
SUPPLEMENTARY MATERIALS: PROOF OF THEOREM 2.1

ANTHONY P. AUSTIN AND LLOYD N. TREFETHEN

In this supplementary appendix, we reproduce the proof of Theorem 2.1 given
in [1, Ch. 4] with a few minor modifications to make the text self-contained. For
ease of reference, we repeat our basic notational setup from the main article here.
If K = 2N + 1 is an odd integer, the zero-centered equispaced grid of length K in
[−π, π) consists of the points

xk = kh, −N ≤ k ≤ N, (1)

where h = 2π/K is the grid spacing. We consider the perturbed grid

x̃k = xk + skh, |sk| ≤ α, (2)

where the parameter α is a fixed value in the range 0 ≤ α < 1/2. The kth trigono-
metric Lagrange basis function associated with the perturbed grid is denoted by ˜̀k,
i.e.

˜̀
k(x) =

N∏
j=−N
j 6=k

sin
(

x−exj

2

)
sin
( exk−exj

2

) .

We have ˜̀k(xj) = 1 if j = k and 0 if j 6= k. From (5.2) and (5.3) in the main article,
we have

Λ̃N = max
x∈[−π,π]

N∑
k=−N

|˜̀k(x)|. (3)

Our argument can be loosely outlined as follows. The bulk of the work is devoted
to bounding |˜̀0(x)|, which takes several steps to accomplish. Taking x as fixed, we
determine the choice of the points x̃j that maximizes |˜̀0(x)| and then bound the
maximum using integrals. Since the resulting bound is independent of x̃j , we can
exploit symmetry to obtain bounds on |˜̀k(x)| for k 6= 0. We then sum these bounds
over k to obtain a bound on Λ̃N .

We begin with the following result, which shows that to bound |˜̀0(x)| we need
consider only grids in which all the points, possibly aside from x̃0, are perturbed by
the maximum amount of αh.

Lemma 1. For all x ∈ [−π, π] and −N ≤ j ≤ N , j 6= 0,∣∣∣∣∣∣
sin
(

x−exj

2

)
sin
( ex0−exj

2

)
∣∣∣∣∣∣ ≤ max

∣∣∣∣∣∣
sin
(

x−(j−α)h
2

)
sin
( ex0−(j−α)h

2

)
∣∣∣∣∣∣ ,
∣∣∣∣∣∣
sin
(

x−(j+α)h
2

)
sin
( ex0−(j+α)h

2

)
∣∣∣∣∣∣
 . (4)

Proof. The statement is trivially true if x = x̃0. If x 6= x̃0, then from

d

dt

sin
(

x−t
2

)
sin
( ex0−t

2

) =
1
2

sin
(

x−ex0
2

)[
sin
( ex0−t

2

)]2 ,

1
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we see that t 7→ sin
(
(x− t)/2

)
/ sin

(
(x̃0 − t)/2

)
has no critical points in [−π, π] apart

from t = x̃0, where it is singular. In particular, it has no critical points in any of the
intervals [(j − α)h, (j + α)h] for −N ≤ j ≤ N , j 6= 0, and therefore must assume its
extreme values on these intervals at the endpoints. Since x̃j ∈ [(j −α)h, (j + α)h] for
each j, we are done.

Which of the two arguments to the maximum function on the right-hand side of
(4) is larger depends on both x and j. We need to understand the exact conditions
under which each one takes over. Our first step in this direction is the following
lemma, which tells us when the two are equal.

Lemma 2. For 0 < α < 1/2 and −N ≤ j ≤ N , j 6= 0, the equation∣∣∣∣∣∣
sin
(

x−(j−α)h
2

)
sin
( ex0−(j−α)h

2

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣
sin
(

x−(j+α)h
2

)
sin
( ex0−(j+α)h

2

)
∣∣∣∣∣∣ (5)

has exactly two solutions in [−π, π]: x = x̃0 and x = x∗j , where1

x∗j = 2arctan

(
cos(jh)− cos(αh) + tan

(
x̃0/2

)
sin(jh)

tan
(
x̃0/2

)(
cos(jh) + cos(αh)

)
− sin(jh)

)
.

Proof. Multiplying through by the denominators of both sides and applying some
trigonometric identities, we find that (5) can be reduced to∣∣∣∣cos

(
x̃0 − x

2
+ αh

)
− cos

(
x̃0 + x

2
− jh

)∣∣∣∣
=
∣∣∣∣cos

(
x̃0 − x

2
− αh

)
− cos

(
x̃0 + x

2
− jh

)∣∣∣∣ . (6)

If the expressions within the absolute value signs on either side of (6) are equal, then
we have

cos
(

x̃0 − x

2
+ αh

)
= cos

(
x̃0 − x

2
− αh

)
.

In order to solve this equation, we consider two cases.
Case 1: (x̃0−x)/2+αh = (x̃0−x)/2−αh+2nπ for some integer n. Rearranging

gives αh = nπ, and substituting for h, we arrive at α = Kn/2. Since α < 1/2, this
can hold only if n = 0, in which case α = 0, but this is disallowed by our hypotheses.

Case 2: (x̃0−x)/2+αh = αh−(x̃0−x)/2+2nπ for some integer n. If this holds,
then x̃0−x = 4nπ, but this can happen only if n = 0, since x̃0−x ∈ [−π−αh, π+αh],
and this interval is contained in [−2π, 2π] because αh ≤ π. Thus, x = x̃0.

We conclude that x = x̃0 is the only solution when the expressions within the
absolute value signs on either side of (6) are equal. On the other hand, if they are
equal but of opposite sign, we get

2 cos
(

x̃0 + x

2
− jh

)
= cos

(
x̃0 − x

2
+ αh

)
+ cos

(
x̃0 − x

2
− αh

)
.

1Here, arctan denotes the principal branch of the inverse tangent function.
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Simplifying the right-hand side to 2 cos
(
(x̃0−x)/2

)
cos(αh) and then expanding both

sides out completely using trigonometric identities, we find that

cos
(

x̃0

2

)
cos
(x

2

)
cos(jh)− sin

(
x̃0

2

)
sin
(x

2

)
cos(jh)

+ sin
(

x̃0

2

)
cos
(x

2

)
sin(jh) + cos

(
x̃0

2

)
sin
(x

2

)
sin(jh)

= cos
(

x̃0

2

)
cos
(x

2

)
cos(αh) + sin

(
x̃0

2

)
sin
(x

2

)
cos(αh).

Dividing both sides of this through by cos(x̃0/2) cos(x/2) and rearranging, we obtain

tan
(x

2

)
=

cos(jh)− cos(αh) + tan
(
x̃0/2

)
sin(jh)

tan
(
x̃0/2

)(
cos(jh) + cos(αh)

)
− sin(jh)

.

Taking the inverse tangent of both sides and multiplying by 2, we arrive at x = x∗j .

To move forward, we need a better understanding of the locations of the points
x∗j . The requisite inequalities are simple to state and are given in Lemma 4, but first
we pause to establish a minor fact that we will need in their proof.

Lemma 3. For |t| ≤ α and −N ≤ j ≤ N , j 6= 0,∣∣sin((j + t)h
)∣∣ > sin

(
(α− |t|)h

)
.

