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ON TRIGONOMETRIC INTERPOLATION IN AN EVEN NUMBER OF POINTS∗

ANTHONY P. AUSTIN†

Abstract. In contrast to odd-length trigonometric interpolants, even-length trigonometric interpolants need not
be unique; this is apparent from the representation of the interpolant in the (real or complex) Fourier basis, which
possesses an extra degree of freedom in the choice of the highest-order basis function in the even case. One can
eliminate this degree of freedom by imposing a constraint, but then the interpolant may cease to exist for certain
choices of the interpolation points. On the other hand, the Lagrange representation developed by Gauss always
produces an interpolant despite having no free parameters. We discuss the choice Gauss’s formula makes for the extra
degree of freedom and show that, when the points are equispaced, its choice is optimal in the sense that it minimizes
both the standard and 2-norm Lebesgue constants for the interpolation problem. For non-equispaced points, we give
numerical evidence that Gauss’s formula is no longer optimal and consider interpolants of minimal 2-norm instead.
We show how to modify Gauss’s formula to produce a minimal-norm interpolant and that, if the points are equispaced,
no modification is necessary.
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1. Introduction. Let K ≥ 2 be an even integer, K = 2N . We consider the problem of
interpolating typically real but potentially complex-valued data f0, . . . , fK−1 given at points
x0 < · · · < xK−1 in [0, 2π) by a trigonometric polynomial of degree at most N . That is, we
seek a function t of the form

(1.1) t(x) =

N∑
n=−N

cne
inx

or, equivalently, of the form

(1.2) t(x) = a0 +

N∑
n=1

an cos(nx) +

N∑
n=1

bn sin(nx)

such that t(xk) = fk for each k. We denote the space of trigonometric polynomials of degree
at most N by TN .

We are immediately confronted with the following issue: there are 2N + 1 unknown
coefficients to be determined in (1.1) and (1.2), but there are only 2N interpolation conditions
to constrain them. The interpolation problem is thus underdetermined and, accordingly, has an
infinite number of solutions. To fix this, we must remove one degree of freedom from (1.1)
and (1.2), and it seems natural to do this by imposing a restriction on the highest-order terms.
The restriction most frequently employed in practice is the condition that (1.1) be balanced [5],
which means that the highest-order coefficients are required to be equal:

c−N = cN .

In terms of (1.2), this is equivalent to requiring

bN = 0,
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i.e., that the highest-order contribution be a pure cosine. The balanced condition is usually
encountered when the interpolation points are taken to be the equispaced points

(1.3) xk =
2πk

K
, 0 ≤ k ≤ K − 1.

For further discussion, see [14, Section 3].
Unfortunately, balanced trigonometric interpolants do not always exist for sets of points

other than (1.3). As an example, if we instead use the shifted equispaced points

(1.4) xk =
2π(k + 1

2 )

K
, 0 ≤ k ≤ K − 1,

then Nxk is an odd integer multiple of π/2, so cos(Nxk) = 0 for all k. It follows that
the balanced trigonometric interpolation problem has no solution over this grid in general.
For instance, if N = 1, then the interpolation points are x0 = π/2 and x1 = 3π/2. A
balanced trigonometric interpolant would have the form t(x) = a0 + a1 cos(x), but since
cos(x0) = cos(x1) = 0, it is only possible to interpolate constant data (f0 = f1), and for such
data, the interpolant is not unique: the a1 coefficient may be chosen arbitrarily.

If the balanced choice does not always work, how should one resolve the problem of the
extra degree of freedom in (1.1) and (1.2) in general? For the shifted equispaced points (1.4),
it is easily seen that requiring the highest-order term to be a pure sine, i.e., requiring

aN = 0

or, equivalently,

c−N = −cN ,

always yields a solvable problem. But like the balanced condition, this condition, which we will
refer to as the skew-balanced condition, does not work universally: since sin(Nx) vanishes
on the standard equispaced grid (1.3), skew-balanced trigonometric interpolation in (1.3)
suffers from the same existence and uniqueness problems as does balanced trigonometric
interpolation in (1.4). Moreover, balancing and skew-balancing are not the only possibilities.
The imposition of any linear relation between c−N and cN (equivalently, aN and bN ) other
than the skew-balanced (respectively, balanced) condition will yield a solvable interpolation
problem for (1.3) (respectively, (1.4)).

The balanced and skew-balanced conditions seem natural, but is there anything else that
can be said in their favor? And are they still appropriate conditions when the interpolation
points are no longer equispaced? In what follows, we answer these questions by analyzing the
Lebesgue constants for the interpolation problems associated with the various conditions that
can be imposed on the highest-order terms in t. For interpolation in the equispaced grid (1.3),
we show that the balanced condition yields an interpolation problem that is optimally well-
conditioned in the sense that both its∞-norm and 2-norm Lebesgue constants are minimal.
By (periodic) translation, we obtain the optimal conditions for interpolation in any equispaced
grid; in particular, the skew-balanced condition is similarly optimal for interpolation in (1.4).

Our primary tool for conducting this analysis is the even-length trigonometric Lagrange
interpolation formula of Gauss. We analyze this formula in detail and discuss how it handles
the extra degree of freedom present in these problems. We show that, for equispaced interpo-
lation, this formula imposes the optimal conditions naturally and thus provides a Lagrange
representation of the optimal interpolant.

For points that are not equispaced, it is less clear how to select the linear relation on the
highest-order terms in t to yield an interpolation problem with minimal Lebesgue constant
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(of either type). In this case, we propose instead to select t from TN in such a way that its
L2-norm is minimal. We show how to accomplish this as well as how to modify Gauss’s
formula to yield a Lagrange representation of the minimal-norm interpolant. We also show that
in the equispaced case, the interpolant produced by Gauss’s formula (unmodified) is already
of minimal norm, thus establishing its optimality in this third sense.

