we have called linearized rational interpolation is actually, in cases where
Froissart doublets are removed, linearized rational least-squares fitting, in which the
sum of squares

n−1∑
k=0

|f(zk)q(zk)− p(zk)|2(6.1)

is minimized. The reason is that ratdisk reduces the denominator degree from K to
K ′ when certain singular values fall below a tolerance set by default to 10−14, so that
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now there are more constraints than free parameters. For details, see [33] and [84,
Chapter 26].

Beyond linearized least-squares, another rational approximation idea is true non-
linear least-squares approximation, where one minimizes

n−1∑
k=0

∣∣∣∣f(zk)− p(zk)

q(zk)

∣∣∣∣
2

.(6.2)

Here, best approximations need not even be unique, but in practice there may be
advantages. A paper of Meier and Luenberger shows that a necessary condition for
r to be a rational least-squares approximation to an analytic function f on the unit
disk is that r interpolates f and also r′ interpolates f ′ at the points in the disk that
are the symmetric images with respect to the unit circle of the poles of r [67]. This
observation has been used as the basis of iterative algorithms in model reduction on
the unit circle (“MIRIAm”) [13] and the imaginary axis (“IRKA”) [34]. When the
unit circle is discretized by roots of unity, one can formulate an analogous necessary
condition involving a polynomial interpolant of f , as we shall report elsewhere.

Beyond these ideas, there are some powerful further methods for constructing
rational approximations based on singular value analysis of Hankel matrices. These
techniques stem from work of Adamjan, Arov, and Krein around 1970 [1], and different
variants go by the names of Hankel norm approximation and CF approximation [4,
31, 83]. In many cases such methods provide approximations that are extremely close
to optimal in the L∞ norm (where, as with the L2 norm, optima need not always
be unique), and an additional feature is that they may satisfy specified stability
constraints on the number of poles within the unit disk. An article drawing these
threads together, whether in the continuous setting or in the context of discrete data
at the roots of unity, remains to be written.

7. Further notes on the literature. In 2008, the third author started to write
a book called Neoclassical Numerics, which was to begin with a chapter on the unit
disk. Later he decided that the work should concentrate instead on [−1, 1], and it
evolved into Approximation Theory and Approximation Practice (ATAP) [84]. The
present paper now returns to that project of 2008, informed by the subsequent years’
experience with ATAP and also the Chebfun software project: one may think of this
paper as a kind of “ATAP for the unit disk,” or as the mathematical basis for a
“Diskfun” project (not planned). There are close links between monomials, roots of
unity, and the disk DR as considered here and Chebyshev polynomials, Chebyshev
points, and Bernstein ellipses as discussed in [84].

A feature of both that project and this one is that the mathematics involved is
in good part classical, depending on results well distributed across the past century.
In particular, when it comes to approximation of functions in roots of unity, a great
expert was Joseph Walsh (1895–1973), who served on the mathematics faculty at
Harvard from 1921 to 1966. Walsh had little interest in numerical algorithms, but
much of what we have done here would be familiar to him, and we wish he were
here to comment on every line of this paper. His book [87] is an important resource,
though difficult to read.

In the following we record some notes on individual sections and subsections.
Section 2.1. Two algorithms for evaluating a function. Algorithm P is not dis-

cussed much in the numerical analysis literature, except in [12], but Algorithm C has
received plenty of attention, beginning with the work of Lyness and his coauthors in
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the 1960s [18], [62, 63, 64, 65]. We do not know how often it has been noticed that
Algorithms P and C are related by (2.1); this observation appears as equation (5.12)
of [35].

Section 2.2. Barycentric formulas for the two algorithms. For general point sets
{zk}, the first barycentric formula (2.5) is due to Jacobi in 1825 [47] and the second to
Dupuy in 1948 [21]. For the particular case of roots of unity, formula (P) was perhaps
first written down by Henrici and can be found in print in [9, 35].

Section 2.3. Taylor projections and polynomial interpolants. A parallel treatment
of Chebyshev projections and interpolants can be found in Chapter 4 of [84].

Section 2.4. Accuracy of the two algorithms. It was Runge in 1904 who first
showed convergence in D of polynomial interpolants in roots of unity [72, section II.15,
pp. 136–137], though Méray had the necessary tools in hand two decades earlier [68].
Geometric convergence in the context of the trapezoidal rule for quadrature was an-
alyzed by Davis in 1959 [17]. The better accuracy of polynomial interpolation as
compared with discretized contour integrals for points near the boundary is empha-
sized in [12, Chapter 5].

Section 2.5. Zeros, poles, and the Jentzsch and Walsh theorems. Beautiful phase
portraits illustrating Jentzsch’s theorem and discretized contour integrals can be found
in Figures 3.9–3.14 and 4.18 of [88].

Section 2.6. Cauchy integrals of the second kind. In the integral equations litera-
ture, series-related reformulations of the standard Nyström-type algorithms to achieve
better accuracy near contours have been developed lately. An example in the context
of the fast multipole method is the QBX method of Klöckner et al. [52].

Section 2.7. Derivatives of f or Taylor series. The first proposal of numerical
calculation of derivatives via the trapezoidal rule applied to Cauchy integrals may have
been in [62, 63]. The FFT was introduced into the algorithm in [65], and barycentric
formulas for derivatives were introduced in [77].

Section 2.8. Scaling of the radius. The question of adjusting the radius τ goes
back to [62], where the problem of numerical instability for small τ was noted.