Proof. This is a consequence of the following chain of inequalities:

0 ≤ (α− |t|)h < (1− |t|)h ≤ (|j| − |t|)h

≤ (|j|+ |t|)h ≤ (N + |t|)h <

(
N + |t|+ 1

2
− α

)
h = π − (α− |t|)h ≤ π.

Lemma 4. For −N ≤ j ≤ N , j 6= 0, and 0 < α < 1/2,

(j − α)h < x∗j < (j + α)h.

Proof. Let

f(t) =
cos(jh)− cos(αh) + t sin(jh)

t
(
cos(jh) + cos(αh)

)
− sin(jh)

.

Note that f
(
tan(x̃0/2)

)
= tan(x∗j/2). A straightforward computation using the quo-

tient rule and some trigonometric identities shows that

f ′(t) = −

(
sin(αh)

t
(
cos(jh) + cos(αh)

)
− sin(jh)

)2

,

which is always negative wherever it is defined. By Lemma 3, we have | sin(jh)| >
sin(αh) for each j. Furthermore, note that j 6= 0 implies N ≥ 1, so that αh < π/3,
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and so cos(αh) > 0. Therefore, | cos(jh)+cos(αh)| ≤ 1+cos(αh) for each j. It follows
that ∣∣∣∣ sin(jh)

cos(jh) + cos(αh)

∣∣∣∣ > sin(αh)
1 + cos(αh)

= tan
(

αh

2

)
.

Hence, the singularity in f is outside the interval [tan(−αh/2), tan(αh/2)], and we
conclude that

f
(
tan(αh/2)

)
≤ f

(
tan(x̃0/2)

)
≤ f

(
tan(−αh/2)

)
.

Next, consider the function g+ and the number M+ defined by

g+(t) =
cos(jh)− t + tan(−αh/2) sin(jh)

tan(−αh/2)
(
cos(jh) + t

)
− sin(jh)

,

M+ =
cos(jh)− 1 + tan(−αh/2) sin(jh)

tan(−αh/2)
(
cos(jh)− 1

)
− sin(jh)

.

Note that g+

(
cos(αh)

)
= f

(
tan(−αh/2)

)
and that

M+ =
cos(jh)−1

sin(jh) + tan(−αh/2)

tan(−αh/2) cos(jh)−1
sin(jh) − 1

=
tan(jh/2)− tan(−αh/2)

1 + tan(jh/2) tan(−αh/2)
= tan

(
(j + α)h

2

)
.

Therefore, if we can show that g+

(
cos(αh)

)
< M+, we will have that tan(x∗j/2) <

tan
(
(j + α)h/2), which implies that x∗j < (j + α)h, as desired. The remainder of the

proof will be devoted to establishing this fact. The lower bound on x∗j can be derived
by considering the function g− and the number M− defined by

g−(t) =
cos(jh)− t + tan(αh/2) sin(jh)

tan(αh/2)
(
cos(jh) + t

)
− sin(jh)

,

M− =
cos(jh)− 1 + tan(αh/2) sin(jh)

tan(αh/2)
(
cos(jh)− 1

)
− sin(jh)

and arguing similarly. We omit the details.
To show that g+

(
cos(αh)

)
< M+, we begin by noting that by multiplying the

numerator and denominator of both g+(t) and M+ by cos(−αh/2) and applying some
trigonometric identities, they can be rewritten as

g+(t) =
cos(αh/2)t− cos

(
(j + α/2)h

)
sin(αh/2)t + sin

(
(j + α/2)h

) , M+ = −
cos(αh/2)− cos

(
(j + α/2)h

)
sin(αh/2)− sin

(
(j + α/2)h

) .

Consider the affine function ϕ obtained by multiplying together the denominators in
these new expressions for g+ and M+, where that of the latter is taken to include the
leading minus sign:

ϕ(t) = − sin(αh/2)
(
sin(αh/2)− sin

(
(j + α/2)h

))
t

− sin
(
(j + α/2)h

)(
sin(αh/2)− sin

(
(j + α/2)h

))
.

We will show that ϕ
(
cos(αh)

)
> 0. First, note that ϕ(t) = 0 at t = t0 = − sin

(
(j +

α/2)h
)
/ sin(αh/2) and that by Lemma 3, this point lies outside of the interval [−1, 1].
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Next, observe that sin(αh/2) > 0, that sin
(
(j + α/2)h

)
has the same sign as j, and

that

ϕ′(t) = − sin(αh/2)
(
sin(αh/2)− sin

(
(j + α/2)h

))
.

If j < 0, then sin(αh/2)− sin
(
(j + α/2)h

)
> 0 trivially, so ϕ′(t) < 0. Thus, ϕ(t) > 0

for t < t0. Inspecting the formula for t0, we find that t0 > 0 in this case. Since t0
cannot lie in the interval [−1, 1], it must further be true that t0 > 1. As cos(αh) ≤ 1,
we have that cos(αh) < t0, as desired. On the other hand, if j > 0, then sin(αh/2)−
sin
(
(j + α/2)h

)
< 0 by Lemma 3, and we have that ϕ′(t) > 0, so that ϕ(t) > 0 for

t > t0. But t0 < 0 in this case, and since cos(αh) > 0, we have cos(αh) > t0, and we
are done.

It follows that g+

(
cos(αh)

)
< M+ is equivalent to the inequality

−
(
cos(αh/2) cos(αh)− cos

(
(j + α/2)h

))(
sin(αh/2)− sin

(
(j + α/2)h

))
<
(
sin(αh/2) cos(αh) + sin

(
(j + α/2)h

))(
cos(αh/2)− cos

(
(j + α/2)h

))
.

Expanding out the products, moving all terms involving cos(αh) to the left and those
not involving it to the right, and using some trigonometric identities to simplify the
result, we find that this in turn is equivalent to(

sin
(
(j + α)h

)
− sin(αh)

)
cos(αh) < sin(jh).

Next, we expand sin
(
(j + α)h

)
and move all terms involving sin(jh) to the right,

leaving us with(
cos(jh)− 1

)
sin(αh) cos(αh) < sin(jh)

(
1−

(
cos(αh)

)2)
.

Using the identities 1 − cos(jh) = sin(jh) tan(jh/2) and 1 −
(
cos(αh)

)2 = sin
(
αh
)2,

we can rearrange this one more time to find that our original inequality is equivalent
to

sin(jh)
(
tan(αh) + tan(jh/2)

)
> 0.

If j > 0, then since sin(jh) > 0, this is equivalent to − tan(jh/2) < tan(αh), which
holds trivially, since the left-hand side is negative, while the right-hand side is positive.
If j < 0, then sin(jh) < 0, and the inequality is equivalent to − tan(jh/2) > tan(αh).
Taking inverse tangents, we see that this is equivalent to α < −j/2, and this inequality
holds, since −j ≥ 1 and α < 1/2. This completes the proof.

Assembling these results, we can prove the following statement about the right-
hand side of (4).