2. Gauss’s formula and the general solution. In his treatise on interpolation, pub-
lished posthumously in 1866, Gauss provides Lagrange-type formulae for trigonometric
interpolants [9]. His formula for an interpolant in an even number of points can be expressed
using the notation of Section 1 as

(2.1) t(x) =

K−1∑
k=0

fk`k(x),

where

(2.2) `k(x) =

K−1∏
j=0
j 6=k

sin
(
x−xj

2

)
sin
(
xk−xj

2

)
× cos

(
x− xk

2

)

is the kth trigonometric Lagrange basis function for the interpolation grid. Since `k(xk) = 1
and `k(xj) = 0 for j 6= k, it is clear that t(xk) = fk so that t interpolates the data. That `k
(and, thus, t) belongs to TN can be established using standard trigonometric identities or by
using Euler’s formula to rewrite `k in terms of complex exponentials.

Going one step further, we can write down the general solution to the even-length trigono-
metric interpolation problem. Since there are only 2N interpolation conditions but TN is a
(2N + 1)-dimensional space, there is a trigonometric polynomial ` ∈ TN that vanishes on the
interpolation grid but is not identically zero. Indeed, the trigonometric node polynomial,

(2.3) `(x) =

K−1∏
k=0

sin

(
x− xk

2

)
,

has this property. By elementary linear algebra, the general solution to the problem may be
written as a combination of Gauss’s particular solution and a multiple of `:

(2.4) t(x) =

K−1∑
k=0

fk`k(x) + λ`(x),

where λ is an arbitrary constant.
Gauss’s formula (2.1)–(2.2), hereafter referenced as (2.1) only, produces a solution to the

even-length trigonometric interpolation problem for any choice of the grid points xk. This is
remarkable in light of the discussion in Section 1. Two questions spring to mind. First, how
does (2.1) eliminate the extra degree of freedom present in (1.1) and (1.2)—and how does it
do so in a way that guarantees a solution exists? Second, what advantages, if any, does the
solution via (2.1) enjoy over the infinitely many other solutions to the problem given by (2.4)?

3. The extra degree of freedom. We can answer the first question via direct computation,
but first we introduce some notation. For θ ∈ R, let

T θ
N = TN−1 ⊕ span

{
cos(Nx− θ)

}
.
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Since cos(Nx−θ) = cos(θ) cos(Nx)+sin(θ) sin(Nx), the space T θ
N is the 2N -dimensional

subspace of TN consisting of those members of TN whose leading-order coefficients in the
representation (1.2) obey bN/aN = tan(θ).1 In particular, T 0

N and T
π/2
N are the subspaces

of TN consisting of balanced and skew-balanced trigonometric polynomials, respectively. As
θ varies, we obtain subspaces of TN corresponding to all possible linear relations between bN
and aN . Clearly, T θ

N = T θ+π
N for any θ, so we could restrict θ to [0, π); however, it will be

convenient to allow θ to assume any real value. Finally, let

σ =
1

2

K−1∑
k=0

xk and η =

K−1∑
k=0

γkfk,

where

γk =

K−1∏
j=0
j 6=k

1

sin
(
xk−xj

2

) .
These quantities will play important roles in what follows.

Identifying what choice (2.1) makes for the extra degree of freedom amounts to de-
termining the subspace T θ

N of TN to which the trigonometric polynomial defined by (2.1)
belongs. We shall go further and identify this subspace not just for (2.1) but for the general
interpolant (2.4), obtaining the result for (2.1) as a special case.

THEOREM 3.1. The trigonometric interpolant defined by (2.4) belongs to T θ
N with

(3.1) tan(θ) =
λ sin(σ)− η cos(σ)

λ cos(σ) + η sin(σ)
.

Proof. We just need to compute the highest-order terms of t defined by (2.4). The required
calculations appear in [5, Section 2] and [12]. Specifically, [5, equation (2.3)] gives, in our
notation,

t(x) = aN cos(Nx) + bN sin(Nx) + t̃(x),

where t̃ belongs to TN−1 and

aN =
(−1)N

22N−1
(
λ cos(σ) + η sin(σ)

)
, bN =

(−1)N

22N−1
(
λ sin(σ)− η cos(σ)

)
.

The result now follows from the relation tan(θ) = bN/aN .
COROLLARY 3.2. The trigonometric interpolant defined by (2.1) belongs to T

σ+π/2
N .

Proof. Taking λ = 0 in (3.1) gives tan(θ) = − cot(σ) = tan(σ + π/2).
COROLLARY 3.3. For the standard equispaced grid (1.3), the trigonometric interpolant

defined by (2.1) is balanced. For the shifted equispaced grid (1.4), it is skew-balanced.
Proof. With xk as in (1.3), we have

σ =
1

2

K−1∑
k=0

2πk

K
= (K − 1)

π

2
= Nπ − π

2
.

1In terms of the complex representation (1.1), this is equivalent to imposing c−N/cN = ei2θ . Note that by
assuming that θ is real, we have restricted our attention to constraints on the highest-order terms such that bN/aN is
real or, equivalently, such that |c−N/cN | = 1. In principle, one could consider more general constraints; however,
this is unlikely to be interesting from a practical standpoint, as such constraints will yield interpolants t that are not
real-valued even when the interpolation data fk are.
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By Corollary 3.2, the interpolant belongs to T Nπ
N = T 0

N . Thus, the interpolant is balanced.
On the other hand, with xk as in (1.4),

σ =
1

2

K−1∑
k=0

2π(k + 1
2 )

K
= K

π

2
= Nπ.

Thus, the interpolant belongs to T
Nπ+π/2
N = T

π/2
N and so is skew-balanced.