Section 2.9. The method of fundamental solutions. The trade-off between accu-
racy and conditioning in the smooth, high-accuracy regime is a central issue in the
field of RBFs [23, 28].

Section 3.1. Two algorithms for zerofinding. Equation (3.3) goes back to [46]. The
classic paper on numerical zerofinding algorithms based on trapezoidal discretization
of Cauchy integrals is [18], whose section 6 proposes the use of the polynomial in-
terpolant to approximate {f ′

k} as in [Cz1] (i.e., Taylor polynomials with coefficients
calculated by the trapezoidal rule). Delves and Lyness use Newton identities to find
the roots; Kravanja, Sakurai, and Van Barel [54] use a generalized eigenvalue problem
based on modified moments. The “discrete Cauchy integral of the second kind” idea is
applied to zerofinding in [44]. The special case of (3.3) withm = 0 is the subject of [79].

Section 4.1. Two algorithms for polefinding. There does not appear to be much
literature explicitly on polefinding based on data at roots of unity, though such prob-
lems get some attention in [56, Chapter 3] and [33]. Perhaps the most interesting
work we know in this connection is [28], where rational interpolants in roots of unity
are utilized to evaluate a meromorphic function accurately in the unit disk despite
the presence of poles there.

Section 5. Computing the eigenvalues of a matrix in the unit disk. For more
on the interplay of contour integrals, spectral projectors, and electronic structure,
see [8, 60].
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Section 6. Rational approximations. A general discussion of the comparative
features of rational and polynomial approximation can be found in [84, Chapters
23–28].

8. Conclusions. The central theme of this article is that there are two kinds of
algorithms for the problems at hand: those based on function approximations (poly-
nomial or rational) and those based on discretized Cauchy integrals (which implicitly
also construct rational approximations). The former have the advantage that they
introduce no singularities on the boundary contour and may therefore be more accu-
rate, while the latter have the advantage that they restrict the problem to the interior
region and may therefore be faster. Sometimes the two concepts lead to the same
result, as in [P] and (2.20), which are identical, or [Cp] and [ratdisk], which are
mathematically equivalent but have different stability properties. It is rare in the lit-
erature for the two types of algorithms to be distinguished or compared. We believe
such comparisons may reveal new computational possibilities, not just for analytic
functions on the unit disk but in many other areas that may be regarded as variations
on this theme. A list of such variations with references was given in the introduction.

The main algorithms we have discussed can be summarized as follows, listed with
the names of their MATLAB realizations:

[P] Evaluation of f(z) by polynomial interpolation (p. 1799)
[P*] Same, coefficient-based algorithm (p. 1799)
[C] Evaluation of f(z) by discretized Cauchy integral (p. 1799)
[P'] Evaluation of f ′(z) by polynomial interpolation (p. 1803)
[P'*] Same, coefficient-based algorithm (p. 1804)
[C'] Evaluation of f ′(z) by discretized Cauchy integral (p. 1804)
[Pz] Zerofinding for f via polynomial interpolation (p. 1805)
[Pz*] Same, coefficient-based algorithm (p. 1805)
[Cz1] Zerofinding for f via discretized Cauchy integral for f ′/f (p. 1807)
[Cz2] Zerofinding for f via discretized Cauchy integral for 1/f (p. 1808)
[ratdisk_K] Polefinding for g via rational interpolation with K poles (p. 1809)
[Cp] Polefinding for g via discretized Cauchy integral (p. 1809)
[ratdisk] Evaluation/zerofinding/polefinding via rational interpolation

(p. 1812)

We close by summarizing some of the main points of this paper:

• For evaluating f(z), polynomial interpolants and discretized Cauchy inte-
grals are equivalent for z = 0 and otherwise are distinct. The latter method
approximates f by a rational function equal to the polynomial interpolant
divided by 1− zn, making it less accurate for |z| ≈ 1.

• On the other hand, the barycentric formula for polynomial interpolation
is identical to a “discretized Cauchy integral of the second kind,” or as
Ioakimidis puts it [44, 45], a discretization of “the Cauchy theorem instead
of the Cauchy formula.”

• For zerofinding, the Cauchy integral approach has an O(n log n) versus O(n3)
complexity advantage over polynomial interpolation, because the integral
serves to project the problem onto the unit disk. It is not clear that zerofind-
ing via polynomial interpolation has ever been proposed in the literature.

• The polefinding method we have called [Cp], based on discretized Cauchy
integrals, is mathematically equivalent to computing the poles of a linearized
rational interpolant, the algorithm we have called [ratdisk_K]. However,
the latter is numerically more stable.
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• The originators of algorithm [Cp], Kravanja and Van Barel, recognized its
instability and proposed a more stable algorithm based on modified moments
and formal orthogonal polynomials [55, 56]. A challenge for future research
is to compare the stability of that algorithm and [ratdisk_K].

• FEAST and related algorithms for finding eigenvalues of a matrix in a disk are
derived from the idea of polefinding for the resolvent function. In the simplest
case the resolvent is reduced to a scalar; more robust block algorithms reduce
it to an intermediate dimension. In addition, an outer iteration may be
applied to improve the projection onto the unit disk.

• All the algorithms mentioned above are outperformed for some problems
by rational approximations with more free poles, for example, rational in-
terpolants of type approximately (n/2, n/2). Use of the SVD-regularized
algorithm and code known as ratdisk from [33] for such calculations (or
equivalently the Chebfun code ratinterp with the 'unitroots' flag) pre-
vents the appearance of spurious pole-zero Froissart doublets.
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