Lemma 5. We have

max

∣∣∣∣∣∣
sin
(

x−(j−α)h
2

)
sin
( ex0−(j−α)h

2

)
∣∣∣∣∣∣ ,
∣∣∣∣∣∣
sin
(

x−(j+α)h
2

)
sin
( ex0−(j+α)h

2

)
∣∣∣∣∣∣
 =

∣∣∣∣∣∣
sin
(

x−(j−α)h
2

)
sin
( ex0−(j−α)h

2

)
∣∣∣∣∣∣
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when 1 ≤ j ≤ N and x ∈ [−π, x̃0] ∪ [x∗j , π] or when −N ≤ j ≤ −1 and x ∈ [x∗j , x̃0],
and

max

∣∣∣∣∣∣
sin
(

x−(j−α)h
2

)
sin
( ex0−(j−α)h

2

)
∣∣∣∣∣∣ ,
∣∣∣∣∣∣
sin
(

x−(j+α)h
2

)
sin
( ex0−(j+α)h

2

)
∣∣∣∣∣∣
 =

∣∣∣∣∣∣
sin
(

x−(j+α)h
2

)
sin
( ex0−(j+α)h

2

)
∣∣∣∣∣∣

when 1 ≤ j ≤ N and x ∈ [x̃0, x
∗
j ] or when −N ≤ j ≤ −1 and x ∈ [−π, x∗j ] ∪ [x̃0, π].

Proof. We will give the proof assuming 1 ≤ j ≤ N ; the proof for −N ≤ j ≤ −1
is similar. When α = 0, there is nothing to prove, so we may assume α > 0. By
Lemma 2, the two arguments of the maximum function are equal only at x = x̃0

and x = x∗j , and by Lemma 4, we have −π < x̃0 < (j − α)h < x∗j < (j + α)h < π.
Evaluating both arguments of the maximum function at x = (j − α)h, we see that
the first is zero, while the second is nonzero. Thus, the second must be the larger on
[x̃0, x

∗
j ]. Evaluating at x = (j + α)h, the situation is reversed, and by periodicity we

find that the first must be the larger on [−π, x̃0] ∪ [x∗j , π].

This lemma is all we need for maximizing the factors in |˜̀0(x)| with respect to
the x̃j for j 6= 0. We would like to do something similar for x̃0. Unfortunately, the
dependence on x̃0 of the various cases in this result tells us that we cannot go further
and maximize any one factor over x̃0 independently of x. The next result shows that
we can get around this by pairing up the factors at ±j for 1 ≤ j ≤ N instead of
considering them in isolation.

Note that we state the result only for x ∈ [−π, 0]. The reason is that, by symmetry,
any bound we obtain on |˜̀0(x)| for x ∈ [−π, 0] that is independent of x must also hold
for x ∈ [0, π]. We will therefore ignore the case of x ∈ [0, π] until we reach the end
of our argument, at which point we will see that it has been taken care of for free.
Alternatively, one could write out an analogous argument that assumes x ∈ [0, π]
instead.

Lemma 6. For x ∈ [−π, 0] and 1 ≤ j ≤ N ,

∣∣∣∣∣∣
sin
(

x−ex−j

2

)
sin
(

x−exj

2

)
sin
( ex0−ex−j

2

)
sin
( ex0−exj

2

)
∣∣∣∣∣∣ ≤



∣∣∣∣∣∣
sin
(

x+(j−α)h
2

)
sin
(

x−(j−α)h
2

)
sin
(

jh
2

)
sin
(

(2α−j)h
2

)
∣∣∣∣∣∣ −π ≤ x ≤ x∗−j

∣∣∣∣∣∣
sin
(

x+(j+α)h
2

)
sin
(

x−(j−α)h
2

)
sin
(

(2α+j)h
2

)
sin
(

(2α−j)h
2

)
∣∣∣∣∣∣ x∗−j ≤ x ≤ 0.

Proof. Fix x, and define the functions f1, f2, and f3 by

f1(t) =
sin
(

x+(j−α)h
2

)
sin
(

x−(j−α)h
2

)
sin
(

t+(j−α)h
2

)
sin
(

t−(j−α)h
2

) =
cos
(
(j − α)h

)
− cos(x)

cos
(
(j − α)h

)
− cos(t)

f2(t) =
sin
(

x+(j+α)h
2

)
sin
(

x−(j−α)h
2

)
sin
(

t+(j+α)h
2

)
sin
(

t−(j−α)h
2

) =
cos(jh)− cos(x + αh)
cos(jh)− cos(t + αh)

f3(t) =
sin
(

x+(j−α)h
2

)
sin
(

x−(j+α)h
2

)
sin
(

t+(j−α)h
2

)
sin
(

t−(j+α)h
2

) =
cos(jh)− cos(x− αh)
cos(jh)− cos(t− αh)

.
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Note that only the denominators of these functions vary with t; the numerators are
constant. By Lemma 5, we have∣∣∣∣∣∣

sin
(

x−ex−j

2

)
sin
(

x−exj

2

)
sin
( ex0−ex−j

2

)
sin
( ex0−exj

2

)
∣∣∣∣∣∣ ≤


|f1(x̃0)| −π ≤ x ≤ x∗−j

|f2(x̃0)| x∗−j ≤ x ≤ x̃0

|f3(x̃0)| x̃0 ≤ x ≤ x∗j .

(7)

Recalling that x̃0 ∈ [−αh, αh], by maximizing |f1(t)|, |f2(t)|, and |f3(t)| over t ∈
[−αh, αh] under the appropriate conditions on x, we will show that this inequality
may be replaced by∣∣∣∣∣∣

sin
(

x−ex−j

2

)
sin
(

x−exj

2

)
sin
( ex0−ex−j

2

)
sin
( ex0−exj

2

)
∣∣∣∣∣∣ ≤

{
|f1(αh)| −π ≤ x ≤ x∗−j

|f2(αh)| x∗−j ≤ x ≤ 0,

and this is the inequality we are trying to establish. We consider three cases.
Case 1: −π ≤ x ≤ x∗−j. In this case, the right-hand side of (7) is governed by

f1. The denominator of f1 has a critical point in [−αh, αh] at t = 0, and it takes on
identical values at the endpoints ±αh. Since

0 < αh < (1− α)h ≤ (j − α)h ≤ (N − α)h <

(
N +

1
2

)
h = π,

we have cos
(
(j − α)h

)
≤ cos(αh) ≤ 1, and so

∣∣cos
(
(j − α)h

)
− cos(αh)

∣∣ ≤ ∣∣cos
(
(j −

α)h
)
− 1
∣∣. Thus, the denominator is smallest in magnitude at t = ±αh. Since the

numerator of f1 does not vary with t, we are done.
Case 2: x∗−j ≤ x ≤ −αh. Here, the behavior of (7) is determined by f2. The only

critical point of the denominator f2 in [−αh, αh] is at the left endpoint, where it takes
the value cos(jh)− 1. At the right endpoint, the denominator is cos(jh)− cos(2αh).
From

0 < 2αh < h ≤ jh ≤ Nh <

(
N +

1
2

)
h = π,

we see that cos(jh) ≤ cos(2αh) ≤ 1, and so we have | cos(jh)−cos(αh)| ≤ | cos(jh)−1|.
Thus, the denominator is smallest in magnitude at t = αh, and we are done, as in the
previous case.