We interpret these results as saying that (2.1) and, more generally, (2.4) for a given λ,
adaptively select the constraint on the highest-order terms in the interpolant in a way that
at least ensures that a solution to the interpolation problem exists. Perhaps one reason to
prefer (2.1) over (2.4) with λ 6= 0 is that (2.1) is the only variant of (2.4) that chooses the
constraint in a way that depends only on the interpolation points xk and not on the interpolation
data fk.

COROLLARY 3.4. The subspace T θ
N to which the interpolant defined by (2.4) belongs is

independent of the interpolation data fk if and only if λ = 0.
Proof. For θ to be independent of the fk, we need the right-hand side of (3.1) to be

independent of η. Differentiating (3.1) with respect to η, we obtain

∂

∂η
tan θ = − λ

(λ cos(σ) + η sin(σ))2
,

and this vanishes (independently of σ) if and only if λ = 0.

4. Another viewpoint. In the previous section, we took the view that (2.1) and (2.4)
were given and then found the subspace T θ

N of TN from which they drew the interpolant.
That is, we chose λ, and the parameter θ was then determined by the formula (3.1). Typically,
the interpolation problem is posed the other way around: we first select θ, which determines
the form of the interpolant—such as a balanced or skew-balanced form—and then find λ to
give a formula for the interpolant of the desired form. Of course, it can happen that no such λ
exists, in which case the interpolation problem has no solution.

The next result describes (2.4) from the latter viewpoint. While it should be viewed as a
corollary to (or restatement of) Theorem 3.1, we label it as a theorem to emphasize the change
in perspective.

THEOREM 4.1. The interpolant defined by (2.4) belongs to T θ
N if and only if

(4.1) λ = η cot(σ − θ).

Thus, the even-length trigonometric interpolation problem has a unique solution in T θ
N if and

only if θ 6= σ + nπ for any n ∈ Z.
Proof. Just solve (3.1) for λ:

λ = η
cos(σ) + tan(θ) sin(σ)

sin(σ)− tan(θ) cos(σ)
= η

1 + tan(θ) tan(σ)

tan(σ)− tan(θ)
= η cot(σ − θ),

the third equality following from the standard identity for the tangent of a difference.
As a corollary, we recover the following result due to Salzer [12]. (See also [5, equa-

tion (2.4)] for the balanced case.)
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COROLLARY 4.2. The interpolant defined by (2.4) is balanced if and only if

λ = η cot(σ).

The balanced interpolation problem has a unique solution if and only if σ 6= nπ for any n ∈ Z.
Likewise, the interpolant is skew-balanced if and only if

λ = −η tan(σ).

The skew-balanced problem has a unique solution if and only if σ 6= nπ/2 for any odd n ∈ Z.
Proof. Take θ = 0 and θ = π/2 in (4.1).
Suppose the interpolation problem were posed from the outset in T

σ+π/2
N . This choice of

space looks strange a priori. But unlike the standard choices of balanced and skew-balanced
spaces, Theorem 4.1 guarantees that the interpolant in T

σ+π/2
N always exists. Moreover, (4.1)

yields λ = 0, so the Lagrange interpolation formula is Gauss’s formula (2.1).
There are many other ways to choose θ as a function of σ that ensure the existence of

an interpolant in T θ
N ; according to (4.1), setting θ = σ + ϕ, where ϕ is any real number that

is not an integer multiple of π will work. But note that the value of λ is independent of the
interpolation data fk if and only if θ = σ + nπ/2 for some odd n ∈ Z. This gives one reason
to prefer the choice θ = σ+ π/2. Some other reasons that apply when the data are equispaced
will be given in the sections that follow.

5. Lebesgue constants. We now turn to the second question raised at the end of Section 2
above: is there a reason to prefer the interpolant given by Gauss’s formula (2.1) to the many
other interpolants of the general form (2.4)? Alternatively, adopting the viewpoint of Section 4,
is there an advantage—besides the guarantee that a solution exists—to posing the interpolation
problem in T θ

N with θ = σ + π/2 instead of some other value of θ?
We can address these questions by studying the Lebesgue constant Λθ for interpolation

in T θ
N , defined as the∞-norm of the operator that maps the interpolation data fk, viewed as a

vector f = (f0, . . . , fK−1) in CK , to the interpolant t:

(5.1) Λθ = max
‖f‖∞=1

‖t‖∞.

The Lebesgue constant quantifies the effect that perturbations to the interpolation data may
have on the size of the interpolant. A scheme with a large Lebesgue constant is unlikely to
be useful in practice, as it will tend to amplify small errors in the data, such as those due to
roundoff, into large errors in the interpolant. Perhaps the most well-known example of this
occurs with polynomial interpolation in equispaced points, for which the Lebesgue constants
are so large that the method is almost entirely useless [13, Chapter 15]. In contrast, equispaced
points yield an optimal (minimal) Lebesgue constant for trigonometric interpolation [7].

The Lebesgue constant for an interpolation scheme can be analyzed with the aid of the
associated Lebesgue function. For interpolation in T θ

N , taking λ = η cot(σ − θ) in (2.4) gives
the Lagrange representation

t(x) =

K−1∑
k=0

fk`
θ
k(x),

where

(5.2) `θk(x) = `k(x) + γk cot(σ − θ)`(x).
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The Lebesgue function is just the sum of the absolute values of the `θk,

Lθ(x) =

K−1∑
k=0

|`θk(x)|.

The reason Lθ is important in the study of Λθ is given by the following theorem.
THEOREM 5.1. The Lebesgue constant (5.1) for interpolation in T θ

N satisfies

Λθ = max
0≤x≤2π

Lθ(x).

The proof of Theorem 5.1 is given by a standard argument that can be found in most texts
on approximation theory, e.g., [13, Chapter 15]. We omit the details.

We use this characterization of Λθ to prove the following result, which shows that when
the points are equispaced, Λθ is minimized for the choice θ = σ+π/2. Thus, Gauss’s formula
gives an optimal solution to the even-length equispaced interpolation problem in the sense that
it constrains the highest-order terms to give a problem that is “best-conditioned”.

THEOREM 5.2. For equispaced interpolation points xk,

Λθ ≥ Λσ+π/2.

Proof. We will establish the result assuming that the xk are given by (1.3). To handle
other equispaced grids such as (1.4), we can reduce the argument to this case by periodic
translation. Since T

σ+π/2
N = T 0

N for this grid, we must show that Λθ ≥ Λ0, and we can do
this by studying Lθ.

We require an expression for `θk(x). For 0 ≤ k ≤ K − 1, define

˜̀
k(x) =

K−1∏
j=0
j 6=k

sin

(
x− xk

2

)
.

Then, `k(x) = γk ˜̀
k(x) cos

(
(x− xk)/2

)
and `(x) = ˜̀

k(x) sin
(
(x− xk)/2

)
. In the proof of

Corollary 3.3, we computed σ = Nπ − π/2. Thus, cot(σ − θ) = tan(θ), and so by (5.2),

`θk(x) = γk ˜̀
k(x)

[
cos

(
x− xk

2

)
+ tan(θ) sin

(
x− xk

2

)]
.

Pulling a factor of 1/ cos(θ) out of the bracketed expression and using the addition formula
for cosine, we rewrite this as

`θk(x) = γk ˜̀
k(x)

cos
(
θ − x−xk

2

)
cos(θ)

.

It follows that the Lebesgue function for this grid is

(5.3) Lθ(x) =

K−1∑
k=0

∣∣∣∣∣γk ˜̀
k(x)

cos
(
θ − x−xk

2

)
cos(θ)

∣∣∣∣∣ .
In [5, Proposition 1], it is shown that the γk for this grid all have the same absolute value; see
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also (A.3). Denoting the common value by γ, we have, by Theorem 5.1,

(5.4) Λθ =
γ

| cos(θ)|
max

0≤x≤2π

K−1∑
k=0

∣∣˜̀θ
k(x)

∣∣,
where ˜̀θ

k(x) = ˜̀
k(x) cos

(
θ − (x− xk)/2

)
.

Now, observe that for 0 ≤ k ≤ N − 1,

∣∣˜̀θ
k(x)

∣∣+
∣∣˜̀θ
k+N (x)

∣∣ =

 K−1∏
j=0

j 6=k,k+N

∣∣∣∣sin(x− xj2

)∣∣∣∣
×Ak(x, θ),

where

Ak(x, θ) =

∣∣∣∣cos

(
θ − x− xk

2

)
sin

(
x− xk+N

2

)∣∣∣∣
+

∣∣∣∣sin(x− xk2

)
cos

(
θ − x− xk+N

2

)∣∣∣∣ .
Using xk = 2πk/K and applying standard trigonometric identities, we find

cos

(
θ − x− xk

2

)
sin

(
x− xk+N

2

)
= −1

2
cos(θ)− 1

2
cos(θ − x+ xk)

and

sin

(
x− xk

2

)
cos

(
θ − x− xk+N

2

)
=

1

2
cos(θ)− 1

2
cos(θ − x+ xk)

for 0 ≤ k ≤ N − 1. Thus, since |a+ b|/2 + |a− b|/2 = max(|a|, |b|) for real a, b,

Ak(x, θ) = max
(
| cos(θ)|, | cos(θ − x+ xk)|

)
.

Noting that Ak(x, 0) = 1, we have

|˜̀θk(x)|+ |˜̀θk+N (x)| ≥
(
|˜̀0k(x)|+ |˜̀0k+N (x)|

)
| cos(θ)|.

The theorem now follows by summing both sides of this inequality from k = 0 to k = N − 1,
taking the maximum over 0 ≤ x ≤ 2π, and applying (5.4).

6. 2-norm Lebesgue constants. In the last section, we measured the size of the inter-
polation operator using the∞-norm. We can also measure it using the 2-norm. We call the
resulting operator norm for interpolation in T θ

N the 2-norm Lebesgue constant and denote it
by Λθ2. That is, we define

(6.1) Λθ2 = max
‖f‖2=1

‖t‖2,

where ‖f‖2 is the Euclidean norm of f = (f1, . . . , fK−1) in CK ,

‖f‖2 =

(
K−1∑
k=0

|fk|2
)1/2

,
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and ‖t‖2 is the L2-norm of the interpolant t in T θ
N ,

‖t‖2 =

(∫ 2π

0

|t(x)|2 dx
)1/2

.

The latter is induced by the L2-inner product on T θ
N ,

(6.2) 〈u, v〉 =

∫ 2π

0

u(x)v(x) dx.

The bar over v(x) in (6.2) denotes complex conjugation.
The 2-norm Lebesgue constant admits a simple characterization as the largest eigenvalue

of the Gram matrix Gθ associated with the Lagrange basis functions (5.2) for the inner
product (6.2); this is the Hermitian positive-definite matrix with (j, k)-entry Gθjk =

〈
`θj , `

θ
k

〉
.

We state this result as a theorem for later reference.
THEOREM 6.1. The 2-norm Lebesgue constant (6.1) for interpolation in T θ

N is

Λθ2 =
√
λmax(Gθ),

where λmax(Gθ) is the largest eigenvalue of Gθ.
This result is merely an instance of the familiar fact that the 2-norm of a linear operator is

its largest singular value, so we omit the proof. For details within an interpolation context,
see [1, Section 3.4.1].

Remarkably, when the points are equispaced, we can calculate Λθ2 exactly.
THEOREM 6.2. For equispaced interpolation points xk,

Λθ2 =

√
π

N
max

(
1

2
csc(σ − θ)2, 1

)
.

Proof. As before, we lose no generality in assuming that the xk are given by (1.3); the
result for other equispaced grids can be obtained by periodic translation.