Case 3: −αh ≤ x ≤ 0. In this case, for −αh ≤ x̃0 ≤ x, the right-hand side of
(7) is governed by f3, while for x ≤ x̃0 ≤ αh, it is governed by f2. From the previous
case, we know that the maximum absolute value of f2(t) for t ∈ [−αh, αh] occurs at
t = αh, and a virtually identical argument shows that the maximum absolute value of
f3(t) over the same range occurs at t = −αh. We are thus left to compare |f3(−αh)|
and |f2(αh)|. Since these two quantities have the same denominator, we need only
compare their numerators. The conditions on x imply that

0 ≤ αh + x ≤ αh− x ≤ 2αh ≤ jh < π,

the later inequalities following as in the developments of the previous case. Therefore,
cos(jh) ≤ cos(x − αh) ≤ cos(x + αh), which implies that | cos(jh) − cos(x − αh)| ≤
| cos(jh)− cos(x + αh)|. It follows that |f2(αh)| ≥ |f3(−αh)|, as desired.

We can now prove the following result, which gives a bound on |˜̀0(x)| for x ∈
[−π, 0] that is independent of the points x̃j . First, we introduce some additional
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notation that we will need for the remainder of our argument. Define x∗0 = 0 and
x∗−N−1 = −π. For 0 ≤ k ≤ N , let R∗

k = [x∗−k−1, x
∗
−k] and Rk = [(−k− 1−α)h, (−k +

α)h]. Observe that
⋃N

k=0 R∗
k = [−π, 0]. Again for 0 ≤ k ≤ N , let

Pk(x) =
N∏

j=1

∣∣∣∣sin(x− (j − α)h
2

)∣∣∣∣× k∏
j=1

∣∣∣∣sin(x + (j − α)h
2

)∣∣∣∣× N∏
j=k+1

∣∣∣∣sin(x + (j + α)h
2

)∣∣∣∣ ,
and let

Qk =
N∏

j=1

∣∣∣∣sin( (2α− j)h
2

)∣∣∣∣× k∏
j=1

∣∣∣∣sin(jh

2

)∣∣∣∣× N∏
j=k+1

∣∣∣∣sin( (2α + j)h
2

)∣∣∣∣ .
Define

Mk = max
x∈[−π,0]∩Rk

Pk(x)
Qk

,

and note that Mk does not depend on the points x̃j .

Lemma 7. For 0 ≤ k ≤ N and x ∈ R∗
k, we have |˜̀0(x)| ≤ Mk.

Proof. Multiply together the inequalities derived in Lemma 6 for 1 ≤ j ≤ N , and
note that R∗

k ⊂ Rk by Lemma 4.

Next, we turn to bounding Mk. Our strategy will be to reduce the products Pk(x)
and Qk to sums by taking logarithms and then bounding the sums using integrals.
We begin with Pk(x), which requires more work than Qk because of its dependence
on x. The bound that we need is given by Lemma 14, but before presenting it, we
first establish several minor technical results that we will need in its proof.

Lemma 8. For 0 ≤ k ≤ N and x ∈ Rk,∣∣∣∣sin(x + (k − α)h
2

)
sin
(

x + (k + 1 + α)h
2

)∣∣∣∣ ≤ ∣∣∣∣sin( (α + 1/2)h
2

)∣∣∣∣2 .

Proof. The derivative of the expression inside the absolute value signs on the
left-hand side of this inequality is (1/2) sin

(
x + (k + 1/2)h

)
, which vanishes inside Rk

only at x = −(k + 1/2)h. The maximum absolute value of the expression must occur
at this point, since it is zero at the endpoints of Rk. Substituting this value in for x
in the left-hand side, we arrive at the right-hand side.

Lemma 9. For 1 ≤ k ≤ N and x ∈ Rk,∣∣∣∣sin(x− (1− α)h
2

)
sin
(

x + (1− α)h
2

)∣∣∣∣ ≥ ∣∣∣∣sin( (k + 1− 2α)h
2

)
sin
(

(k − 1)h
2

)∣∣∣∣ .
Proof. Let f(x) be the expression inside the absolute value signs on the left-

hand side of this inequality. Applying some trigonometric identities, we find that
f(x) = cos

(
(1− α)h

)
/2− cos(x)/2. If 1 ≤ k ≤ N − 1, then since

0 ≤ (1− α)h ≤ (k − α)h ≤ −x ≤ (k + 1 + α)h ≤ (N + α)h < π,
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we have cos(x) ≤ cos
(
(1 − α)h

)
, and so f(x) ≥ 0 for x ∈ Rk. The same string

of inequalities shows that f ′(x) = sin(x)/2 is negative on Rk, so f is decreasing on
Rk. Therefore, the smallest absolute value of f is obtained by evaluating at the right
endpoint x = (−k + α)h, and this produces the expression on the right-hand side of
the inequality to be established.

For the k = N case, we note that f has a critical point in RN at the midpoint
x = −π. Since f ′′(x) = cos(x)/2, we have f ′′(−π) = −1/2, and so this point is a local
maximum. Thus, the minimum must occur at one of the two endpoints. Noting that
f is even about π, the value of f must be the same at both endpoints, so we may as
well pick the right endpoint x = (−N + α)h. Since 0 ≤ (1−α)h ≤ (N −α)h ≤ π, the
value of f at this endpoint is nonnegative, completing the proof.

Lemma 10. For K ≥ 3 and x ∈ R0,∣∣∣∣sin(x− (1− α)h
2

)
sin
(

x + (1 + α)h
2

)∣∣∣∣ ≤ ∣∣∣∣sin(h

2

)∣∣∣∣2 .

Proof. As in the previous argument, let f(x) be the expression inside the absolute
value signs on the left-hand side of the inequality, and note that f(x) = cos(h)/2 −
cos(x + αh)/2. Since

−π < −h ≤ x + αh ≤ 2αh ≤ h < π,

for x ∈ R0, we have cos(h) ≤ cos(x + αh) for x ∈ R0, and it follows that f is negative
on R0. Since cos(x + αh) ≤ 1, we have 0 ≥ f(x) ≥ cos(h)/2− 1/2. This lower bound
is attained for x ∈ R0 at x = −αh. Thus, f attains its maximum absolute value on
R0 at x = −αh, and substituting this value into the original expression for f yields
the claimed inequality.

Lemma 11. For K ≥ 3 and x ∈ R1, the following inequalities hold:∣∣∣∣sin(x− (1− α)h
2

)∣∣∣∣ ≥ ∣∣sin((1− α)h
)∣∣ ,∣∣∣∣sin(x + (1− α)h

2

)∣∣∣∣ ≤ ∣∣∣∣sin( (1 + 2α)h
2

)∣∣∣∣ ,∣∣∣∣sin(x + (2 + α)h
2

)∣∣∣∣ ≤ ∣∣∣∣sin( (1 + 2α)h
2

)∣∣∣∣ .
Proof. The first inequality follows from

−π ≤ −3
2
h ≤ x− (1− α)h

2
≤ (α− 1)h ≤ 0,

the second from

−π ≤ − (1 + 2α)h
2

≤ x + (1− α)h
2

≤ 0,

and the third from

0 ≤ x + (2 + α)h
2

≤ (1 + 2α)h
2

≤ π.
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Lemma 12. For 0 ≤ k ≤ N and x ∈ Rk,

[x + (k − α)h] log
(
−x + (k − α)h

2

)
− [x + (k + 1 + α)h] log

(
x + (k + 1 + α)h

2

)
≤ −(1 + 2α)h log

(
(α + 1/2)h

2

)
.