We must compute Gθ. From (5.2), we have〈
`θj , `

θ
j

〉
= 〈`j , `k〉+

(
γk 〈`j , `〉+ γj 〈`, `k〉

)
cot(σ − θ) + γjγk cot(σ − θ)2 〈`, `〉 .

Using the explicit formulae for `k, `, and γk for this grid given in Appendix A, we calculate

(6.3) 〈`j , `k〉 =

{
(−1)j+k+1 π

4N2 if j 6= k

(4N − 1) π
4N2 if j = k

and

(6.4) 〈`k, `〉 = 〈`, `k〉 = 0

and

(6.5) γjγk 〈`, `〉 = (−1)k+j
π

4N2
.

These identities may be established using residue calculus; details are given in Appendix B.
Letting g =

(
1,−1, 1, . . . , (−1)K−1

)
in CK , written as a column vector, it follows that
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Gθ =
π

N
I +

π

4N2

(
cot(σ − θ)2 − 1

)
gg∗,

where I is the K ×K identity matrix and g∗ is the conjugate transpose of g.
The second matrix in the sum for Gθ has rank 1 and therefore possesses K − 1 zero

eigenvalues. The remaining eigenvalue, denoted λ0, is

λ0 =
π

4N2

(
cot(σ − θ)2 − 1

)
‖g‖22 =

π

2N

(
cot(σ − θ)2 − 1

)
.

Since adding a multiple of I to a matrix adds that multiple to the eigenvalues, it follows that
Gθ has K − 1 eigenvalues equal to π/N and one eigenvalue equal to π/N + λ0. Thus,

λmax(Gθ) = max
( π
N

+ λ0,
π

N

)
=

π

N
max

(
1

2

(
cot(σ − θ)2 + 1

)
, 1

)
.

The result now follows from Theorem 6.1 and the identity 1 + cot(α)2 = csc(α)2.
COROLLARY 6.3. For equispaced interpolation points xk,

min
θ∈R

Λθ2 =

√
π

N
.

The minimum is attained when θ = σ + (2n − 1)π/2 + α with n ∈ Z and |α| ≤ π/4. In
particular, the minimum is attained for θ = σ + π/2, and hence

Λθ2 ≥ Λ
σ+π/2
2 .

Proof. For such θ, csc(σ − θ) = − csc
(
(2n − 1)π/2 + α

)
= (−1)n+1 sec(α). Since

|α| ≤ π/4, we have csc(σ − θ)2 = sec(α)2 ≤ 2, and so max
(
csc(σ − θ)2/2, 1

)
= 1.

Thus, Gauss’s formula (2.1) is optimal for equispaced interpolation in a second sense: it
selects θ to yield a minimal value of Λθ2. Of course, as the statement of the corollary makes
clear, this choice is not unique.

7. Non-equispaced points. When the interpolation points are not equispaced, the Le-
besgue constants—of both varieties—are considerably more difficult to analyze.2 While the
formula (5.3) for the Lebesgue function Lθ remains valid, the expression (5.4) for Λθ does
not because |γk| is no longer independent of k. Moreover, our analysis of Λθ2 relied on simple
explicit expressions for `k, `, and γk that are not available for general grids.

Nevertheless, we can gain some insight into the non-equispaced case through numerical
computation. Using the Chebfun software package for MATLAB [8], we can build a machine-
precision-accurate piecewise polynomial approximation to Lθ for any grid of our choosing
and compute its maximum to find Λθ. By varying θ, we can determine which choice of θ
yields an optimal (minimal) value of Λθ.

A plot of Λθ as a function of θ for the equispaced grid (1.3) with K = 6 is shown in
the solid blue line of Figure 7.1a. The dashed orange line marks the location of θ = σ,
reduced modulo π, which, for this grid, is π/2. The singularity present in the blue curve at
this point reflects the fact that a unique interpolant in T

π/2
N does not exist for this grid, as

proved in Theorem 4.1 and Corollary 4.2. Similarly, the dashed gold line marks the location of
θ = σ + π/2, reduced modulo π, which is 0 here; recall (Corollary 3.2) that this is the choice

2One can sometimes make progress by assuming something about the nature of the nonuniform spacing; this
is done, for instance in [1, Chapter 3] [2, 15], which study the Lebesgue constants for odd-length trigonometric
interpolation in perturbed equispaced grids. It is likely that similar techniques can be applied to our even-length
setting, but we do not attempt to pursue this here.
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FIG. 7.1. Lebesgue constant Λθ (solid blue lines) as a function of θ for (a) the equispaced grid (1.3) with
K = 6 and (b) a 6-point non-equispaced grid described in the text. The values of θ in [0, π) corresponding to θ = σ
(dashed orange lines) and θ = σ + π/2 (dashed gold lines) are marked, as are the optimal (minimal) values of Λθ

(black dots).

of θ made by Gauss’s formula (2.1). The black dot marks the minimal value of Λθ.3 We see
that the choice made by Gauss’s formula minimizes Λθ, in accordance with Theorem 5.2.

Figure 7.1b displays a similar plot but for a non-equispaced grid with interpolation points
at approximately 0.584, 0.618, 0.647, 4.126, 4.522, and 5.443. Again, there is a singularity
present at θ = σ, but more importantly, it is evident that the minimal value of Λθ is not attained
for the Gauss choice θ = σ + π/2. That is, Gauss’s formula does not select θ to minimize
the Lebesgue constant in this case. Thus, we conclude that Gauss’s formula is not optimal for
non-equispaced grids in general.

Similar plots can be made for the 2-norm Lebesgue constant Λθ2. As they are qualitatively
similar to those of Figure 7.1, we omit them.

Even though the plot of Figure 7.1b reveals that the choice θ = σ + π/2 is not optimal in
general, we observe that it is “not far” from optimal for this example in the sense that Λσ+π/2

is not significantly larger than the minimal value of Λθ. It is natural to wonder whether this
near-optimality holds for arbitrary sets of interpolation points. Were that true, there would be
little to gain by pursuing the true optimal value of θ; one could use Gauss’s formula as-is in
confidence, knowing that no other choice for θ is significantly superior to the one it makes.

While we shall not attempt to answer this question completely, we can gain some insight
by considering the following simple inequality.

PROPOSITION 7.1. For any choice of the interpolation points xk and the parameter θ,

|Λσ+π/2 − Λθ| ≤ C| cot(σ − θ)|,

where C is a constant that does not depend on θ.
Proof. By (5.2) and the triangle inequality,

Lθ(x) ≤ Lσ+π/2(x) + |`(x) cot(σ − θ)|
K−1∑
k=0

|γk|.

3As our proof of Theorem 5.2 suggests, this point is not unique. Computationally, we find that the minimum is
attained for approximately 0 ≤ θ ≤ 0.253518 and π − 0.253518 ≤ θ < π.
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Taking the maximum over 0 ≤ x ≤ 2π yields

Λθ ≤ Λσ+π/2 + C| cot(σ − θ)|,

where

C =

[
max

0≤x≤2π
|`(x)|

]K−1∑
k=0

|γk|

does not depend on θ. A similar argument yields the same inequality with the roles of Λθ and
Λσ+π/2 reversed. Combining these two inequalities, we obtain the result.

COROLLARY 7.2. For equispaced interpolation points xk,

Λσ+π/2 ≤ Λθ ≤ Λσ+π/2 + | cot(σ − θ)|.

Proof. The first inequality is given by Theorem 5.2. The second follows from Proposi-
tion 7.1 upon using the formulae in Appendix A to show that the expression for the constant
C that appears in the proof evaluates to 1.

Observe that Λσ =∞, a consequence of the fact that the interpolation problem may not
have a solution when θ = σ. Because Λθ is a continuous function of θ, it follows that the
optimal value of Λθ cannot occur for θ near σ. It thus seems natural to look for the optimal
θ at points far from σ, and Gauss’s formula takes this intuition to the extreme: modulo π,
θ = σ + π/2 is the furthest point in [0, π) from θ = σ.

As Figure 7.1b shows, this intuition does not always lead to the optimum; however,
letting θ∗ denote a value of θ in [0, π) for which Λθ is minimal, Proposition 7.1 shows
that the difference between Λσ+π/2 and Λθ∗ is at most C| cot(σ − θ∗)|. Thus, Λσ+π/2 is
“nearly optimal” provided that neither C nor | cot(σ − θ∗)| is large. Bounding either of
these quantities may be difficult in general. Nevertheless, the intuition developed in the
previous paragraph suggests that |σ − θ∗| (with σ taken modulo π) ought to be bounded well
away from 0; hence, | cot(σ − θ)| ought not to be very large. Moreover, potential-theoretic
considerations [13, Ch. 11] lead us to expect that the constant C will be large only if the
distribution of the interpolation points is so far from equispaced that the problem of computing
the interpolant is too ill-conditioned—even for θ = θ∗—for the scheme to be of any real use.

Thus, we expect (but certainly have not proved) that the choice made by Gauss’s formula
will be “nearly optimal” for all “practical” choices of the interpolation points, even if they are
not equispaced. We leave the development of a more precise version of this statement as a
matter for future work.

8. Minimal-norm solutions. In the preceding sections, we took the perspective that
one should select the constraint on the highest-order terms in the interpolant to minimize
a norm of the interpolation operator, thereby obtaining an interpolant that is least sensitive
to perturbations as measured by that norm. An alternative way to proceed is to take a cue
from the linear algebra of underdetermined systems and select the interpolant t from TN to
minimize ‖t‖2. As the 2-norm is the only norm we consider, we will refer to these minimal-2-
norm solutions simply as minimal-norm solutions for brevity.

Remarkably, we can give a simple formula for a minimal-norm interpolant even when the
points are not equispaced. Observe that the general solution (2.4) to the interpolation problem
may be expressed as

(8.1) t(x) =

K−1∑
k=0

fk
[
`k(x) + µk`(x)

]
,
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where the µk are free parameters. This representation is misleading in that it seems that t
has K degrees of freedom when it is really only the value of λ =

∑K−1
k=0 fkµk that matters.

Nevertheless, it is useful because, unlike (2.4), it is a Lagrange-type formula for the interpolant.
We view (8.1) as a modification for λ 6= 0 of Gauss’s Lagrange formula (2.1).

We now show how to select the µk so that (8.1) gives a minimal-norm solution to the
interpolation problem. We require the following fact from linear algebra.

LEMMA 8.1. Let A ∈ Cm×n, nonzero u ∈ Cm, and f ∈ Cn be given. The quantity
‖(A+ uv∗)f‖2, where v ∈ Cn, is minimal for

v = −A
∗u

u∗u
.

Proof. By orthogonal projection, the value of α for which ‖Af + αu‖2 is minimal is
α = −u∗Af/u∗u. We just need to select v so that v∗f = α, and a direct calculation shows
that the given choice of v accomplishes this.

The choice of v given by Lemma 8.1 is essentially unique. Although we can add to the
given v any vector orthogonal to f and still obtain a minimal value of ‖(A + uv∗)f‖2, the
value of v∗f remains the same, and therefore so does the vector (A+ uv∗)f that attains the
minimum.

We use Lemma 8.1 to prove the following result, which says that a choice for the µk that
yields a minimal-norm solution can be found by projecting the Lagrange basis functions `k
orthogonally onto the subspace spanned by the trigonometric node polynomial `.

THEOREM 8.2. A minimal-norm solution to the even-length trigonometric interpolation
problem is given by (8.1) with

µk = −〈`k, `〉
〈`, `〉

.