Proof. Let f(x) be the expression on the left-hand side of this inequality. The
derivative of f is

f ′(x) = log
(
− x + (k − α)h

x + (k + 1 + α)h

)
,

and this vanishes in Rk only at the point x = −(k + 1/2)h. Since f(x) tends to −∞
as x approaches the endpoints of Rk, f must assume its maximum value on Rk at this
point. Evaluating f at this point yields the right-hand side of the claimed inequality.

Lemma 13. For x ∈ R0,

(
x− (1− α)h

)
log
(
−x− (1− α)h

2

)
−
(
x + (1 + α)h

)
log
(

x + (1 + α)h
2

)
≤ −2h log

(
h

2

)
.

Proof. As in the previous argument, let f(x) be the expression on the left-hand
side of the inequality. We have

f ′(x) = log
(
−x + (α− 1)h

x + (α + 1)h

)
,

and this vanishes in R0 only at the point x = −αh. Moreover,

f ′′(x) =
2h

(x + αh)2 − h2
.

The denominator of this function is a quadratic polynomial with positive leading
coefficient and zeroes at (−1−α)h and (1−α)h. Since x ∈ R0, we have (−1−α)h ≤
x ≤ αh < (1−α)h, and it follows that f ′′ is negative everywhere on R0. This implies
that f has a global maximum on R0 at the critical point at −αh that we just found.
Evaluating f(−αh) produces the right-hand side of the inequality to be established.

Lemma 14. For sufficiently large K and x ∈ Rk, 0 ≤ k ≤ N , we have

Pk(x) ≤ 5 · 2−KK

for k = 0, 1 and

Pk(x) ≤ 3 · 2−KK2α

∣∣∣∣sin( (k + 1− 2α)h
2

)
sin
(

(k − 1)h
2

)∣∣∣∣α−1/2
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for 2 ≤ k ≤ N .
Proof. Let Sk(x) = log Pk(x). For 1 ≤ j ≤ N , define aj(x), bj(x), and cj(x) by

aj(x) = log
∣∣∣∣sin(x− (j − α)h

2

)∣∣∣∣ ,
bj(x) = log

∣∣∣∣sin(x + (j − α)h
2

)∣∣∣∣ ,
cj(x) = log

∣∣∣∣sin(x + (j + α)h
2

)∣∣∣∣ .
For brevity, we will typically suppress the argument when referring to these quantities,
writing aj in place of aj(x), and so forth. Let

Ak(x) =
N−1∑
j=1

1
2
h(aj + aj+1),

Bk(x) =
k−1∑
j=1

1
2
h(bj + bj+1),

Ck(x) =
N−1∑

j=k+1

1
2
h(cj + cj+1),

and note that

hSk(x) = Ak(x) + Bk(x) + Ck(x) +
1
2
h(a1 + aN + b1 + bk + ck+1 + cN ).

The sums Ak(x), Bk(x), and Ck(x) are composite trapezoidal rule approximations
to the integral of log

∣∣sin((x + t)/2
)∣∣ (with respect to t) over certain subintervals of

[−π, π]. Since this function is concave-down everywhere on [−π, π], these approxima-
tions will yield lower bounds on the corresponding integrals [2, p. 54]. More precisely,
we have

Ak(x) ≤
∫ −(1−α)h

−(N−α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt,

Bk(x) ≤
∫ (k−α)h

(1−α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt,

Ck(x) ≤
∫ (N+α)h

(k+1+α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt,

where the inequality for Bk(x) holds for 1 ≤ k ≤ N and the inequality for Ck(x) holds
for 0 ≤ k ≤ N − 1. We consider four cases.

Case 1: 2 ≤ k ≤ N − 1. In this case, the preceding developments yield

hSk(x) ≤
∫ π

−π

−
∫ −(N−α)h

−π

−
∫ (1−α)h

−(1−α)h

−
∫ (k+1+α)h

(k−α)h

−
∫ π

(N+α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt

+
1
2
h(a1 + aN + b1 + bk + ck+1 + cN ).
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Now we just need to bound the integrals and loose terms on the right-hand side of this
inequality. It turns out that the first integral can be evaluated explicitly [3, 4.384-7]:∫ π

−π

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt = −π log(4). (8)

For the second and fifth integrals, we have the following bound, which can be derived
by applying the trapezoidal rule to the integral from (N + α)h to 2π− (N −α)h and
using the periodicity of the integrand:

−
∫ −(N−α)h

−π

−
∫ π

(N+α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt ≤ −1
2
h(aN + cN ). (9)

The fourth integral requires some care, since it has a singularity in the interval of
integration at the point t = −x. (Recall our assumption that x ∈ Rk = [(−k − 1 −
α)h, (−k + α)h].) We therefore split the integral into two parts at that point. Noting
the expansion

log
(
sin(t)

)
= log(t)− 1

6
t2 − 1

180
t4 + O(t6)t→0+ , (10)

we have

−
∫ −x

(k−α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt =
(
x + (k − α)h

) [
log
(
−x + (k − α)h

2

)
− 1
]

+ O(h3)

and

−
∫ (k+1+α)h

−x

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt

=
(
x + (k + 1 + α)h

) [
1− log

(
x + (k + 1 + α)h

2

)]
+ O(h3).

Adding these expressions together and applying Lemma 12, we obtain

−
∫ (k+1+α)h

(k−α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt ≤ (1+2α)h− (1+2α)h log
(

(α + 1/2)h
2

)
+O(h3).

For the third integral, we use another trapezoidal rule bound and combine the result
with the loose terms (1/2)h(a1 + b1) to yield

−
∫ (1−α)h

−(1−α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt +
1
2
h(a1 + b1) ≤

(
α− 1

2

)
h(a1 + b1)

≤
(

α− 1
2

)
h log

∣∣∣∣sin( (k + 1− 2α)h
2

)
sin
(

(k − 1)h
2

)∣∣∣∣ , (11)

where the second inequality follows from Lemma 9 and the fact that α < 1/2. By
Lemma 8 and (10), we now have

1
2
h(bk + ck+1) ≤ h log

(
(α + 1/2)h

2

)
+ O(h3). (12)
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Putting all of these results together, we conclude that

hSk(x) ≤ −π log(4) +
(

α− 1
2

)
h log

∣∣∣∣sin( (k + 1− 2α)h
2

)
sin
(

(k − 1)h
2

)∣∣∣∣
− 2αh log

(
(α + 1/2)h

2

)
+ (1 + 2α)h + O(h3). (13)

Dividing through by h, exponentiating, and suitably relaxing the constants that
emerge, we obtain the claimed bound in this case.

Case 2: k = 1. This case is similar to the previous one. In particular, all the
same integral bounds apply except that the second inequality in (11) is meaningless
because the argument to the logarithm function vanishes. We replace (11) and (12)
with

−
∫ (1−α)h

−(1−α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt+
1
2
h(a1 +2b1 + c2) ≤

(
α− 1

2

)
ha1 +

1
2
hc2 +αhb1

≤
(

α− 1
2

)
h log

(
(1− α)h

)
+
(

α +
1
2

)
h log

(
(1 + 2α)h

2

)
+ O(h3),

where the second inequality follows from Lemma 11 and (10). Combining this with
the other results just established, we obtain

hS1(x) ≤ −π log(4) +
(

α− 1
2

)
h log

(
(1− α)h

)
+
(

α +
1
2

)
h log

(
(1 + 2α)h

2

)
− (1 + 2α)h log

(
(α + 1/2)h

2

)
+ (1 + 2α)h + O(h3),

and this implies the claimed bound for this case.
Case 3: k = N . Since CN (x) has no terms, we have, in this case,

hSN (x) ≤
∫ π

−π

−
∫ −(N−α)h

−π

−
∫ (1−α)h

−(1−α)h

−
∫ π

(N−α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt

+
1
2
h(a1 + aN + b1 + bN ).