Proof. By standard results from finite-dimensional linear algebra, there is a vector space
isomorphism (a bijective linear map) ϕ : TN → C2N+1 that is isometric in the sense that
〈s, t〉 = ϕ(t)∗ϕ(s) for any s, t ∈ TN . Abusing notation, we identify members of TN with
their images under ϕ and use (8.1) to write

t = (L+ `µ∗)f

in C2N+1, where L =
[
`0 · · · `K−1

]
and µ = (µ0, . . . , µK−1) and f = (f0, . . . , fK−1),

both written as column vectors. By Lemma 8.1, the choice of µ that minimizes ‖t‖2 is

µ = −L
∗`

`∗`
.

Using ϕ to translate this from a statement about objects in C2N+1 to one about objects in TN ,
we obtain the result.

Note that the values of the µk given by Theorem 8.2 depend only on the interpolation
points xk and not on the interpolation data fk. That is, the modified Gauss formula (8.1) with
these µk yields a minimal-norm solution for any fk.

The minimal-norm interpolant of Theorem 8.2 is essentially unique for the same reason
that the vector v of Lemma 8.1 is essentially unique. Although there are other choices of the
µk that work, they all yield the same value of λ =

∑K−1
k=0 fkµk and thus the same interpolant.

If the points are equispaced, then selecting µk according to Theorem 8.2 causes (8.1) to reduce
to Gauss’s original formula.

COROLLARY 8.3. For equispaced interpolation points xk, Gauss’s formula (2.1) gives a
minimal-norm solution to the even-length trigonometric interpolation problem.
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Proof. If the points are given by (1.3), Theorem 8.2 and (6.4) show that µk = 0 gives a
minimal-norm solution. For other equispaced grids, use periodic translation.

In particular, the balanced solution is a minimal-norm solution to an interpolation problem
posed in the points (1.3). For interpolation in (1.4), the skew-balanced solution is of minimal
norm. It is tempting to state further that Gauss’s formula will give a minimal-norm solution
for any set of interpolation points for which 〈`k, `〉 = 0 for all k; however, the following result
shows that this statement is not more general than what we have already proved.

PROPOSITION 8.4. We have 〈`k, `〉 = 0 for all k if and only if the interpolation points xk
are equispaced.

Proof. The “if” part is a consequence of (6.4) and periodic translation. For the
converse, suppose that 〈`k, `〉 = 0 for all k. Since TN−1 ⊂ span{`0, . . . , `K−1}, we
must have 〈t, `〉 = 0 for all t ∈ TN−1. And since ` ∈ TN , this can only happen if
` ∈ span{cos(Nx), sin(Nx)}. Thus, `(x) = A cos(Nx − ϕ) for some A ∈ R, A 6= 0,
and ϕ ∈ [0, 2π), and so ` has 2N equispaced zeros in [0, 2π). But by (2.3), the zeros of ` in
[0, 2π) are precisely the interpolation points xk.

9. Conclusion. The present work was born of the author’s desire to understand
1) how Gauss’s formula (2.1) resolves the issue of the extra degree of freedom present in
even-length trigonometric interpolants and 2) what rationale, if any, could be given to support
the balancing condition, which is discussed often in the literature [5, 10, 12] but seems to
have little to recommend it over simply using Gauss’s formula by itself, especially when
interpolating in arbitrary points.

For 1), we have analyzed Gauss’s formula in detail and precisely identified the choice it
makes for the constraint on the highest-order terms in the interpolant. We have shown that for
equispaced interpolation, this choice is optimal in every sense of the word: it constrains the
extra degree of freedom in a way that minimizes the standard∞-norm and 2-norm Lebesgue
constants and, moreover, produces interpolants of minimal 2-norm.

Regarding 2), we have shown that the balancing condition is optimal for the equispaced
grid (1.3), and Gauss’s formula imposes this condition naturally. For other grids, nothing in
our analysis gives any reason to prefer the balancing condition. Accordingly, if a Lagrange
representation is desired, we recommend using Gauss’s formula without modifying it to force
a balanced interpolant.4

When the interpolation points are not equispaced, the choice made by Gauss’s formula
ceases to be optimal. We have demonstrated this numerically for the ∞-norm Lebesgue
constant and proved it rigorously for minimal-norm interpolants by identifying the optimal
choice in that case.

Acknowledgments. The author thanks Nick Trefethen for feedback on this work. He
also thanks the anonymous referees for valuable suggestions that have greatly improved the
manuscript.

The views expressed in this document are those of the author and do not reflect the official
policy or position of the Department of Defense, the Department of the Navy, or the U.S.
Government.

4More specifically, for computational efficiency and to avoid numerical instabilities, we recommend using
the barycentric version of Gauss’s formula; see [3, 5, 6, 10, 11, 12] for details and [4] for a recent application to
trigonometric rational approximation.
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Appendix A. Formulae for `k, `, and γk for the grid (1.3).
In the proofs of our theorems regarding interpolation in the points (1.3), we require

formulae for `k, `, and γk for this grid. In [10, Section 2], it is shown that

(A.1) `k(x) =
(−1)k

2N
sin(Nx) cot

(
x− xk

2

)
.

From [5, equation (2.2)] and the fact that σ = Nπ − π/2 for this grid (see the proof of
Corollary 3.3), we infer

(A.2) `(x) = − 1

22N−1
sin(Nx).

Finally, we determine γk from these results and the relation `k(x) = γk`(x) cot
(
(x− xk)/2

)
:

(A.3) γk = (−1)k+1 22(N−1)

N
.

Appendix B. Proofs of identities used in proving Theorem 6.2. In this appendix, we
employ residue calculus to establish the identities (6.3), (6.4), and (6.5) used in the proof of
Theorem 6.2. Recall that the residue of a function f : C→ C at a point c ∈ C at which it has
a pole of order n may be calculated by the formula

(B.1) Res
z=c

f(z) =
1

(n− 1)!
lim
z→c

dn−1

dzn−1
[
(z − c)nf(z)

]
.

We use this formula to determine the residues at z = 0 of a pair of functions that will arise in
our computations.

LEMMA B.1. For a ∈ C, a 6= 0, and integer n ≥ 1,

Res
z=0

1

zn
z + a

z − a
=

{
−1 if n = 1,
− 2
an−1 if n ≥ 2.

Proof. For n = 1, the result follows from the computation

lim
z→0

z
1

z

z + a

z − a
=

a

−a
= −1.

For n ≥ 2, by repeatedly differentiating the expansion

z + a

z − a
= 1 +

2a

z − a
,

we obtain

dn−1

dzn−1

[
z + a

z − a

]
= (−1)n−1(n− 1)!

2a

(z − a)n
,

and the result now follows from (B.1).
LEMMA B.2. For a ∈ C, a 6= 0, and integer n ≥ 1,

Res
z=0

1

zn

(
z + a

z − a

)2

=

{
1 if n = 1,

4
an−1 (n− 1) if n ≥ 2.
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Proof. For n = 1, we have

lim
z→0

z
1

z

(
z + a

z − a

)
=

(
a

−a

)2

= 1.

For n ≥ 2, we repeatedly differentiate(
z + a

z − a

)2

= 1 +
4a

z − a
+

4a2

(z − a)2

to find

dn−1

dzn−1

[(
z + a

z − a

)2
]

= (−1)n−1(n− 1)!
4a

(z − a)n
+ (−1)n−1n!

4a2

(z − a)n+1

and apply (B.1) again.
These results enable us to evaluate a pair of trigonometric integrals with the aid of the

residue theorem.
LEMMA B.3. With xk as in (1.3),∫ 2π

0

sin(Nx)2 cot

(
x− xk

2

)
dx = 0.

Proof. Using Euler’s identity, we rewrite the integrand in terms of complex exponentials
and then change variables according to z = eix, dz = iz dx, giving∫ 2π

0

sin(Nx)2 cot

(
x− xk

2

)
dx = −1

4

∫
T
(zN − z−N )2

z + zkN
z − zkN

dz

z
,

where T denotes the unit circle in C and zN = eiπ/N so that zkN = eixk . Noting that the
singularity of the integrand at z = zkN is removable, the value of the integral will be determined
by the residue of the integrand at z = 0, where it has a pole of order 2N + 1. Expanding

(zN − z−N )2
z + zkN
z − zkN

1

z
= z2N−1

z + zkN
z − zkN

− 2

z

z + zkN
z − zkN

+
1

z2N+1

z + zkN
z − zkN

and applying Lemma B.1, we obtain

Res
z=0

(zN − z−N )2
z + zkN
z − zkN

1

z
= 0 + 2− 2

z2NkN

= 0,

since z2NkN = 1. Thus, by the residue theorem,∫ 2π

0

sin(Nx)2 cot

(
x− xk

2

)
dx = −1

4
2πiRes

z=0
(zN − z−N )2

z + zkN
z − zkN

1

z
= 0,

as claimed.
LEMMA B.4. With xk as in (1.3),∫ 2π

0

sin(Nx)2 cot

(
x− xk

2

)2

dx = (4N − 1)π.
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Proof. Proceeding as in the proof of Lemma B.3, we rewrite the integrand in terms of
complex exponentials and change variables to obtain∫ 2π

0

sin(Nx)2 cot

(
x− xk

2

)2

dx = − i
4

∫
T
(zN − z−N )2

(
z + zkN
z − zkN

)2
dz

z
.

Once again, the singularity in the integrand at z = zkN is removable, and the only other
singularity is a pole of order 2N + 1 at z = 0. We expand

(zN−z−N )2
(
z + zkN
z − zkN

)2
1

z
= z2N−1

(
z + zkN
z − zkN

)2

− 2

z

(
z + zkN
z − zkN

)2

+
1

z2N+1

(
z + zkN
z − zkN

)2

and apply Lemma B.2 to find

Res
z=0

(zN − z−N )2
(
z + zkN
z − zkN

)2

= 0− 2 +
8N

z2NkN

= 8N − 2.

Thus, by the residue theorem,∫ 2π

0

sin(Nx)2 cot

(
x− xk

2

)2

dx = − i
4

2πiRes
z=0

(zN − z−N )2
(
z + zkN
z − zkN

)2

= (4N − 1)π,

as was to be shown.
We can now establish the claimed identities. From (A.1), we have

〈`j , `k〉 =
(−1)j+k

4N2

∫ 2π

0

sin(Nx)2 cot

(
x− xj

2

)
cot

(
x− xk

2

)
dx.

For j 6= k, use the standard identity for the cotangent of a difference to write

cot

(
x− xj

2

)
cot

(
x− xk

2

)
= cot

(
xj − xk

2

)[
cot

(
x− xk

2

)
− cot

(
x− xk

2

)]
− 1.

By Lemma B.3, the integral over [0, 2π] of the product of sin(Nx)2 and the terms in square
brackets on the right-hand side vanishes, leaving

〈`j , `k〉 = − (−1)j+k

4N2

∫ 2π

0

sin(Nx)2 dx = (−1)j+k+1 π

4N2
,

which is the formula given the first clause of (6.3). For j = k, we have

〈`k, `k〉 =
1

4N2

∫ 2π

0

sin(Nx)2 cot

(
x− xk

2

)2

dx = (4N − 1)
π

4N2

by Lemma B.4, yielding the second clause of (6.3). For (6.4), we compute

〈`k, `〉 =
(−1)k+1

22NN

∫ 2π

0

sin(Nx)2 cot

(
x− xk

2

)
dx = 0

by (A.1) and (A.2) and Lemma B.3. Finally, using (A.2) and (A.3), we have

γjγk 〈`, `〉 = (−1)j+k
24(N−1)

24N−2N2

∫ 2π

0

sin(Nx)2 dx = (−1)j+k
π

4N2
,

giving (6.5).
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