We can bound the third integral and the loose terms (1/2)h(a1 + b1) using (11);
however, we cannot use (9) to bound the second and fourth integrals. Instead, noting
that there is a singularity at −x (or a periodic image thereof) within the domain of
integration, we use (10) to find that

−
∫ −x

(N−α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt =
(
x+(N−α)h

) [
log
(
−x + (N − α)h

2

)
− 1
]
+O(h3)

and

−
∫ 2π−(N−α)h

−x

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt

=
(
2π + x− (N − α)h

) [
1− log

(
2π + x− (N − α)h

2

)]
+ O(h3).
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Noting that 2π + x − (N − α)h = x + (N + 1 + α)h, we can add these together and
use periodicity and Lemma 12 to obtain

−
∫ −(N−α)h

−π

−
∫ π

(N−α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt

≤ (1 + 2α)h− (1 + 2α)h log
(

(α + 1/2)h
2

)
+ O(h3).

By the same identity, Lemma 8, and (10), we have

1
2
h(aN + bN ) ≤ h log

(
(α + 1/2)h

2

)
+ O(h3).

Putting everything together, we arrive once again at (13), which finishes the argument
in this case.

Case 4: k = 0. As B0(x) has no terms, we have

hS0(x) ≤
∫ π

−π

−
∫ −(N−α)h

−π

−
∫ (1+α)h

−(1−α)h

−
∫ π

(N+α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt

+
1
2
h(a1 + aN + c1 + cN ).

We can take care of the second and fourth integrals and the loose terms (1/2)h(aN +
cN ) using (9). For the third integral, noting that −x lies in the interval of integration,
we use (10) one more time to conclude that

−
∫ −x

−(1−α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt =
(
x− (1−α)h

) [
log
(
−x− (1− α)h

2

)
− 1
]

+O(h3)

and

−
∫ (1+α)h

−x

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt =
(
x + (1 + α)h

) [
1− log

(
x + (1 + α)h

2

)]
+ O(h3).

Adding these together and using Lemma 13, we have

−
∫ (1+α)h

−(1−α)h

log
∣∣∣∣sin(x + t

2

)∣∣∣∣ dt ≤ −2h log
(

h

2

)
+ 2h + O(h3).

By Lemma 10 and (10), we have

1
2
h(a1 + c1) ≤ h log

(
h

2

)
+ O(h3).

Assembling all these facts, we find that

hS0(x) ≤ −π log(4)− h log
(

h

2

)
+ 2h + O(h3),

and upon dividing through by h, exponentiating, and adjusting the constant factors
that arise, we obtain the desired result.

All cases have now been handled. The proof is complete.
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Next, we bound Qk. The result we need is the following:

Lemma 15. For sufficiently large K,

Qk ≥ (1− 2α)2−KK1−2α

∣∣∣∣sin( (k + 1/2 + α)h
2

)∣∣∣∣−2α

.

Proof. The proof is similar in structure to that of Lemma 14. Let Sk = log(Qk),
so that

Sk =
N∑

j=1

log
∣∣∣∣sin( (2α− j)h

2

)∣∣∣∣+ k∑
j=1

log
∣∣∣∣sin(jh

2

)∣∣∣∣+ N∑
j=k+1

log
∣∣∣∣sin( (2α + j)h

2

)∣∣∣∣ .
(14)

We will bound Sk using integrals of log
∣∣sin(t/2)

∣∣, just as before; but this time, since
we seek a lower bound, we use the midpoint rule instead of the trapezoidal rule [2, p.
54]. Assuming 0 ≤ α ≤ 1/4, we have

hSk ≥
∫ π

−π

−
∫ h/2

(2α−1/2)h

−
∫ (k+2α+1/2)h

(k+1/2)h

log
∣∣∣∣sin( t

2

)∣∣∣∣ dt. (15)

We evaluated the first integral in (8), above. We bound the third integral using the
midpoint rule:

−
∫ (k+2α+1/2)h

(k+1/2)h

log
∣∣∣∣sin( t

2

)∣∣∣∣ dt ≥ −2αh log
∣∣∣∣sin( (k + 1/2 + α)h

2

)∣∣∣∣ .
For the second integral, we split the interval of integration at the singularity at 0 and
use (10) to compute

−
∫ h/2

(2α−1/2)h

log
∣∣∣∣sin( t

2

)∣∣∣∣ dt =
(

2α− 1
2

)
h log

(
(1/2− 2α)h

2

)
− h

2
log
(

h

4

)
+ (1− 2α)h + O(h3).

From these results, it follows that

hSk ≥ −π log(4)− 2αh log
∣∣∣∣sin( (k + 1/2 + α)h

2

)∣∣∣∣
+
(

2α− 1
2

)
h log

(
(1/2− 2α)h

2

)
− h

2
log
(

h

4

)
+ (1− 2α)h + O(h3).

Dividing through by h, exponentiating, and suitably adjusting the constant factors
that arise, we obtain the claimed result.

If 1/4 < α < 1/2, the argument is similar except that we have to track the j = 1
term in the first sum in the definition of Sk independently. We write

hSk ≥
∫ π

−π

−
∫ h/2

(2α−3/2)h

−
∫ (k+2α+1/2)h

(k+1/2)h

log
∣∣∣∣sin( t

2

)∣∣∣∣ dt + h log
∣∣∣∣sin( (2α− 1)h

2

)∣∣∣∣ .
Using (10) one last time, we compute

h log
∣∣∣∣sin( (2α− 1)h

2

)∣∣∣∣ = h log
(

(1− 2α)h
2

)
+ O(h3).
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and

−
∫ h/2

(2α−3/2)h

log
∣∣∣∣sin( t

2

)∣∣∣∣ dt =
(

2α− 3
2

)
log
(

(3/2− 2α)h
2

)
− h

2
log
(

h

4

)
+ 2(1− α)h + O(h3).

Therefore,

hSk ≥ −π log(4)− 2αh log
∣∣∣∣sin( (k + 1/2 + α)h

2

)∣∣∣∣+ h log
(

(1− 2α)h
2

)
+
(

2α− 3
2

)
log
(

(3/2− 2α)h
2

)
− h

2
log
(

h

4

)
+ 2(1− α)h + O(h3).

and this implies the claimed bound in the usual way.

Note that the proof of this lemma shows that the constant 1−2α can be dropped
from the bound when 0 ≤ α ≤ 1/4. We have chosen for simplicity to include it in
this case anyway because omitting it will at best improve our final results by a small
constant factor.

At this point, we have all that we need to bound |˜̀0(x)| uniformly for x ∈ [−π, π]
and independent of the points x̃j : evaluate the bounds on Mk for x ∈ [−π, 0] ∩ Rk

given by Lemmas 14 and 15, and take the maximum over k. Lemma 7 shows that the
result bounds |˜̀0(x)| for x ∈ [−π, 0]. By symmetry, the same bound must hold for
x ∈ [0, π] as well. Even further, by considering circular rotations of the points x̃j , the
bound can be seen to apply to |˜̀k(x)| for k 6= 0. Therefore, by (3), we could bound
Λ̃N by multiplying the bound on |˜̀0(x)| by K.

We can do better than this, however, because Lemmas 7 and 14 retain some
information about how |˜̀0(x)| varies with x through the hypothesis that x ∈ Rk. We
can use this information to get a better bound on |˜̀k(x)| for k 6= 0 than the one just
described. The result we need is given by the following lemma, which we could have
proved earlier but have delayed until now.

Lemma 16. If x ∈ R∗
p, 0 ≤ p ≤ N , then for −N ≤ k ≤ N ,

|˜̀k(x)| ≤



max(M−(p+k),M−(p+k+1),M−(p+k+2)) −N ≤ p + k ≤ −2
max(M0,M1) p + k = −1, 0
max(Mp+k−1,Mp+k,Mp+k+1) 1 ≤ p + k ≤ N − 1
max(MN−1,MN ) p + k = N

max(MK−(p+k),MK−(p+k+1),MK−(p+k+2)) N + 1 ≤ p + k ≤ 2N − 1
max(M0,M1) p + k = 2N.

(16)

Proof. For k = 0, the result follows from Lemma 7, which actually gives a stronger
bound. The proof for k 6= 0 is ultimately just a matter of reducing it to the k = 0 case
by exploiting circular and reflectional symmetry; however, there are some subtleties,
so we will spell out the details to make things clear. Note that x ∈ R∗

p implies x ∈ Rp

by Lemma 4.
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First, suppose that 1 ≤ k ≤ N . Then, 1 ≤ p+ k ≤ 2N , so only the last four cases
in (16) are relevant. Let

x̂j =

{
x̃j+k − kh −N ≤ j ≤ N − k

x̃j+k−K + 2π − kh N − k + 1 ≤ j ≤ N.

These points are just a circular shift in [−π, π] of the points x̃j by kh. It follows that˜̀
k(x) = ˆ̀

0(x − kh), where ˆ̀
0 is the (trigonometric) Lagrange basis function for the

points x̂j that takes on the value 1 at x̂0. One can easily check that

x̂j =

{
xj + tj+kh −N ≤ j ≤ N − k

xj + tj+k−Kh N − k + 1 ≤ j ≤ N,

where the xj are the equispaced points (1), and the tj are defined by (2). Thus, the
points x̂j constitute a set of perturbed equispaced points of the sort that we have
been considering. In particular, we can use Lemma 7 to bound ˆ̀

0(x− kh) and hence˜̀
k(x). We consider several cases.

Case 1: 1 ≤ p + k ≤ N − 1. Since x ∈ Rp, it follows that x − kh ∈ Rp+k,
which means that x− kh must belong to one of R∗

p+k−1, R∗
p+k, and R∗

p+k+1, again by
Lemma 4. By Lemma 7, |ˆ̀0(x− kh)| ≤ max(Mp+k−1,Mp+k,Mp+k+1).

Case 2: p + k = N and (−p − 1/2)h ≤ x ≤ (−p + α)h. We have x − kh ∈ RN .
Moreover, x− kh ≥ (−p− k− 1/2)h = (−N − 1/2)h = −π, so x− kh ∈ [−π, 0]∩RN .
Thus, x − kh belongs to either R∗

N or R∗
N−1 by Lemma 4, and so Lemma 7 gives

|ˆ̀0(x− kh)| ≤ max(MN−1,MN ).
Case 3: p + k = N and (−p − 1 − α)h ≤ x < (−p − 1/2)h. Again, we have

x− kh ∈ RN , but this time, x− kh < π. Nevertheless, ˆ̀
0(x− kh) = ˆ̀

0(x− kh + 2π),
and x− kh + 2π ∈ [0, π]∩−RN . By reflecting the problem about 0 (i.e., replacing x̂j

with −x̂j for each j and x−kh+2π by −(x−kh+2π) ∈ [−π, 0]∩RN ), and applying
Lemma 7, we obtain |ˆ̀0(x− kh)| ≤ max(MN−1,MN ) as in the previous case.

Case 4: N +1 ≤ p+k ≤ 2N − 1. Just as in the previous case, we will look not at
ˆ̀
0(x− kh) but at ˆ̀

0(x− kh + 2π). Noting that 2π = Kh, we see that x− kh + 2π ∈
−RK−(p+k+1). Since x ≥ −π and k ≤ N , we have x− kh + 2π ≥ −π + (K −N)h =
h/2 > 0. Thus, x− kh + 2π ∈ [0, π] ∩ −RK−(p+k+1). Reflecting about 0 as was done
in the previous case and noting that −(x−kh+2π) must belong to one of R∗

K−(p+k),
R∗

K−(p+k+1), and R∗
K−(p+k+2) by Lemma 4, we may apply Lemma 7 to conclude that

|ˆ̀0(x− kh)| ≤ max(MK−(p+k),MK−(p+k+1),MK−(p+k+2)).
Case 5: p+k = 2N . This is handled exactly the same as the previous case except

that since x− kh + 2π ∈ [0, π] ∩ −R0, we have that −(x− kh + 2π) can belong only
to one of R∗

0 and R∗
1. Therefore, |ˆ̀0(x− kh)| ≤ max(M0,M1).

For −N ≤ k ≤ −1, the argument is similar. In this case, the circularly shifted
points x̂j are

x̂j =

{
x̃j+k − kh −N − k ≤ j ≤ N

x̃j+k+K − 2π − kh −N ≤ j ≤ −N − k − 1,

so that

x̂j =

{
xj + tj+kh −N − k ≤ j ≤ N

xj + tj+k+Kh −N ≤ j ≤ −N − k − 1.
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Just as before, we have ˜̀k(x) = ˆ̀
0(x − kh). Noting that −N ≤ p + k ≤ N − 1, the

proof again breaks into cases as follows.
Case 1: 1 ≤ p+k ≤ N−1. Just as in the previous Case 1, we have x−kh ∈ Rp+k,

and the result follows in exactly the same way.
Case 2: p + k = 0 and (−p − 1 − α)h ≤ x ≤ −ph. Here, x − kh ∈ R0, and

the restriction on x forces x − kh ≤ 0, so in fact, x − kh ∈ [−π, 0] ∩ R0. Therefore,
x − kh belongs to one of R∗

0 and R∗
1 by Lemma 4, and so by Lemma 7 we have

|ˆ̀0(x− kh)| ≤ max(M0,M1).
Case 3: p + k = 0 and −ph < x ≤ (−p + α)h. Now x − kh ∈ R0, but 0 <

x − kh ≤ αh. To bound ˆ̀
0(x − kh) in this case, we reflect the problem about 0 as

we did in some of the cases for positive k above. Since [−αh, αh] ⊂ R0, we have
−(x− kh) ∈ [−π, 0] ∩R0, and so Lemma 7 tells us that |ˆ̀0(x− kh)| ≤ max(M0,M1)
once again.

Case 4: p + k = −1 and (−p− 1− α)h ≤ x ≤ (−p− 1)h. In this case, x− kh ∈
[−αh, 0] and hence belongs to [−π, 0]∩R0. Applying Lemma 7, we have |ˆ̀0(x−kh)| ≤
max(M0,M1) just as in the previous two cases.

Case 5: p+ k = −1 and (−p− 1)h < x ≤ (−p+α)h. Now, x− kh ∈ [0, π]∩−R0.
Reflecting in 0 and using Lemma 7 yet again, we have |ˆ̀0(x− kh)| ≤ max(M0,M1).

Case 6: −N ≤ p + k ≤ −2. We have x− kh ∈ −R−(p+k+1). Since −R−(p+k+1) ⊂
[0, π], we reflect in 0 and observe that, by Lemma 4, −(x − kh) belongs to one of
R∗
−(p+k), R∗

−(p+k+1), and R∗
−(p+k+2). Applying Lemma 7 one last time, we obtain

|ˆ̀0(x− kh)| ≤ max(M−(p+k),M−(p+k+1),M−(p+k+2)).
All cases have been handled. The proof is finished.

The point of Lemma 16 is that it allows us to bound Λ̃N by summing the bounds
of Lemma 7 over k instead of maximizing them over k and multiplying by K as
described previously.

Lemma 17. We have

Λ̃N ≤ 9
N∑

k=0

Mk. (17)

Proof. Suppose that x ∈ [−π, 0] ∩ R∗
p, 0 ≤ p ≤ N . We can use Lemma 16 to

bound the sum in (3) for this value of x by summing the right-hand side of (16) over
−N ≤ k ≤ N . This is equivalent to summing it over the values of p + k such that
−N + p ≤ p + k ≤ N + p, and this is certainly bounded above by the sum over the
larger range −N ≤ p + k ≤ 2N . Writing j in place of p + k, it follows that

N∑
k=−N

|˜̀k(x)| ≤
−2∑

j=−N

max(M−j ,M−(j+1),M−(j+2)) +
N−1∑
j=1

max(Mj−1,Mj ,Mj+1)

+
2N−1∑

j=N+1

max(MK−j ,MK−(j+1),MK−(j+2))

+ 3 max(M0,M1) + max(MN−1,MN ).
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Since max(a, b) ≤ a+b when a, b ≥ 0, we can convert the maxima into sums to obtain

N∑
k=−N

|˜̀k(x)| ≤
N∑

j=2

Mj +
N−1∑
j=1

Mj +
N−2∑
j=0

Mj +
N−2∑
j=0

Mj +
N−1∑
j=1

Mj +
N∑

j=2

Mj

+
N∑

j=2

Mj +
N−1∑
j=1

Mj +
N−2∑
j=0

Mj + 3M0 + 3M1 + MN−1 + MN

after simplifying the indices of summation. We immediately obtain

N∑
k=−N

|˜̀k(x)| ≤ 9
N∑

j=0

Mj .

Since the right-hand side of this inequality is independent of p, this bound actually
holds for all x ∈ [−π, 0]. Even further, since the Mj are independent of both x and
the points (2), by symmetry, it holds for all x ∈ [−π, π]. The result now follows from
(3).

We can now prove Theorem 2.1 from the main article.

Proof of Theorem 2.1. We use Lemmas 14 and 15 to bound the right-hand side
of (17). For K sufficiently large and k = 0, 1, we have

Mk ≤
5

1− 2α
K2α

∣∣∣∣sin( (k + 1/2 + α)π
K

)∣∣∣∣2α

≤ 5
1− 2α

K2α

∣∣∣∣ (k + 1/2 + α)π
K

∣∣∣∣2α

≤ 10π

1− 2α
, (18)

while for 2 ≤ k ≤ N ,

Mk ≤
3

1− 2α
K4α−1

∣∣∣sin( (k+1/2+α)π
K

)∣∣∣2α

∣∣∣sin( (k+1−2α)π
K

)
sin
(

(k−1)π
K

)∣∣∣1/2−α

≤ 3
1− 2α

K4α−1

∣∣∣sin( (k+1/2+α)π
K

)∣∣∣2α

∣∣∣sin( (k−1)π
K

)∣∣∣1−2α .

In deriving the last expression, we have used the inequality∣∣∣∣sin( (k + 1− 2α)π
K

)∣∣∣∣ ≥ ∣∣∣∣sin( (k − 1)π
K

)∣∣∣∣ ,
which clearly holds for 2 ≤ k ≤ N − 1 and for k = N with 1/4 ≤ α < 1/2, since in
those cases, (k + 1 − 2α)π/K ∈ [0, π/2], and k + 1 − 2α ≥ k > k − 1. To see that it
holds for k = N with 0 < α < 1/4 as well, note that in this case

sin
(

(N + 1− 2α)π
K

)
= sin

(
(N + 2α)π

K

)
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by the symmetry of sine about π/2. Since N + 2α ∈ [0, π/2] and N + 2α > N − 1,
the inequality follows.

Using the inequalities | sin(x)| ≤ |x| for x ∈ R and | sin(x)| ≥ (2/π)|x| for |x| ≤
π/2, we can simplify the bound on Mk for 2 ≤ k ≤ N even further to

Mk ≤
3

1− 2α
K4α−1

∣∣∣ (k+1/2+α)π
K

∣∣∣2α

∣∣∣ 2(k−1)
K

∣∣∣1−2α ≤ 3π

1− 2α

(k + 1)2α

(k − 1)1−2α
. (19)

The result now follows from summing the bounds on the Mk established in (18) and
(19) and bounding the sum by interpreting it as a midpoint rule approximation2 to
the integral of a function that is concave-up (note that N + 1/2 = K/2):

N∑
k=2

(k + 1)2α

(k − 1)1−2α
≤
∫ N+1/2

3/2

(x + 1)2α

(x− 1)1−2α
dx

≤ (K/2 + 1)2α

∫ K/2

3/2

dx

(x− 1)1−2α
=

(K2/4− 1)2α − (K/4 + 1/2)2α

2α

≤ (K2/4)2α − (K/4)2α

2α
≤ K4α − 1

2α
. (20)

The bound (20) is given in terms of K = 2N + 1. To obtain the result in terms of N
stated in the main article, we seek a universal constant C ′ such that (2N +1)4α−1 ≤
C ′(N4α − 1) for N ≥ 2 and 0 < α < 1/2. A straightforward computation using
calculus shows that C ′ = 8 will suffice.

We close with a word about why our argument falls short of establishing the
stronger bound on Λ̃N that we conjecture involving N2α instead of N4α. As summa-
rized in the opening paragraphs of this appendix, our argument proceeds by choosing
the perturbed points x̃j to maximize |˜̀k| for a fixed value of k, bounding the maxi-
mum, and then summing the bounds. This is a different (and easier) problem than
choosing the points to maximize the sum

∑N
k=−N |˜̀k| and bounding that maximum

instead.
In symbols, our argument bounds Λ̃N by bounding the rightmost expression in

the following chain of inequalities:

Λ̃N ≤ maxex−N ,...,exN

max
x∈[−π,π]

N∑
k=−N

|˜̀k(x)| ≤ max
x∈[−π,π]

N∑
k=−N

maxex−N ,...,exN

|˜̀k(x)|.

The loss enters in the passage to the rightmost expression from the one in the middle.
To prove the stronger bound, one needs to consider the |˜̀k| all together at once in the
sum instead of individually as we have done here.
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